1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * #pragma ident	"@(#)fasttrap_isa.c	1.27	08/04/09 SMI"
29 */
30
31#ifdef KERNEL
32#ifndef _KERNEL
33#define _KERNEL /* Solaris vs. Darwin */
34#endif
35#endif
36
37#include <sys/fasttrap_isa.h>
38#include <sys/fasttrap_impl.h>
39#include <sys/dtrace.h>
40#include <sys/dtrace_impl.h>
41extern dtrace_id_t dtrace_probeid_error;
42
43#include "fasttrap_regset.h"
44
45#include <sys/dtrace_ptss.h>
46#include <kern/debug.h>
47
48#include <machine/pal_routines.h>
49
50/* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
51#define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
52
53/*
54 * Lossless User-Land Tracing on x86
55 * ---------------------------------
56 *
57 * The execution of most instructions is not dependent on the address; for
58 * these instructions it is sufficient to copy them into the user process's
59 * address space and execute them. To effectively single-step an instruction
60 * in user-land, we copy out the following sequence of instructions to scratch
61 * space in the user thread's ulwp_t structure.
62 *
63 * We then set the program counter (%eip or %rip) to point to this scratch
64 * space. Once execution resumes, the original instruction is executed and
65 * then control flow is redirected to what was originally the subsequent
66 * instruction. If the kernel attemps to deliver a signal while single-
67 * stepping, the signal is deferred and the program counter is moved into the
68 * second sequence of instructions. The second sequence ends in a trap into
69 * the kernel where the deferred signal is then properly handled and delivered.
70 *
71 * For instructions whose execute is position dependent, we perform simple
72 * emulation. These instructions are limited to control transfer
73 * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
74 * of %rip-relative addressing that means that almost any instruction can be
75 * position dependent. For all the details on how we emulate generic
76 * instructions included %rip-relative instructions, see the code in
77 * fasttrap_pid_probe() below where we handle instructions of type
78 * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
79 */
80
81#define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
82#define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
83#define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
84#define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
85
86#define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
87#define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
88#define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
89
90#define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
91#define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
92#define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
93#define	FASTTRAP_REX_B(rex)		((rex) & 1)
94#define	FASTTRAP_REX(w, r, x, b)	\
95	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
96
97/*
98 * Single-byte op-codes.
99 */
100#define	FASTTRAP_PUSHL_EBP	0x55
101
102#define	FASTTRAP_JO		0x70
103#define	FASTTRAP_JNO		0x71
104#define	FASTTRAP_JB		0x72
105#define	FASTTRAP_JAE		0x73
106#define	FASTTRAP_JE		0x74
107#define	FASTTRAP_JNE		0x75
108#define	FASTTRAP_JBE		0x76
109#define	FASTTRAP_JA		0x77
110#define	FASTTRAP_JS		0x78
111#define	FASTTRAP_JNS		0x79
112#define	FASTTRAP_JP		0x7a
113#define	FASTTRAP_JNP		0x7b
114#define	FASTTRAP_JL		0x7c
115#define	FASTTRAP_JGE		0x7d
116#define	FASTTRAP_JLE		0x7e
117#define	FASTTRAP_JG		0x7f
118
119#define	FASTTRAP_NOP		0x90
120
121#define	FASTTRAP_MOV_EAX	0xb8
122#define	FASTTRAP_MOV_ECX	0xb9
123
124#define	FASTTRAP_RET16		0xc2
125#define	FASTTRAP_RET		0xc3
126
127#define	FASTTRAP_LOOPNZ		0xe0
128#define	FASTTRAP_LOOPZ		0xe1
129#define	FASTTRAP_LOOP		0xe2
130#define	FASTTRAP_JCXZ		0xe3
131
132#define	FASTTRAP_CALL		0xe8
133#define	FASTTRAP_JMP32		0xe9
134#define	FASTTRAP_JMP8		0xeb
135
136#define	FASTTRAP_INT3		0xcc
137#define	FASTTRAP_INT		0xcd
138#define	T_DTRACE_RET		0x7f
139
140#define	FASTTRAP_2_BYTE_OP	0x0f
141#define	FASTTRAP_GROUP5_OP	0xff
142
143/*
144 * Two-byte op-codes (second byte only).
145 */
146#define	FASTTRAP_0F_JO		0x80
147#define	FASTTRAP_0F_JNO		0x81
148#define	FASTTRAP_0F_JB		0x82
149#define	FASTTRAP_0F_JAE		0x83
150#define	FASTTRAP_0F_JE		0x84
151#define	FASTTRAP_0F_JNE		0x85
152#define	FASTTRAP_0F_JBE		0x86
153#define	FASTTRAP_0F_JA		0x87
154#define	FASTTRAP_0F_JS		0x88
155#define	FASTTRAP_0F_JNS		0x89
156#define	FASTTRAP_0F_JP		0x8a
157#define	FASTTRAP_0F_JNP		0x8b
158#define	FASTTRAP_0F_JL		0x8c
159#define	FASTTRAP_0F_JGE		0x8d
160#define	FASTTRAP_0F_JLE		0x8e
161#define	FASTTRAP_0F_JG		0x8f
162
163#define	FASTTRAP_EFLAGS_OF	0x800
164#define	FASTTRAP_EFLAGS_DF	0x400
165#define	FASTTRAP_EFLAGS_SF	0x080
166#define	FASTTRAP_EFLAGS_ZF	0x040
167#define	FASTTRAP_EFLAGS_AF	0x010
168#define	FASTTRAP_EFLAGS_PF	0x004
169#define	FASTTRAP_EFLAGS_CF	0x001
170
171/*
172 * Instruction prefixes.
173 */
174#define	FASTTRAP_PREFIX_OPERAND	0x66
175#define	FASTTRAP_PREFIX_ADDRESS	0x67
176#define	FASTTRAP_PREFIX_CS	0x2E
177#define	FASTTRAP_PREFIX_DS	0x3E
178#define	FASTTRAP_PREFIX_ES	0x26
179#define	FASTTRAP_PREFIX_FS	0x64
180#define	FASTTRAP_PREFIX_GS	0x65
181#define	FASTTRAP_PREFIX_SS	0x36
182#define	FASTTRAP_PREFIX_LOCK	0xF0
183#define	FASTTRAP_PREFIX_REP	0xF3
184#define	FASTTRAP_PREFIX_REPNE	0xF2
185
186#define	FASTTRAP_NOREG	0xff
187
188/*
189 * Map between instruction register encodings and the kernel constants which
190 * correspond to indicies into struct regs.
191 */
192
193/*
194 * APPLE NOTE: We are cheating here. The regmap is used to decode which register
195 * a given instruction is trying to reference. OS X does not have extended registers
196 * for 32 bit apps, but the *order* is the same. So for 32 bit state, we will return:
197 *
198 * REG_RAX -> EAX
199 * REG_RCX -> ECX
200 * ...
201 * REG_RDI -> EDI
202 *
203 * The fasttrap_getreg function knows how to make the correct transformation.
204 */
205#if __sol64 || defined(__APPLE__)
206static const uint8_t regmap[16] = {
207	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
208	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
209};
210#else
211static const uint8_t regmap[8] = {
212	EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
213};
214#endif
215
216static user_addr_t fasttrap_getreg(x86_saved_state_t *, uint_t);
217
218static uint64_t
219fasttrap_anarg(x86_saved_state_t *regs, int function_entry, int argno)
220{
221	uint64_t value;
222	int shift = function_entry ? 1 : 0;
223
224	x86_saved_state64_t *regs64;
225	x86_saved_state32_t *regs32;
226	unsigned int p_model;
227
228        if (is_saved_state64(regs)) {
229                regs64 = saved_state64(regs);
230		regs32 = NULL;
231		p_model = DATAMODEL_LP64;
232        } else {
233		regs64 = NULL;
234                regs32 = saved_state32(regs);
235		p_model = DATAMODEL_ILP32;
236        }
237
238	if (p_model == DATAMODEL_LP64) {
239		user_addr_t stack;
240
241		/*
242		 * In 64-bit mode, the first six arguments are stored in
243		 * registers.
244		 */
245		if (argno < 6)
246			return ((&regs64->rdi)[argno]);
247
248		stack = regs64->isf.rsp + sizeof(uint64_t) * (argno - 6 + shift);
249		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
250		value = dtrace_fuword64(stack);
251		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
252	} else {
253		uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp);
254		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
255		value = dtrace_fuword32((user_addr_t)(unsigned long)&stack[argno + shift]);
256		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
257	}
258
259	return (value);
260}
261
262/*ARGSUSED*/
263int
264fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, user_addr_t pc,
265    fasttrap_probe_type_t type)
266{
267#pragma unused(type)
268	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
269	size_t len = FASTTRAP_MAX_INSTR_SIZE;
270	size_t first = MIN(len, PAGE_SIZE - (pc & PAGE_MASK));
271	uint_t start = 0;
272	size_t size;
273	int rmindex;
274	uint8_t seg, rex = 0;
275	unsigned int p_model = (p->p_flag & P_LP64) ? DATAMODEL_LP64 : DATAMODEL_ILP32;
276
277	/*
278	 * Read the instruction at the given address out of the process's
279	 * address space. We don't have to worry about a debugger
280	 * changing this instruction before we overwrite it with our trap
281	 * instruction since P_PR_LOCK is set. Since instructions can span
282	 * pages, we potentially read the instruction in two parts. If the
283	 * second part fails, we just zero out that part of the instruction.
284	 */
285	/*
286	 * APPLE NOTE: Of course, we do not have a P_PR_LOCK, so this is racey...
287	 */
288	if (uread(p, &instr[0], first, pc) != 0)
289		return (-1);
290	if (len > first &&
291	    uread(p, &instr[first], len - first, pc + first) != 0) {
292		bzero(&instr[first], len - first);
293		len = first;
294	}
295
296	/*
297	 * If the disassembly fails, then we have a malformed instruction.
298	 */
299	if ((size = dtrace_instr_size_isa(instr, p_model, &rmindex)) <= 0)
300		return (-1);
301
302	/*
303	 * Make sure the disassembler isn't completely broken.
304	 */
305	ASSERT(-1 <= rmindex && rmindex < (int)size);
306
307	/*
308	 * If the computed size is greater than the number of bytes read,
309	 * then it was a malformed instruction possibly because it fell on a
310	 * page boundary and the subsequent page was missing or because of
311	 * some malicious user.
312	 */
313	if (size > len)
314		return (-1);
315
316	tp->ftt_size = (uint8_t)size;
317	tp->ftt_segment = FASTTRAP_SEG_NONE;
318
319	/*
320	 * Find the start of the instruction's opcode by processing any
321	 * legacy prefixes.
322	 */
323	for (;;) {
324		seg = 0;
325		switch (instr[start]) {
326		case FASTTRAP_PREFIX_SS:
327			seg++;
328			/*FALLTHRU*/
329		case FASTTRAP_PREFIX_GS:
330			seg++;
331			/*FALLTHRU*/
332		case FASTTRAP_PREFIX_FS:
333			seg++;
334			/*FALLTHRU*/
335		case FASTTRAP_PREFIX_ES:
336			seg++;
337			/*FALLTHRU*/
338		case FASTTRAP_PREFIX_DS:
339			seg++;
340			/*FALLTHRU*/
341		case FASTTRAP_PREFIX_CS:
342			seg++;
343			/*FALLTHRU*/
344		case FASTTRAP_PREFIX_OPERAND:
345		case FASTTRAP_PREFIX_ADDRESS:
346		case FASTTRAP_PREFIX_LOCK:
347		case FASTTRAP_PREFIX_REP:
348		case FASTTRAP_PREFIX_REPNE:
349			if (seg != 0) {
350				/*
351				 * It's illegal for an instruction to specify
352				 * two segment prefixes -- give up on this
353				 * illegal instruction.
354				 */
355				if (tp->ftt_segment != FASTTRAP_SEG_NONE)
356					return (-1);
357
358				tp->ftt_segment = seg;
359			}
360			start++;
361			continue;
362		}
363		break;
364	}
365
366#if __sol64 || defined(__APPLE__)
367	/*
368	 * Identify the REX prefix on 64-bit processes.
369	 */
370	if (p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
371		rex = instr[start++];
372#endif
373
374	/*
375	 * Now that we're pretty sure that the instruction is okay, copy the
376	 * valid part to the tracepoint.
377	 */
378	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
379
380	tp->ftt_type = FASTTRAP_T_COMMON;
381	if (instr[start] == FASTTRAP_2_BYTE_OP) {
382		switch (instr[start + 1]) {
383		case FASTTRAP_0F_JO:
384		case FASTTRAP_0F_JNO:
385		case FASTTRAP_0F_JB:
386		case FASTTRAP_0F_JAE:
387		case FASTTRAP_0F_JE:
388		case FASTTRAP_0F_JNE:
389		case FASTTRAP_0F_JBE:
390		case FASTTRAP_0F_JA:
391		case FASTTRAP_0F_JS:
392		case FASTTRAP_0F_JNS:
393		case FASTTRAP_0F_JP:
394		case FASTTRAP_0F_JNP:
395		case FASTTRAP_0F_JL:
396		case FASTTRAP_0F_JGE:
397		case FASTTRAP_0F_JLE:
398		case FASTTRAP_0F_JG:
399			tp->ftt_type = FASTTRAP_T_JCC;
400			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
401			tp->ftt_dest = pc + tp->ftt_size +
402			    /* LINTED - alignment */
403			    *(int32_t *)&instr[start + 2];
404			break;
405		}
406	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
407		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
408		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
409		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
410
411		if (reg == 2 || reg == 4) {
412			uint_t i, sz;
413
414			if (reg == 2)
415				tp->ftt_type = FASTTRAP_T_CALL;
416			else
417				tp->ftt_type = FASTTRAP_T_JMP;
418
419			if (mod == 3)
420				tp->ftt_code = 2;
421			else
422				tp->ftt_code = 1;
423
424			ASSERT(p_model == DATAMODEL_LP64 || rex == 0);
425
426			/*
427			 * See AMD x86-64 Architecture Programmer's Manual
428			 * Volume 3, Section 1.2.7, Table 1-12, and
429			 * Appendix A.3.1, Table A-15.
430			 */
431			if (mod != 3 && rm == 4) {
432				uint8_t sib = instr[start + 2];
433				uint_t index = FASTTRAP_SIB_INDEX(sib);
434				uint_t base = FASTTRAP_SIB_BASE(sib);
435
436				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
437
438				tp->ftt_index = (index == 4) ?
439				    FASTTRAP_NOREG :
440				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
441				tp->ftt_base = (mod == 0 && base == 5) ?
442				    FASTTRAP_NOREG :
443				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
444
445				i = 3;
446				sz = mod == 1 ? 1 : 4;
447			} else {
448				/*
449				 * In 64-bit mode, mod == 0 and r/m == 5
450				 * denotes %rip-relative addressing; in 32-bit
451				 * mode, the base register isn't used. In both
452				 * modes, there is a 32-bit operand.
453				 */
454				if (mod == 0 && rm == 5) {
455#if __sol64 || defined(__APPLE__)
456					if (p_model == DATAMODEL_LP64)
457						tp->ftt_base = REG_RIP;
458					else
459#endif
460						tp->ftt_base = FASTTRAP_NOREG;
461					sz = 4;
462				} else  {
463					uint8_t base = rm |
464					    (FASTTRAP_REX_B(rex) << 3);
465
466					tp->ftt_base = regmap[base];
467					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
468				}
469				tp->ftt_index = FASTTRAP_NOREG;
470				i = 2;
471			}
472
473			if (sz == 1) {
474				tp->ftt_dest = *(int8_t *)&instr[start + i];
475			} else if (sz == 4) {
476				/* LINTED - alignment */
477				tp->ftt_dest = *(int32_t *)&instr[start + i];
478			} else {
479				tp->ftt_dest = 0;
480			}
481		}
482	} else {
483		switch (instr[start]) {
484		case FASTTRAP_RET:
485			tp->ftt_type = FASTTRAP_T_RET;
486			break;
487
488		case FASTTRAP_RET16:
489			tp->ftt_type = FASTTRAP_T_RET16;
490			/* LINTED - alignment */
491			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
492			break;
493
494		case FASTTRAP_JO:
495		case FASTTRAP_JNO:
496		case FASTTRAP_JB:
497		case FASTTRAP_JAE:
498		case FASTTRAP_JE:
499		case FASTTRAP_JNE:
500		case FASTTRAP_JBE:
501		case FASTTRAP_JA:
502		case FASTTRAP_JS:
503		case FASTTRAP_JNS:
504		case FASTTRAP_JP:
505		case FASTTRAP_JNP:
506		case FASTTRAP_JL:
507		case FASTTRAP_JGE:
508		case FASTTRAP_JLE:
509		case FASTTRAP_JG:
510			tp->ftt_type = FASTTRAP_T_JCC;
511			tp->ftt_code = instr[start];
512			tp->ftt_dest = pc + tp->ftt_size +
513			    (int8_t)instr[start + 1];
514			break;
515
516		case FASTTRAP_LOOPNZ:
517		case FASTTRAP_LOOPZ:
518		case FASTTRAP_LOOP:
519			tp->ftt_type = FASTTRAP_T_LOOP;
520			tp->ftt_code = instr[start];
521			tp->ftt_dest = pc + tp->ftt_size +
522			    (int8_t)instr[start + 1];
523			break;
524
525		case FASTTRAP_JCXZ:
526			tp->ftt_type = FASTTRAP_T_JCXZ;
527			tp->ftt_dest = pc + tp->ftt_size +
528			    (int8_t)instr[start + 1];
529			break;
530
531		case FASTTRAP_CALL:
532			tp->ftt_type = FASTTRAP_T_CALL;
533			tp->ftt_dest = pc + tp->ftt_size +
534			    /* LINTED - alignment */
535			    *(int32_t *)&instr[start + 1];
536			tp->ftt_code = 0;
537			break;
538
539		case FASTTRAP_JMP32:
540			tp->ftt_type = FASTTRAP_T_JMP;
541			tp->ftt_dest = pc + tp->ftt_size +
542				/* LINTED - alignment */
543			    *(int32_t *)&instr[start + 1];
544			break;
545		case FASTTRAP_JMP8:
546			tp->ftt_type = FASTTRAP_T_JMP;
547			tp->ftt_dest = pc + tp->ftt_size +
548			    (int8_t)instr[start + 1];
549			break;
550
551		case FASTTRAP_PUSHL_EBP:
552			if (start == 0)
553				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
554			break;
555
556		case FASTTRAP_NOP:
557#if __sol64 || defined(__APPLE__)
558			ASSERT(p_model == DATAMODEL_LP64 || rex == 0);
559
560			/*
561			 * On sol64 we have to be careful not to confuse a nop
562			 * (actually xchgl %eax, %eax) with an instruction using
563			 * the same opcode, but that does something different
564			 * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
565			 */
566			if (FASTTRAP_REX_B(rex) == 0)
567#endif
568				tp->ftt_type = FASTTRAP_T_NOP;
569			break;
570
571		case FASTTRAP_INT3:
572			/*
573			 * The pid provider shares the int3 trap with debugger
574			 * breakpoints so we can't instrument them.
575			 */
576			ASSERT(instr[start] == FASTTRAP_INSTR);
577			return (-1);
578
579		case FASTTRAP_INT:
580			/*
581			 * Interrupts seem like they could be traced with
582			 * no negative implications, but it's possible that
583			 * a thread could be redirected by the trap handling
584			 * code which would eventually return to the
585			 * instruction after the interrupt. If the interrupt
586			 * were in our scratch space, the subsequent
587			 * instruction might be overwritten before we return.
588			 * Accordingly we refuse to instrument any interrupt.
589			 */
590			return (-1);
591		}
592	}
593
594#if __sol64 || defined(__APPLE__)
595	if (p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
596		/*
597		 * If the process is 64-bit and the instruction type is still
598		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
599		 * execute it -- we need to watch for %rip-relative
600		 * addressing mode. See the portion of fasttrap_pid_probe()
601		 * below where we handle tracepoints with type
602		 * FASTTRAP_T_COMMON for how we emulate instructions that
603		 * employ %rip-relative addressing.
604		 */
605		if (rmindex != -1) {
606			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
607			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
608			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
609
610			ASSERT(rmindex > (int)start);
611
612			if (mod == 0 && rm == 5) {
613				/*
614				 * We need to be sure to avoid other
615				 * registers used by this instruction. While
616				 * the reg field may determine the op code
617				 * rather than denoting a register, assuming
618				 * that it denotes a register is always safe.
619				 * We leave the REX field intact and use
620				 * whatever value's there for simplicity.
621				 */
622				if (reg != 0) {
623					tp->ftt_ripmode = FASTTRAP_RIP_1 |
624					    (FASTTRAP_RIP_X *
625					    FASTTRAP_REX_B(rex));
626					rm = 0;
627				} else {
628					tp->ftt_ripmode = FASTTRAP_RIP_2 |
629					    (FASTTRAP_RIP_X *
630					    FASTTRAP_REX_B(rex));
631					rm = 1;
632				}
633
634				tp->ftt_modrm = tp->ftt_instr[rmindex];
635				tp->ftt_instr[rmindex] =
636				    FASTTRAP_MODRM(2, reg, rm);
637			}
638		}
639	}
640#endif
641
642	return (0);
643}
644
645int
646fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
647{
648	fasttrap_instr_t instr = FASTTRAP_INSTR;
649
650	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
651		return (-1);
652
653	return (0);
654}
655
656int
657fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
658{
659	uint8_t instr;
660
661	/*
662	 * Distinguish between read or write failures and a changed
663	 * instruction.
664	 */
665	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
666		return (0);
667	if (instr != FASTTRAP_INSTR)
668		return (0);
669	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
670		return (-1);
671
672	return (0);
673}
674
675static void
676fasttrap_return_common(x86_saved_state_t *regs, user_addr_t pc, pid_t pid,
677    user_addr_t new_pc)
678{
679	x86_saved_state64_t *regs64;
680	x86_saved_state32_t *regs32;
681	unsigned int p_model;
682
683	dtrace_icookie_t cookie;
684
685        if (is_saved_state64(regs)) {
686                regs64 = saved_state64(regs);
687		regs32 = NULL;
688		p_model = DATAMODEL_LP64;
689        } else {
690		regs64 = NULL;
691                regs32 = saved_state32(regs);
692		p_model = DATAMODEL_ILP32;
693        }
694
695	fasttrap_tracepoint_t *tp;
696	fasttrap_bucket_t *bucket;
697	fasttrap_id_t *id;
698	lck_mtx_t *pid_mtx;
699
700	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
701	lck_mtx_lock(pid_mtx);
702	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
703
704	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
705		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
706		    tp->ftt_proc->ftpc_acount != 0)
707			break;
708	}
709
710	/*
711	 * Don't sweat it if we can't find the tracepoint again; unlike
712	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
713	 * is not essential to the correct execution of the process.
714	 */
715	if (tp == NULL) {
716		lck_mtx_unlock(pid_mtx);
717		return;
718	}
719
720	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
721		/*
722		 * If there's a branch that could act as a return site, we
723		 * need to trace it, and check here if the program counter is
724		 * external to the function.
725		 */
726		if (tp->ftt_type != FASTTRAP_T_RET &&
727		    tp->ftt_type != FASTTRAP_T_RET16 &&
728		    new_pc - id->fti_probe->ftp_faddr <
729		    id->fti_probe->ftp_fsize)
730			continue;
731
732		/*
733		 * Provide a hint to the stack trace functions to add the
734		 * following pc to the top of the stack since it's missing
735		 * on a return probe yet highly desirable for consistency.
736		 */
737		cookie = dtrace_interrupt_disable();
738		cpu_core[CPU->cpu_id].cpuc_missing_tos = pc;
739		if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) {
740			dtrace_probe(dtrace_probeid_error, 0 /* state */, id->fti_probe->ftp_id,
741				     1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV);
742		} else if (p_model == DATAMODEL_LP64) {
743			dtrace_probe(id->fti_probe->ftp_id,
744				     pc - id->fti_probe->ftp_faddr,
745				     regs64->rax, regs64->rdx, 0, 0);
746		} else {
747			dtrace_probe(id->fti_probe->ftp_id,
748				     pc - id->fti_probe->ftp_faddr,
749				     regs32->eax, regs32->edx, 0, 0);
750		}
751		/* remove the hint */
752		cpu_core[CPU->cpu_id].cpuc_missing_tos = 0;
753		dtrace_interrupt_enable(cookie);
754	}
755
756	lck_mtx_unlock(pid_mtx);
757}
758
759static void
760fasttrap_sigsegv(proc_t *p, uthread_t t, user_addr_t addr)
761{
762	proc_lock(p);
763
764	/* Set fault address and mark signal */
765	t->uu_code = addr;
766	t->uu_siglist |= sigmask(SIGSEGV);
767
768	/*
769         * XXX These two line may be redundant; if not, then we need
770	 * XXX to potentially set the data address in the machine
771	 * XXX specific thread state structure to indicate the address.
772	 */
773	t->uu_exception = KERN_INVALID_ADDRESS;		/* SIGSEGV */
774	t->uu_subcode = 0;	/* XXX pad */
775
776	proc_unlock(p);
777
778	/* raise signal */
779	signal_setast(t->uu_context.vc_thread);
780}
781
782static void
783fasttrap_usdt_args64(fasttrap_probe_t *probe, x86_saved_state64_t *regs64, int argc,
784    uint64_t *argv)
785{
786	int i, x, cap = MIN(argc, probe->ftp_nargs);
787	user_addr_t stack = (user_addr_t)regs64->isf.rsp;
788
789	for (i = 0; i < cap; i++) {
790		x = probe->ftp_argmap[i];
791
792		if (x < 6) {
793			/* FIXME! This may be broken, needs testing */
794			argv[i] = (&regs64->rdi)[x];
795		} else {
796			fasttrap_fuword64_noerr(stack + (x * sizeof(uint64_t)), &argv[i]);
797		}
798	}
799
800	for (; i < argc; i++) {
801		argv[i] = 0;
802	}
803}
804
805static void
806fasttrap_usdt_args32(fasttrap_probe_t *probe, x86_saved_state32_t *regs32, int argc,
807    uint32_t *argv)
808{
809	int i, x, cap = MIN(argc, probe->ftp_nargs);
810	uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp);
811
812	for (i = 0; i < cap; i++) {
813		x = probe->ftp_argmap[i];
814
815		fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[x], &argv[i]);
816	}
817
818	for (; i < argc; i++) {
819		argv[i] = 0;
820	}
821}
822
823/*
824 * FIXME!
825 */
826static int
827fasttrap_do_seg(fasttrap_tracepoint_t *tp, x86_saved_state_t *rp, user_addr_t *addr) // 64 bit
828{
829#pragma unused(tp, rp, addr)
830	printf("fasttrap_do_seg() called while unimplemented.\n");
831#if 0
832	proc_t *p = curproc;
833	user_desc_t *desc;
834	uint16_t sel, ndx, type;
835	uintptr_t limit;
836
837	switch (tp->ftt_segment) {
838	case FASTTRAP_SEG_CS:
839		sel = rp->r_cs;
840		break;
841	case FASTTRAP_SEG_DS:
842		sel = rp->r_ds;
843		break;
844	case FASTTRAP_SEG_ES:
845		sel = rp->r_es;
846		break;
847	case FASTTRAP_SEG_FS:
848		sel = rp->r_fs;
849		break;
850	case FASTTRAP_SEG_GS:
851		sel = rp->r_gs;
852		break;
853	case FASTTRAP_SEG_SS:
854		sel = rp->r_ss;
855		break;
856	}
857
858	/*
859	 * Make sure the given segment register specifies a user priority
860	 * selector rather than a kernel selector.
861	 */
862	if (!SELISUPL(sel))
863		return (-1);
864
865	ndx = SELTOIDX(sel);
866
867	/*
868	 * Check the bounds and grab the descriptor out of the specified
869	 * descriptor table.
870	 */
871	if (SELISLDT(sel)) {
872		if (ndx > p->p_ldtlimit)
873			return (-1);
874
875		desc = p->p_ldt + ndx;
876
877	} else {
878		if (ndx >= NGDT)
879			return (-1);
880
881		desc = cpu_get_gdt() + ndx;
882	}
883
884	/*
885	 * The descriptor must have user privilege level and it must be
886	 * present in memory.
887	 */
888	if (desc->usd_dpl != SEL_UPL || desc->usd_p != 1)
889		return (-1);
890
891	type = desc->usd_type;
892
893	/*
894	 * If the S bit in the type field is not set, this descriptor can
895	 * only be used in system context.
896	 */
897	if ((type & 0x10) != 0x10)
898		return (-1);
899
900	limit = USEGD_GETLIMIT(desc) * (desc->usd_gran ? PAGESIZE : 1);
901
902	if (tp->ftt_segment == FASTTRAP_SEG_CS) {
903		/*
904		 * The code/data bit and readable bit must both be set.
905		 */
906		if ((type & 0xa) != 0xa)
907			return (-1);
908
909		if (*addr > limit)
910			return (-1);
911	} else {
912		/*
913		 * The code/data bit must be clear.
914		 */
915		if ((type & 0x8) != 0)
916			return (-1);
917
918		/*
919		 * If the expand-down bit is clear, we just check the limit as
920		 * it would naturally be applied. Otherwise, we need to check
921		 * that the address is the range [limit + 1 .. 0xffff] or
922		 * [limit + 1 ... 0xffffffff] depending on if the default
923		 * operand size bit is set.
924		 */
925		if ((type & 0x4) == 0) {
926			if (*addr > limit)
927				return (-1);
928		} else if (desc->usd_def32) {
929			if (*addr < limit + 1 || 0xffff < *addr)
930				return (-1);
931		} else {
932			if (*addr < limit + 1 || 0xffffffff < *addr)
933				return (-1);
934		}
935	}
936
937	*addr += USEGD_GETBASE(desc);
938#endif /* 0 */
939	return (0);
940}
941
942/*
943 * Due to variances between Solaris and xnu, I have split this into a 32 bit and 64 bit
944 * code path. It still takes an x86_saved_state_t* argument, because it must sometimes
945 * call other methods that require a x86_saved_state_t.
946 *
947 * NOTE!!!!
948 *
949 * Any changes made to this method must be echo'd in fasttrap_pid_probe64!
950 *
951 */
952static int
953fasttrap_pid_probe32(x86_saved_state_t *regs)
954{
955	ASSERT(is_saved_state32(regs));
956
957	x86_saved_state32_t *regs32  = saved_state32(regs);
958	user_addr_t pc = regs32->eip - 1;
959	proc_t *p = current_proc();
960	user_addr_t new_pc = 0;
961	fasttrap_bucket_t *bucket;
962	lck_mtx_t *pid_mtx;
963	fasttrap_tracepoint_t *tp, tp_local;
964	pid_t pid;
965	dtrace_icookie_t cookie;
966	uint_t is_enabled = 0;
967
968	uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread());
969
970	/*
971	 * It's possible that a user (in a veritable orgy of bad planning)
972	 * could redirect this thread's flow of control before it reached the
973	 * return probe fasttrap. In this case we need to kill the process
974	 * since it's in a unrecoverable state.
975	 */
976	if (uthread->t_dtrace_step) {
977		ASSERT(uthread->t_dtrace_on);
978		fasttrap_sigtrap(p, uthread, pc);
979		return (0);
980	}
981
982	/*
983	 * Clear all user tracing flags.
984	 */
985	uthread->t_dtrace_ft = 0;
986	uthread->t_dtrace_pc = 0;
987	uthread->t_dtrace_npc = 0;
988	uthread->t_dtrace_scrpc = 0;
989	uthread->t_dtrace_astpc = 0;
990
991	/*
992	 * Treat a child created by a call to vfork(2) as if it were its
993	 * parent. We know that there's only one thread of control in such a
994	 * process: this one.
995	 */
996	/*
997	 * APPLE NOTE: Terry says: "You need to hold the process locks (currently: kernel funnel) for this traversal"
998	 * FIXME: How do we assert this?
999	 */
1000	while (p->p_lflag & P_LINVFORK)
1001		p = p->p_pptr;
1002
1003	pid = p->p_pid;
1004	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
1005	lck_mtx_lock(pid_mtx);
1006	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
1007
1008	/*
1009	 * Lookup the tracepoint that the process just hit.
1010	 */
1011	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
1012		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
1013		    tp->ftt_proc->ftpc_acount != 0)
1014			break;
1015	}
1016
1017	/*
1018	 * If we couldn't find a matching tracepoint, either a tracepoint has
1019	 * been inserted without using the pid<pid> ioctl interface (see
1020	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
1021	 */
1022	if (tp == NULL) {
1023		lck_mtx_unlock(pid_mtx);
1024		return (-1);
1025	}
1026
1027	/*
1028	 * Set the program counter to the address of the traced instruction
1029	 * so that it looks right in ustack() output.
1030	 */
1031	regs32->eip = pc;
1032
1033	if (tp->ftt_ids != NULL) {
1034		fasttrap_id_t *id;
1035
1036		uint32_t s0, s1, s2, s3, s4, s5;
1037		uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp);
1038
1039		/*
1040		 * In 32-bit mode, all arguments are passed on the
1041		 * stack. If this is a function entry probe, we need
1042		 * to skip the first entry on the stack as it
1043		 * represents the return address rather than a
1044		 * parameter to the function.
1045		 */
1046		fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[0], &s0);
1047		fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[1], &s1);
1048		fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[2], &s2);
1049		fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[3], &s3);
1050		fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[4], &s4);
1051		fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[5], &s5);
1052
1053		for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1054			fasttrap_probe_t *probe = id->fti_probe;
1055
1056			if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) {
1057				dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id,
1058					     1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV);
1059			} else if (id->fti_ptype == DTFTP_ENTRY) {
1060				/*
1061				 * We note that this was an entry
1062				 * probe to help ustack() find the
1063				 * first caller.
1064				 */
1065				cookie = dtrace_interrupt_disable();
1066				DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1067				dtrace_probe(probe->ftp_id, s1, s2,
1068					     s3, s4, s5);
1069				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1070				dtrace_interrupt_enable(cookie);
1071			} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1072				/*
1073				 * Note that in this case, we don't
1074				 * call dtrace_probe() since it's only
1075				 * an artificial probe meant to change
1076				 * the flow of control so that it
1077				 * encounters the true probe.
1078				 */
1079				is_enabled = 1;
1080			} else if (probe->ftp_argmap == NULL) {
1081				dtrace_probe(probe->ftp_id, s0, s1,
1082					     s2, s3, s4);
1083			} else {
1084				uint32_t t[5];
1085
1086				fasttrap_usdt_args32(probe, regs32,
1087						     sizeof (t) / sizeof (t[0]), t);
1088
1089				dtrace_probe(probe->ftp_id, t[0], t[1],
1090					     t[2], t[3], t[4]);
1091			}
1092
1093			/* APPLE NOTE: Oneshot probes get one and only one chance... */
1094			if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) {
1095				fasttrap_tracepoint_remove(p, tp);
1096			}
1097		}
1098	}
1099
1100	/*
1101	 * We're about to do a bunch of work so we cache a local copy of
1102	 * the tracepoint to emulate the instruction, and then find the
1103	 * tracepoint again later if we need to light up any return probes.
1104	 */
1105	tp_local = *tp;
1106	lck_mtx_unlock(pid_mtx);
1107	tp = &tp_local;
1108
1109	/*
1110	 * Set the program counter to appear as though the traced instruction
1111	 * had completely executed. This ensures that fasttrap_getreg() will
1112	 * report the expected value for REG_RIP.
1113	 */
1114	regs32->eip = pc + tp->ftt_size;
1115
1116	/*
1117	 * If there's an is-enabled probe connected to this tracepoint it
1118	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1119	 * instruction that was placed there by DTrace when the binary was
1120	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1121	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1122	 * emulation logic since we know the inevitable result. It's possible
1123	 * that a user could construct a scenario where the 'is-enabled'
1124	 * probe was on some other instruction, but that would be a rather
1125	 * exotic way to shoot oneself in the foot.
1126	 */
1127	if (is_enabled) {
1128		regs32->eax = 1;
1129		new_pc = regs32->eip;
1130		goto done;
1131	}
1132
1133	/*
1134	 * We emulate certain types of instructions to ensure correctness
1135	 * (in the case of position dependent instructions) or optimize
1136	 * common cases. The rest we have the thread execute back in user-
1137	 * land.
1138	 */
1139	switch (tp->ftt_type) {
1140		case FASTTRAP_T_RET:
1141		case FASTTRAP_T_RET16:
1142		{
1143			user_addr_t dst;
1144			user_addr_t addr;
1145			int ret;
1146
1147			/*
1148			 * We have to emulate _every_ facet of the behavior of a ret
1149			 * instruction including what happens if the load from %esp
1150			 * fails; in that case, we send a SIGSEGV.
1151			 */
1152			uint32_t dst32;
1153			ret = fasttrap_fuword32((user_addr_t)regs32->uesp, &dst32);
1154			dst = dst32;
1155			addr = regs32->uesp + sizeof (uint32_t);
1156
1157			if (ret == -1) {
1158				fasttrap_sigsegv(p, uthread, (user_addr_t)regs32->uesp);
1159				new_pc = pc;
1160				break;
1161			}
1162
1163			if (tp->ftt_type == FASTTRAP_T_RET16)
1164				addr += tp->ftt_dest;
1165
1166			regs32->uesp = addr;
1167			new_pc = dst;
1168			break;
1169		}
1170
1171		case FASTTRAP_T_JCC:
1172		{
1173			uint_t taken;
1174
1175			switch (tp->ftt_code) {
1176				case FASTTRAP_JO:
1177					taken = (regs32->efl & FASTTRAP_EFLAGS_OF) != 0;
1178					break;
1179				case FASTTRAP_JNO:
1180					taken = (regs32->efl & FASTTRAP_EFLAGS_OF) == 0;
1181					break;
1182				case FASTTRAP_JB:
1183					taken = (regs32->efl & FASTTRAP_EFLAGS_CF) != 0;
1184					break;
1185				case FASTTRAP_JAE:
1186					taken = (regs32->efl & FASTTRAP_EFLAGS_CF) == 0;
1187					break;
1188				case FASTTRAP_JE:
1189					taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0;
1190					break;
1191				case FASTTRAP_JNE:
1192					taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0;
1193					break;
1194				case FASTTRAP_JBE:
1195					taken = (regs32->efl & FASTTRAP_EFLAGS_CF) != 0 ||
1196						(regs32->efl & FASTTRAP_EFLAGS_ZF) != 0;
1197					break;
1198				case FASTTRAP_JA:
1199					taken = (regs32->efl & FASTTRAP_EFLAGS_CF) == 0 &&
1200						(regs32->efl & FASTTRAP_EFLAGS_ZF) == 0;
1201					break;
1202				case FASTTRAP_JS:
1203					taken = (regs32->efl & FASTTRAP_EFLAGS_SF) != 0;
1204					break;
1205				case FASTTRAP_JNS:
1206					taken = (regs32->efl & FASTTRAP_EFLAGS_SF) == 0;
1207					break;
1208				case FASTTRAP_JP:
1209					taken = (regs32->efl & FASTTRAP_EFLAGS_PF) != 0;
1210					break;
1211				case FASTTRAP_JNP:
1212					taken = (regs32->efl & FASTTRAP_EFLAGS_PF) == 0;
1213					break;
1214				case FASTTRAP_JL:
1215					taken = ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) !=
1216						((regs32->efl & FASTTRAP_EFLAGS_OF) == 0);
1217					break;
1218				case FASTTRAP_JGE:
1219					taken = ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) ==
1220						((regs32->efl & FASTTRAP_EFLAGS_OF) == 0);
1221					break;
1222				case FASTTRAP_JLE:
1223					taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0 ||
1224						((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) !=
1225						((regs32->efl & FASTTRAP_EFLAGS_OF) == 0);
1226					break;
1227				case FASTTRAP_JG:
1228					taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0 &&
1229						((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) ==
1230						((regs32->efl & FASTTRAP_EFLAGS_OF) == 0);
1231					break;
1232				default:
1233					taken = FALSE;
1234			}
1235
1236			if (taken)
1237				new_pc = tp->ftt_dest;
1238			else
1239				new_pc = pc + tp->ftt_size;
1240			break;
1241		}
1242
1243		case FASTTRAP_T_LOOP:
1244		{
1245			uint_t taken;
1246			greg_t cx = regs32->ecx--;
1247
1248			switch (tp->ftt_code) {
1249				case FASTTRAP_LOOPNZ:
1250					taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0 &&
1251						cx != 0;
1252					break;
1253				case FASTTRAP_LOOPZ:
1254					taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0 &&
1255						cx != 0;
1256					break;
1257				case FASTTRAP_LOOP:
1258					taken = (cx != 0);
1259					break;
1260				default:
1261					taken = FALSE;
1262			}
1263
1264			if (taken)
1265				new_pc = tp->ftt_dest;
1266			else
1267				new_pc = pc + tp->ftt_size;
1268			break;
1269		}
1270
1271		case FASTTRAP_T_JCXZ:
1272		{
1273			greg_t cx = regs32->ecx;
1274
1275			if (cx == 0)
1276				new_pc = tp->ftt_dest;
1277			else
1278				new_pc = pc + tp->ftt_size;
1279			break;
1280		}
1281
1282		case FASTTRAP_T_PUSHL_EBP:
1283		{
1284			user_addr_t addr = regs32->uesp - sizeof (uint32_t);
1285			int ret = fasttrap_suword32(addr, (uint32_t)regs32->ebp);
1286
1287			if (ret == -1) {
1288				fasttrap_sigsegv(p, uthread, addr);
1289				new_pc = pc;
1290				break;
1291			}
1292
1293			regs32->uesp = addr;
1294			new_pc = pc + tp->ftt_size;
1295			break;
1296		}
1297
1298		case FASTTRAP_T_NOP:
1299			new_pc = pc + tp->ftt_size;
1300			break;
1301
1302		case FASTTRAP_T_JMP:
1303		case FASTTRAP_T_CALL:
1304			if (tp->ftt_code == 0) {
1305				new_pc = tp->ftt_dest;
1306			} else {
1307				user_addr_t /* value ,*/ addr = tp->ftt_dest;
1308
1309				if (tp->ftt_base != FASTTRAP_NOREG)
1310					addr += fasttrap_getreg(regs, tp->ftt_base);
1311				if (tp->ftt_index != FASTTRAP_NOREG)
1312					addr += fasttrap_getreg(regs, tp->ftt_index) <<
1313						tp->ftt_scale;
1314
1315				if (tp->ftt_code == 1) {
1316					/*
1317					 * If there's a segment prefix for this
1318					 * instruction, we'll need to check permissions
1319					 * and bounds on the given selector, and adjust
1320					 * the address accordingly.
1321					 */
1322					if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1323					    fasttrap_do_seg(tp, regs, &addr) != 0) {
1324						fasttrap_sigsegv(p, uthread, addr);
1325						new_pc = pc;
1326						break;
1327					}
1328
1329					uint32_t value32;
1330					addr = (user_addr_t)(uint32_t)addr;
1331					if (fasttrap_fuword32(addr, &value32) == -1) {
1332						fasttrap_sigsegv(p, uthread, addr);
1333						new_pc = pc;
1334						break;
1335					}
1336					new_pc = value32;
1337				} else {
1338					new_pc = addr;
1339				}
1340			}
1341
1342			/*
1343			 * If this is a call instruction, we need to push the return
1344			 * address onto the stack. If this fails, we send the process
1345			 * a SIGSEGV and reset the pc to emulate what would happen if
1346			 * this instruction weren't traced.
1347			 */
1348			if (tp->ftt_type == FASTTRAP_T_CALL) {
1349				user_addr_t addr = regs32->uesp - sizeof (uint32_t);
1350				int ret = fasttrap_suword32(addr, (uint32_t)(pc + tp->ftt_size));
1351
1352				if (ret == -1) {
1353					fasttrap_sigsegv(p, uthread, addr);
1354					new_pc = pc;
1355					break;
1356				}
1357
1358				regs32->uesp = addr;
1359			}
1360			break;
1361
1362		case FASTTRAP_T_COMMON:
1363		{
1364			user_addr_t addr;
1365			uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7];
1366			uint_t i = 0;
1367
1368			/*
1369			 * Generic Instruction Tracing
1370			 * ---------------------------
1371			 *
1372			 * This is the layout of the scratch space in the user-land
1373			 * thread structure for our generated instructions.
1374			 *
1375			 *	32-bit mode			bytes
1376			 *	------------------------	-----
1377			 * a:	<original instruction>		<= 15
1378			 *	jmp	<pc + tp->ftt_size>	    5
1379			 * b:	<original instrction>		<= 15
1380			 *	int	T_DTRACE_RET		    2
1381			 *					-----
1382			 *					<= 37
1383			 *
1384			 *	64-bit mode			bytes
1385			 *	------------------------	-----
1386			 * a:	<original instruction>		<= 15
1387			 *	jmp	0(%rip)			    6
1388			 *	<pc + tp->ftt_size>		    8
1389			 * b:	<original instruction>		<= 15
1390			 * 	int	T_DTRACE_RET		    2
1391			 * 					-----
1392			 * 					<= 46
1393			 *
1394			 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1395			 * to b. If we encounter a signal on the way out of the
1396			 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1397			 * so that we execute the original instruction and re-enter
1398			 * the kernel rather than redirecting to the next instruction.
1399			 *
1400			 * If there are return probes (so we know that we're going to
1401			 * need to reenter the kernel after executing the original
1402			 * instruction), the scratch space will just contain the
1403			 * original instruction followed by an interrupt -- the same
1404			 * data as at b.
1405			 */
1406
1407			addr = uthread->t_dtrace_scratch->addr;
1408
1409			if (addr == 0LL) {
1410				fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc
1411				new_pc = pc;
1412				break;
1413			}
1414
1415			ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1416
1417			uthread->t_dtrace_scrpc = addr;
1418			bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1419			i += tp->ftt_size;
1420
1421			/*
1422			 * Set up the jmp to the next instruction; note that
1423			 * the size of the traced instruction cancels out.
1424			 */
1425			scratch[i++] = FASTTRAP_JMP32;
1426			/* LINTED - alignment */
1427			*(uint32_t *)&scratch[i] = pc - addr - 5;
1428			i += sizeof (uint32_t);
1429
1430			uthread->t_dtrace_astpc = addr + i;
1431			bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1432			i += tp->ftt_size;
1433			scratch[i++] = FASTTRAP_INT;
1434			scratch[i++] = T_DTRACE_RET;
1435
1436			ASSERT(i <= sizeof (scratch));
1437
1438			if (fasttrap_copyout(scratch, addr, i)) {
1439				fasttrap_sigtrap(p, uthread, pc);
1440				new_pc = pc;
1441				break;
1442			}
1443
1444			if (tp->ftt_retids != NULL) {
1445				uthread->t_dtrace_step = 1;
1446				uthread->t_dtrace_ret = 1;
1447				new_pc = uthread->t_dtrace_astpc;
1448			} else {
1449				new_pc = uthread->t_dtrace_scrpc;
1450			}
1451
1452			uthread->t_dtrace_pc = pc;
1453			uthread->t_dtrace_npc = pc + tp->ftt_size;
1454			uthread->t_dtrace_on = 1;
1455			break;
1456		}
1457
1458		default:
1459			panic("fasttrap: mishandled an instruction");
1460	}
1461
1462done:
1463	/*
1464	 * APPLE NOTE:
1465	 *
1466	 * We're setting this earlier than Solaris does, to get a "correct"
1467	 * ustack() output. In the Sun code,  a() -> b() -> c() -> d() is
1468	 * reported at: d, b, a. The new way gives c, b, a, which is closer
1469	 * to correct, as the return instruction has already exectued.
1470	 */
1471	regs32->eip = new_pc;
1472
1473	/*
1474	 * If there were no return probes when we first found the tracepoint,
1475	 * we should feel no obligation to honor any return probes that were
1476	 * subsequently enabled -- they'll just have to wait until the next
1477	 * time around.
1478	 */
1479	if (tp->ftt_retids != NULL) {
1480		/*
1481		 * We need to wait until the results of the instruction are
1482		 * apparent before invoking any return probes. If this
1483		 * instruction was emulated we can just call
1484		 * fasttrap_return_common(); if it needs to be executed, we
1485		 * need to wait until the user thread returns to the kernel.
1486		 */
1487		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1488			fasttrap_return_common(regs, pc, pid, new_pc);
1489		} else {
1490			ASSERT(uthread->t_dtrace_ret != 0);
1491			ASSERT(uthread->t_dtrace_pc == pc);
1492			ASSERT(uthread->t_dtrace_scrpc != 0);
1493			ASSERT(new_pc == uthread->t_dtrace_astpc);
1494		}
1495	}
1496
1497	return (0);
1498}
1499
1500/*
1501 * Due to variances between Solaris and xnu, I have split this into a 32 bit and 64 bit
1502 * code path. It still takes an x86_saved_state_t* argument, because it must sometimes
1503 * call other methods that require a x86_saved_state_t.
1504 *
1505 * NOTE!!!!
1506 *
1507 * Any changes made to this method must be echo'd in fasttrap_pid_probe32!
1508 *
1509 */
1510static int
1511fasttrap_pid_probe64(x86_saved_state_t *regs)
1512{
1513	ASSERT(is_saved_state64(regs));
1514
1515	x86_saved_state64_t *regs64 = saved_state64(regs);
1516	user_addr_t pc = regs64->isf.rip - 1;
1517	proc_t *p = current_proc();
1518	user_addr_t new_pc = 0;
1519	fasttrap_bucket_t *bucket;
1520	lck_mtx_t *pid_mtx;
1521	fasttrap_tracepoint_t *tp, tp_local;
1522	pid_t pid;
1523	dtrace_icookie_t cookie;
1524	uint_t is_enabled = 0;
1525
1526	uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread());
1527
1528	/*
1529	 * It's possible that a user (in a veritable orgy of bad planning)
1530	 * could redirect this thread's flow of control before it reached the
1531	 * return probe fasttrap. In this case we need to kill the process
1532	 * since it's in a unrecoverable state.
1533	 */
1534	if (uthread->t_dtrace_step) {
1535		ASSERT(uthread->t_dtrace_on);
1536		fasttrap_sigtrap(p, uthread, pc);
1537		return (0);
1538	}
1539
1540	/*
1541	 * Clear all user tracing flags.
1542	 */
1543	uthread->t_dtrace_ft = 0;
1544	uthread->t_dtrace_pc = 0;
1545	uthread->t_dtrace_npc = 0;
1546	uthread->t_dtrace_scrpc = 0;
1547	uthread->t_dtrace_astpc = 0;
1548	uthread->t_dtrace_regv = 0;
1549
1550	/*
1551	 * Treat a child created by a call to vfork(2) as if it were its
1552	 * parent. We know that there's only one thread of control in such a
1553	 * process: this one.
1554	 */
1555	/*
1556	 * APPLE NOTE: Terry says: "You need to hold the process locks (currently: kernel funnel) for this traversal"
1557	 * FIXME: How do we assert this?
1558	 */
1559	while (p->p_lflag & P_LINVFORK)
1560		p = p->p_pptr;
1561
1562	pid = p->p_pid;
1563	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
1564	lck_mtx_lock(pid_mtx);
1565	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
1566
1567	/*
1568	 * Lookup the tracepoint that the process just hit.
1569	 */
1570	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
1571		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
1572		    tp->ftt_proc->ftpc_acount != 0)
1573			break;
1574	}
1575
1576	/*
1577	 * If we couldn't find a matching tracepoint, either a tracepoint has
1578	 * been inserted without using the pid<pid> ioctl interface (see
1579	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
1580	 */
1581	if (tp == NULL) {
1582		lck_mtx_unlock(pid_mtx);
1583		return (-1);
1584	}
1585
1586	/*
1587	 * Set the program counter to the address of the traced instruction
1588	 * so that it looks right in ustack() output.
1589	 */
1590	regs64->isf.rip = pc;
1591
1592	if (tp->ftt_ids != NULL) {
1593		fasttrap_id_t *id;
1594
1595		for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1596			fasttrap_probe_t *probe = id->fti_probe;
1597
1598			if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) {
1599				dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id,
1600					     1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV);
1601			} else if (id->fti_ptype == DTFTP_ENTRY) {
1602				/*
1603				 * We note that this was an entry
1604				 * probe to help ustack() find the
1605				 * first caller.
1606				 */
1607				cookie = dtrace_interrupt_disable();
1608				DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1609				dtrace_probe(probe->ftp_id, regs64->rdi,
1610					     regs64->rsi, regs64->rdx, regs64->rcx,
1611					     regs64->r8);
1612				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1613				dtrace_interrupt_enable(cookie);
1614			} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1615				/*
1616				 * Note that in this case, we don't
1617				 * call dtrace_probe() since it's only
1618				 * an artificial probe meant to change
1619				 * the flow of control so that it
1620				 * encounters the true probe.
1621				 */
1622				is_enabled = 1;
1623			} else if (probe->ftp_argmap == NULL) {
1624				dtrace_probe(probe->ftp_id, regs64->rdi,
1625					     regs64->rsi, regs64->rdx, regs64->rcx,
1626					     regs64->r8);
1627			} else {
1628				uint64_t t[5];
1629
1630				fasttrap_usdt_args64(probe, regs64,
1631						     sizeof (t) / sizeof (t[0]), t);
1632
1633				dtrace_probe(probe->ftp_id, t[0], t[1],
1634					     t[2], t[3], t[4]);
1635			}
1636
1637			/* APPLE NOTE: Oneshot probes get one and only one chance... */
1638			if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) {
1639				fasttrap_tracepoint_remove(p, tp);
1640			}
1641		}
1642	}
1643
1644	/*
1645	 * We're about to do a bunch of work so we cache a local copy of
1646	 * the tracepoint to emulate the instruction, and then find the
1647	 * tracepoint again later if we need to light up any return probes.
1648	 */
1649	tp_local = *tp;
1650	lck_mtx_unlock(pid_mtx);
1651	tp = &tp_local;
1652
1653	/*
1654	 * Set the program counter to appear as though the traced instruction
1655	 * had completely executed. This ensures that fasttrap_getreg() will
1656	 * report the expected value for REG_RIP.
1657	 */
1658	regs64->isf.rip = pc + tp->ftt_size;
1659
1660	/*
1661	 * If there's an is-enabled probe connected to this tracepoint it
1662	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1663	 * instruction that was placed there by DTrace when the binary was
1664	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1665	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1666	 * emulation logic since we know the inevitable result. It's possible
1667	 * that a user could construct a scenario where the 'is-enabled'
1668	 * probe was on some other instruction, but that would be a rather
1669	 * exotic way to shoot oneself in the foot.
1670	 */
1671	if (is_enabled) {
1672		regs64->rax = 1;
1673		new_pc = regs64->isf.rip;
1674		goto done;
1675	}
1676
1677	/*
1678	 * We emulate certain types of instructions to ensure correctness
1679	 * (in the case of position dependent instructions) or optimize
1680	 * common cases. The rest we have the thread execute back in user-
1681	 * land.
1682	 */
1683	switch (tp->ftt_type) {
1684		case FASTTRAP_T_RET:
1685		case FASTTRAP_T_RET16:
1686		{
1687			user_addr_t dst;
1688			user_addr_t addr;
1689			int ret;
1690
1691			/*
1692			 * We have to emulate _every_ facet of the behavior of a ret
1693			 * instruction including what happens if the load from %esp
1694			 * fails; in that case, we send a SIGSEGV.
1695			 */
1696			ret = fasttrap_fuword64((user_addr_t)regs64->isf.rsp, &dst);
1697			addr = regs64->isf.rsp + sizeof (uint64_t);
1698
1699			if (ret == -1) {
1700				fasttrap_sigsegv(p, uthread, (user_addr_t)regs64->isf.rsp);
1701				new_pc = pc;
1702				break;
1703			}
1704
1705			if (tp->ftt_type == FASTTRAP_T_RET16)
1706				addr += tp->ftt_dest;
1707
1708			regs64->isf.rsp = addr;
1709			new_pc = dst;
1710			break;
1711		}
1712
1713		case FASTTRAP_T_JCC:
1714		{
1715			uint_t taken;
1716
1717			switch (tp->ftt_code) {
1718				case FASTTRAP_JO:
1719					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_OF) != 0;
1720					break;
1721				case FASTTRAP_JNO:
1722					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0;
1723					break;
1724				case FASTTRAP_JB:
1725					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) != 0;
1726					break;
1727				case FASTTRAP_JAE:
1728					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) == 0;
1729					break;
1730				case FASTTRAP_JE:
1731					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0;
1732					break;
1733				case FASTTRAP_JNE:
1734					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0;
1735					break;
1736				case FASTTRAP_JBE:
1737					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) != 0 ||
1738						(regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0;
1739					break;
1740				case FASTTRAP_JA:
1741					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) == 0 &&
1742						(regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0;
1743					break;
1744				case FASTTRAP_JS:
1745					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_SF) != 0;
1746					break;
1747				case FASTTRAP_JNS:
1748					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0;
1749					break;
1750				case FASTTRAP_JP:
1751					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_PF) != 0;
1752					break;
1753				case FASTTRAP_JNP:
1754					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_PF) == 0;
1755					break;
1756				case FASTTRAP_JL:
1757					taken = ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1758						((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0);
1759					break;
1760				case FASTTRAP_JGE:
1761					taken = ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1762						((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0);
1763					break;
1764				case FASTTRAP_JLE:
1765					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0 ||
1766						((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1767						((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0);
1768					break;
1769				case FASTTRAP_JG:
1770					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1771						((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1772						((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0);
1773					break;
1774				default:
1775					taken = FALSE;
1776			}
1777
1778			if (taken)
1779				new_pc = tp->ftt_dest;
1780			else
1781				new_pc = pc + tp->ftt_size;
1782			break;
1783		}
1784
1785		case FASTTRAP_T_LOOP:
1786		{
1787			uint_t taken;
1788			uint64_t cx = regs64->rcx--;
1789
1790			switch (tp->ftt_code) {
1791				case FASTTRAP_LOOPNZ:
1792					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1793						cx != 0;
1794					break;
1795				case FASTTRAP_LOOPZ:
1796					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0 &&
1797						cx != 0;
1798					break;
1799				case FASTTRAP_LOOP:
1800					taken = (cx != 0);
1801					break;
1802				default:
1803					taken = FALSE;
1804			}
1805
1806			if (taken)
1807				new_pc = tp->ftt_dest;
1808			else
1809				new_pc = pc + tp->ftt_size;
1810			break;
1811		}
1812
1813		case FASTTRAP_T_JCXZ:
1814		{
1815			uint64_t cx = regs64->rcx;
1816
1817			if (cx == 0)
1818				new_pc = tp->ftt_dest;
1819			else
1820				new_pc = pc + tp->ftt_size;
1821			break;
1822		}
1823
1824		case FASTTRAP_T_PUSHL_EBP:
1825		{
1826			user_addr_t addr = regs64->isf.rsp - sizeof (uint64_t);
1827			int ret = fasttrap_suword64(addr, (uint64_t)regs64->rbp);
1828
1829			if (ret == -1) {
1830				fasttrap_sigsegv(p, uthread, addr);
1831				new_pc = pc;
1832				break;
1833			}
1834
1835			regs64->isf.rsp = addr;
1836			new_pc = pc + tp->ftt_size;
1837			break;
1838		}
1839
1840		case FASTTRAP_T_NOP:
1841			new_pc = pc + tp->ftt_size;
1842			break;
1843
1844		case FASTTRAP_T_JMP:
1845		case FASTTRAP_T_CALL:
1846			if (tp->ftt_code == 0) {
1847				new_pc = tp->ftt_dest;
1848			} else {
1849				user_addr_t value, addr = tp->ftt_dest;
1850
1851				if (tp->ftt_base != FASTTRAP_NOREG)
1852					addr += fasttrap_getreg(regs, tp->ftt_base);
1853				if (tp->ftt_index != FASTTRAP_NOREG)
1854					addr += fasttrap_getreg(regs, tp->ftt_index) <<
1855						tp->ftt_scale;
1856
1857				if (tp->ftt_code == 1) {
1858					/*
1859					 * If there's a segment prefix for this
1860					 * instruction, we'll need to check permissions
1861					 * and bounds on the given selector, and adjust
1862					 * the address accordingly.
1863					 */
1864					if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1865					    fasttrap_do_seg(tp, regs, &addr) != 0) {
1866						fasttrap_sigsegv(p, uthread, addr);
1867						new_pc = pc;
1868						break;
1869					}
1870
1871					if (fasttrap_fuword64(addr, &value) == -1) {
1872						fasttrap_sigsegv(p, uthread, addr);
1873						new_pc = pc;
1874						break;
1875					}
1876					new_pc = value;
1877				} else {
1878					new_pc = addr;
1879				}
1880			}
1881
1882			/*
1883			 * If this is a call instruction, we need to push the return
1884			 * address onto the stack. If this fails, we send the process
1885			 * a SIGSEGV and reset the pc to emulate what would happen if
1886			 * this instruction weren't traced.
1887			 */
1888			if (tp->ftt_type == FASTTRAP_T_CALL) {
1889				user_addr_t addr = regs64->isf.rsp - sizeof (uint64_t);
1890				int ret = fasttrap_suword64(addr, pc + tp->ftt_size);
1891
1892				if (ret == -1) {
1893					fasttrap_sigsegv(p, uthread, addr);
1894					new_pc = pc;
1895					break;
1896				}
1897
1898				regs64->isf.rsp = addr;
1899			}
1900			break;
1901
1902		case FASTTRAP_T_COMMON:
1903		{
1904			user_addr_t addr;
1905			uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22];
1906			uint_t i = 0;
1907
1908			/*
1909			 * Generic Instruction Tracing
1910			 * ---------------------------
1911			 *
1912			 * This is the layout of the scratch space in the user-land
1913			 * thread structure for our generated instructions.
1914			 *
1915			 *	32-bit mode			bytes
1916			 *	------------------------	-----
1917			 * a:	<original instruction>		<= 15
1918			 *	jmp	<pc + tp->ftt_size>	    5
1919			 * b:	<original instrction>		<= 15
1920			 *	int	T_DTRACE_RET		    2
1921			 *					-----
1922			 *					<= 37
1923			 *
1924			 *	64-bit mode			bytes
1925			 *	------------------------	-----
1926			 * a:	<original instruction>		<= 15
1927			 *	jmp	0(%rip)			    6
1928			 *	<pc + tp->ftt_size>		    8
1929			 * b:	<original instruction>		<= 15
1930			 * 	int	T_DTRACE_RET		    2
1931			 * 					-----
1932			 * 					<= 46
1933			 *
1934			 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1935			 * to b. If we encounter a signal on the way out of the
1936			 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1937			 * so that we execute the original instruction and re-enter
1938			 * the kernel rather than redirecting to the next instruction.
1939			 *
1940			 * If there are return probes (so we know that we're going to
1941			 * need to reenter the kernel after executing the original
1942			 * instruction), the scratch space will just contain the
1943			 * original instruction followed by an interrupt -- the same
1944			 * data as at b.
1945			 *
1946			 * %rip-relative Addressing
1947			 * ------------------------
1948			 *
1949			 * There's a further complication in 64-bit mode due to %rip-
1950			 * relative addressing. While this is clearly a beneficial
1951			 * architectural decision for position independent code, it's
1952			 * hard not to see it as a personal attack against the pid
1953			 * provider since before there was a relatively small set of
1954			 * instructions to emulate; with %rip-relative addressing,
1955			 * almost every instruction can potentially depend on the
1956			 * address at which it's executed. Rather than emulating
1957			 * the broad spectrum of instructions that can now be
1958			 * position dependent, we emulate jumps and others as in
1959			 * 32-bit mode, and take a different tack for instructions
1960			 * using %rip-relative addressing.
1961			 *
1962			 * For every instruction that uses the ModRM byte, the
1963			 * in-kernel disassembler reports its location. We use the
1964			 * ModRM byte to identify that an instruction uses
1965			 * %rip-relative addressing and to see what other registers
1966			 * the instruction uses. To emulate those instructions,
1967			 * we modify the instruction to be %rax-relative rather than
1968			 * %rip-relative (or %rcx-relative if the instruction uses
1969			 * %rax; or %r8- or %r9-relative if the REX.B is present so
1970			 * we don't have to rewrite the REX prefix). We then load
1971			 * the value that %rip would have been into the scratch
1972			 * register and generate an instruction to reset the scratch
1973			 * register back to its original value. The instruction
1974			 * sequence looks like this:
1975			 *
1976			 *	64-mode %rip-relative		bytes
1977			 *	------------------------	-----
1978			 * a:	<modified instruction>		<= 15
1979			 *	movq	$<value>, %<scratch>	    6
1980			 *	jmp	0(%rip)			    6
1981			 *	<pc + tp->ftt_size>		    8
1982			 * b:	<modified instruction>  	<= 15
1983			 * 	int	T_DTRACE_RET		    2
1984			 * 					-----
1985			 *					   52
1986			 *
1987			 * We set curthread->t_dtrace_regv so that upon receiving
1988			 * a signal we can reset the value of the scratch register.
1989			 */
1990
1991			addr = uthread->t_dtrace_scratch->addr;
1992
1993			if (addr == 0LL) {
1994				fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc
1995				new_pc = pc;
1996				break;
1997			}
1998
1999			ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
2000
2001			uthread->t_dtrace_scrpc = addr;
2002			bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
2003			i += tp->ftt_size;
2004
2005			if (tp->ftt_ripmode != 0) {
2006				uint64_t* reg;
2007
2008				ASSERT(tp->ftt_ripmode &
2009				       (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
2010
2011				/*
2012				 * If this was a %rip-relative instruction, we change
2013				 * it to be either a %rax- or %rcx-relative
2014				 * instruction (depending on whether those registers
2015				 * are used as another operand; or %r8- or %r9-
2016				 * relative depending on the value of REX.B). We then
2017				 * set that register and generate a movq instruction
2018				 * to reset the value.
2019				 */
2020				if (tp->ftt_ripmode & FASTTRAP_RIP_X)
2021					scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
2022				else
2023					scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
2024
2025				if (tp->ftt_ripmode & FASTTRAP_RIP_1)
2026					scratch[i++] = FASTTRAP_MOV_EAX;
2027				else
2028					scratch[i++] = FASTTRAP_MOV_ECX;
2029
2030				switch (tp->ftt_ripmode) {
2031					case FASTTRAP_RIP_1:
2032						reg = &regs64->rax;
2033						uthread->t_dtrace_reg = REG_RAX;
2034						break;
2035					case FASTTRAP_RIP_2:
2036						reg = &regs64->rcx;
2037						uthread->t_dtrace_reg = REG_RCX;
2038						break;
2039					case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
2040						reg = &regs64->r8;
2041						uthread->t_dtrace_reg = REG_R8;
2042						break;
2043					case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
2044						reg = &regs64->r9;
2045						uthread->t_dtrace_reg = REG_R9;
2046						break;
2047					default:
2048						reg = NULL;
2049						panic("unhandled ripmode in fasttrap_pid_probe64");
2050				}
2051
2052				/* LINTED - alignment */
2053				*(uint64_t *)&scratch[i] = *reg;
2054				uthread->t_dtrace_regv = *reg;
2055				*reg = pc + tp->ftt_size;
2056				i += sizeof (uint64_t);
2057			}
2058
2059			/*
2060			 * Generate the branch instruction to what would have
2061			 * normally been the subsequent instruction. In 32-bit mode,
2062			 * this is just a relative branch; in 64-bit mode this is a
2063			 * %rip-relative branch that loads the 64-bit pc value
2064			 * immediately after the jmp instruction.
2065			 */
2066			scratch[i++] = FASTTRAP_GROUP5_OP;
2067			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
2068			/* LINTED - alignment */
2069			*(uint32_t *)&scratch[i] = 0;
2070			i += sizeof (uint32_t);
2071			/* LINTED - alignment */
2072			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
2073			i += sizeof (uint64_t);
2074
2075			uthread->t_dtrace_astpc = addr + i;
2076			bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
2077			i += tp->ftt_size;
2078			scratch[i++] = FASTTRAP_INT;
2079			scratch[i++] = T_DTRACE_RET;
2080
2081			ASSERT(i <= sizeof (scratch));
2082
2083			if (fasttrap_copyout(scratch, addr, i)) {
2084				fasttrap_sigtrap(p, uthread, pc);
2085				new_pc = pc;
2086				break;
2087			}
2088
2089			if (tp->ftt_retids != NULL) {
2090				uthread->t_dtrace_step = 1;
2091				uthread->t_dtrace_ret = 1;
2092				new_pc = uthread->t_dtrace_astpc;
2093			} else {
2094				new_pc = uthread->t_dtrace_scrpc;
2095			}
2096
2097			uthread->t_dtrace_pc = pc;
2098			uthread->t_dtrace_npc = pc + tp->ftt_size;
2099			uthread->t_dtrace_on = 1;
2100			break;
2101		}
2102
2103		default:
2104			panic("fasttrap: mishandled an instruction");
2105	}
2106
2107done:
2108	/*
2109	 * APPLE NOTE:
2110	 *
2111	 * We're setting this earlier than Solaris does, to get a "correct"
2112	 * ustack() output. In the Sun code,  a() -> b() -> c() -> d() is
2113	 * reported at: d, b, a. The new way gives c, b, a, which is closer
2114	 * to correct, as the return instruction has already exectued.
2115	 */
2116	regs64->isf.rip = new_pc;
2117
2118
2119	/*
2120	 * If there were no return probes when we first found the tracepoint,
2121	 * we should feel no obligation to honor any return probes that were
2122	 * subsequently enabled -- they'll just have to wait until the next
2123	 * time around.
2124	 */
2125	if (tp->ftt_retids != NULL) {
2126		/*
2127		 * We need to wait until the results of the instruction are
2128		 * apparent before invoking any return probes. If this
2129		 * instruction was emulated we can just call
2130		 * fasttrap_return_common(); if it needs to be executed, we
2131		 * need to wait until the user thread returns to the kernel.
2132		 */
2133		if (tp->ftt_type != FASTTRAP_T_COMMON) {
2134			fasttrap_return_common(regs, pc, pid, new_pc);
2135		} else {
2136			ASSERT(uthread->t_dtrace_ret != 0);
2137			ASSERT(uthread->t_dtrace_pc == pc);
2138			ASSERT(uthread->t_dtrace_scrpc != 0);
2139			ASSERT(new_pc == uthread->t_dtrace_astpc);
2140		}
2141	}
2142
2143	return (0);
2144}
2145
2146int
2147fasttrap_pid_probe(x86_saved_state_t *regs)
2148{
2149        if (is_saved_state64(regs))
2150		return fasttrap_pid_probe64(regs);
2151
2152	return fasttrap_pid_probe32(regs);
2153}
2154
2155int
2156fasttrap_return_probe(x86_saved_state_t *regs)
2157{
2158	x86_saved_state64_t *regs64;
2159	x86_saved_state32_t *regs32;
2160	unsigned int p_model;
2161
2162        if (is_saved_state64(regs)) {
2163                regs64 = saved_state64(regs);
2164		regs32 = NULL;
2165		p_model = DATAMODEL_LP64;
2166        } else {
2167		regs64 = NULL;
2168                regs32 = saved_state32(regs);
2169		p_model = DATAMODEL_ILP32;
2170        }
2171
2172	proc_t *p = current_proc();
2173	uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread());
2174	user_addr_t pc = uthread->t_dtrace_pc;
2175	user_addr_t npc = uthread->t_dtrace_npc;
2176
2177	uthread->t_dtrace_pc = 0;
2178	uthread->t_dtrace_npc = 0;
2179	uthread->t_dtrace_scrpc = 0;
2180	uthread->t_dtrace_astpc = 0;
2181
2182	/*
2183	 * Treat a child created by a call to vfork(2) as if it were its
2184	 * parent. We know that there's only one thread of control in such a
2185	 * process: this one.
2186	 */
2187	/*
2188	 * APPLE NOTE: Terry says: "You need to hold the process locks (currently: kernel funnel) for this traversal"
2189	 * How do we assert this?
2190	 */
2191	while (p->p_lflag & P_LINVFORK) {
2192		p = p->p_pptr;
2193	}
2194
2195	/*
2196	 * We set rp->r_pc to the address of the traced instruction so
2197	 * that it appears to dtrace_probe() that we're on the original
2198	 * instruction, and so that the user can't easily detect our
2199	 * complex web of lies. dtrace_return_probe() (our caller)
2200	 * will correctly set %pc after we return.
2201	 */
2202	if (p_model == DATAMODEL_LP64)
2203		regs64->isf.rip = pc;
2204	else
2205		regs32->eip = pc;
2206
2207	fasttrap_return_common(regs, pc, p->p_pid, npc);
2208
2209	return (0);
2210}
2211
2212uint64_t
2213fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
2214    int aframes)
2215{
2216	pal_register_cache_state(current_thread(), VALID);
2217#pragma unused(arg, id, parg, aframes)
2218	return (fasttrap_anarg((x86_saved_state_t *)find_user_regs(current_thread()), 1, argno));
2219}
2220
2221uint64_t
2222fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
2223    int aframes)
2224{
2225	pal_register_cache_state(current_thread(), VALID);
2226#pragma unused(arg, id, parg, aframes)
2227	return (fasttrap_anarg((x86_saved_state_t *)find_user_regs(current_thread()), 0, argno));
2228}
2229
2230/*
2231 * APPLE NOTE: See comments by regmap array definition. We are cheating
2232 * when returning 32 bit registers.
2233 */
2234static user_addr_t
2235fasttrap_getreg(x86_saved_state_t *regs, uint_t reg)
2236{
2237	if (is_saved_state64(regs)) {
2238		x86_saved_state64_t *regs64 = saved_state64(regs);
2239
2240		switch (reg) {
2241			case REG_RAX:		return regs64->rax;
2242			case REG_RCX:		return regs64->rcx;
2243			case REG_RDX:		return regs64->rdx;
2244			case REG_RBX:		return regs64->rbx;
2245			case REG_RSP:		return regs64->isf.rsp;
2246			case REG_RBP:		return regs64->rbp;
2247			case REG_RSI:		return regs64->rsi;
2248			case REG_RDI:		return regs64->rdi;
2249			case REG_R8:		return regs64->r8;
2250			case REG_R9:		return regs64->r9;
2251			case REG_R10:		return regs64->r10;
2252			case REG_R11:		return regs64->r11;
2253			case REG_R12:		return regs64->r12;
2254			case REG_R13:		return regs64->r13;
2255			case REG_R14:		return regs64->r14;
2256			case REG_R15:		return regs64->r15;
2257			case REG_TRAPNO:	return regs64->isf.trapno;
2258			case REG_ERR:		return regs64->isf.err;
2259			case REG_RIP:		return regs64->isf.rip;
2260			case REG_CS:		return regs64->isf.cs;
2261			case REG_RFL:		return regs64->isf.rflags;
2262			case REG_SS:		return regs64->isf.ss;
2263			case REG_FS:		return regs64->fs;
2264			case REG_GS:		return regs64->gs;
2265			case REG_ES:
2266			case REG_DS:
2267			case REG_FSBASE:
2268			case REG_GSBASE:
2269				// Important to distinguish these requests (which should be legal) from other values.
2270				panic("dtrace: unimplemented x86_64 getreg()");
2271		}
2272
2273		panic("dtrace: unhandled x86_64 getreg() constant");
2274	} else {
2275		x86_saved_state32_t *regs32 = saved_state32(regs);
2276
2277		switch (reg) {
2278			case REG_RAX:		return regs32->eax;
2279			case REG_RCX:		return regs32->ecx;
2280			case REG_RDX:		return regs32->edx;
2281			case REG_RBX:		return regs32->ebx;
2282			case REG_RSP:		return regs32->uesp;
2283			case REG_RBP:		return regs32->ebp;
2284			case REG_RSI:		return regs32->esi;
2285			case REG_RDI:		return regs32->edi;
2286		}
2287
2288		panic("dtrace: unhandled i386 getreg() constant");
2289	}
2290
2291	return 0;
2292}
2293