1/* $NetBSD: sha2.c,v 1.21 2010/01/24 21:11:18 joerg Exp $ */
2/*	$KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $	*/
3
4/*
5 * sha2.c
6 *
7 * Version 1.0.0beta1
8 *
9 * Written by Aaron D. Gifford <me@aarongifford.com>
10 *
11 * Copyright 2000 Aaron D. Gifford.  All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the copyright holder nor the names of contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 */
38
39#if HAVE_NBTOOL_CONFIG_H
40#include "nbtool_config.h"
41#endif
42
43#include <sys/cdefs.h>
44
45#if defined(_KERNEL) || defined(_STANDALONE)
46__KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.21 2010/01/24 21:11:18 joerg Exp $");
47
48#include <sys/param.h>	/* XXX: to pull <machine/macros.h> for vax memset(9) */
49#include <lib/libkern/libkern.h>
50
51#else
52
53#if defined(LIBC_SCCS) && !defined(lint)
54__RCSID("$NetBSD: sha2.c,v 1.21 2010/01/24 21:11:18 joerg Exp $");
55#endif /* LIBC_SCCS and not lint */
56
57#include "namespace.h"
58#include <string.h>
59
60#endif
61
62#include <sys/types.h>
63#include <sys/sha2.h>
64
65#if HAVE_NBTOOL_CONFIG_H
66#  if HAVE_SYS_ENDIAN_H
67#    include <sys/endian.h>
68#  else
69#   undef htobe32
70#   undef htobe64
71#   undef be32toh
72#   undef be64toh
73
74static uint32_t
75htobe32(uint32_t x)
76{
77	uint8_t p[4];
78	memcpy(p, &x, 4);
79
80	return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
81}
82
83static uint64_t
84htobe64(uint64_t x)
85{
86	uint8_t p[8];
87	uint32_t u, v;
88	memcpy(p, &x, 8);
89
90	u = ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
91	v = ((p[4] << 24) | (p[5] << 16) | (p[6] << 8) | p[7]);
92
93	return ((((uint64_t)u) << 32) | v);
94}
95
96static uint32_t
97be32toh(uint32_t x)
98{
99	return htobe32(x);
100}
101
102static uint64_t
103be64toh(uint64_t x)
104{
105	return htobe64(x);
106}
107#  endif
108#endif
109
110/*** SHA-256/384/512 Various Length Definitions ***********************/
111/* NOTE: Most of these are in sha2.h */
112#define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
113#define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
114#define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
115
116/*
117 * Macro for incrementally adding the unsigned 64-bit integer n to the
118 * unsigned 128-bit integer (represented using a two-element array of
119 * 64-bit words):
120 */
121#define ADDINC128(w,n)	{ \
122	(w)[0] += (uint64_t)(n); \
123	if ((w)[0] < (n)) { \
124		(w)[1]++; \
125	} \
126}
127
128/*** THE SIX LOGICAL FUNCTIONS ****************************************/
129/*
130 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
131 *
132 *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
133 *   S is a ROTATION) because the SHA-256/384/512 description document
134 *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
135 *   same "backwards" definition.
136 */
137/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
138#define R(b,x) 		((x) >> (b))
139/* 32-bit Rotate-right (used in SHA-256): */
140#define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
141/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
142#define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
143
144/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
145#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
146#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
147
148/* Four of six logical functions used in SHA-256: */
149#define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
150#define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
151#define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
152#define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
153
154/* Four of six logical functions used in SHA-384 and SHA-512: */
155#define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
156#define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
157#define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
158#define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
159
160/*** INTERNAL FUNCTION PROTOTYPES *************************************/
161/* NOTE: These should not be accessed directly from outside this
162 * library -- they are intended for private internal visibility/use
163 * only.
164 */
165static void SHA512_Last(SHA512_CTX *);
166void SHA224_Transform(SHA224_CTX *, const uint32_t*);
167void SHA256_Transform(SHA256_CTX *, const uint32_t*);
168void SHA384_Transform(SHA384_CTX *, const uint64_t*);
169void SHA512_Transform(SHA512_CTX *, const uint64_t*);
170
171
172/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
173/* Hash constant words K for SHA-256: */
174static const uint32_t K256[64] = {
175	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
176	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
177	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
178	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
179	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
180	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
181	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
182	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
183	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
184	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
185	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
186	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
187	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
188	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
189	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
190	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
191};
192
193/* Initial hash value H for SHA-224: */
194static const uint32_t sha224_initial_hash_value[8] = {
195	0xc1059ed8UL,
196	0x367cd507UL,
197	0x3070dd17UL,
198	0xf70e5939UL,
199	0xffc00b31UL,
200	0x68581511UL,
201	0x64f98fa7UL,
202	0xbefa4fa4UL
203};
204
205/* Initial hash value H for SHA-256: */
206static const uint32_t sha256_initial_hash_value[8] = {
207	0x6a09e667UL,
208	0xbb67ae85UL,
209	0x3c6ef372UL,
210	0xa54ff53aUL,
211	0x510e527fUL,
212	0x9b05688cUL,
213	0x1f83d9abUL,
214	0x5be0cd19UL
215};
216
217/* Hash constant words K for SHA-384 and SHA-512: */
218static const uint64_t K512[80] = {
219	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
220	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
221	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
222	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
223	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
224	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
225	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
226	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
227	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
228	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
229	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
230	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
231	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
232	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
233	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
234	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
235	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
236	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
237	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
238	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
239	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
240	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
241	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
242	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
243	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
244	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
245	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
246	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
247	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
248	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
249	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
250	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
251	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
252	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
253	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
254	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
255	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
256	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
257	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
258	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
259};
260
261/* Initial hash value H for SHA-384 */
262static const uint64_t sha384_initial_hash_value[8] = {
263	0xcbbb9d5dc1059ed8ULL,
264	0x629a292a367cd507ULL,
265	0x9159015a3070dd17ULL,
266	0x152fecd8f70e5939ULL,
267	0x67332667ffc00b31ULL,
268	0x8eb44a8768581511ULL,
269	0xdb0c2e0d64f98fa7ULL,
270	0x47b5481dbefa4fa4ULL
271};
272
273/* Initial hash value H for SHA-512 */
274static const uint64_t sha512_initial_hash_value[8] = {
275	0x6a09e667f3bcc908ULL,
276	0xbb67ae8584caa73bULL,
277	0x3c6ef372fe94f82bULL,
278	0xa54ff53a5f1d36f1ULL,
279	0x510e527fade682d1ULL,
280	0x9b05688c2b3e6c1fULL,
281	0x1f83d9abfb41bd6bULL,
282	0x5be0cd19137e2179ULL
283};
284
285#if !defined(_KERNEL) && !defined(_STANDALONE)
286#if defined(__weak_alias)
287__weak_alias(SHA224_Init,_SHA224_Init)
288__weak_alias(SHA224_Update,_SHA224_Update)
289__weak_alias(SHA224_Final,_SHA224_Final)
290__weak_alias(SHA224_Transform,_SHA224_Transform)
291
292__weak_alias(SHA256_Init,_SHA256_Init)
293__weak_alias(SHA256_Update,_SHA256_Update)
294__weak_alias(SHA256_Final,_SHA256_Final)
295__weak_alias(SHA256_Transform,_SHA256_Transform)
296
297__weak_alias(SHA384_Init,_SHA384_Init)
298__weak_alias(SHA384_Update,_SHA384_Update)
299__weak_alias(SHA384_Final,_SHA384_Final)
300__weak_alias(SHA384_Transform,_SHA384_Transform)
301
302__weak_alias(SHA512_Init,_SHA512_Init)
303__weak_alias(SHA512_Update,_SHA512_Update)
304__weak_alias(SHA512_Final,_SHA512_Final)
305__weak_alias(SHA512_Transform,_SHA512_Transform)
306#endif
307#endif
308
309/*** SHA-256: *********************************************************/
310int
311SHA256_Init(SHA256_CTX *context)
312{
313	if (context == NULL)
314		return 1;
315
316	memcpy(context->state, sha256_initial_hash_value,
317	    (size_t)(SHA256_DIGEST_LENGTH));
318	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
319	context->bitcount = 0;
320
321	return 1;
322}
323
324#ifdef SHA2_UNROLL_TRANSFORM
325
326/* Unrolled SHA-256 round macros: */
327
328#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
329	W256[j] = be32toh(*data);		\
330	++data;					\
331	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
332             K256[j] + W256[j]; \
333	(d) += T1; \
334	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
335	j++
336
337#define ROUND256(a,b,c,d,e,f,g,h)	\
338	s0 = W256[(j+1)&0x0f]; \
339	s0 = sigma0_256(s0); \
340	s1 = W256[(j+14)&0x0f]; \
341	s1 = sigma1_256(s1); \
342	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
343	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
344	(d) += T1; \
345	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
346	j++
347
348void
349SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
350{
351	uint32_t	a, b, c, d, e, f, g, h, s0, s1;
352	uint32_t	T1, *W256;
353	int		j;
354
355	W256 = (uint32_t *)context->buffer;
356
357	/* Initialize registers with the prev. intermediate value */
358	a = context->state[0];
359	b = context->state[1];
360	c = context->state[2];
361	d = context->state[3];
362	e = context->state[4];
363	f = context->state[5];
364	g = context->state[6];
365	h = context->state[7];
366
367	j = 0;
368	do {
369		/* Rounds 0 to 15 (unrolled): */
370		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
371		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
372		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
373		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
374		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
375		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
376		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
377		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
378	} while (j < 16);
379
380	/* Now for the remaining rounds to 64: */
381	do {
382		ROUND256(a,b,c,d,e,f,g,h);
383		ROUND256(h,a,b,c,d,e,f,g);
384		ROUND256(g,h,a,b,c,d,e,f);
385		ROUND256(f,g,h,a,b,c,d,e);
386		ROUND256(e,f,g,h,a,b,c,d);
387		ROUND256(d,e,f,g,h,a,b,c);
388		ROUND256(c,d,e,f,g,h,a,b);
389		ROUND256(b,c,d,e,f,g,h,a);
390	} while (j < 64);
391
392	/* Compute the current intermediate hash value */
393	context->state[0] += a;
394	context->state[1] += b;
395	context->state[2] += c;
396	context->state[3] += d;
397	context->state[4] += e;
398	context->state[5] += f;
399	context->state[6] += g;
400	context->state[7] += h;
401
402	/* Clean up */
403	a = b = c = d = e = f = g = h = T1 = 0;
404}
405
406#else /* SHA2_UNROLL_TRANSFORM */
407
408void
409SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
410{
411	uint32_t	a, b, c, d, e, f, g, h, s0, s1;
412	uint32_t	T1, T2, *W256;
413	int		j;
414
415	W256 = (uint32_t *)(void *)context->buffer;
416
417	/* Initialize registers with the prev. intermediate value */
418	a = context->state[0];
419	b = context->state[1];
420	c = context->state[2];
421	d = context->state[3];
422	e = context->state[4];
423	f = context->state[5];
424	g = context->state[6];
425	h = context->state[7];
426
427	j = 0;
428	do {
429		W256[j] = be32toh(*data);
430		++data;
431		/* Apply the SHA-256 compression function to update a..h */
432		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
433		T2 = Sigma0_256(a) + Maj(a, b, c);
434		h = g;
435		g = f;
436		f = e;
437		e = d + T1;
438		d = c;
439		c = b;
440		b = a;
441		a = T1 + T2;
442
443		j++;
444	} while (j < 16);
445
446	do {
447		/* Part of the message block expansion: */
448		s0 = W256[(j+1)&0x0f];
449		s0 = sigma0_256(s0);
450		s1 = W256[(j+14)&0x0f];
451		s1 = sigma1_256(s1);
452
453		/* Apply the SHA-256 compression function to update a..h */
454		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
455		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
456		T2 = Sigma0_256(a) + Maj(a, b, c);
457		h = g;
458		g = f;
459		f = e;
460		e = d + T1;
461		d = c;
462		c = b;
463		b = a;
464		a = T1 + T2;
465
466		j++;
467	} while (j < 64);
468
469	/* Compute the current intermediate hash value */
470	context->state[0] += a;
471	context->state[1] += b;
472	context->state[2] += c;
473	context->state[3] += d;
474	context->state[4] += e;
475	context->state[5] += f;
476	context->state[6] += g;
477	context->state[7] += h;
478
479	/* Clean up */
480	a = b = c = d = e = f = g = h = T1 = T2 = 0;
481}
482
483#endif /* SHA2_UNROLL_TRANSFORM */
484
485int
486SHA256_Update(SHA256_CTX *context, const uint8_t *data, size_t len)
487{
488	unsigned int	freespace, usedspace;
489
490	if (len == 0) {
491		/* Calling with no data is valid - we do nothing */
492		return 1;
493	}
494
495	usedspace = (unsigned int)((context->bitcount >> 3) %
496				    SHA256_BLOCK_LENGTH);
497	if (usedspace > 0) {
498		/* Calculate how much free space is available in the buffer */
499		freespace = SHA256_BLOCK_LENGTH - usedspace;
500
501		if (len >= freespace) {
502			/* Fill the buffer completely and process it */
503			memcpy(&context->buffer[usedspace], data,
504			    (size_t)(freespace));
505			context->bitcount += freespace << 3;
506			len -= freespace;
507			data += freespace;
508			SHA256_Transform(context,
509			    (uint32_t *)(void *)context->buffer);
510		} else {
511			/* The buffer is not yet full */
512			memcpy(&context->buffer[usedspace], data, len);
513			context->bitcount += len << 3;
514			/* Clean up: */
515			usedspace = freespace = 0;
516			return 1;
517		}
518	}
519	/*
520	 * Process as many complete blocks as possible.
521	 *
522	 * Check alignment of the data pointer. If it is 32bit aligned,
523	 * SHA256_Transform can be called directly on the data stream,
524	 * otherwise enforce the alignment by copy into the buffer.
525	 */
526	if ((uintptr_t)data % 4 == 0) {
527		while (len >= SHA256_BLOCK_LENGTH) {
528			SHA256_Transform(context,
529			    (const uint32_t *)(const void *)data);
530			context->bitcount += SHA256_BLOCK_LENGTH << 3;
531			len -= SHA256_BLOCK_LENGTH;
532			data += SHA256_BLOCK_LENGTH;
533		}
534	} else {
535		while (len >= SHA256_BLOCK_LENGTH) {
536			memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
537			SHA256_Transform(context,
538			    (const uint32_t *)(const void *)context->buffer);
539			context->bitcount += SHA256_BLOCK_LENGTH << 3;
540			len -= SHA256_BLOCK_LENGTH;
541			data += SHA256_BLOCK_LENGTH;
542		}
543	}
544	if (len > 0) {
545		/* There's left-overs, so save 'em */
546		memcpy(context->buffer, data, len);
547		context->bitcount += len << 3;
548	}
549	/* Clean up: */
550	usedspace = freespace = 0;
551
552	return 1;
553}
554
555static int
556SHA224_256_Final(uint8_t digest[], SHA256_CTX *context, size_t len)
557{
558	unsigned int	usedspace;
559	size_t i;
560
561	/* If no digest buffer is passed, we don't bother doing this: */
562	if (digest != NULL) {
563		usedspace = (unsigned int)((context->bitcount >> 3) %
564		    SHA256_BLOCK_LENGTH);
565		context->bitcount = htobe64(context->bitcount);
566		if (usedspace > 0) {
567			/* Begin padding with a 1 bit: */
568			context->buffer[usedspace++] = 0x80;
569
570			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
571				/* Set-up for the last transform: */
572				memset(&context->buffer[usedspace], 0,
573				    (size_t)(SHA256_SHORT_BLOCK_LENGTH -
574				    usedspace));
575			} else {
576				if (usedspace < SHA256_BLOCK_LENGTH) {
577					memset(&context->buffer[usedspace], 0,
578					    (size_t)(SHA256_BLOCK_LENGTH -
579					    usedspace));
580				}
581				/* Do second-to-last transform: */
582				SHA256_Transform(context,
583				    (uint32_t *)(void *)context->buffer);
584
585				/* And set-up for the last transform: */
586				memset(context->buffer, 0,
587				    (size_t)(SHA256_SHORT_BLOCK_LENGTH));
588			}
589		} else {
590			/* Set-up for the last transform: */
591			memset(context->buffer, 0,
592			    (size_t)(SHA256_SHORT_BLOCK_LENGTH));
593
594			/* Begin padding with a 1 bit: */
595			*context->buffer = 0x80;
596		}
597		/* Set the bit count: */
598		memcpy(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
599		    &context->bitcount, sizeof(context->bitcount));
600
601		/* Final transform: */
602		SHA256_Transform(context, (uint32_t *)(void *)context->buffer);
603
604		for (i = 0; i < len / 4; i++)
605			be32enc(digest + 4 * i, context->state[i]);
606	}
607
608	/* Clean up state data: */
609	memset(context, 0, sizeof(*context));
610	usedspace = 0;
611
612	return 1;
613}
614
615int
616SHA256_Final(uint8_t digest[], SHA256_CTX *context)
617{
618	return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH);
619}
620
621/*** SHA-224: *********************************************************/
622int
623SHA224_Init(SHA224_CTX *context)
624{
625	if (context == NULL)
626		return 1;
627
628	/* The state and buffer size are driven by SHA256, not by SHA224. */
629	memcpy(context->state, sha224_initial_hash_value,
630	    (size_t)(SHA256_DIGEST_LENGTH));
631	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
632	context->bitcount = 0;
633
634	return 1;
635}
636
637int
638SHA224_Update(SHA224_CTX *context, const uint8_t *data, size_t len)
639{
640	return SHA256_Update((SHA256_CTX *)context, data, len);
641}
642
643void
644SHA224_Transform(SHA224_CTX *context, const uint32_t *data)
645{
646	SHA256_Transform((SHA256_CTX *)context, data);
647}
648
649int
650SHA224_Final(uint8_t digest[], SHA224_CTX *context)
651{
652	return SHA224_256_Final(digest, (SHA256_CTX *)context,
653	    SHA224_DIGEST_LENGTH);
654}
655
656/*** SHA-512: *********************************************************/
657int
658SHA512_Init(SHA512_CTX *context)
659{
660	if (context == NULL)
661		return 1;
662
663	memcpy(context->state, sha512_initial_hash_value,
664	    (size_t)(SHA512_DIGEST_LENGTH));
665	memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
666	context->bitcount[0] = context->bitcount[1] =  0;
667
668	return 1;
669}
670
671#ifdef SHA2_UNROLL_TRANSFORM
672
673/* Unrolled SHA-512 round macros: */
674#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
675	W512[j] = be64toh(*data);		\
676	++data;					\
677	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
678             K512[j] + W512[j]; \
679	(d) += T1, \
680	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
681	j++
682
683#define ROUND512(a,b,c,d,e,f,g,h)	\
684	s0 = W512[(j+1)&0x0f]; \
685	s0 = sigma0_512(s0); \
686	s1 = W512[(j+14)&0x0f]; \
687	s1 = sigma1_512(s1); \
688	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
689             (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
690	(d) += T1; \
691	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
692	j++
693
694void
695SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
696{
697	uint64_t	a, b, c, d, e, f, g, h, s0, s1;
698	uint64_t	T1, *W512 = (uint64_t *)context->buffer;
699	int		j;
700
701	/* Initialize registers with the prev. intermediate value */
702	a = context->state[0];
703	b = context->state[1];
704	c = context->state[2];
705	d = context->state[3];
706	e = context->state[4];
707	f = context->state[5];
708	g = context->state[6];
709	h = context->state[7];
710
711	j = 0;
712	do {
713		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
714		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
715		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
716		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
717		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
718		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
719		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
720		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
721	} while (j < 16);
722
723	/* Now for the remaining rounds up to 79: */
724	do {
725		ROUND512(a,b,c,d,e,f,g,h);
726		ROUND512(h,a,b,c,d,e,f,g);
727		ROUND512(g,h,a,b,c,d,e,f);
728		ROUND512(f,g,h,a,b,c,d,e);
729		ROUND512(e,f,g,h,a,b,c,d);
730		ROUND512(d,e,f,g,h,a,b,c);
731		ROUND512(c,d,e,f,g,h,a,b);
732		ROUND512(b,c,d,e,f,g,h,a);
733	} while (j < 80);
734
735	/* Compute the current intermediate hash value */
736	context->state[0] += a;
737	context->state[1] += b;
738	context->state[2] += c;
739	context->state[3] += d;
740	context->state[4] += e;
741	context->state[5] += f;
742	context->state[6] += g;
743	context->state[7] += h;
744
745	/* Clean up */
746	a = b = c = d = e = f = g = h = T1 = 0;
747}
748
749#else /* SHA2_UNROLL_TRANSFORM */
750
751void
752SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
753{
754	uint64_t	a, b, c, d, e, f, g, h, s0, s1;
755	uint64_t	T1, T2, *W512 = (void *)context->buffer;
756	int		j;
757
758	/* Initialize registers with the prev. intermediate value */
759	a = context->state[0];
760	b = context->state[1];
761	c = context->state[2];
762	d = context->state[3];
763	e = context->state[4];
764	f = context->state[5];
765	g = context->state[6];
766	h = context->state[7];
767
768	j = 0;
769	do {
770		W512[j] = be64toh(*data);
771		++data;
772		/* Apply the SHA-512 compression function to update a..h */
773		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
774		T2 = Sigma0_512(a) + Maj(a, b, c);
775		h = g;
776		g = f;
777		f = e;
778		e = d + T1;
779		d = c;
780		c = b;
781		b = a;
782		a = T1 + T2;
783
784		j++;
785	} while (j < 16);
786
787	do {
788		/* Part of the message block expansion: */
789		s0 = W512[(j+1)&0x0f];
790		s0 = sigma0_512(s0);
791		s1 = W512[(j+14)&0x0f];
792		s1 =  sigma1_512(s1);
793
794		/* Apply the SHA-512 compression function to update a..h */
795		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
796		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
797		T2 = Sigma0_512(a) + Maj(a, b, c);
798		h = g;
799		g = f;
800		f = e;
801		e = d + T1;
802		d = c;
803		c = b;
804		b = a;
805		a = T1 + T2;
806
807		j++;
808	} while (j < 80);
809
810	/* Compute the current intermediate hash value */
811	context->state[0] += a;
812	context->state[1] += b;
813	context->state[2] += c;
814	context->state[3] += d;
815	context->state[4] += e;
816	context->state[5] += f;
817	context->state[6] += g;
818	context->state[7] += h;
819
820	/* Clean up */
821	a = b = c = d = e = f = g = h = T1 = T2 = 0;
822}
823
824#endif /* SHA2_UNROLL_TRANSFORM */
825
826int
827SHA512_Update(SHA512_CTX *context, const uint8_t *data, size_t len)
828{
829	unsigned int	freespace, usedspace;
830
831	if (len == 0) {
832		/* Calling with no data is valid - we do nothing */
833		return 1;
834	}
835
836	usedspace = (unsigned int)((context->bitcount[0] >> 3) %
837	    SHA512_BLOCK_LENGTH);
838	if (usedspace > 0) {
839		/* Calculate how much free space is available in the buffer */
840		freespace = SHA512_BLOCK_LENGTH - usedspace;
841
842		if (len >= freespace) {
843			/* Fill the buffer completely and process it */
844			memcpy(&context->buffer[usedspace], data,
845			    (size_t)(freespace));
846			ADDINC128(context->bitcount, freespace << 3);
847			len -= freespace;
848			data += freespace;
849			SHA512_Transform(context,
850			    (uint64_t *)(void *)context->buffer);
851		} else {
852			/* The buffer is not yet full */
853			memcpy(&context->buffer[usedspace], data, len);
854			ADDINC128(context->bitcount, len << 3);
855			/* Clean up: */
856			usedspace = freespace = 0;
857			return 1;
858		}
859	}
860	/*
861	 * Process as many complete blocks as possible.
862	 *
863	 * Check alignment of the data pointer. If it is 64bit aligned,
864	 * SHA512_Transform can be called directly on the data stream,
865	 * otherwise enforce the alignment by copy into the buffer.
866	 */
867	if ((uintptr_t)data % 8 == 0) {
868		while (len >= SHA512_BLOCK_LENGTH) {
869			SHA512_Transform(context,
870			    (const uint64_t*)(const void *)data);
871			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
872			len -= SHA512_BLOCK_LENGTH;
873			data += SHA512_BLOCK_LENGTH;
874		}
875	} else {
876		while (len >= SHA512_BLOCK_LENGTH) {
877			memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
878			SHA512_Transform(context,
879			    (const void *)context->buffer);
880			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
881			len -= SHA512_BLOCK_LENGTH;
882			data += SHA512_BLOCK_LENGTH;
883		}
884	}
885	if (len > 0) {
886		/* There's left-overs, so save 'em */
887		memcpy(context->buffer, data, len);
888		ADDINC128(context->bitcount, len << 3);
889	}
890	/* Clean up: */
891	usedspace = freespace = 0;
892
893	return 1;
894}
895
896static void
897SHA512_Last(SHA512_CTX *context)
898{
899	unsigned int	usedspace;
900
901	usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
902	context->bitcount[0] = htobe64(context->bitcount[0]);
903	context->bitcount[1] = htobe64(context->bitcount[1]);
904	if (usedspace > 0) {
905		/* Begin padding with a 1 bit: */
906		context->buffer[usedspace++] = 0x80;
907
908		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
909			/* Set-up for the last transform: */
910			memset(&context->buffer[usedspace], 0,
911			    (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
912		} else {
913			if (usedspace < SHA512_BLOCK_LENGTH) {
914				memset(&context->buffer[usedspace], 0,
915				    (size_t)(SHA512_BLOCK_LENGTH - usedspace));
916			}
917			/* Do second-to-last transform: */
918			SHA512_Transform(context,
919			    (uint64_t *)(void *)context->buffer);
920
921			/* And set-up for the last transform: */
922			memset(context->buffer, 0,
923			    (size_t)(SHA512_BLOCK_LENGTH - 2));
924		}
925	} else {
926		/* Prepare for final transform: */
927		memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
928
929		/* Begin padding with a 1 bit: */
930		*context->buffer = 0x80;
931	}
932	/* Store the length of input data (in bits): */
933	memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
934	    &context->bitcount[1], sizeof(context->bitcount[1]));
935	memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
936	    &context->bitcount[0], sizeof(context->bitcount[0]));
937
938	/* Final transform: */
939	SHA512_Transform(context, (uint64_t *)(void *)context->buffer);
940}
941
942int
943SHA512_Final(uint8_t digest[], SHA512_CTX *context)
944{
945	size_t i;
946
947	/* If no digest buffer is passed, we don't bother doing this: */
948	if (digest != NULL) {
949		SHA512_Last(context);
950
951		/* Save the hash data for output: */
952		for (i = 0; i < 8; ++i)
953			be64enc(digest + 8 * i, context->state[i]);
954	}
955
956	/* Zero out state data */
957	memset(context, 0, sizeof(*context));
958
959	return 1;
960}
961
962/*** SHA-384: *********************************************************/
963int
964SHA384_Init(SHA384_CTX *context)
965{
966	if (context == NULL)
967		return 1;
968
969	memcpy(context->state, sha384_initial_hash_value,
970	    (size_t)(SHA512_DIGEST_LENGTH));
971	memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
972	context->bitcount[0] = context->bitcount[1] = 0;
973
974	return 1;
975}
976
977int
978SHA384_Update(SHA384_CTX *context, const uint8_t *data, size_t len)
979{
980	return SHA512_Update((SHA512_CTX *)context, data, len);
981}
982
983void
984SHA384_Transform(SHA512_CTX *context, const uint64_t *data)
985{
986	SHA512_Transform((SHA512_CTX *)context, data);
987}
988
989int
990SHA384_Final(uint8_t digest[], SHA384_CTX *context)
991{
992	size_t i;
993
994	/* If no digest buffer is passed, we don't bother doing this: */
995	if (digest != NULL) {
996		SHA512_Last((SHA512_CTX *)context);
997
998		/* Save the hash data for output: */
999		for (i = 0; i < 6; ++i)
1000			be64enc(digest + 8 * i, context->state[i]);
1001	}
1002
1003	/* Zero out state data */
1004	memset(context, 0, sizeof(*context));
1005
1006	return 1;
1007}
1008