1/*
2 *  ntp_types.h - defines how int32 and u_int32 are treated.
3 *  For 64 bit systems like the DEC Alpha, they have to be defined
4 *  as int and u_int.
5 *  For 32 bit systems, define them as long and u_long
6 */
7#define SIZEOF_INT 4
8
9/*
10 * VMS DECC (v4.1), {u_char,u_short,u_long} are only in SOCKET.H,
11 *                      and u_int isn't defined anywhere
12 */
13#if defined(VMS)
14#include <socket.h>
15typedef unsigned int u_int;
16/*
17 * Note: VMS DECC has  long == int  (even on __alpha),
18 *       so the distinction below doesn't matter
19 */
20#endif /* VMS */
21
22#if (SIZEOF_INT == 4)
23# ifndef int32
24#  define int32 int
25# endif
26# ifndef u_int32
27#  define u_int32 unsigned int
28# endif
29#else /* not sizeof(int) == 4 */
30# if (SIZEOF_LONG == 4)
31# else /* not sizeof(long) == 4 */
32#  ifndef int32
33#   define int32 long
34#  endif
35#  ifndef u_int32
36#   define u_int32 unsigned long
37#  endif
38# endif /* not sizeof(long) == 4 */
39# include "Bletch: what's 32 bits on this machine?"
40#endif /* not sizeof(int) == 4 */
41
42typedef unsigned short associd_t; /* association ID */
43typedef u_int32 keyid_t;        /* cryptographic key ID */
44typedef u_int32 tstamp_t;       /* NTP seconds timestamp */
45
46/*
47 * NTP uses two fixed point formats.  The first (l_fp) is the "long"
48 * format and is 64 bits long with the decimal between bits 31 and 32.
49 * This is used for time stamps in the NTP packet header (in network
50 * byte order) and for internal computations of offsets (in local host
51 * byte order). We use the same structure for both signed and unsigned
52 * values, which is a big hack but saves rewriting all the operators
53 * twice. Just to confuse this, we also sometimes just carry the
54 * fractional part in calculations, in both signed and unsigned forms.
55 * Anyway, an l_fp looks like:
56 *
57 *    0			  1		      2			  3
58 *    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
59 *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
60 *   |			       Integral Part			     |
61 *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
62 *   |			       Fractional Part			     |
63 *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
64 *
65 */
66typedef struct {
67	union {
68		u_int32 Xl_ui;
69		int32 Xl_i;
70	} Ul_i;
71	union {
72		u_int32 Xl_uf;
73		int32 Xl_f;
74	} Ul_f;
75} l_fp;
76
77#define l_ui	Ul_i.Xl_ui		/* unsigned integral part */
78#define	l_i	Ul_i.Xl_i		/* signed integral part */
79#define	l_uf	Ul_f.Xl_uf		/* unsigned fractional part */
80#define	l_f	Ul_f.Xl_f		/* signed fractional part */
81
82/*
83 * Fractional precision (of an l_fp) is actually the number of
84 * bits in a long.
85 */
86#define	FRACTION_PREC	(32)
87
88
89/*
90 * The second fixed point format is 32 bits, with the decimal between
91 * bits 15 and 16.  There is a signed version (s_fp) and an unsigned
92 * version (u_fp).  This is used to represent synchronizing distance
93 * and synchronizing dispersion in the NTP packet header (again, in
94 * network byte order) and internally to hold both distance and
95 * dispersion values (in local byte order).  In network byte order
96 * it looks like:
97 *
98 *    0			  1		      2			  3
99 *    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
100 *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
101 *   |		  Integer Part	     |	   Fraction Part	     |
102 *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
103 *
104 */
105typedef int32 s_fp;
106typedef u_int32 u_fp;
107
108/*
109 * A unit second in fp format.  Actually 2**(half_the_bits_in_a_long)
110 */
111#define	FP_SECOND	(0x10000)
112
113/*
114 * Byte order conversions
115 */
116#define	HTONS_FP(x)	(htonl(x))
117#define	HTONL_FP(h, n)	do { (n)->l_ui = htonl((h)->l_ui); \
118			     (n)->l_uf = htonl((h)->l_uf); } while (0)
119#define	NTOHS_FP(x)	(ntohl(x))
120#define	NTOHL_FP(n, h)	do { (h)->l_ui = ntohl((n)->l_ui); \
121			     (h)->l_uf = ntohl((n)->l_uf); } while (0)
122#define	NTOHL_MFP(ni, nf, hi, hf) \
123	do { (hi) = ntohl(ni); (hf) = ntohl(nf); } while (0)
124#define	HTONL_MFP(hi, hf, ni, nf) \
125	do { (ni) = ntohl(hi); (nf) = ntohl(hf); } while (0)
126
127/* funny ones.  Converts ts fractions to net order ts */
128#define	HTONL_UF(uf, nts) \
129	do { (nts)->l_ui = 0; (nts)->l_uf = htonl(uf); } while (0)
130#define	HTONL_F(f, nts) do { (nts)->l_uf = htonl(f); \
131				if ((f) & 0x80000000) \
132					(nts)->l_i = -1; \
133				else \
134					(nts)->l_i = 0; \
135			} while (0)
136
137/*
138 * Conversions between the two fixed point types
139 */
140#define	MFPTOFP(x_i, x_f)	(((x_i) >= 0x00010000) ? 0x7fffffff : \
141				(((x_i) <= -0x00010000) ? 0x80000000 : \
142				(((x_i)<<16) | (((x_f)>>16)&0xffff))))
143#define	LFPTOFP(v)		MFPTOFP((v)->l_i, (v)->l_f)
144
145#define UFPTOLFP(x, v) ((v)->l_ui = (u_fp)(x)>>16, (v)->l_uf = (x)<<16)
146#define FPTOLFP(x, v)  (UFPTOLFP((x), (v)), (x) < 0 ? (v)->l_ui -= 0x10000 : 0)
147
148#define MAXLFP(v) ((v)->l_ui = 0x7fffffff, (v)->l_uf = 0xffffffff)
149#define MINLFP(v) ((v)->l_ui = 0x80000000, (v)->l_uf = 0)
150
151/*
152 * Primitive operations on long fixed point values.  If these are
153 * reminiscent of assembler op codes it's only because some may
154 * be replaced by inline assembler for particular machines someday.
155 * These are the (kind of inefficient) run-anywhere versions.
156 */
157#define	M_NEG(v_i, v_f) 	/* v = -v */ \
158	do { \
159		if ((v_f) == 0) \
160			(v_i) = -((s_fp)(v_i)); \
161		else { \
162			(v_f) = -((s_fp)(v_f)); \
163			(v_i) = ~(v_i); \
164		} \
165	} while(0)
166
167#define	M_NEGM(r_i, r_f, a_i, a_f) 	/* r = -a */ \
168	do { \
169		if ((a_f) == 0) { \
170			(r_f) = 0; \
171			(r_i) = -(a_i); \
172		} else { \
173			(r_f) = -(a_f); \
174			(r_i) = ~(a_i); \
175		} \
176	} while(0)
177
178#define M_ADD(r_i, r_f, a_i, a_f) 	/* r += a */ \
179	do { \
180		register u_int32 lo_tmp; \
181		register u_int32 hi_tmp; \
182		\
183		lo_tmp = ((r_f) & 0xffff) + ((a_f) & 0xffff); \
184		hi_tmp = (((r_f) >> 16) & 0xffff) + (((a_f) >> 16) & 0xffff); \
185		if (lo_tmp & 0x10000) \
186			hi_tmp++; \
187		(r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
188		\
189		(r_i) += (a_i); \
190		if (hi_tmp & 0x10000) \
191			(r_i)++; \
192	} while (0)
193
194#define M_ADD3(r_ovr, r_i, r_f, a_ovr, a_i, a_f) /* r += a, three word */ \
195	do { \
196		register u_int32 lo_tmp; \
197		register u_int32 hi_tmp; \
198		\
199		lo_tmp = ((r_f) & 0xffff) + ((a_f) & 0xffff); \
200		hi_tmp = (((r_f) >> 16) & 0xffff) + (((a_f) >> 16) & 0xffff); \
201		if (lo_tmp & 0x10000) \
202			hi_tmp++; \
203		(r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
204		\
205		lo_tmp = ((r_i) & 0xffff) + ((a_i) & 0xffff); \
206		if (hi_tmp & 0x10000) \
207			lo_tmp++; \
208		hi_tmp = (((r_i) >> 16) & 0xffff) + (((a_i) >> 16) & 0xffff); \
209		if (lo_tmp & 0x10000) \
210			hi_tmp++; \
211		(r_i) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
212		\
213		(r_ovr) += (a_ovr); \
214		if (hi_tmp & 0x10000) \
215			(r_ovr)++; \
216	} while (0)
217
218#define M_SUB(r_i, r_f, a_i, a_f)	/* r -= a */ \
219	do { \
220		register u_int32 lo_tmp; \
221		register u_int32 hi_tmp; \
222		\
223		if ((a_f) == 0) { \
224			(r_i) -= (a_i); \
225		} else { \
226			lo_tmp = ((r_f) & 0xffff) + ((-((s_fp)(a_f))) & 0xffff); \
227			hi_tmp = (((r_f) >> 16) & 0xffff) \
228			    + (((-((s_fp)(a_f))) >> 16) & 0xffff); \
229			if (lo_tmp & 0x10000) \
230				hi_tmp++; \
231			(r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
232			\
233			(r_i) += ~(a_i); \
234			if (hi_tmp & 0x10000) \
235				(r_i)++; \
236		} \
237	} while (0)
238
239#define	M_RSHIFTU(v_i, v_f)		/* v >>= 1, v is unsigned */ \
240	do { \
241		(v_f) = (u_int32)(v_f) >> 1; \
242		if ((v_i) & 01) \
243			(v_f) |= 0x80000000; \
244		(v_i) = (u_int32)(v_i) >> 1; \
245	} while (0)
246
247#define	M_RSHIFT(v_i, v_f)		/* v >>= 1, v is signed */ \
248	do { \
249		(v_f) = (u_int32)(v_f) >> 1; \
250		if ((v_i) & 01) \
251			(v_f) |= 0x80000000; \
252		if ((v_i) & 0x80000000) \
253			(v_i) = ((v_i) >> 1) | 0x80000000; \
254		else \
255			(v_i) = (v_i) >> 1; \
256	} while (0)
257
258#define	M_LSHIFT(v_i, v_f)		/* v <<= 1 */ \
259	do { \
260		(v_i) <<= 1; \
261		if ((v_f) & 0x80000000) \
262			(v_i) |= 0x1; \
263		(v_f) <<= 1; \
264	} while (0)
265
266#define	M_LSHIFT3(v_ovr, v_i, v_f)	/* v <<= 1, with overflow */ \
267	do { \
268		(v_ovr) <<= 1; \
269		if ((v_i) & 0x80000000) \
270			(v_ovr) |= 0x1; \
271		(v_i) <<= 1; \
272		if ((v_f) & 0x80000000) \
273			(v_i) |= 0x1; \
274		(v_f) <<= 1; \
275	} while (0)
276
277#define	M_ADDUF(r_i, r_f, uf) 		/* r += uf, uf is u_int32 fraction */ \
278	M_ADD((r_i), (r_f), 0, (uf))	/* let optimizer worry about it */
279
280#define	M_SUBUF(r_i, r_f, uf)		/* r -= uf, uf is u_int32 fraction */ \
281	M_SUB((r_i), (r_f), 0, (uf))	/* let optimizer worry about it */
282
283#define	M_ADDF(r_i, r_f, f)		/* r += f, f is a int32 fraction */ \
284	do { \
285		if ((f) > 0) \
286			M_ADD((r_i), (r_f), 0, (f)); \
287		else if ((f) < 0) \
288			M_ADD((r_i), (r_f), (-1), (f));\
289	} while(0)
290
291#define	M_ISNEG(v_i, v_f) 		/* v < 0 */ \
292	(((v_i) & 0x80000000) != 0)
293
294#define	M_ISHIS(a_i, a_f, b_i, b_f)	/* a >= b unsigned */ \
295	(((u_int32)(a_i)) > ((u_int32)(b_i)) || \
296	  ((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f))))
297
298#define	M_ISGEQ(a_i, a_f, b_i, b_f)	/* a >= b signed */ \
299	(((int32)(a_i)) > ((int32)(b_i)) || \
300	  ((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f))))
301
302#define	M_ISEQU(a_i, a_f, b_i, b_f)	/* a == b unsigned */ \
303	((a_i) == (b_i) && (a_f) == (b_f))
304
305/*
306 * Operations on the long fp format
307 */
308#define	L_ADD(r, a)	M_ADD((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
309#define	L_SUB(r, a)	M_SUB((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
310#define	L_NEG(v)	M_NEG((v)->l_ui, (v)->l_uf)
311#define L_ADDUF(r, uf)	M_ADDUF((r)->l_ui, (r)->l_uf, (uf))
312#define L_SUBUF(r, uf)	M_SUBUF((r)->l_ui, (r)->l_uf, (uf))
313#define	L_ADDF(r, f)	M_ADDF((r)->l_ui, (r)->l_uf, (f))
314#define	L_RSHIFT(v)	M_RSHIFT((v)->l_i, (v)->l_uf)
315#define	L_RSHIFTU(v)	M_RSHIFT((v)->l_ui, (v)->l_uf)
316#define	L_LSHIFT(v)	M_LSHIFT((v)->l_ui, (v)->l_uf)
317#define	L_CLR(v)	((v)->l_ui = (v)->l_uf = 0)
318
319#define	L_ISNEG(v)	(((v)->l_ui & 0x80000000) != 0)
320#define L_ISZERO(v)	((v)->l_ui == 0 && (v)->l_uf == 0)
321#define	L_ISHIS(a, b)	((a)->l_ui > (b)->l_ui || \
322			  ((a)->l_ui == (b)->l_ui && (a)->l_uf >= (b)->l_uf))
323#define	L_ISGEQ(a, b)	((a)->l_i > (b)->l_i || \
324			  ((a)->l_i == (b)->l_i && (a)->l_uf >= (b)->l_uf))
325#define	L_ISEQU(a, b)	M_ISEQU((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
326
327/*
328 * s_fp/double and u_fp/double conversions
329 */
330#define FRIC		65536.	 		/* 2^16 as a double */
331#define DTOFP(r)	((s_fp)((r) * FRIC))
332#define DTOUFP(r)	((u_fp)((r) * FRIC))
333#define FPTOD(r)	((double)(r) / FRIC)
334
335/*
336 * l_fp/double conversions
337 */
338#define FRAC		4294967296. 		/* 2^32 as a double */
339#define M_DTOLFP(d, r_i, r_uf) 			/* double to l_fp */ \
340	do { \
341		register double d_tmp; \
342		\
343		d_tmp = (d); \
344		if (d_tmp < 0) { \
345			d_tmp = -d_tmp; \
346			(r_i) = (int32)(d_tmp); \
347			(r_uf) = (u_int32)(((d_tmp) - (double)(r_i)) * FRAC); \
348			M_NEG((r_i), (r_uf)); \
349		} else { \
350			(r_i) = (int32)(d_tmp); \
351			(r_uf) = (u_int32)(((d_tmp) - (double)(r_i)) * FRAC); \
352		} \
353	} while (0)
354#define M_LFPTOD(r_i, r_uf, d) 			/* l_fp to double */ \
355	do { \
356		register l_fp l_tmp; \
357		\
358		l_tmp.l_i = (r_i); \
359		l_tmp.l_f = (r_uf); \
360		if (l_tmp.l_i < 0) { \
361			M_NEG(l_tmp.l_i, l_tmp.l_uf); \
362			(d) = -((double)l_tmp.l_i + ((double)l_tmp.l_uf) / FRAC); \
363		} else { \
364			(d) = (double)l_tmp.l_i + ((double)l_tmp.l_uf) / FRAC; \
365		} \
366	} while (0)
367#define DTOLFP(d, v) 	M_DTOLFP((d), (v)->l_ui, (v)->l_uf)
368#define LFPTOD(v, d) 	M_LFPTOD((v)->l_ui, (v)->l_uf, (d))
369
370/*
371 * Prototypes
372 */
373#if 0
374extern	char *	dofptoa		(u_fp, int, short, int);
375extern	char *	dolfptoa	(u_long, u_long, int, short, int);
376#endif
377
378extern	int	atolfp		(const char *, l_fp *);
379extern	int	buftvtots	(const char *, l_fp *);
380extern	char *	fptoa		(s_fp, short);
381extern	char *	fptoms		(s_fp, short);
382extern	int	hextolfp	(const char *, l_fp *);
383extern  void    gpstolfp        (int, int, unsigned long, l_fp *);
384extern	int	mstolfp		(const char *, l_fp *);
385extern	char *	prettydate	(l_fp *);
386extern	char *	gmprettydate	(l_fp *);
387extern	char *	uglydate	(l_fp *);
388extern  void    mfp_mul         (int32 *, u_int32 *, int32, u_int32, int32, u_int32);
389
390extern	void	get_systime	(l_fp *);
391extern	int	step_systime	(double);
392extern	int	adj_systime	(double);
393
394#define	lfptoa(_fpv, _ndec)	mfptoa((_fpv)->l_ui, (_fpv)->l_uf, (_ndec))
395#define	lfptoms(_fpv, _ndec)	mfptoms((_fpv)->l_ui, (_fpv)->l_uf, (_ndec))
396
397#define	ufptoa(_fpv, _ndec)	dofptoa((_fpv), 0, (_ndec), 0)
398#define	ufptoms(_fpv, _ndec)	dofptoa((_fpv), 0, (_ndec), 1)
399#define	ulfptoa(_fpv, _ndec)	dolfptoa((_fpv)->l_ui, (_fpv)->l_uf, 0, (_ndec), 0)
400#define	ulfptoms(_fpv, _ndec)	dolfptoa((_fpv)->l_ui, (_fpv)->l_uf, 0, (_ndec), 1)
401#define	umfptoa(_fpi, _fpf, _ndec) dolfptoa((_fpi), (_fpf), 0, (_ndec), 0)
402