1/*	$NetBSD: rb.c,v 1.11 2011/06/20 09:11:16 mrg Exp $	*/
2
3/*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas <matt@3am-software.com>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32#if !defined(_KERNEL) && !defined(_STANDALONE)
33#include <sys/types.h>
34#include <stddef.h>
35#include <assert.h>
36#include <stdbool.h>
37#ifdef RBDEBUG
38#define	KASSERT(s)	assert(s)
39#else
40#define KASSERT(s)	do { } while (/*CONSTCOND*/ 0)
41#endif
42__RCSID("$NetBSD: rb.c,v 1.11 2011/06/20 09:11:16 mrg Exp $");
43#else
44#include <lib/libkern/libkern.h>
45__KERNEL_RCSID(0, "$NetBSD: rb.c,v 1.11 2011/06/20 09:11:16 mrg Exp $");
46#endif
47
48#ifdef _LIBC
49__weak_alias(rb_tree_init, _rb_tree_init)
50__weak_alias(rb_tree_find_node, _rb_tree_find_node)
51__weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
52__weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
53__weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
54__weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
55__weak_alias(rb_tree_iterate, _rb_tree_iterate)
56#ifdef RBDEBUG
57__weak_alias(rb_tree_check, _rb_tree_check)
58__weak_alias(rb_tree_depths, _rb_tree_depths)
59#endif
60
61#include "namespace.h"
62#endif
63
64#ifdef RBTEST
65#include "rbtree.h"
66#else
67#include <sys/rbtree.h>
68#endif
69
70static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
71static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
72	unsigned int);
73#ifdef RBDEBUG
74static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
75	const struct rb_node *, const unsigned int);
76static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
77	const struct rb_node *, bool);
78#else
79#define	rb_tree_check_node(a, b, c, d)	true
80#endif
81
82#define	RB_NODETOITEM(rbto, rbn)	\
83    ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
84#define	RB_ITEMTONODE(rbto, rbn)	\
85    ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
86
87#define	RB_SENTINEL_NODE	NULL
88
89void
90rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
91{
92
93	rbt->rbt_ops = ops;
94	rbt->rbt_root = RB_SENTINEL_NODE;
95	RB_TAILQ_INIT(&rbt->rbt_nodes);
96#ifndef RBSMALL
97	rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;	/* minimum node */
98	rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;	/* maximum node */
99#endif
100#ifdef RBSTATS
101	rbt->rbt_count = 0;
102	rbt->rbt_insertions = 0;
103	rbt->rbt_removals = 0;
104	rbt->rbt_insertion_rebalance_calls = 0;
105	rbt->rbt_insertion_rebalance_passes = 0;
106	rbt->rbt_removal_rebalance_calls = 0;
107	rbt->rbt_removal_rebalance_passes = 0;
108#endif
109}
110
111void *
112rb_tree_find_node(struct rb_tree *rbt, const void *key)
113{
114	const rb_tree_ops_t *rbto = rbt->rbt_ops;
115	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
116	struct rb_node *parent = rbt->rbt_root;
117
118	while (!RB_SENTINEL_P(parent)) {
119		void *pobj = RB_NODETOITEM(rbto, parent);
120		const signed int diff = (*compare_key)(rbto->rbto_context,
121		    pobj, key);
122		if (diff == 0)
123			return pobj;
124		parent = parent->rb_nodes[diff < 0];
125	}
126
127	return NULL;
128}
129
130void *
131rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
132{
133	const rb_tree_ops_t *rbto = rbt->rbt_ops;
134	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
135	struct rb_node *parent = rbt->rbt_root, *last = NULL;
136
137	while (!RB_SENTINEL_P(parent)) {
138		void *pobj = RB_NODETOITEM(rbto, parent);
139		const signed int diff = (*compare_key)(rbto->rbto_context,
140		    pobj, key);
141		if (diff == 0)
142			return pobj;
143		if (diff > 0)
144			last = parent;
145		parent = parent->rb_nodes[diff < 0];
146	}
147
148	return RB_NODETOITEM(rbto, last);
149}
150
151void *
152rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
153{
154	const rb_tree_ops_t *rbto = rbt->rbt_ops;
155	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
156	struct rb_node *parent = rbt->rbt_root, *last = NULL;
157
158	while (!RB_SENTINEL_P(parent)) {
159		void *pobj = RB_NODETOITEM(rbto, parent);
160		const signed int diff = (*compare_key)(rbto->rbto_context,
161		    pobj, key);
162		if (diff == 0)
163			return pobj;
164		if (diff < 0)
165			last = parent;
166		parent = parent->rb_nodes[diff < 0];
167	}
168
169	return RB_NODETOITEM(rbto, last);
170}
171
172void *
173rb_tree_insert_node(struct rb_tree *rbt, void *object)
174{
175	const rb_tree_ops_t *rbto = rbt->rbt_ops;
176	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
177	struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
178	unsigned int position;
179	bool rebalance;
180
181	RBSTAT_INC(rbt->rbt_insertions);
182
183	tmp = rbt->rbt_root;
184	/*
185	 * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
186	 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
187	 * avoid a lot of tests for root and know that even at root,
188	 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
189	 * update rbt->rbt_root.
190	 */
191	parent = (struct rb_node *)(void *)&rbt->rbt_root;
192	position = RB_DIR_LEFT;
193
194	/*
195	 * Find out where to place this new leaf.
196	 */
197	while (!RB_SENTINEL_P(tmp)) {
198		void *tobj = RB_NODETOITEM(rbto, tmp);
199		const signed int diff = (*compare_nodes)(rbto->rbto_context,
200		    tobj, object);
201		if (__predict_false(diff == 0)) {
202			/*
203			 * Node already exists; return it.
204			 */
205			return tobj;
206		}
207		parent = tmp;
208		position = (diff < 0);
209		tmp = parent->rb_nodes[position];
210	}
211
212#ifdef RBDEBUG
213	{
214		struct rb_node *prev = NULL, *next = NULL;
215
216		if (position == RB_DIR_RIGHT)
217			prev = parent;
218		else if (tmp != rbt->rbt_root)
219			next = parent;
220
221		/*
222		 * Verify our sequential position
223		 */
224		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
225		KASSERT(next == NULL || !RB_SENTINEL_P(next));
226		if (prev != NULL && next == NULL)
227			next = TAILQ_NEXT(prev, rb_link);
228		if (prev == NULL && next != NULL)
229			prev = TAILQ_PREV(next, rb_node_qh, rb_link);
230		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
231		KASSERT(next == NULL || !RB_SENTINEL_P(next));
232		KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
233		    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
234		KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
235		    RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
236	}
237#endif
238
239	/*
240	 * Initialize the node and insert as a leaf into the tree.
241	 */
242	RB_SET_FATHER(self, parent);
243	RB_SET_POSITION(self, position);
244	if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
245		RB_MARK_BLACK(self);		/* root is always black */
246#ifndef RBSMALL
247		rbt->rbt_minmax[RB_DIR_LEFT] = self;
248		rbt->rbt_minmax[RB_DIR_RIGHT] = self;
249#endif
250		rebalance = false;
251	} else {
252		KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
253#ifndef RBSMALL
254		/*
255		 * Keep track of the minimum and maximum nodes.  If our
256		 * parent is a minmax node and we on their min/max side,
257		 * we must be the new min/max node.
258		 */
259		if (parent == rbt->rbt_minmax[position])
260			rbt->rbt_minmax[position] = self;
261#endif /* !RBSMALL */
262		/*
263		 * All new nodes are colored red.  We only need to rebalance
264		 * if our parent is also red.
265		 */
266		RB_MARK_RED(self);
267		rebalance = RB_RED_P(parent);
268	}
269	KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
270	self->rb_left = parent->rb_nodes[position];
271	self->rb_right = parent->rb_nodes[position];
272	parent->rb_nodes[position] = self;
273	KASSERT(RB_CHILDLESS_P(self));
274
275	/*
276	 * Insert the new node into a sorted list for easy sequential access
277	 */
278	RBSTAT_INC(rbt->rbt_count);
279#ifdef RBDEBUG
280	if (RB_ROOT_P(rbt, self)) {
281		RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
282	} else if (position == RB_DIR_LEFT) {
283		KASSERT((*compare_nodes)(rbto->rbto_context,
284		    RB_NODETOITEM(rbto, self),
285		    RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
286		RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
287	} else {
288		KASSERT((*compare_nodes)(rbto->rbto_context,
289		    RB_NODETOITEM(rbto, RB_FATHER(self)),
290		    RB_NODETOITEM(rbto, self)) < 0);
291		RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
292		    self, rb_link);
293	}
294#endif
295	KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
296
297	/*
298	 * Rebalance tree after insertion
299	 */
300	if (rebalance) {
301		rb_tree_insert_rebalance(rbt, self);
302		KASSERT(rb_tree_check_node(rbt, self, NULL, true));
303	}
304
305	/* Succesfully inserted, return our node pointer. */
306	return object;
307}
308
309/*
310 * Swap the location and colors of 'self' and its child @ which.  The child
311 * can not be a sentinel node.  This is our rotation function.  However,
312 * since it preserves coloring, it great simplifies both insertion and
313 * removal since rotation almost always involves the exchanging of colors
314 * as a separate step.
315 */
316/*ARGSUSED*/
317static void
318rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
319	const unsigned int which)
320{
321	const unsigned int other = which ^ RB_DIR_OTHER;
322	struct rb_node * const grandpa = RB_FATHER(old_father);
323	struct rb_node * const old_child = old_father->rb_nodes[which];
324	struct rb_node * const new_father = old_child;
325	struct rb_node * const new_child = old_father;
326
327	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
328
329	KASSERT(!RB_SENTINEL_P(old_child));
330	KASSERT(RB_FATHER(old_child) == old_father);
331
332	KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
333	KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
334	KASSERT(RB_ROOT_P(rbt, old_father) ||
335	    rb_tree_check_node(rbt, grandpa, NULL, false));
336
337	/*
338	 * Exchange descendant linkages.
339	 */
340	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
341	new_child->rb_nodes[which] = old_child->rb_nodes[other];
342	new_father->rb_nodes[other] = new_child;
343
344	/*
345	 * Update ancestor linkages
346	 */
347	RB_SET_FATHER(new_father, grandpa);
348	RB_SET_FATHER(new_child, new_father);
349
350	/*
351	 * Exchange properties between new_father and new_child.  The only
352	 * change is that new_child's position is now on the other side.
353	 */
354#if 0
355	{
356		struct rb_node tmp;
357		tmp.rb_info = 0;
358		RB_COPY_PROPERTIES(&tmp, old_child);
359		RB_COPY_PROPERTIES(new_father, old_father);
360		RB_COPY_PROPERTIES(new_child, &tmp);
361	}
362#else
363	RB_SWAP_PROPERTIES(new_father, new_child);
364#endif
365	RB_SET_POSITION(new_child, other);
366
367	/*
368	 * Make sure to reparent the new child to ourself.
369	 */
370	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
371		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
372		RB_SET_POSITION(new_child->rb_nodes[which], which);
373	}
374
375	KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
376	KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
377	KASSERT(RB_ROOT_P(rbt, new_father) ||
378	    rb_tree_check_node(rbt, grandpa, NULL, false));
379}
380
381static void
382rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
383{
384	struct rb_node * father = RB_FATHER(self);
385	struct rb_node * grandpa = RB_FATHER(father);
386	struct rb_node * uncle;
387	unsigned int which;
388	unsigned int other;
389
390	KASSERT(!RB_ROOT_P(rbt, self));
391	KASSERT(RB_RED_P(self));
392	KASSERT(RB_RED_P(father));
393	RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
394
395	for (;;) {
396		KASSERT(!RB_SENTINEL_P(self));
397
398		KASSERT(RB_RED_P(self));
399		KASSERT(RB_RED_P(father));
400		/*
401		 * We are red and our parent is red, therefore we must have a
402		 * grandfather and he must be black.
403		 */
404		grandpa = RB_FATHER(father);
405		KASSERT(RB_BLACK_P(grandpa));
406		KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
407		which = (father == grandpa->rb_right);
408		other = which ^ RB_DIR_OTHER;
409		uncle = grandpa->rb_nodes[other];
410
411		if (RB_BLACK_P(uncle))
412			break;
413
414		RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
415		/*
416		 * Case 1: our uncle is red
417		 *   Simply invert the colors of our parent and
418		 *   uncle and make our grandparent red.  And
419		 *   then solve the problem up at his level.
420		 */
421		RB_MARK_BLACK(uncle);
422		RB_MARK_BLACK(father);
423		if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
424			/*
425			 * If our grandpa is root, don't bother
426			 * setting him to red, just return.
427			 */
428			KASSERT(RB_BLACK_P(grandpa));
429			return;
430		}
431		RB_MARK_RED(grandpa);
432		self = grandpa;
433		father = RB_FATHER(self);
434		KASSERT(RB_RED_P(self));
435		if (RB_BLACK_P(father)) {
436			/*
437			 * If our greatgrandpa is black, we're done.
438			 */
439			KASSERT(RB_BLACK_P(rbt->rbt_root));
440			return;
441		}
442	}
443
444	KASSERT(!RB_ROOT_P(rbt, self));
445	KASSERT(RB_RED_P(self));
446	KASSERT(RB_RED_P(father));
447	KASSERT(RB_BLACK_P(uncle));
448	KASSERT(RB_BLACK_P(grandpa));
449	/*
450	 * Case 2&3: our uncle is black.
451	 */
452	if (self == father->rb_nodes[other]) {
453		/*
454		 * Case 2: we are on the same side as our uncle
455		 *   Swap ourselves with our parent so this case
456		 *   becomes case 3.  Basically our parent becomes our
457		 *   child.
458		 */
459		rb_tree_reparent_nodes(rbt, father, other);
460		KASSERT(RB_FATHER(father) == self);
461		KASSERT(self->rb_nodes[which] == father);
462		KASSERT(RB_FATHER(self) == grandpa);
463		self = father;
464		father = RB_FATHER(self);
465	}
466	KASSERT(RB_RED_P(self) && RB_RED_P(father));
467	KASSERT(grandpa->rb_nodes[which] == father);
468	/*
469	 * Case 3: we are opposite a child of a black uncle.
470	 *   Swap our parent and grandparent.  Since our grandfather
471	 *   is black, our father will become black and our new sibling
472	 *   (former grandparent) will become red.
473	 */
474	rb_tree_reparent_nodes(rbt, grandpa, which);
475	KASSERT(RB_FATHER(self) == father);
476	KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
477	KASSERT(RB_RED_P(self));
478	KASSERT(RB_BLACK_P(father));
479	KASSERT(RB_RED_P(grandpa));
480
481	/*
482	 * Final step: Set the root to black.
483	 */
484	RB_MARK_BLACK(rbt->rbt_root);
485}
486
487static void
488rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
489{
490	const unsigned int which = RB_POSITION(self);
491	struct rb_node *father = RB_FATHER(self);
492#ifndef RBSMALL
493	const bool was_root = RB_ROOT_P(rbt, self);
494#endif
495
496	KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
497	KASSERT(!rebalance || RB_BLACK_P(self));
498	KASSERT(RB_CHILDLESS_P(self));
499	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
500
501	/*
502	 * Since we are childless, we know that self->rb_left is pointing
503	 * to the sentinel node.
504	 */
505	father->rb_nodes[which] = self->rb_left;
506
507	/*
508	 * Remove ourselves from the node list, decrement the count,
509	 * and update min/max.
510	 */
511	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
512	RBSTAT_DEC(rbt->rbt_count);
513#ifndef RBSMALL
514	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
515		rbt->rbt_minmax[RB_POSITION(self)] = father;
516		/*
517		 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
518		 * updated automatically, but we also need to update
519		 * rbt->rbt_minmax[RB_DIR_RIGHT];
520		 */
521		if (__predict_false(was_root)) {
522			rbt->rbt_minmax[RB_DIR_RIGHT] = father;
523		}
524	}
525	RB_SET_FATHER(self, NULL);
526#endif
527
528	/*
529	 * Rebalance if requested.
530	 */
531	if (rebalance)
532		rb_tree_removal_rebalance(rbt, father, which);
533	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
534}
535
536/*
537 * When deleting an interior node
538 */
539static void
540rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
541	struct rb_node *standin)
542{
543	const unsigned int standin_which = RB_POSITION(standin);
544	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
545	struct rb_node *standin_son;
546	struct rb_node *standin_father = RB_FATHER(standin);
547	bool rebalance = RB_BLACK_P(standin);
548
549	if (standin_father == self) {
550		/*
551		 * As a child of self, any childen would be opposite of
552		 * our parent.
553		 */
554		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
555		standin_son = standin->rb_nodes[standin_which];
556	} else {
557		/*
558		 * Since we aren't a child of self, any childen would be
559		 * on the same side as our parent.
560		 */
561		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
562		standin_son = standin->rb_nodes[standin_other];
563	}
564
565	/*
566	 * the node we are removing must have two children.
567	 */
568	KASSERT(RB_TWOCHILDREN_P(self));
569	/*
570	 * If standin has a child, it must be red.
571	 */
572	KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
573
574	/*
575	 * Verify things are sane.
576	 */
577	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
578	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
579
580	if (__predict_false(RB_RED_P(standin_son))) {
581		/*
582		 * We know we have a red child so if we flip it to black
583		 * we don't have to rebalance.
584		 */
585		KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
586		RB_MARK_BLACK(standin_son);
587		rebalance = false;
588
589		if (standin_father == self) {
590			KASSERT(RB_POSITION(standin_son) == standin_which);
591		} else {
592			KASSERT(RB_POSITION(standin_son) == standin_other);
593			/*
594			 * Change the son's parentage to point to his grandpa.
595			 */
596			RB_SET_FATHER(standin_son, standin_father);
597			RB_SET_POSITION(standin_son, standin_which);
598		}
599	}
600
601	if (standin_father == self) {
602		/*
603		 * If we are about to delete the standin's father, then when
604		 * we call rebalance, we need to use ourselves as our father.
605		 * Otherwise remember our original father.  Also, sincef we are
606		 * our standin's father we only need to reparent the standin's
607		 * brother.
608		 *
609		 * |    R      -->     S    |
610		 * |  Q   S    -->   Q   T  |
611		 * |        t  -->          |
612		 */
613		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
614		KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
615		KASSERT(self->rb_nodes[standin_which] == standin);
616		/*
617		 * Have our son/standin adopt his brother as his new son.
618		 */
619		standin_father = standin;
620	} else {
621		/*
622		 * |    R          -->    S       .  |
623		 * |   / \  |   T  -->   / \  |  /   |
624		 * |  ..... | S    -->  ..... | T    |
625		 *
626		 * Sever standin's connection to his father.
627		 */
628		standin_father->rb_nodes[standin_which] = standin_son;
629		/*
630		 * Adopt the far son.
631		 */
632		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
633		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
634		KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
635		/*
636		 * Use standin_other because we need to preserve standin_which
637		 * for the removal_rebalance.
638		 */
639		standin_other = standin_which;
640	}
641
642	/*
643	 * Move the only remaining son to our standin.  If our standin is our
644	 * son, this will be the only son needed to be moved.
645	 */
646	KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
647	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
648	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
649
650	/*
651	 * Now copy the result of self to standin and then replace
652	 * self with standin in the tree.
653	 */
654	RB_COPY_PROPERTIES(standin, self);
655	RB_SET_FATHER(standin, RB_FATHER(self));
656	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
657
658	/*
659	 * Remove ourselves from the node list, decrement the count,
660	 * and update min/max.
661	 */
662	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
663	RBSTAT_DEC(rbt->rbt_count);
664#ifndef RBSMALL
665	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
666		rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
667	RB_SET_FATHER(self, NULL);
668#endif
669
670	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
671	KASSERT(RB_FATHER_SENTINEL_P(standin)
672		|| rb_tree_check_node(rbt, standin_father, NULL, false));
673	KASSERT(RB_LEFT_SENTINEL_P(standin)
674		|| rb_tree_check_node(rbt, standin->rb_left, NULL, false));
675	KASSERT(RB_RIGHT_SENTINEL_P(standin)
676		|| rb_tree_check_node(rbt, standin->rb_right, NULL, false));
677
678	if (!rebalance)
679		return;
680
681	rb_tree_removal_rebalance(rbt, standin_father, standin_which);
682	KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
683}
684
685/*
686 * We could do this by doing
687 *	rb_tree_node_swap(rbt, self, which);
688 *	rb_tree_prune_node(rbt, self, false);
689 *
690 * But it's more efficient to just evalate and recolor the child.
691 */
692static void
693rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
694	unsigned int which)
695{
696	struct rb_node *father = RB_FATHER(self);
697	struct rb_node *son = self->rb_nodes[which];
698#ifndef RBSMALL
699	const bool was_root = RB_ROOT_P(rbt, self);
700#endif
701
702	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
703	KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
704	KASSERT(!RB_TWOCHILDREN_P(son));
705	KASSERT(RB_CHILDLESS_P(son));
706	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
707	KASSERT(rb_tree_check_node(rbt, son, NULL, false));
708
709	/*
710	 * Remove ourselves from the tree and give our former child our
711	 * properties (position, color, root).
712	 */
713	RB_COPY_PROPERTIES(son, self);
714	father->rb_nodes[RB_POSITION(son)] = son;
715	RB_SET_FATHER(son, father);
716
717	/*
718	 * Remove ourselves from the node list, decrement the count,
719	 * and update minmax.
720	 */
721	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
722	RBSTAT_DEC(rbt->rbt_count);
723#ifndef RBSMALL
724	if (__predict_false(was_root)) {
725		KASSERT(rbt->rbt_minmax[which] == son);
726		rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
727	} else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
728		rbt->rbt_minmax[RB_POSITION(self)] = son;
729	}
730	RB_SET_FATHER(self, NULL);
731#endif
732
733	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
734	KASSERT(rb_tree_check_node(rbt, son, NULL, true));
735}
736
737void
738rb_tree_remove_node(struct rb_tree *rbt, void *object)
739{
740	const rb_tree_ops_t *rbto = rbt->rbt_ops;
741	struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
742	unsigned int which;
743
744	KASSERT(!RB_SENTINEL_P(self));
745	RBSTAT_INC(rbt->rbt_removals);
746
747	/*
748	 * In the following diagrams, we (the node to be removed) are S.  Red
749	 * nodes are lowercase.  T could be either red or black.
750	 *
751	 * Remember the major axiom of the red-black tree: the number of
752	 * black nodes from the root to each leaf is constant across all
753	 * leaves, only the number of red nodes varies.
754	 *
755	 * Thus removing a red leaf doesn't require any other changes to a
756	 * red-black tree.  So if we must remove a node, attempt to rearrange
757	 * the tree so we can remove a red node.
758	 *
759	 * The simpliest case is a childless red node or a childless root node:
760	 *
761	 * |    T  -->    T  |    or    |  R  -->  *  |
762	 * |  s    -->  *    |
763	 */
764	if (RB_CHILDLESS_P(self)) {
765		const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
766		rb_tree_prune_node(rbt, self, rebalance);
767		return;
768	}
769	KASSERT(!RB_CHILDLESS_P(self));
770	if (!RB_TWOCHILDREN_P(self)) {
771		/*
772		 * The next simpliest case is the node we are deleting is
773		 * black and has one red child.
774		 *
775		 * |      T  -->      T  -->      T  |
776		 * |    S    -->  R      -->  R      |
777		 * |  r      -->    s    -->    *    |
778		 */
779		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
780		KASSERT(RB_BLACK_P(self));
781		KASSERT(RB_RED_P(self->rb_nodes[which]));
782		KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
783		rb_tree_prune_blackred_branch(rbt, self, which);
784		return;
785	}
786	KASSERT(RB_TWOCHILDREN_P(self));
787
788	/*
789	 * We invert these because we prefer to remove from the inside of
790	 * the tree.
791	 */
792	which = RB_POSITION(self) ^ RB_DIR_OTHER;
793
794	/*
795	 * Let's find the node closes to us opposite of our parent
796	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
797	 */
798	standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
799	rb_tree_swap_prune_and_rebalance(rbt, self, standin);
800}
801
802static void
803rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
804	unsigned int which)
805{
806	KASSERT(!RB_SENTINEL_P(parent));
807	KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
808	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
809	RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
810
811	while (RB_BLACK_P(parent->rb_nodes[which])) {
812		unsigned int other = which ^ RB_DIR_OTHER;
813		struct rb_node *brother = parent->rb_nodes[other];
814
815		RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
816
817		KASSERT(!RB_SENTINEL_P(brother));
818		/*
819		 * For cases 1, 2a, and 2b, our brother's children must
820		 * be black and our father must be black
821		 */
822		if (RB_BLACK_P(parent)
823		    && RB_BLACK_P(brother->rb_left)
824		    && RB_BLACK_P(brother->rb_right)) {
825			if (RB_RED_P(brother)) {
826				/*
827				 * Case 1: Our brother is red, swap its
828				 * position (and colors) with our parent.
829				 * This should now be case 2b (unless C or E
830				 * has a red child which is case 3; thus no
831				 * explicit branch to case 2b).
832				 *
833				 *    B         ->        D
834				 *  A     d     ->    b     E
835				 *      C   E   ->  A   C
836				 */
837				KASSERT(RB_BLACK_P(parent));
838				rb_tree_reparent_nodes(rbt, parent, other);
839				brother = parent->rb_nodes[other];
840				KASSERT(!RB_SENTINEL_P(brother));
841				KASSERT(RB_RED_P(parent));
842				KASSERT(RB_BLACK_P(brother));
843				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
844				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
845			} else {
846				/*
847				 * Both our parent and brother are black.
848				 * Change our brother to red, advance up rank
849				 * and go through the loop again.
850				 *
851				 *    B         ->   *B
852				 * *A     D     ->  A     d
853				 *      C   E   ->      C   E
854				 */
855				RB_MARK_RED(brother);
856				KASSERT(RB_BLACK_P(brother->rb_left));
857				KASSERT(RB_BLACK_P(brother->rb_right));
858				if (RB_ROOT_P(rbt, parent))
859					return;	/* root == parent == black */
860				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
861				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
862				which = RB_POSITION(parent);
863				parent = RB_FATHER(parent);
864				continue;
865			}
866		}
867		/*
868		 * Avoid an else here so that case 2a above can hit either
869		 * case 2b, 3, or 4.
870		 */
871		if (RB_RED_P(parent)
872		    && RB_BLACK_P(brother)
873		    && RB_BLACK_P(brother->rb_left)
874		    && RB_BLACK_P(brother->rb_right)) {
875			KASSERT(RB_RED_P(parent));
876			KASSERT(RB_BLACK_P(brother));
877			KASSERT(RB_BLACK_P(brother->rb_left));
878			KASSERT(RB_BLACK_P(brother->rb_right));
879			/*
880			 * We are black, our father is red, our brother and
881			 * both nephews are black.  Simply invert/exchange the
882			 * colors of our father and brother (to black and red
883			 * respectively).
884			 *
885			 *	|    f        -->    F        |
886			 *	|  *     B    -->  *     b    |
887			 *	|      N   N  -->      N   N  |
888			 */
889			RB_MARK_BLACK(parent);
890			RB_MARK_RED(brother);
891			KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
892			break;		/* We're done! */
893		} else {
894			/*
895			 * Our brother must be black and have at least one
896			 * red child (it may have two).
897			 */
898			KASSERT(RB_BLACK_P(brother));
899			KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
900				RB_RED_P(brother->rb_nodes[other]));
901			if (RB_BLACK_P(brother->rb_nodes[other])) {
902				/*
903				 * Case 3: our brother is black, our near
904				 * nephew is red, and our far nephew is black.
905				 * Swap our brother with our near nephew.
906				 * This result in a tree that matches case 4.
907				 * (Our father could be red or black).
908				 *
909				 *	|    F      -->    F      |
910				 *	|  x     B  -->  x   B    |
911				 *	|      n    -->        n  |
912				 */
913				KASSERT(RB_RED_P(brother->rb_nodes[which]));
914				rb_tree_reparent_nodes(rbt, brother, which);
915				KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
916				brother = parent->rb_nodes[other];
917				KASSERT(RB_RED_P(brother->rb_nodes[other]));
918			}
919			/*
920			 * Case 4: our brother is black and our far nephew
921			 * is red.  Swap our father and brother locations and
922			 * change our far nephew to black.  (these can be
923			 * done in either order so we change the color first).
924			 * The result is a valid red-black tree and is a
925			 * terminal case.  (again we don't care about the
926			 * father's color)
927			 *
928			 * If the father is red, we will get a red-black-black
929			 * tree:
930			 *	|  f      ->  f      -->    b    |
931			 *	|    B    ->    B    -->  F   N  |
932			 *	|      n  ->      N  -->         |
933			 *
934			 * If the father is black, we will get an all black
935			 * tree:
936			 *	|  F      ->  F      -->    B    |
937			 *	|    B    ->    B    -->  F   N  |
938			 *	|      n  ->      N  -->         |
939			 *
940			 * If we had two red nephews, then after the swap,
941			 * our former father would have a red grandson.
942			 */
943			KASSERT(RB_BLACK_P(brother));
944			KASSERT(RB_RED_P(brother->rb_nodes[other]));
945			RB_MARK_BLACK(brother->rb_nodes[other]);
946			rb_tree_reparent_nodes(rbt, parent, other);
947			break;		/* We're done! */
948		}
949	}
950	KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
951}
952
953void *
954rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
955{
956	const rb_tree_ops_t *rbto = rbt->rbt_ops;
957	const unsigned int other = direction ^ RB_DIR_OTHER;
958	struct rb_node *self;
959
960	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
961
962	if (object == NULL) {
963#ifndef RBSMALL
964		if (RB_SENTINEL_P(rbt->rbt_root))
965			return NULL;
966		return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
967#else
968		self = rbt->rbt_root;
969		if (RB_SENTINEL_P(self))
970			return NULL;
971		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
972			self = self->rb_nodes[direction];
973		return RB_NODETOITEM(rbto, self);
974#endif /* !RBSMALL */
975	}
976	self = RB_ITEMTONODE(rbto, object);
977	KASSERT(!RB_SENTINEL_P(self));
978	/*
979	 * We can't go any further in this direction.  We proceed up in the
980	 * opposite direction until our parent is in direction we want to go.
981	 */
982	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
983		while (!RB_ROOT_P(rbt, self)) {
984			if (other == RB_POSITION(self))
985				return RB_NODETOITEM(rbto, RB_FATHER(self));
986			self = RB_FATHER(self);
987		}
988		return NULL;
989	}
990
991	/*
992	 * Advance down one in current direction and go down as far as possible
993	 * in the opposite direction.
994	 */
995	self = self->rb_nodes[direction];
996	KASSERT(!RB_SENTINEL_P(self));
997	while (!RB_SENTINEL_P(self->rb_nodes[other]))
998		self = self->rb_nodes[other];
999	return RB_NODETOITEM(rbto, self);
1000}
1001
1002#ifdef RBDEBUG
1003static const struct rb_node *
1004rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
1005	const unsigned int direction)
1006{
1007	const unsigned int other = direction ^ RB_DIR_OTHER;
1008	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
1009
1010	if (self == NULL) {
1011#ifndef RBSMALL
1012		if (RB_SENTINEL_P(rbt->rbt_root))
1013			return NULL;
1014		return rbt->rbt_minmax[direction];
1015#else
1016		self = rbt->rbt_root;
1017		if (RB_SENTINEL_P(self))
1018			return NULL;
1019		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
1020			self = self->rb_nodes[direction];
1021		return self;
1022#endif /* !RBSMALL */
1023	}
1024	KASSERT(!RB_SENTINEL_P(self));
1025	/*
1026	 * We can't go any further in this direction.  We proceed up in the
1027	 * opposite direction until our parent is in direction we want to go.
1028	 */
1029	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
1030		while (!RB_ROOT_P(rbt, self)) {
1031			if (other == RB_POSITION(self))
1032				return RB_FATHER(self);
1033			self = RB_FATHER(self);
1034		}
1035		return NULL;
1036	}
1037
1038	/*
1039	 * Advance down one in current direction and go down as far as possible
1040	 * in the opposite direction.
1041	 */
1042	self = self->rb_nodes[direction];
1043	KASSERT(!RB_SENTINEL_P(self));
1044	while (!RB_SENTINEL_P(self->rb_nodes[other]))
1045		self = self->rb_nodes[other];
1046	return self;
1047}
1048
1049static unsigned int
1050rb_tree_count_black(const struct rb_node *self)
1051{
1052	unsigned int left, right;
1053
1054	if (RB_SENTINEL_P(self))
1055		return 0;
1056
1057	left = rb_tree_count_black(self->rb_left);
1058	right = rb_tree_count_black(self->rb_right);
1059
1060	KASSERT(left == right);
1061
1062	return left + RB_BLACK_P(self);
1063}
1064
1065static bool
1066rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
1067	const struct rb_node *prev, bool red_check)
1068{
1069	const rb_tree_ops_t *rbto = rbt->rbt_ops;
1070	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
1071
1072	KASSERT(!RB_SENTINEL_P(self));
1073	KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
1074	    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
1075
1076	/*
1077	 * Verify our relationship to our parent.
1078	 */
1079	if (RB_ROOT_P(rbt, self)) {
1080		KASSERT(self == rbt->rbt_root);
1081		KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
1082		KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1083		KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
1084	} else {
1085		int diff = (*compare_nodes)(rbto->rbto_context,
1086		    RB_NODETOITEM(rbto, self),
1087		    RB_NODETOITEM(rbto, RB_FATHER(self)));
1088
1089		KASSERT(self != rbt->rbt_root);
1090		KASSERT(!RB_FATHER_SENTINEL_P(self));
1091		if (RB_POSITION(self) == RB_DIR_LEFT) {
1092			KASSERT(diff < 0);
1093			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1094		} else {
1095			KASSERT(diff > 0);
1096			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
1097		}
1098	}
1099
1100	/*
1101	 * Verify our position in the linked list against the tree itself.
1102	 */
1103	{
1104		const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1105		const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1106		KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
1107		KASSERT(next0 == TAILQ_NEXT(self, rb_link));
1108#ifndef RBSMALL
1109		KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
1110		KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
1111#endif
1112	}
1113
1114	/*
1115	 * The root must be black.
1116	 * There can never be two adjacent red nodes.
1117	 */
1118	if (red_check) {
1119		KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
1120		(void) rb_tree_count_black(self);
1121		if (RB_RED_P(self)) {
1122			const struct rb_node *brother;
1123			KASSERT(!RB_ROOT_P(rbt, self));
1124			brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
1125			KASSERT(RB_BLACK_P(RB_FATHER(self)));
1126			/*
1127			 * I'm red and have no children, then I must either
1128			 * have no brother or my brother also be red and
1129			 * also have no children.  (black count == 0)
1130			 */
1131			KASSERT(!RB_CHILDLESS_P(self)
1132				|| RB_SENTINEL_P(brother)
1133				|| RB_RED_P(brother)
1134				|| RB_CHILDLESS_P(brother));
1135			/*
1136			 * If I'm not childless, I must have two children
1137			 * and they must be both be black.
1138			 */
1139			KASSERT(RB_CHILDLESS_P(self)
1140				|| (RB_TWOCHILDREN_P(self)
1141				    && RB_BLACK_P(self->rb_left)
1142				    && RB_BLACK_P(self->rb_right)));
1143			/*
1144			 * If I'm not childless, thus I have black children,
1145			 * then my brother must either be black or have two
1146			 * black children.
1147			 */
1148			KASSERT(RB_CHILDLESS_P(self)
1149				|| RB_BLACK_P(brother)
1150				|| (RB_TWOCHILDREN_P(brother)
1151				    && RB_BLACK_P(brother->rb_left)
1152				    && RB_BLACK_P(brother->rb_right)));
1153		} else {
1154			/*
1155			 * If I'm black and have one child, that child must
1156			 * be red and childless.
1157			 */
1158			KASSERT(RB_CHILDLESS_P(self)
1159				|| RB_TWOCHILDREN_P(self)
1160				|| (!RB_LEFT_SENTINEL_P(self)
1161				    && RB_RIGHT_SENTINEL_P(self)
1162				    && RB_RED_P(self->rb_left)
1163				    && RB_CHILDLESS_P(self->rb_left))
1164				|| (!RB_RIGHT_SENTINEL_P(self)
1165				    && RB_LEFT_SENTINEL_P(self)
1166				    && RB_RED_P(self->rb_right)
1167				    && RB_CHILDLESS_P(self->rb_right)));
1168
1169			/*
1170			 * If I'm a childless black node and my parent is
1171			 * black, my 2nd closet relative away from my parent
1172			 * is either red or has a red parent or red children.
1173			 */
1174			if (!RB_ROOT_P(rbt, self)
1175			    && RB_CHILDLESS_P(self)
1176			    && RB_BLACK_P(RB_FATHER(self))) {
1177				const unsigned int which = RB_POSITION(self);
1178				const unsigned int other = which ^ RB_DIR_OTHER;
1179				const struct rb_node *relative0, *relative;
1180
1181				relative0 = rb_tree_iterate_const(rbt,
1182				    self, other);
1183				KASSERT(relative0 != NULL);
1184				relative = rb_tree_iterate_const(rbt,
1185				    relative0, other);
1186				KASSERT(relative != NULL);
1187				KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
1188#if 0
1189				KASSERT(RB_RED_P(relative)
1190					|| RB_RED_P(relative->rb_left)
1191					|| RB_RED_P(relative->rb_right)
1192					|| RB_RED_P(RB_FATHER(relative)));
1193#endif
1194			}
1195		}
1196		/*
1197		 * A grandparent's children must be real nodes and not
1198		 * sentinels.  First check out grandparent.
1199		 */
1200		KASSERT(RB_ROOT_P(rbt, self)
1201			|| RB_ROOT_P(rbt, RB_FATHER(self))
1202			|| RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
1203		/*
1204		 * If we are have grandchildren on our left, then
1205		 * we must have a child on our right.
1206		 */
1207		KASSERT(RB_LEFT_SENTINEL_P(self)
1208			|| RB_CHILDLESS_P(self->rb_left)
1209			|| !RB_RIGHT_SENTINEL_P(self));
1210		/*
1211		 * If we are have grandchildren on our right, then
1212		 * we must have a child on our left.
1213		 */
1214		KASSERT(RB_RIGHT_SENTINEL_P(self)
1215			|| RB_CHILDLESS_P(self->rb_right)
1216			|| !RB_LEFT_SENTINEL_P(self));
1217
1218		/*
1219		 * If we have a child on the left and it doesn't have two
1220		 * children make sure we don't have great-great-grandchildren on
1221		 * the right.
1222		 */
1223		KASSERT(RB_TWOCHILDREN_P(self->rb_left)
1224			|| RB_CHILDLESS_P(self->rb_right)
1225			|| RB_CHILDLESS_P(self->rb_right->rb_left)
1226			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
1227			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
1228			|| RB_CHILDLESS_P(self->rb_right->rb_right)
1229			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
1230			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
1231
1232		/*
1233		 * If we have a child on the right and it doesn't have two
1234		 * children make sure we don't have great-great-grandchildren on
1235		 * the left.
1236		 */
1237		KASSERT(RB_TWOCHILDREN_P(self->rb_right)
1238			|| RB_CHILDLESS_P(self->rb_left)
1239			|| RB_CHILDLESS_P(self->rb_left->rb_left)
1240			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
1241			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
1242			|| RB_CHILDLESS_P(self->rb_left->rb_right)
1243			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
1244			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
1245
1246		/*
1247		 * If we are fully interior node, then our predecessors and
1248		 * successors must have no children in our direction.
1249		 */
1250		if (RB_TWOCHILDREN_P(self)) {
1251			const struct rb_node *prev0;
1252			const struct rb_node *next0;
1253
1254			prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1255			KASSERT(prev0 != NULL);
1256			KASSERT(RB_RIGHT_SENTINEL_P(prev0));
1257
1258			next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1259			KASSERT(next0 != NULL);
1260			KASSERT(RB_LEFT_SENTINEL_P(next0));
1261		}
1262	}
1263
1264	return true;
1265}
1266
1267void
1268rb_tree_check(const struct rb_tree *rbt, bool red_check)
1269{
1270	const struct rb_node *self;
1271	const struct rb_node *prev;
1272#ifdef RBSTATS
1273	unsigned int count = 0;
1274#endif
1275
1276	KASSERT(rbt->rbt_root != NULL);
1277	KASSERT(RB_LEFT_P(rbt->rbt_root));
1278
1279#if defined(RBSTATS) && !defined(RBSMALL)
1280	KASSERT(rbt->rbt_count > 1
1281	    || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
1282#endif
1283
1284	prev = NULL;
1285	TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1286		rb_tree_check_node(rbt, self, prev, false);
1287#ifdef RBSTATS
1288		count++;
1289#endif
1290	}
1291#ifdef RBSTATS
1292	KASSERT(rbt->rbt_count == count);
1293#endif
1294	if (red_check) {
1295		KASSERT(RB_BLACK_P(rbt->rbt_root));
1296		KASSERT(RB_SENTINEL_P(rbt->rbt_root)
1297			|| rb_tree_count_black(rbt->rbt_root));
1298
1299		/*
1300		 * The root must be black.
1301		 * There can never be two adjacent red nodes.
1302		 */
1303		TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1304			rb_tree_check_node(rbt, self, NULL, true);
1305		}
1306	}
1307}
1308#endif /* RBDEBUG */
1309
1310#ifdef RBSTATS
1311static void
1312rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
1313	size_t *depths, size_t depth)
1314{
1315	if (RB_SENTINEL_P(self))
1316		return;
1317
1318	if (RB_TWOCHILDREN_P(self)) {
1319		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1320		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1321		return;
1322	}
1323	depths[depth]++;
1324	if (!RB_LEFT_SENTINEL_P(self)) {
1325		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1326	}
1327	if (!RB_RIGHT_SENTINEL_P(self)) {
1328		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1329	}
1330}
1331
1332void
1333rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
1334{
1335	rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
1336}
1337#endif /* RBSTATS */
1338