1/*	$NetBSD: qdivrem.c,v 1.2 2009/03/15 22:31:12 cegger Exp $	*/
2
3/*-
4 * Copyright (c) 1992, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36#include <sys/cdefs.h>
37#if defined(LIBC_SCCS) && !defined(lint)
38#if 0
39static char sccsid[] = "@(#)qdivrem.c	8.1 (Berkeley) 6/4/93";
40#else
41__RCSID("$NetBSD: qdivrem.c,v 1.2 2009/03/15 22:31:12 cegger Exp $");
42#endif
43#endif /* LIBC_SCCS and not lint */
44
45/*
46 * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
47 * section 4.3.1, pp. 257--259.
48 */
49
50#include "quad.h"
51
52#define	B	((int)1 << HALF_BITS)	/* digit base */
53
54/* Combine two `digits' to make a single two-digit number. */
55#define	COMBINE(a, b) (((u_int)(a) << HALF_BITS) | (b))
56
57/* select a type for digits in base B: use unsigned short if they fit */
58#if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
59typedef unsigned short digit;
60#else
61typedef u_int digit;
62#endif
63
64static void shl __P((digit *p, int len, int sh));
65
66/*
67 * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
68 *
69 * We do this in base 2-sup-HALF_BITS, so that all intermediate products
70 * fit within u_int.  As a consequence, the maximum length dividend and
71 * divisor are 4 `digits' in this base (they are shorter if they have
72 * leading zeros).
73 */
74u_quad_t
75__qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
76{
77	union uu tmp;
78	digit *u, *v, *q;
79	digit v1, v2;
80	u_int qhat, rhat, t;
81	int m, n, d, j, i;
82	digit uspace[5], vspace[5], qspace[5];
83
84	/*
85	 * Take care of special cases: divide by zero, and u < v.
86	 */
87	if (vq == 0) {
88		/* divide by zero. */
89		static volatile const unsigned int zero = 0;
90
91		tmp.ul[H] = tmp.ul[L] = 1 / zero;
92		if (arq)
93			*arq = uq;
94		return (tmp.q);
95	}
96	if (uq < vq) {
97		if (arq)
98			*arq = uq;
99		return (0);
100	}
101	u = &uspace[0];
102	v = &vspace[0];
103	q = &qspace[0];
104
105	/*
106	 * Break dividend and divisor into digits in base B, then
107	 * count leading zeros to determine m and n.  When done, we
108	 * will have:
109	 *	u = (u[1]u[2]...u[m+n]) sub B
110	 *	v = (v[1]v[2]...v[n]) sub B
111	 *	v[1] != 0
112	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
113	 *	m >= 0 (otherwise u < v, which we already checked)
114	 *	m + n = 4
115	 * and thus
116	 *	m = 4 - n <= 2
117	 */
118	tmp.uq = uq;
119	u[0] = 0;
120	u[1] = (digit)HHALF(tmp.ul[H]);
121	u[2] = (digit)LHALF(tmp.ul[H]);
122	u[3] = (digit)HHALF(tmp.ul[L]);
123	u[4] = (digit)LHALF(tmp.ul[L]);
124	tmp.uq = vq;
125	v[1] = (digit)HHALF(tmp.ul[H]);
126	v[2] = (digit)LHALF(tmp.ul[H]);
127	v[3] = (digit)HHALF(tmp.ul[L]);
128	v[4] = (digit)LHALF(tmp.ul[L]);
129	for (n = 4; v[1] == 0; v++) {
130		if (--n == 1) {
131			u_int rbj;	/* r*B+u[j] (not root boy jim) */
132			digit q1, q2, q3, q4;
133
134			/*
135			 * Change of plan, per exercise 16.
136			 *	r = 0;
137			 *	for j = 1..4:
138			 *		q[j] = floor((r*B + u[j]) / v),
139			 *		r = (r*B + u[j]) % v;
140			 * We unroll this completely here.
141			 */
142			t = v[2];	/* nonzero, by definition */
143			q1 = (digit)(u[1] / t);
144			rbj = COMBINE(u[1] % t, u[2]);
145			q2 = (digit)(rbj / t);
146			rbj = COMBINE(rbj % t, u[3]);
147			q3 = (digit)(rbj / t);
148			rbj = COMBINE(rbj % t, u[4]);
149			q4 = (digit)(rbj / t);
150			if (arq)
151				*arq = rbj % t;
152			tmp.ul[H] = COMBINE(q1, q2);
153			tmp.ul[L] = COMBINE(q3, q4);
154			return (tmp.q);
155		}
156	}
157
158	/*
159	 * By adjusting q once we determine m, we can guarantee that
160	 * there is a complete four-digit quotient at &qspace[1] when
161	 * we finally stop.
162	 */
163	for (m = 4 - n; u[1] == 0; u++)
164		m--;
165	for (i = 4 - m; --i >= 0;)
166		q[i] = 0;
167	q += 4 - m;
168
169	/*
170	 * Here we run Program D, translated from MIX to C and acquiring
171	 * a few minor changes.
172	 *
173	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
174	 */
175	d = 0;
176	for (t = v[1]; t < B / 2; t <<= 1)
177		d++;
178	if (d > 0) {
179		shl(&u[0], m + n, d);		/* u <<= d */
180		shl(&v[1], n - 1, d);		/* v <<= d */
181	}
182	/*
183	 * D2: j = 0.
184	 */
185	j = 0;
186	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
187	v2 = v[2];	/* for D3 */
188	do {
189		digit uj0, uj1, uj2;
190
191		/*
192		 * D3: Calculate qhat (\^q, in TeX notation).
193		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
194		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
195		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
196		 * decrement qhat and increase rhat correspondingly.
197		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
198		 */
199		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
200		uj1 = u[j + 1];	/* for D3 only */
201		uj2 = u[j + 2];	/* for D3 only */
202		if (uj0 == v1) {
203			qhat = B;
204			rhat = uj1;
205			goto qhat_too_big;
206		} else {
207			u_int nn = COMBINE(uj0, uj1);
208			qhat = nn / v1;
209			rhat = nn % v1;
210		}
211		while (v2 * qhat > COMBINE(rhat, uj2)) {
212	qhat_too_big:
213			qhat--;
214			if ((rhat += v1) >= B)
215				break;
216		}
217		/*
218		 * D4: Multiply and subtract.
219		 * The variable `t' holds any borrows across the loop.
220		 * We split this up so that we do not require v[0] = 0,
221		 * and to eliminate a final special case.
222		 */
223		for (t = 0, i = n; i > 0; i--) {
224			t = u[i + j] - v[i] * qhat - t;
225			u[i + j] = (digit)LHALF(t);
226			t = (B - HHALF(t)) & (B - 1);
227		}
228		t = u[j] - t;
229		u[j] = (digit)LHALF(t);
230		/*
231		 * D5: test remainder.
232		 * There is a borrow if and only if HHALF(t) is nonzero;
233		 * in that (rare) case, qhat was too large (by exactly 1).
234		 * Fix it by adding v[1..n] to u[j..j+n].
235		 */
236		if (HHALF(t)) {
237			qhat--;
238			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
239				t += u[i + j] + v[i];
240				u[i + j] = (digit)LHALF(t);
241				t = HHALF(t);
242			}
243			u[j] = (digit)LHALF(u[j] + t);
244		}
245		q[j] = (digit)qhat;
246	} while (++j <= m);		/* D7: loop on j. */
247
248	/*
249	 * If caller wants the remainder, we have to calculate it as
250	 * u[m..m+n] >> d (this is at most n digits and thus fits in
251	 * u[m+1..m+n], but we may need more source digits).
252	 */
253	if (arq) {
254		if (d) {
255			for (i = m + n; i > m; --i)
256				u[i] = (digit)(((u_int)u[i] >> d) |
257				    LHALF((u_int)u[i - 1] << (HALF_BITS - d)));
258			u[i] = 0;
259		}
260		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
261		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
262		*arq = tmp.q;
263	}
264
265	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
266	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
267	return (tmp.q);
268}
269
270/*
271 * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
272 * `fall out' the left (there never will be any such anyway).
273 * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
274 */
275static void
276shl(digit *p, int len, int sh)
277{
278	int i;
279
280	for (i = 0; i < len; i++)
281		p[i] = (digit)(LHALF((u_int)p[i] << sh) |
282		    ((u_int)p[i + 1] >> (HALF_BITS - sh)));
283	p[i] = (digit)(LHALF((u_int)p[i] << sh));
284}
285