1//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This class wraps target description classes used by the various code
11// generation TableGen backends.  This makes it easier to access the data and
12// provides a single place that needs to check it for validity.  All of these
13// classes throw exceptions on error conditions.
14//
15//===----------------------------------------------------------------------===//
16
17#include "CodeGenTarget.h"
18#include "CodeGenIntrinsics.h"
19#include "CodeGenSchedule.h"
20#include "llvm/TableGen/Record.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/CommandLine.h"
24#include <algorithm>
25using namespace llvm;
26
27static cl::opt<unsigned>
28AsmParserNum("asmparsernum", cl::init(0),
29             cl::desc("Make -gen-asm-parser emit assembly parser #N"));
30
31static cl::opt<unsigned>
32AsmWriterNum("asmwriternum", cl::init(0),
33             cl::desc("Make -gen-asm-writer emit assembly writer #N"));
34
35/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
36/// record corresponds to.
37MVT::SimpleValueType llvm::getValueType(Record *Rec) {
38  return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
39}
40
41std::string llvm::getName(MVT::SimpleValueType T) {
42  switch (T) {
43  case MVT::Other:   return "UNKNOWN";
44  case MVT::iPTR:    return "TLI.getPointerTy()";
45  case MVT::iPTRAny: return "TLI.getPointerTy()";
46  default: return getEnumName(T);
47  }
48}
49
50std::string llvm::getEnumName(MVT::SimpleValueType T) {
51  switch (T) {
52  case MVT::Other:    return "MVT::Other";
53  case MVT::i1:       return "MVT::i1";
54  case MVT::i8:       return "MVT::i8";
55  case MVT::i16:      return "MVT::i16";
56  case MVT::i32:      return "MVT::i32";
57  case MVT::i64:      return "MVT::i64";
58  case MVT::i128:     return "MVT::i128";
59  case MVT::iAny:     return "MVT::iAny";
60  case MVT::fAny:     return "MVT::fAny";
61  case MVT::vAny:     return "MVT::vAny";
62  case MVT::f16:      return "MVT::f16";
63  case MVT::f32:      return "MVT::f32";
64  case MVT::f64:      return "MVT::f64";
65  case MVT::f80:      return "MVT::f80";
66  case MVT::f128:     return "MVT::f128";
67  case MVT::ppcf128:  return "MVT::ppcf128";
68  case MVT::x86mmx:   return "MVT::x86mmx";
69  case MVT::Glue:     return "MVT::Glue";
70  case MVT::isVoid:   return "MVT::isVoid";
71  case MVT::v2i1:     return "MVT::v2i1";
72  case MVT::v4i1:     return "MVT::v4i1";
73  case MVT::v8i1:     return "MVT::v8i1";
74  case MVT::v16i1:    return "MVT::v16i1";
75  case MVT::v2i8:     return "MVT::v2i8";
76  case MVT::v4i8:     return "MVT::v4i8";
77  case MVT::v8i8:     return "MVT::v8i8";
78  case MVT::v16i8:    return "MVT::v16i8";
79  case MVT::v32i8:    return "MVT::v32i8";
80  case MVT::v1i16:    return "MVT::v1i16";
81  case MVT::v2i16:    return "MVT::v2i16";
82  case MVT::v4i16:    return "MVT::v4i16";
83  case MVT::v8i16:    return "MVT::v8i16";
84  case MVT::v16i16:   return "MVT::v16i16";
85  case MVT::v1i32:    return "MVT::v1i32";
86  case MVT::v2i32:    return "MVT::v2i32";
87  case MVT::v4i32:    return "MVT::v4i32";
88  case MVT::v8i32:    return "MVT::v8i32";
89  case MVT::v16i32:   return "MVT::v16i32";
90  case MVT::v1i64:    return "MVT::v1i64";
91  case MVT::v2i64:    return "MVT::v2i64";
92  case MVT::v4i64:    return "MVT::v4i64";
93  case MVT::v8i64:    return "MVT::v8i64";
94  case MVT::v16i64:   return "MVT::v16i64";
95  case MVT::v2f16:    return "MVT::v2f16";
96  case MVT::v2f32:    return "MVT::v2f32";
97  case MVT::v4f32:    return "MVT::v4f32";
98  case MVT::v8f32:    return "MVT::v8f32";
99  case MVT::v2f64:    return "MVT::v2f64";
100  case MVT::v4f64:    return "MVT::v4f64";
101  case MVT::Metadata: return "MVT::Metadata";
102  case MVT::iPTR:     return "MVT::iPTR";
103  case MVT::iPTRAny:  return "MVT::iPTRAny";
104  case MVT::Untyped:  return "MVT::Untyped";
105  default: llvm_unreachable("ILLEGAL VALUE TYPE!");
106  }
107}
108
109/// getQualifiedName - Return the name of the specified record, with a
110/// namespace qualifier if the record contains one.
111///
112std::string llvm::getQualifiedName(const Record *R) {
113  std::string Namespace;
114  if (R->getValue("Namespace"))
115     Namespace = R->getValueAsString("Namespace");
116  if (Namespace.empty()) return R->getName();
117  return Namespace + "::" + R->getName();
118}
119
120
121/// getTarget - Return the current instance of the Target class.
122///
123CodeGenTarget::CodeGenTarget(RecordKeeper &records)
124  : Records(records), RegBank(0), SchedModels(0) {
125  std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
126  if (Targets.size() == 0)
127    throw std::string("ERROR: No 'Target' subclasses defined!");
128  if (Targets.size() != 1)
129    throw std::string("ERROR: Multiple subclasses of Target defined!");
130  TargetRec = Targets[0];
131}
132
133CodeGenTarget::~CodeGenTarget() {
134  delete RegBank;
135  delete SchedModels;
136}
137
138const std::string &CodeGenTarget::getName() const {
139  return TargetRec->getName();
140}
141
142std::string CodeGenTarget::getInstNamespace() const {
143  for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) {
144    // Make sure not to pick up "TargetOpcode" by accidentally getting
145    // the namespace off the PHI instruction or something.
146    if ((*i)->Namespace != "TargetOpcode")
147      return (*i)->Namespace;
148  }
149
150  return "";
151}
152
153Record *CodeGenTarget::getInstructionSet() const {
154  return TargetRec->getValueAsDef("InstructionSet");
155}
156
157
158/// getAsmParser - Return the AssemblyParser definition for this target.
159///
160Record *CodeGenTarget::getAsmParser() const {
161  std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
162  if (AsmParserNum >= LI.size())
163    throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!";
164  return LI[AsmParserNum];
165}
166
167/// getAsmParserVariant - Return the AssmblyParserVariant definition for
168/// this target.
169///
170Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
171  std::vector<Record*> LI =
172    TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
173  if (i >= LI.size())
174    throw "Target does not have an AsmParserVariant #" + utostr(i) + "!";
175  return LI[i];
176}
177
178/// getAsmParserVariantCount - Return the AssmblyParserVariant definition
179/// available for this target.
180///
181unsigned CodeGenTarget::getAsmParserVariantCount() const {
182  std::vector<Record*> LI =
183    TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
184  return LI.size();
185}
186
187/// getAsmWriter - Return the AssemblyWriter definition for this target.
188///
189Record *CodeGenTarget::getAsmWriter() const {
190  std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
191  if (AsmWriterNum >= LI.size())
192    throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!";
193  return LI[AsmWriterNum];
194}
195
196CodeGenRegBank &CodeGenTarget::getRegBank() const {
197  if (!RegBank)
198    RegBank = new CodeGenRegBank(Records);
199  return *RegBank;
200}
201
202void CodeGenTarget::ReadRegAltNameIndices() const {
203  RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
204  std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
205}
206
207/// getRegisterByName - If there is a register with the specific AsmName,
208/// return it.
209const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
210  const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
211  StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
212  if (I == Regs.end())
213    return 0;
214  return I->second;
215}
216
217std::vector<MVT::SimpleValueType> CodeGenTarget::
218getRegisterVTs(Record *R) const {
219  const CodeGenRegister *Reg = getRegBank().getReg(R);
220  std::vector<MVT::SimpleValueType> Result;
221  ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
222  for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
223    const CodeGenRegisterClass &RC = *RCs[i];
224    if (RC.contains(Reg)) {
225      const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes();
226      Result.insert(Result.end(), InVTs.begin(), InVTs.end());
227    }
228  }
229
230  // Remove duplicates.
231  array_pod_sort(Result.begin(), Result.end());
232  Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
233  return Result;
234}
235
236
237void CodeGenTarget::ReadLegalValueTypes() const {
238  ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
239  for (unsigned i = 0, e = RCs.size(); i != e; ++i)
240    for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri)
241      LegalValueTypes.push_back(RCs[i]->VTs[ri]);
242
243  // Remove duplicates.
244  std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
245  LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
246                                    LegalValueTypes.end()),
247                        LegalValueTypes.end());
248}
249
250CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
251  if (!SchedModels)
252    SchedModels = new CodeGenSchedModels(Records, *this);
253  return *SchedModels;
254}
255
256void CodeGenTarget::ReadInstructions() const {
257  std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
258  if (Insts.size() <= 2)
259    throw std::string("No 'Instruction' subclasses defined!");
260
261  // Parse the instructions defined in the .td file.
262  for (unsigned i = 0, e = Insts.size(); i != e; ++i)
263    Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]);
264}
265
266static const CodeGenInstruction *
267GetInstByName(const char *Name,
268              const DenseMap<const Record*, CodeGenInstruction*> &Insts,
269              RecordKeeper &Records) {
270  const Record *Rec = Records.getDef(Name);
271
272  DenseMap<const Record*, CodeGenInstruction*>::const_iterator
273    I = Insts.find(Rec);
274  if (Rec == 0 || I == Insts.end())
275    throw std::string("Could not find '") + Name + "' instruction!";
276  return I->second;
277}
278
279namespace {
280/// SortInstByName - Sorting predicate to sort instructions by name.
281///
282struct SortInstByName {
283  bool operator()(const CodeGenInstruction *Rec1,
284                  const CodeGenInstruction *Rec2) const {
285    return Rec1->TheDef->getName() < Rec2->TheDef->getName();
286  }
287};
288}
289
290/// getInstructionsByEnumValue - Return all of the instructions defined by the
291/// target, ordered by their enum value.
292void CodeGenTarget::ComputeInstrsByEnum() const {
293  // The ordering here must match the ordering in TargetOpcodes.h.
294  const char *const FixedInstrs[] = {
295    "PHI",
296    "INLINEASM",
297    "PROLOG_LABEL",
298    "EH_LABEL",
299    "GC_LABEL",
300    "KILL",
301    "EXTRACT_SUBREG",
302    "INSERT_SUBREG",
303    "IMPLICIT_DEF",
304    "SUBREG_TO_REG",
305    "COPY_TO_REGCLASS",
306    "DBG_VALUE",
307    "REG_SEQUENCE",
308    "COPY",
309    "BUNDLE",
310    "LIFETIME_START",
311    "LIFETIME_END",
312    0
313  };
314  const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions();
315  for (const char *const *p = FixedInstrs; *p; ++p) {
316    const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
317    assert(Instr && "Missing target independent instruction");
318    assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
319    InstrsByEnum.push_back(Instr);
320  }
321  unsigned EndOfPredefines = InstrsByEnum.size();
322
323  for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator
324       I = Insts.begin(), E = Insts.end(); I != E; ++I) {
325    const CodeGenInstruction *CGI = I->second;
326    if (CGI->Namespace != "TargetOpcode")
327      InstrsByEnum.push_back(CGI);
328  }
329
330  assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
331
332  // All of the instructions are now in random order based on the map iteration.
333  // Sort them by name.
334  std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(),
335            SortInstByName());
336}
337
338
339/// isLittleEndianEncoding - Return whether this target encodes its instruction
340/// in little-endian format, i.e. bits laid out in the order [0..n]
341///
342bool CodeGenTarget::isLittleEndianEncoding() const {
343  return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
344}
345
346/// guessInstructionProperties - Return true if it's OK to guess instruction
347/// properties instead of raising an error.
348///
349/// This is configurable as a temporary migration aid. It will eventually be
350/// permanently false.
351bool CodeGenTarget::guessInstructionProperties() const {
352  return getInstructionSet()->getValueAsBit("guessInstructionProperties");
353}
354
355//===----------------------------------------------------------------------===//
356// ComplexPattern implementation
357//
358ComplexPattern::ComplexPattern(Record *R) {
359  Ty          = ::getValueType(R->getValueAsDef("Ty"));
360  NumOperands = R->getValueAsInt("NumOperands");
361  SelectFunc  = R->getValueAsString("SelectFunc");
362  RootNodes   = R->getValueAsListOfDefs("RootNodes");
363
364  // Parse the properties.
365  Properties = 0;
366  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
367  for (unsigned i = 0, e = PropList.size(); i != e; ++i)
368    if (PropList[i]->getName() == "SDNPHasChain") {
369      Properties |= 1 << SDNPHasChain;
370    } else if (PropList[i]->getName() == "SDNPOptInGlue") {
371      Properties |= 1 << SDNPOptInGlue;
372    } else if (PropList[i]->getName() == "SDNPMayStore") {
373      Properties |= 1 << SDNPMayStore;
374    } else if (PropList[i]->getName() == "SDNPMayLoad") {
375      Properties |= 1 << SDNPMayLoad;
376    } else if (PropList[i]->getName() == "SDNPSideEffect") {
377      Properties |= 1 << SDNPSideEffect;
378    } else if (PropList[i]->getName() == "SDNPMemOperand") {
379      Properties |= 1 << SDNPMemOperand;
380    } else if (PropList[i]->getName() == "SDNPVariadic") {
381      Properties |= 1 << SDNPVariadic;
382    } else if (PropList[i]->getName() == "SDNPWantRoot") {
383      Properties |= 1 << SDNPWantRoot;
384    } else if (PropList[i]->getName() == "SDNPWantParent") {
385      Properties |= 1 << SDNPWantParent;
386    } else {
387      errs() << "Unsupported SD Node property '" << PropList[i]->getName()
388             << "' on ComplexPattern '" << R->getName() << "'!\n";
389      exit(1);
390    }
391}
392
393//===----------------------------------------------------------------------===//
394// CodeGenIntrinsic Implementation
395//===----------------------------------------------------------------------===//
396
397std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
398                                                   bool TargetOnly) {
399  std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
400
401  std::vector<CodeGenIntrinsic> Result;
402
403  for (unsigned i = 0, e = I.size(); i != e; ++i) {
404    bool isTarget = I[i]->getValueAsBit("isTarget");
405    if (isTarget == TargetOnly)
406      Result.push_back(CodeGenIntrinsic(I[i]));
407  }
408  return Result;
409}
410
411CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
412  TheDef = R;
413  std::string DefName = R->getName();
414  ModRef = ReadWriteMem;
415  isOverloaded = false;
416  isCommutative = false;
417  canThrow = false;
418  isNoReturn = false;
419
420  if (DefName.size() <= 4 ||
421      std::string(DefName.begin(), DefName.begin() + 4) != "int_")
422    throw "Intrinsic '" + DefName + "' does not start with 'int_'!";
423
424  EnumName = std::string(DefName.begin()+4, DefName.end());
425
426  if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
427    GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
428
429  TargetPrefix = R->getValueAsString("TargetPrefix");
430  Name = R->getValueAsString("LLVMName");
431
432  if (Name == "") {
433    // If an explicit name isn't specified, derive one from the DefName.
434    Name = "llvm.";
435
436    for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
437      Name += (EnumName[i] == '_') ? '.' : EnumName[i];
438  } else {
439    // Verify it starts with "llvm.".
440    if (Name.size() <= 5 ||
441        std::string(Name.begin(), Name.begin() + 5) != "llvm.")
442      throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!";
443  }
444
445  // If TargetPrefix is specified, make sure that Name starts with
446  // "llvm.<targetprefix>.".
447  if (!TargetPrefix.empty()) {
448    if (Name.size() < 6+TargetPrefix.size() ||
449        std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
450        != (TargetPrefix + "."))
451      throw "Intrinsic '" + DefName + "' does not start with 'llvm." +
452        TargetPrefix + ".'!";
453  }
454
455  // Parse the list of return types.
456  std::vector<MVT::SimpleValueType> OverloadedVTs;
457  ListInit *TypeList = R->getValueAsListInit("RetTypes");
458  for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
459    Record *TyEl = TypeList->getElementAsRecord(i);
460    assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
461    MVT::SimpleValueType VT;
462    if (TyEl->isSubClassOf("LLVMMatchType")) {
463      unsigned MatchTy = TyEl->getValueAsInt("Number");
464      assert(MatchTy < OverloadedVTs.size() &&
465             "Invalid matching number!");
466      VT = OverloadedVTs[MatchTy];
467      // It only makes sense to use the extended and truncated vector element
468      // variants with iAny types; otherwise, if the intrinsic is not
469      // overloaded, all the types can be specified directly.
470      assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
471               !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
472              VT == MVT::iAny || VT == MVT::vAny) &&
473             "Expected iAny or vAny type");
474    } else {
475      VT = getValueType(TyEl->getValueAsDef("VT"));
476    }
477    if (EVT(VT).isOverloaded()) {
478      OverloadedVTs.push_back(VT);
479      isOverloaded = true;
480    }
481
482    // Reject invalid types.
483    if (VT == MVT::isVoid)
484      throw "Intrinsic '" + DefName + " has void in result type list!";
485
486    IS.RetVTs.push_back(VT);
487    IS.RetTypeDefs.push_back(TyEl);
488  }
489
490  // Parse the list of parameter types.
491  TypeList = R->getValueAsListInit("ParamTypes");
492  for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
493    Record *TyEl = TypeList->getElementAsRecord(i);
494    assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
495    MVT::SimpleValueType VT;
496    if (TyEl->isSubClassOf("LLVMMatchType")) {
497      unsigned MatchTy = TyEl->getValueAsInt("Number");
498      assert(MatchTy < OverloadedVTs.size() &&
499             "Invalid matching number!");
500      VT = OverloadedVTs[MatchTy];
501      // It only makes sense to use the extended and truncated vector element
502      // variants with iAny types; otherwise, if the intrinsic is not
503      // overloaded, all the types can be specified directly.
504      assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
505               !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
506              VT == MVT::iAny || VT == MVT::vAny) &&
507             "Expected iAny or vAny type");
508    } else
509      VT = getValueType(TyEl->getValueAsDef("VT"));
510
511    if (EVT(VT).isOverloaded()) {
512      OverloadedVTs.push_back(VT);
513      isOverloaded = true;
514    }
515
516    // Reject invalid types.
517    if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
518      throw "Intrinsic '" + DefName + " has void in result type list!";
519
520    IS.ParamVTs.push_back(VT);
521    IS.ParamTypeDefs.push_back(TyEl);
522  }
523
524  // Parse the intrinsic properties.
525  ListInit *PropList = R->getValueAsListInit("Properties");
526  for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
527    Record *Property = PropList->getElementAsRecord(i);
528    assert(Property->isSubClassOf("IntrinsicProperty") &&
529           "Expected a property!");
530
531    if (Property->getName() == "IntrNoMem")
532      ModRef = NoMem;
533    else if (Property->getName() == "IntrReadArgMem")
534      ModRef = ReadArgMem;
535    else if (Property->getName() == "IntrReadMem")
536      ModRef = ReadMem;
537    else if (Property->getName() == "IntrReadWriteArgMem")
538      ModRef = ReadWriteArgMem;
539    else if (Property->getName() == "Commutative")
540      isCommutative = true;
541    else if (Property->getName() == "Throws")
542      canThrow = true;
543    else if (Property->getName() == "IntrNoReturn")
544      isNoReturn = true;
545    else if (Property->isSubClassOf("NoCapture")) {
546      unsigned ArgNo = Property->getValueAsInt("ArgNo");
547      ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
548    } else
549      llvm_unreachable("Unknown property!");
550  }
551
552  // Sort the argument attributes for later benefit.
553  std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
554}
555