1/*
2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
49 *  School of Computer Science
50 *  Carnegie Mellon University
51 *  Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56/*
57 */
58
59/*
60 *	processor.c: processor and processor_set manipulation routines.
61 */
62
63#include <mach/boolean.h>
64#include <mach/policy.h>
65#include <mach/processor.h>
66#include <mach/processor_info.h>
67#include <mach/vm_param.h>
68#include <kern/cpu_number.h>
69#include <kern/host.h>
70#include <kern/machine.h>
71#include <kern/misc_protos.h>
72#include <kern/processor.h>
73#include <kern/sched.h>
74#include <kern/task.h>
75#include <kern/thread.h>
76#include <kern/ipc_host.h>
77#include <kern/ipc_tt.h>
78#include <ipc/ipc_port.h>
79#include <kern/kalloc.h>
80
81/*
82 * Exported interface
83 */
84#include <mach/mach_host_server.h>
85#include <mach/processor_set_server.h>
86
87struct processor_set	pset0;
88struct pset_node		pset_node0;
89decl_simple_lock_data(static,pset_node_lock)
90
91queue_head_t			tasks;
92queue_head_t			terminated_tasks;	/* To be used ONLY for stackshot. */
93int						tasks_count;
94int						terminated_tasks_count;
95queue_head_t			threads;
96int						threads_count;
97decl_lck_mtx_data(,tasks_threads_lock)
98
99processor_t				processor_list;
100unsigned int			processor_count;
101static processor_t		processor_list_tail;
102decl_simple_lock_data(,processor_list_lock)
103
104uint32_t				processor_avail_count;
105
106processor_t		master_processor;
107int 			master_cpu = 0;
108boolean_t		sched_stats_active = FALSE;
109
110/* Forwards */
111kern_return_t	processor_set_things(
112		processor_set_t		pset,
113		mach_port_t		**thing_list,
114		mach_msg_type_number_t	*count,
115		int			type);
116
117void
118processor_bootstrap(void)
119{
120	pset_init(&pset0, &pset_node0);
121	pset_node0.psets = &pset0;
122
123	simple_lock_init(&pset_node_lock, 0);
124
125	queue_init(&tasks);
126	queue_init(&terminated_tasks);
127	queue_init(&threads);
128
129	simple_lock_init(&processor_list_lock, 0);
130
131	master_processor = cpu_to_processor(master_cpu);
132
133	processor_init(master_processor, master_cpu, &pset0);
134}
135
136/*
137 *	Initialize the given processor for the cpu
138 *	indicated by cpu_id, and assign to the
139 *	specified processor set.
140 */
141void
142processor_init(
143	processor_t			processor,
144	int					cpu_id,
145	processor_set_t		pset)
146{
147	spl_t		s;
148
149	if (processor != master_processor) {
150		/* Scheduler state deferred until sched_init() */
151		SCHED(processor_init)(processor);
152	}
153
154	processor->state = PROCESSOR_OFF_LINE;
155	processor->active_thread = processor->next_thread = processor->idle_thread = THREAD_NULL;
156	processor->processor_set = pset;
157	processor->current_pri = MINPRI;
158	processor->current_thmode = TH_MODE_NONE;
159	processor->cpu_id = cpu_id;
160	timer_call_setup(&processor->quantum_timer, thread_quantum_expire, processor);
161	processor->deadline = UINT64_MAX;
162	processor->timeslice = 0;
163	processor->processor_meta = PROCESSOR_META_NULL;
164	processor->processor_self = IP_NULL;
165	processor_data_init(processor);
166	processor->processor_list = NULL;
167
168	s = splsched();
169	pset_lock(pset);
170	if (pset->cpu_set_count++ == 0)
171		pset->cpu_set_low = pset->cpu_set_hi = cpu_id;
172	else {
173		pset->cpu_set_low = (cpu_id < pset->cpu_set_low)? cpu_id: pset->cpu_set_low;
174		pset->cpu_set_hi = (cpu_id > pset->cpu_set_hi)? cpu_id: pset->cpu_set_hi;
175	}
176	pset_unlock(pset);
177	splx(s);
178
179	simple_lock(&processor_list_lock);
180	if (processor_list == NULL)
181		processor_list = processor;
182	else
183		processor_list_tail->processor_list = processor;
184	processor_list_tail = processor;
185	processor_count++;
186	simple_unlock(&processor_list_lock);
187}
188
189void
190processor_meta_init(
191	processor_t		processor,
192	processor_t		primary)
193{
194	processor_meta_t	pmeta = primary->processor_meta;
195
196	if (pmeta == PROCESSOR_META_NULL) {
197		pmeta = kalloc(sizeof (*pmeta));
198
199		queue_init(&pmeta->idle_queue);
200
201		pmeta->primary = primary;
202	}
203
204	processor->processor_meta = pmeta;
205}
206
207processor_set_t
208processor_pset(
209	processor_t	processor)
210{
211	return (processor->processor_set);
212}
213
214pset_node_t
215pset_node_root(void)
216{
217	return &pset_node0;
218}
219
220processor_set_t
221pset_create(
222	pset_node_t			node)
223{
224	processor_set_t		*prev, pset = kalloc(sizeof (*pset));
225
226	if (pset != PROCESSOR_SET_NULL) {
227		pset_init(pset, node);
228
229		simple_lock(&pset_node_lock);
230
231		prev = &node->psets;
232		while (*prev != PROCESSOR_SET_NULL)
233			prev = &(*prev)->pset_list;
234
235		*prev = pset;
236
237		simple_unlock(&pset_node_lock);
238	}
239
240	return (pset);
241}
242
243/*
244 *	Initialize the given processor_set structure.
245 */
246void
247pset_init(
248	processor_set_t		pset,
249	pset_node_t			node)
250{
251	if (pset != &pset0) {
252		/* Scheduler state deferred until sched_init() */
253		SCHED(pset_init)(pset);
254	}
255
256	queue_init(&pset->active_queue);
257	queue_init(&pset->idle_queue);
258	pset->online_processor_count = 0;
259	pset_pri_init_hint(pset, PROCESSOR_NULL);
260	pset_count_init_hint(pset, PROCESSOR_NULL);
261	pset->cpu_set_low = pset->cpu_set_hi = 0;
262	pset->cpu_set_count = 0;
263	pset->pending_AST_cpu_mask = 0;
264	pset_lock_init(pset);
265	pset->pset_self = IP_NULL;
266	pset->pset_name_self = IP_NULL;
267	pset->pset_list = PROCESSOR_SET_NULL;
268	pset->node = node;
269}
270
271kern_return_t
272processor_info_count(
273	processor_flavor_t		flavor,
274	mach_msg_type_number_t	*count)
275{
276	switch (flavor) {
277
278	case PROCESSOR_BASIC_INFO:
279		*count = PROCESSOR_BASIC_INFO_COUNT;
280		break;
281
282	case PROCESSOR_CPU_LOAD_INFO:
283		*count = PROCESSOR_CPU_LOAD_INFO_COUNT;
284		break;
285
286	default:
287		return (cpu_info_count(flavor, count));
288	}
289
290	return (KERN_SUCCESS);
291}
292
293
294kern_return_t
295processor_info(
296	register processor_t	processor,
297	processor_flavor_t		flavor,
298	host_t					*host,
299	processor_info_t		info,
300	mach_msg_type_number_t	*count)
301{
302	register int	cpu_id, state;
303	kern_return_t	result;
304
305	if (processor == PROCESSOR_NULL)
306		return (KERN_INVALID_ARGUMENT);
307
308	cpu_id = processor->cpu_id;
309
310	switch (flavor) {
311
312	case PROCESSOR_BASIC_INFO:
313	{
314		register processor_basic_info_t		basic_info;
315
316		if (*count < PROCESSOR_BASIC_INFO_COUNT)
317			return (KERN_FAILURE);
318
319		basic_info = (processor_basic_info_t) info;
320		basic_info->cpu_type = slot_type(cpu_id);
321		basic_info->cpu_subtype = slot_subtype(cpu_id);
322		state = processor->state;
323		if (state == PROCESSOR_OFF_LINE)
324			basic_info->running = FALSE;
325		else
326			basic_info->running = TRUE;
327		basic_info->slot_num = cpu_id;
328		if (processor == master_processor)
329			basic_info->is_master = TRUE;
330		else
331			basic_info->is_master = FALSE;
332
333		*count = PROCESSOR_BASIC_INFO_COUNT;
334		*host = &realhost;
335
336	    return (KERN_SUCCESS);
337	}
338
339	case PROCESSOR_CPU_LOAD_INFO:
340	{
341		processor_cpu_load_info_t	cpu_load_info;
342		timer_t		idle_state;
343		uint64_t	idle_time_snapshot1, idle_time_snapshot2;
344		uint64_t	idle_time_tstamp1, idle_time_tstamp2;
345
346		/*
347		 * We capture the accumulated idle time twice over
348		 * the course of this function, as well as the timestamps
349		 * when each were last updated. Since these are
350		 * all done using non-atomic racy mechanisms, the
351		 * most we can infer is whether values are stable.
352		 * timer_grab() is the only function that can be
353		 * used reliably on another processor's per-processor
354		 * data.
355		 */
356
357		if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT)
358			return (KERN_FAILURE);
359
360		cpu_load_info = (processor_cpu_load_info_t) info;
361		if (precise_user_kernel_time) {
362			cpu_load_info->cpu_ticks[CPU_STATE_USER] =
363							(uint32_t)(timer_grab(&PROCESSOR_DATA(processor, user_state)) / hz_tick_interval);
364			cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] =
365							(uint32_t)(timer_grab(&PROCESSOR_DATA(processor, system_state)) / hz_tick_interval);
366		} else {
367			uint64_t tval = timer_grab(&PROCESSOR_DATA(processor, user_state)) +
368				timer_grab(&PROCESSOR_DATA(processor, system_state));
369
370			cpu_load_info->cpu_ticks[CPU_STATE_USER] = (uint32_t)(tval / hz_tick_interval);
371			cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = 0;
372		}
373
374		idle_state = &PROCESSOR_DATA(processor, idle_state);
375		idle_time_snapshot1 = timer_grab(idle_state);
376		idle_time_tstamp1 = idle_state->tstamp;
377
378		/*
379		 * Idle processors are not continually updating their
380		 * per-processor idle timer, so it may be extremely
381		 * out of date, resulting in an over-representation
382		 * of non-idle time between two measurement
383		 * intervals by e.g. top(1). If we are non-idle, or
384		 * have evidence that the timer is being updated
385		 * concurrently, we consider its value up-to-date.
386		 */
387		if (PROCESSOR_DATA(processor, current_state) != idle_state) {
388			cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
389							(uint32_t)(idle_time_snapshot1 / hz_tick_interval);
390		} else if ((idle_time_snapshot1 != (idle_time_snapshot2 = timer_grab(idle_state))) ||
391				   (idle_time_tstamp1 != (idle_time_tstamp2 = idle_state->tstamp))){
392			/* Idle timer is being updated concurrently, second stamp is good enough */
393			cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
394							(uint32_t)(idle_time_snapshot2 / hz_tick_interval);
395		} else {
396			/*
397			 * Idle timer may be very stale. Fortunately we have established
398			 * that idle_time_snapshot1 and idle_time_tstamp1 are unchanging
399			 */
400			idle_time_snapshot1 += mach_absolute_time() - idle_time_tstamp1;
401
402			cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
403				(uint32_t)(idle_time_snapshot1 / hz_tick_interval);
404		}
405
406		cpu_load_info->cpu_ticks[CPU_STATE_NICE] = 0;
407
408	    *count = PROCESSOR_CPU_LOAD_INFO_COUNT;
409	    *host = &realhost;
410
411	    return (KERN_SUCCESS);
412	}
413
414	default:
415	    result = cpu_info(flavor, cpu_id, info, count);
416	    if (result == KERN_SUCCESS)
417			*host = &realhost;
418
419	    return (result);
420	}
421}
422
423kern_return_t
424processor_start(
425	processor_t			processor)
426{
427	processor_set_t		pset;
428	thread_t			thread;
429	kern_return_t		result;
430	spl_t				s;
431
432	if (processor == PROCESSOR_NULL || processor->processor_set == PROCESSOR_SET_NULL)
433		return (KERN_INVALID_ARGUMENT);
434
435	if (processor == master_processor) {
436		processor_t		prev;
437
438		prev = thread_bind(processor);
439		thread_block(THREAD_CONTINUE_NULL);
440
441		result = cpu_start(processor->cpu_id);
442
443		thread_bind(prev);
444
445		return (result);
446	}
447
448	s = splsched();
449	pset = processor->processor_set;
450	pset_lock(pset);
451	if (processor->state != PROCESSOR_OFF_LINE) {
452		pset_unlock(pset);
453		splx(s);
454
455		return (KERN_FAILURE);
456	}
457
458	processor->state = PROCESSOR_START;
459	pset_unlock(pset);
460	splx(s);
461
462	/*
463	 *	Create the idle processor thread.
464	 */
465	if (processor->idle_thread == THREAD_NULL) {
466		result = idle_thread_create(processor);
467		if (result != KERN_SUCCESS) {
468			s = splsched();
469			pset_lock(pset);
470			processor->state = PROCESSOR_OFF_LINE;
471			pset_unlock(pset);
472			splx(s);
473
474			return (result);
475		}
476	}
477
478	/*
479	 *	If there is no active thread, the processor
480	 *	has never been started.  Create a dedicated
481	 *	start up thread.
482	 */
483	if (	processor->active_thread == THREAD_NULL		&&
484			processor->next_thread == THREAD_NULL		) {
485		result = kernel_thread_create((thread_continue_t)processor_start_thread, NULL, MAXPRI_KERNEL, &thread);
486		if (result != KERN_SUCCESS) {
487			s = splsched();
488			pset_lock(pset);
489			processor->state = PROCESSOR_OFF_LINE;
490			pset_unlock(pset);
491			splx(s);
492
493			return (result);
494		}
495
496		s = splsched();
497		thread_lock(thread);
498		thread->bound_processor = processor;
499		processor->next_thread = thread;
500		thread->state = TH_RUN;
501		thread_unlock(thread);
502		splx(s);
503
504		thread_deallocate(thread);
505	}
506
507	if (processor->processor_self == IP_NULL)
508		ipc_processor_init(processor);
509
510	result = cpu_start(processor->cpu_id);
511	if (result != KERN_SUCCESS) {
512		s = splsched();
513		pset_lock(pset);
514		processor->state = PROCESSOR_OFF_LINE;
515		pset_unlock(pset);
516		splx(s);
517
518		return (result);
519	}
520
521	ipc_processor_enable(processor);
522
523	return (KERN_SUCCESS);
524}
525
526kern_return_t
527processor_exit(
528	processor_t	processor)
529{
530	if (processor == PROCESSOR_NULL)
531		return(KERN_INVALID_ARGUMENT);
532
533	return(processor_shutdown(processor));
534}
535
536kern_return_t
537processor_control(
538	processor_t		processor,
539	processor_info_t	info,
540	mach_msg_type_number_t	count)
541{
542	if (processor == PROCESSOR_NULL)
543		return(KERN_INVALID_ARGUMENT);
544
545	return(cpu_control(processor->cpu_id, info, count));
546}
547
548kern_return_t
549processor_set_create(
550	__unused host_t		host,
551	__unused processor_set_t	*new_set,
552	__unused processor_set_t	*new_name)
553{
554	return(KERN_FAILURE);
555}
556
557kern_return_t
558processor_set_destroy(
559	__unused processor_set_t	pset)
560{
561	return(KERN_FAILURE);
562}
563
564kern_return_t
565processor_get_assignment(
566	processor_t	processor,
567	processor_set_t	*pset)
568{
569	int state;
570
571	if (processor == PROCESSOR_NULL)
572		return(KERN_INVALID_ARGUMENT);
573
574	state = processor->state;
575	if (state == PROCESSOR_SHUTDOWN || state == PROCESSOR_OFF_LINE)
576		return(KERN_FAILURE);
577
578	*pset = &pset0;
579
580	return(KERN_SUCCESS);
581}
582
583kern_return_t
584processor_set_info(
585	processor_set_t		pset,
586	int			flavor,
587	host_t			*host,
588	processor_set_info_t	info,
589	mach_msg_type_number_t	*count)
590{
591	if (pset == PROCESSOR_SET_NULL)
592		return(KERN_INVALID_ARGUMENT);
593
594	if (flavor == PROCESSOR_SET_BASIC_INFO) {
595		register processor_set_basic_info_t	basic_info;
596
597		if (*count < PROCESSOR_SET_BASIC_INFO_COUNT)
598			return(KERN_FAILURE);
599
600		basic_info = (processor_set_basic_info_t) info;
601		basic_info->processor_count = processor_avail_count;
602		basic_info->default_policy = POLICY_TIMESHARE;
603
604		*count = PROCESSOR_SET_BASIC_INFO_COUNT;
605		*host = &realhost;
606		return(KERN_SUCCESS);
607	}
608	else if (flavor == PROCESSOR_SET_TIMESHARE_DEFAULT) {
609		register policy_timeshare_base_t	ts_base;
610
611		if (*count < POLICY_TIMESHARE_BASE_COUNT)
612			return(KERN_FAILURE);
613
614		ts_base = (policy_timeshare_base_t) info;
615		ts_base->base_priority = BASEPRI_DEFAULT;
616
617		*count = POLICY_TIMESHARE_BASE_COUNT;
618		*host = &realhost;
619		return(KERN_SUCCESS);
620	}
621	else if (flavor == PROCESSOR_SET_FIFO_DEFAULT) {
622		register policy_fifo_base_t		fifo_base;
623
624		if (*count < POLICY_FIFO_BASE_COUNT)
625			return(KERN_FAILURE);
626
627		fifo_base = (policy_fifo_base_t) info;
628		fifo_base->base_priority = BASEPRI_DEFAULT;
629
630		*count = POLICY_FIFO_BASE_COUNT;
631		*host = &realhost;
632		return(KERN_SUCCESS);
633	}
634	else if (flavor == PROCESSOR_SET_RR_DEFAULT) {
635		register policy_rr_base_t		rr_base;
636
637		if (*count < POLICY_RR_BASE_COUNT)
638			return(KERN_FAILURE);
639
640		rr_base = (policy_rr_base_t) info;
641		rr_base->base_priority = BASEPRI_DEFAULT;
642		rr_base->quantum = 1;
643
644		*count = POLICY_RR_BASE_COUNT;
645		*host = &realhost;
646		return(KERN_SUCCESS);
647	}
648	else if (flavor == PROCESSOR_SET_TIMESHARE_LIMITS) {
649		register policy_timeshare_limit_t	ts_limit;
650
651		if (*count < POLICY_TIMESHARE_LIMIT_COUNT)
652			return(KERN_FAILURE);
653
654		ts_limit = (policy_timeshare_limit_t) info;
655		ts_limit->max_priority = MAXPRI_KERNEL;
656
657		*count = POLICY_TIMESHARE_LIMIT_COUNT;
658		*host = &realhost;
659		return(KERN_SUCCESS);
660	}
661	else if (flavor == PROCESSOR_SET_FIFO_LIMITS) {
662		register policy_fifo_limit_t		fifo_limit;
663
664		if (*count < POLICY_FIFO_LIMIT_COUNT)
665			return(KERN_FAILURE);
666
667		fifo_limit = (policy_fifo_limit_t) info;
668		fifo_limit->max_priority = MAXPRI_KERNEL;
669
670		*count = POLICY_FIFO_LIMIT_COUNT;
671		*host = &realhost;
672		return(KERN_SUCCESS);
673	}
674	else if (flavor == PROCESSOR_SET_RR_LIMITS) {
675		register policy_rr_limit_t		rr_limit;
676
677		if (*count < POLICY_RR_LIMIT_COUNT)
678			return(KERN_FAILURE);
679
680		rr_limit = (policy_rr_limit_t) info;
681		rr_limit->max_priority = MAXPRI_KERNEL;
682
683		*count = POLICY_RR_LIMIT_COUNT;
684		*host = &realhost;
685		return(KERN_SUCCESS);
686	}
687	else if (flavor == PROCESSOR_SET_ENABLED_POLICIES) {
688		register int				*enabled;
689
690		if (*count < (sizeof(*enabled)/sizeof(int)))
691			return(KERN_FAILURE);
692
693		enabled = (int *) info;
694		*enabled = POLICY_TIMESHARE | POLICY_RR | POLICY_FIFO;
695
696		*count = sizeof(*enabled)/sizeof(int);
697		*host = &realhost;
698		return(KERN_SUCCESS);
699	}
700
701
702	*host = HOST_NULL;
703	return(KERN_INVALID_ARGUMENT);
704}
705
706/*
707 *	processor_set_statistics
708 *
709 *	Returns scheduling statistics for a processor set.
710 */
711kern_return_t
712processor_set_statistics(
713	processor_set_t         pset,
714	int                     flavor,
715	processor_set_info_t    info,
716	mach_msg_type_number_t	*count)
717{
718	if (pset == PROCESSOR_SET_NULL || pset != &pset0)
719		return (KERN_INVALID_PROCESSOR_SET);
720
721	if (flavor == PROCESSOR_SET_LOAD_INFO) {
722		register processor_set_load_info_t     load_info;
723
724		if (*count < PROCESSOR_SET_LOAD_INFO_COUNT)
725			return(KERN_FAILURE);
726
727		load_info = (processor_set_load_info_t) info;
728
729		load_info->mach_factor = sched_mach_factor;
730		load_info->load_average = sched_load_average;
731
732		load_info->task_count = tasks_count;
733		load_info->thread_count = threads_count;
734
735		*count = PROCESSOR_SET_LOAD_INFO_COUNT;
736		return(KERN_SUCCESS);
737	}
738
739	return(KERN_INVALID_ARGUMENT);
740}
741
742/*
743 *	processor_set_max_priority:
744 *
745 *	Specify max priority permitted on processor set.  This affects
746 *	newly created and assigned threads.  Optionally change existing
747 * 	ones.
748 */
749kern_return_t
750processor_set_max_priority(
751	__unused processor_set_t	pset,
752	__unused int			max_priority,
753	__unused boolean_t		change_threads)
754{
755	return (KERN_INVALID_ARGUMENT);
756}
757
758/*
759 *	processor_set_policy_enable:
760 *
761 *	Allow indicated policy on processor set.
762 */
763
764kern_return_t
765processor_set_policy_enable(
766	__unused processor_set_t	pset,
767	__unused int			policy)
768{
769	return (KERN_INVALID_ARGUMENT);
770}
771
772/*
773 *	processor_set_policy_disable:
774 *
775 *	Forbid indicated policy on processor set.  Time sharing cannot
776 *	be forbidden.
777 */
778kern_return_t
779processor_set_policy_disable(
780	__unused processor_set_t	pset,
781	__unused int			policy,
782	__unused boolean_t		change_threads)
783{
784	return (KERN_INVALID_ARGUMENT);
785}
786
787#define THING_TASK	0
788#define THING_THREAD	1
789
790/*
791 *	processor_set_things:
792 *
793 *	Common internals for processor_set_{threads,tasks}
794 */
795kern_return_t
796processor_set_things(
797	processor_set_t			pset,
798	mach_port_t				**thing_list,
799	mach_msg_type_number_t	*count,
800	int						type)
801{
802	unsigned int actual;	/* this many things */
803	unsigned int maxthings;
804	unsigned int i;
805
806	vm_size_t size, size_needed;
807	void  *addr;
808
809	if (pset == PROCESSOR_SET_NULL || pset != &pset0)
810		return (KERN_INVALID_ARGUMENT);
811
812	size = 0;
813	addr = NULL;
814
815	for (;;) {
816		lck_mtx_lock(&tasks_threads_lock);
817
818		if (type == THING_TASK)
819			maxthings = tasks_count;
820		else
821			maxthings = threads_count;
822
823		/* do we have the memory we need? */
824
825		size_needed = maxthings * sizeof (mach_port_t);
826		if (size_needed <= size)
827			break;
828
829		/* unlock and allocate more memory */
830		lck_mtx_unlock(&tasks_threads_lock);
831
832		if (size != 0)
833			kfree(addr, size);
834
835		assert(size_needed > 0);
836		size = size_needed;
837
838		addr = kalloc(size);
839		if (addr == 0)
840			return (KERN_RESOURCE_SHORTAGE);
841	}
842
843	/* OK, have memory and the list locked */
844
845	actual = 0;
846	switch (type) {
847
848	case THING_TASK: {
849		task_t		task, *task_list = (task_t *)addr;
850
851		for (task = (task_t)queue_first(&tasks);
852						!queue_end(&tasks, (queue_entry_t)task);
853								task = (task_t)queue_next(&task->tasks)) {
854#if defined(SECURE_KERNEL)
855			if (task != kernel_task) {
856#endif
857				task_reference_internal(task);
858				task_list[actual++] = task;
859#if defined(SECURE_KERNEL)
860			}
861#endif
862		}
863
864		break;
865	}
866
867	case THING_THREAD: {
868		thread_t	thread, *thread_list = (thread_t *)addr;
869
870		for (thread = (thread_t)queue_first(&threads);
871						!queue_end(&threads, (queue_entry_t)thread);
872								thread = (thread_t)queue_next(&thread->threads)) {
873			thread_reference_internal(thread);
874			thread_list[actual++] = thread;
875		}
876
877		break;
878	}
879
880	}
881
882	lck_mtx_unlock(&tasks_threads_lock);
883
884	if (actual < maxthings)
885		size_needed = actual * sizeof (mach_port_t);
886
887	if (actual == 0) {
888		/* no things, so return null pointer and deallocate memory */
889		*thing_list = NULL;
890		*count = 0;
891
892		if (size != 0)
893			kfree(addr, size);
894	}
895	else {
896		/* if we allocated too much, must copy */
897
898		if (size_needed < size) {
899			void *newaddr;
900
901			newaddr = kalloc(size_needed);
902			if (newaddr == 0) {
903				switch (type) {
904
905				case THING_TASK: {
906					task_t		*task_list = (task_t *)addr;
907
908					for (i = 0; i < actual; i++)
909						task_deallocate(task_list[i]);
910					break;
911				}
912
913				case THING_THREAD: {
914					thread_t	*thread_list = (thread_t *)addr;
915
916					for (i = 0; i < actual; i++)
917						thread_deallocate(thread_list[i]);
918					break;
919				}
920
921				}
922
923				kfree(addr, size);
924				return (KERN_RESOURCE_SHORTAGE);
925			}
926
927			bcopy((void *) addr, (void *) newaddr, size_needed);
928			kfree(addr, size);
929			addr = newaddr;
930		}
931
932		*thing_list = (mach_port_t *)addr;
933		*count = actual;
934
935		/* do the conversion that Mig should handle */
936
937		switch (type) {
938
939		case THING_TASK: {
940			task_t		*task_list = (task_t *)addr;
941
942			for (i = 0; i < actual; i++)
943				(*thing_list)[i] = convert_task_to_port(task_list[i]);
944			break;
945		}
946
947		case THING_THREAD: {
948			thread_t	*thread_list = (thread_t *)addr;
949
950			for (i = 0; i < actual; i++)
951			  	(*thing_list)[i] = convert_thread_to_port(thread_list[i]);
952			break;
953		}
954
955		}
956	}
957
958	return (KERN_SUCCESS);
959}
960
961
962/*
963 *	processor_set_tasks:
964 *
965 *	List all tasks in the processor set.
966 */
967kern_return_t
968processor_set_tasks(
969	processor_set_t		pset,
970	task_array_t		*task_list,
971	mach_msg_type_number_t	*count)
972{
973    return(processor_set_things(pset, (mach_port_t **)task_list, count, THING_TASK));
974}
975
976/*
977 *	processor_set_threads:
978 *
979 *	List all threads in the processor set.
980 */
981#if defined(SECURE_KERNEL)
982kern_return_t
983processor_set_threads(
984	__unused processor_set_t		pset,
985	__unused thread_array_t		*thread_list,
986	__unused mach_msg_type_number_t	*count)
987{
988    return KERN_FAILURE;
989}
990#else
991kern_return_t
992processor_set_threads(
993	processor_set_t		pset,
994	thread_array_t		*thread_list,
995	mach_msg_type_number_t	*count)
996{
997    return(processor_set_things(pset, (mach_port_t **)thread_list, count, THING_THREAD));
998}
999#endif
1000
1001/*
1002 *	processor_set_policy_control
1003 *
1004 *	Controls the scheduling attributes governing the processor set.
1005 *	Allows control of enabled policies, and per-policy base and limit
1006 *	priorities.
1007 */
1008kern_return_t
1009processor_set_policy_control(
1010	__unused processor_set_t		pset,
1011	__unused int				flavor,
1012	__unused processor_set_info_t	policy_info,
1013	__unused mach_msg_type_number_t	count,
1014	__unused boolean_t			change)
1015{
1016	return (KERN_INVALID_ARGUMENT);
1017}
1018
1019#undef pset_deallocate
1020void pset_deallocate(processor_set_t pset);
1021void
1022pset_deallocate(
1023__unused processor_set_t	pset)
1024{
1025	return;
1026}
1027
1028#undef pset_reference
1029void pset_reference(processor_set_t pset);
1030void
1031pset_reference(
1032__unused processor_set_t	pset)
1033{
1034	return;
1035}
1036