1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16//  * Both of a binary operator's parameters are of the same type
17//  * Verify that the indices of mem access instructions match other operands
18//  * Verify that arithmetic and other things are only performed on first-class
19//    types.  Verify that shifts & logicals only happen on integrals f.e.
20//  * All of the constants in a switch statement are of the correct type
21//  * The code is in valid SSA form
22//  * It should be illegal to put a label into any other type (like a structure)
23//    or to return one. [except constant arrays!]
24//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25//  * PHI nodes must have an entry for each predecessor, with no extras.
26//  * PHI nodes must be the first thing in a basic block, all grouped together
27//  * PHI nodes must have at least one entry
28//  * All basic blocks should only end with terminator insts, not contain them
29//  * The entry node to a function must not have predecessors
30//  * All Instructions must be embedded into a basic block
31//  * Functions cannot take a void-typed parameter
32//  * Verify that a function's argument list agrees with it's declared type.
33//  * It is illegal to specify a name for a void value.
34//  * It is illegal to have a internal global value with no initializer
35//  * It is illegal to have a ret instruction that returns a value that does not
36//    agree with the function return value type.
37//  * Function call argument types match the function prototype
38//  * A landing pad is defined by a landingpad instruction, and can be jumped to
39//    only by the unwind edge of an invoke instruction.
40//  * A landingpad instruction must be the first non-PHI instruction in the
41//    block.
42//  * All landingpad instructions must use the same personality function with
43//    the same function.
44//  * All other things that are tested by asserts spread about the code...
45//
46//===----------------------------------------------------------------------===//
47
48#include "llvm/Analysis/Verifier.h"
49#include "llvm/CallingConv.h"
50#include "llvm/Constants.h"
51#include "llvm/DerivedTypes.h"
52#include "llvm/InlineAsm.h"
53#include "llvm/IntrinsicInst.h"
54#include "llvm/LLVMContext.h"
55#include "llvm/Metadata.h"
56#include "llvm/Module.h"
57#include "llvm/Pass.h"
58#include "llvm/PassManager.h"
59#include "llvm/Analysis/Dominators.h"
60#include "llvm/Assembly/Writer.h"
61#include "llvm/CodeGen/ValueTypes.h"
62#include "llvm/Support/CallSite.h"
63#include "llvm/Support/CFG.h"
64#include "llvm/Support/Debug.h"
65#include "llvm/Support/InstVisitor.h"
66#include "llvm/ADT/SetVector.h"
67#include "llvm/ADT/SmallPtrSet.h"
68#include "llvm/ADT/SmallVector.h"
69#include "llvm/ADT/StringExtras.h"
70#include "llvm/ADT/STLExtras.h"
71#include "llvm/Support/ConstantRange.h"
72#include "llvm/Support/ErrorHandling.h"
73#include "llvm/Support/raw_ostream.h"
74#include <algorithm>
75#include <cstdarg>
76using namespace llvm;
77
78namespace {  // Anonymous namespace for class
79  struct PreVerifier : public FunctionPass {
80    static char ID; // Pass ID, replacement for typeid
81
82    PreVerifier() : FunctionPass(ID) {
83      initializePreVerifierPass(*PassRegistry::getPassRegistry());
84    }
85
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      AU.setPreservesAll();
88    }
89
90    // Check that the prerequisites for successful DominatorTree construction
91    // are satisfied.
92    bool runOnFunction(Function &F) {
93      bool Broken = false;
94
95      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
96        if (I->empty() || !I->back().isTerminator()) {
97          dbgs() << "Basic Block in function '" << F.getName()
98                 << "' does not have terminator!\n";
99          WriteAsOperand(dbgs(), I, true);
100          dbgs() << "\n";
101          Broken = true;
102        }
103      }
104
105      if (Broken)
106        report_fatal_error("Broken module, no Basic Block terminator!");
107
108      return false;
109    }
110  };
111}
112
113char PreVerifier::ID = 0;
114INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
115                false, false)
116static char &PreVerifyID = PreVerifier::ID;
117
118namespace {
119  struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
120    static char ID; // Pass ID, replacement for typeid
121    bool Broken;          // Is this module found to be broken?
122    VerifierFailureAction action;
123                          // What to do if verification fails.
124    Module *Mod;          // Module we are verifying right now
125    LLVMContext *Context; // Context within which we are verifying
126    DominatorTree *DT;    // Dominator Tree, caution can be null!
127
128    std::string Messages;
129    raw_string_ostream MessagesStr;
130
131    /// InstInThisBlock - when verifying a basic block, keep track of all of the
132    /// instructions we have seen so far.  This allows us to do efficient
133    /// dominance checks for the case when an instruction has an operand that is
134    /// an instruction in the same block.
135    SmallPtrSet<Instruction*, 16> InstsInThisBlock;
136
137    /// MDNodes - keep track of the metadata nodes that have been checked
138    /// already.
139    SmallPtrSet<MDNode *, 32> MDNodes;
140
141    /// PersonalityFn - The personality function referenced by the
142    /// LandingPadInsts. All LandingPadInsts within the same function must use
143    /// the same personality function.
144    const Value *PersonalityFn;
145
146    Verifier()
147      : FunctionPass(ID), Broken(false),
148        action(AbortProcessAction), Mod(0), Context(0), DT(0),
149        MessagesStr(Messages), PersonalityFn(0) {
150      initializeVerifierPass(*PassRegistry::getPassRegistry());
151    }
152    explicit Verifier(VerifierFailureAction ctn)
153      : FunctionPass(ID), Broken(false), action(ctn), Mod(0),
154        Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) {
155      initializeVerifierPass(*PassRegistry::getPassRegistry());
156    }
157
158    bool doInitialization(Module &M) {
159      Mod = &M;
160      Context = &M.getContext();
161
162      // We must abort before returning back to the pass manager, or else the
163      // pass manager may try to run other passes on the broken module.
164      return abortIfBroken();
165    }
166
167    bool runOnFunction(Function &F) {
168      // Get dominator information if we are being run by PassManager
169      DT = &getAnalysis<DominatorTree>();
170
171      Mod = F.getParent();
172      if (!Context) Context = &F.getContext();
173
174      visit(F);
175      InstsInThisBlock.clear();
176      PersonalityFn = 0;
177
178      // We must abort before returning back to the pass manager, or else the
179      // pass manager may try to run other passes on the broken module.
180      return abortIfBroken();
181    }
182
183    bool doFinalization(Module &M) {
184      // Scan through, checking all of the external function's linkage now...
185      for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
186        visitGlobalValue(*I);
187
188        // Check to make sure function prototypes are okay.
189        if (I->isDeclaration()) visitFunction(*I);
190      }
191
192      for (Module::global_iterator I = M.global_begin(), E = M.global_end();
193           I != E; ++I)
194        visitGlobalVariable(*I);
195
196      for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
197           I != E; ++I)
198        visitGlobalAlias(*I);
199
200      for (Module::named_metadata_iterator I = M.named_metadata_begin(),
201           E = M.named_metadata_end(); I != E; ++I)
202        visitNamedMDNode(*I);
203
204      // If the module is broken, abort at this time.
205      return abortIfBroken();
206    }
207
208    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
209      AU.setPreservesAll();
210      AU.addRequiredID(PreVerifyID);
211      AU.addRequired<DominatorTree>();
212    }
213
214    /// abortIfBroken - If the module is broken and we are supposed to abort on
215    /// this condition, do so.
216    ///
217    bool abortIfBroken() {
218      if (!Broken) return false;
219      MessagesStr << "Broken module found, ";
220      switch (action) {
221      case AbortProcessAction:
222        MessagesStr << "compilation aborted!\n";
223        dbgs() << MessagesStr.str();
224        // Client should choose different reaction if abort is not desired
225        abort();
226      case PrintMessageAction:
227        MessagesStr << "verification continues.\n";
228        dbgs() << MessagesStr.str();
229        return false;
230      case ReturnStatusAction:
231        MessagesStr << "compilation terminated.\n";
232        return true;
233      }
234      llvm_unreachable("Invalid action");
235    }
236
237
238    // Verification methods...
239    void visitGlobalValue(GlobalValue &GV);
240    void visitGlobalVariable(GlobalVariable &GV);
241    void visitGlobalAlias(GlobalAlias &GA);
242    void visitNamedMDNode(NamedMDNode &NMD);
243    void visitMDNode(MDNode &MD, Function *F);
244    void visitFunction(Function &F);
245    void visitBasicBlock(BasicBlock &BB);
246    using InstVisitor<Verifier>::visit;
247
248    void visit(Instruction &I);
249
250    void visitTruncInst(TruncInst &I);
251    void visitZExtInst(ZExtInst &I);
252    void visitSExtInst(SExtInst &I);
253    void visitFPTruncInst(FPTruncInst &I);
254    void visitFPExtInst(FPExtInst &I);
255    void visitFPToUIInst(FPToUIInst &I);
256    void visitFPToSIInst(FPToSIInst &I);
257    void visitUIToFPInst(UIToFPInst &I);
258    void visitSIToFPInst(SIToFPInst &I);
259    void visitIntToPtrInst(IntToPtrInst &I);
260    void visitPtrToIntInst(PtrToIntInst &I);
261    void visitBitCastInst(BitCastInst &I);
262    void visitPHINode(PHINode &PN);
263    void visitBinaryOperator(BinaryOperator &B);
264    void visitICmpInst(ICmpInst &IC);
265    void visitFCmpInst(FCmpInst &FC);
266    void visitExtractElementInst(ExtractElementInst &EI);
267    void visitInsertElementInst(InsertElementInst &EI);
268    void visitShuffleVectorInst(ShuffleVectorInst &EI);
269    void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
270    void visitCallInst(CallInst &CI);
271    void visitInvokeInst(InvokeInst &II);
272    void visitGetElementPtrInst(GetElementPtrInst &GEP);
273    void visitLoadInst(LoadInst &LI);
274    void visitStoreInst(StoreInst &SI);
275    void verifyDominatesUse(Instruction &I, unsigned i);
276    void visitInstruction(Instruction &I);
277    void visitTerminatorInst(TerminatorInst &I);
278    void visitBranchInst(BranchInst &BI);
279    void visitReturnInst(ReturnInst &RI);
280    void visitSwitchInst(SwitchInst &SI);
281    void visitIndirectBrInst(IndirectBrInst &BI);
282    void visitSelectInst(SelectInst &SI);
283    void visitUserOp1(Instruction &I);
284    void visitUserOp2(Instruction &I) { visitUserOp1(I); }
285    void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
286    void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
287    void visitAtomicRMWInst(AtomicRMWInst &RMWI);
288    void visitFenceInst(FenceInst &FI);
289    void visitAllocaInst(AllocaInst &AI);
290    void visitExtractValueInst(ExtractValueInst &EVI);
291    void visitInsertValueInst(InsertValueInst &IVI);
292    void visitLandingPadInst(LandingPadInst &LPI);
293
294    void VerifyCallSite(CallSite CS);
295    bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
296                          int VT, unsigned ArgNo, std::string &Suffix);
297    bool VerifyIntrinsicType(Type *Ty,
298                             ArrayRef<Intrinsic::IITDescriptor> &Infos,
299                             SmallVectorImpl<Type*> &ArgTys);
300    void VerifyParameterAttrs(Attributes Attrs, Type *Ty,
301                              bool isReturnValue, const Value *V);
302    void VerifyFunctionAttrs(FunctionType *FT, const AttrListPtr &Attrs,
303                             const Value *V);
304
305    void WriteValue(const Value *V) {
306      if (!V) return;
307      if (isa<Instruction>(V)) {
308        MessagesStr << *V << '\n';
309      } else {
310        WriteAsOperand(MessagesStr, V, true, Mod);
311        MessagesStr << '\n';
312      }
313    }
314
315    void WriteType(Type *T) {
316      if (!T) return;
317      MessagesStr << ' ' << *T;
318    }
319
320
321    // CheckFailed - A check failed, so print out the condition and the message
322    // that failed.  This provides a nice place to put a breakpoint if you want
323    // to see why something is not correct.
324    void CheckFailed(const Twine &Message,
325                     const Value *V1 = 0, const Value *V2 = 0,
326                     const Value *V3 = 0, const Value *V4 = 0) {
327      MessagesStr << Message.str() << "\n";
328      WriteValue(V1);
329      WriteValue(V2);
330      WriteValue(V3);
331      WriteValue(V4);
332      Broken = true;
333    }
334
335    void CheckFailed(const Twine &Message, const Value *V1,
336                     Type *T2, const Value *V3 = 0) {
337      MessagesStr << Message.str() << "\n";
338      WriteValue(V1);
339      WriteType(T2);
340      WriteValue(V3);
341      Broken = true;
342    }
343
344    void CheckFailed(const Twine &Message, Type *T1,
345                     Type *T2 = 0, Type *T3 = 0) {
346      MessagesStr << Message.str() << "\n";
347      WriteType(T1);
348      WriteType(T2);
349      WriteType(T3);
350      Broken = true;
351    }
352  };
353} // End anonymous namespace
354
355char Verifier::ID = 0;
356INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
357INITIALIZE_PASS_DEPENDENCY(PreVerifier)
358INITIALIZE_PASS_DEPENDENCY(DominatorTree)
359INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
360
361// Assert - We know that cond should be true, if not print an error message.
362#define Assert(C, M) \
363  do { if (!(C)) { CheckFailed(M); return; } } while (0)
364#define Assert1(C, M, V1) \
365  do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
366#define Assert2(C, M, V1, V2) \
367  do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
368#define Assert3(C, M, V1, V2, V3) \
369  do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
370#define Assert4(C, M, V1, V2, V3, V4) \
371  do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
372
373void Verifier::visit(Instruction &I) {
374  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
375    Assert1(I.getOperand(i) != 0, "Operand is null", &I);
376  InstVisitor<Verifier>::visit(I);
377}
378
379
380void Verifier::visitGlobalValue(GlobalValue &GV) {
381  Assert1(!GV.isDeclaration() ||
382          GV.isMaterializable() ||
383          GV.hasExternalLinkage() ||
384          GV.hasDLLImportLinkage() ||
385          GV.hasExternalWeakLinkage() ||
386          (isa<GlobalAlias>(GV) &&
387           (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
388  "Global is external, but doesn't have external or dllimport or weak linkage!",
389          &GV);
390
391  Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
392          "Global is marked as dllimport, but not external", &GV);
393
394  Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
395          "Only global variables can have appending linkage!", &GV);
396
397  if (GV.hasAppendingLinkage()) {
398    GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
399    Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
400            "Only global arrays can have appending linkage!", GVar);
401  }
402
403  Assert1(!GV.hasLinkOnceODRAutoHideLinkage() || GV.hasDefaultVisibility(),
404          "linkonce_odr_auto_hide can only have default visibility!",
405          &GV);
406}
407
408void Verifier::visitGlobalVariable(GlobalVariable &GV) {
409  if (GV.hasInitializer()) {
410    Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
411            "Global variable initializer type does not match global "
412            "variable type!", &GV);
413
414    // If the global has common linkage, it must have a zero initializer and
415    // cannot be constant.
416    if (GV.hasCommonLinkage()) {
417      Assert1(GV.getInitializer()->isNullValue(),
418              "'common' global must have a zero initializer!", &GV);
419      Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
420              &GV);
421    }
422  } else {
423    Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
424            GV.hasExternalWeakLinkage(),
425            "invalid linkage type for global declaration", &GV);
426  }
427
428  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
429                       GV.getName() == "llvm.global_dtors")) {
430    Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
431            "invalid linkage for intrinsic global variable", &GV);
432    // Don't worry about emitting an error for it not being an array,
433    // visitGlobalValue will complain on appending non-array.
434    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
435      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
436      PointerType *FuncPtrTy =
437          FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
438      Assert1(STy && STy->getNumElements() == 2 &&
439              STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
440              STy->getTypeAtIndex(1) == FuncPtrTy,
441              "wrong type for intrinsic global variable", &GV);
442    }
443  }
444
445  visitGlobalValue(GV);
446}
447
448void Verifier::visitGlobalAlias(GlobalAlias &GA) {
449  Assert1(!GA.getName().empty(),
450          "Alias name cannot be empty!", &GA);
451  Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
452          GA.hasWeakLinkage(),
453          "Alias should have external or external weak linkage!", &GA);
454  Assert1(GA.getAliasee(),
455          "Aliasee cannot be NULL!", &GA);
456  Assert1(GA.getType() == GA.getAliasee()->getType(),
457          "Alias and aliasee types should match!", &GA);
458  Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
459
460  if (!isa<GlobalValue>(GA.getAliasee())) {
461    const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
462    Assert1(CE &&
463            (CE->getOpcode() == Instruction::BitCast ||
464             CE->getOpcode() == Instruction::GetElementPtr) &&
465            isa<GlobalValue>(CE->getOperand(0)),
466            "Aliasee should be either GlobalValue or bitcast of GlobalValue",
467            &GA);
468  }
469
470  const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
471  Assert1(Aliasee,
472          "Aliasing chain should end with function or global variable", &GA);
473
474  visitGlobalValue(GA);
475}
476
477void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
478  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
479    MDNode *MD = NMD.getOperand(i);
480    if (!MD)
481      continue;
482
483    Assert1(!MD->isFunctionLocal(),
484            "Named metadata operand cannot be function local!", MD);
485    visitMDNode(*MD, 0);
486  }
487}
488
489void Verifier::visitMDNode(MDNode &MD, Function *F) {
490  // Only visit each node once.  Metadata can be mutually recursive, so this
491  // avoids infinite recursion here, as well as being an optimization.
492  if (!MDNodes.insert(&MD))
493    return;
494
495  for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
496    Value *Op = MD.getOperand(i);
497    if (!Op)
498      continue;
499    if (isa<Constant>(Op) || isa<MDString>(Op))
500      continue;
501    if (MDNode *N = dyn_cast<MDNode>(Op)) {
502      Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
503              "Global metadata operand cannot be function local!", &MD, N);
504      visitMDNode(*N, F);
505      continue;
506    }
507    Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
508
509    // If this was an instruction, bb, or argument, verify that it is in the
510    // function that we expect.
511    Function *ActualF = 0;
512    if (Instruction *I = dyn_cast<Instruction>(Op))
513      ActualF = I->getParent()->getParent();
514    else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
515      ActualF = BB->getParent();
516    else if (Argument *A = dyn_cast<Argument>(Op))
517      ActualF = A->getParent();
518    assert(ActualF && "Unimplemented function local metadata case!");
519
520    Assert2(ActualF == F, "function-local metadata used in wrong function",
521            &MD, Op);
522  }
523}
524
525// VerifyParameterAttrs - Check the given attributes for an argument or return
526// value of the specified type.  The value V is printed in error messages.
527void Verifier::VerifyParameterAttrs(Attributes Attrs, Type *Ty,
528                                    bool isReturnValue, const Value *V) {
529  if (Attrs == Attribute::None)
530    return;
531
532  Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
533  Assert1(!FnCheckAttr, "Attribute " + FnCheckAttr.getAsString() +
534          " only applies to the function!", V);
535
536  if (isReturnValue) {
537    Attributes RetI = Attrs & Attribute::ParameterOnly;
538    Assert1(!RetI, "Attribute " + RetI.getAsString() +
539            " does not apply to return values!", V);
540  }
541
542  for (unsigned i = 0;
543       i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
544    Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
545    Assert1(MutI.isEmptyOrSingleton(), "Attributes " +
546            MutI.getAsString() + " are incompatible!", V);
547  }
548
549  Attributes TypeI = Attrs & Attributes::typeIncompatible(Ty);
550  Assert1(!TypeI, "Wrong type for attribute " +
551          TypeI.getAsString(), V);
552
553  Attributes ByValI = Attrs & Attribute::ByVal;
554  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
555    Assert1(!ByValI || PTy->getElementType()->isSized(),
556            "Attribute " + ByValI.getAsString() +
557            " does not support unsized types!", V);
558  } else {
559    Assert1(!ByValI,
560            "Attribute " + ByValI.getAsString() +
561            " only applies to parameters with pointer type!", V);
562  }
563}
564
565// VerifyFunctionAttrs - Check parameter attributes against a function type.
566// The value V is printed in error messages.
567void Verifier::VerifyFunctionAttrs(FunctionType *FT,
568                                   const AttrListPtr &Attrs,
569                                   const Value *V) {
570  if (Attrs.isEmpty())
571    return;
572
573  bool SawNest = false;
574
575  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
576    const AttributeWithIndex &Attr = Attrs.getSlot(i);
577
578    Type *Ty;
579    if (Attr.Index == 0)
580      Ty = FT->getReturnType();
581    else if (Attr.Index-1 < FT->getNumParams())
582      Ty = FT->getParamType(Attr.Index-1);
583    else
584      break;  // VarArgs attributes, verified elsewhere.
585
586    VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
587
588    if (Attr.Attrs.hasNestAttr()) {
589      Assert1(!SawNest, "More than one parameter has attribute nest!", V);
590      SawNest = true;
591    }
592
593    if (Attr.Attrs.hasStructRetAttr())
594      Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
595  }
596
597  Attributes FAttrs = Attrs.getFnAttributes();
598  Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
599  Assert1(!NotFn, "Attribute " + NotFn.getAsString() +
600          " does not apply to the function!", V);
601
602  for (unsigned i = 0;
603       i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
604    Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
605    Assert1(MutI.isEmptyOrSingleton(), "Attributes " +
606            MutI.getAsString() + " are incompatible!", V);
607  }
608}
609
610static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
611  if (Attrs.isEmpty())
612    return true;
613
614  unsigned LastSlot = Attrs.getNumSlots() - 1;
615  unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
616  if (LastIndex <= Params
617      || (LastIndex == (unsigned)~0
618          && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
619    return true;
620
621  return false;
622}
623
624// visitFunction - Verify that a function is ok.
625//
626void Verifier::visitFunction(Function &F) {
627  // Check function arguments.
628  FunctionType *FT = F.getFunctionType();
629  unsigned NumArgs = F.arg_size();
630
631  Assert1(Context == &F.getContext(),
632          "Function context does not match Module context!", &F);
633
634  Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
635  Assert2(FT->getNumParams() == NumArgs,
636          "# formal arguments must match # of arguments for function type!",
637          &F, FT);
638  Assert1(F.getReturnType()->isFirstClassType() ||
639          F.getReturnType()->isVoidTy() ||
640          F.getReturnType()->isStructTy(),
641          "Functions cannot return aggregate values!", &F);
642
643  Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
644          "Invalid struct return type!", &F);
645
646  const AttrListPtr &Attrs = F.getAttributes();
647
648  Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
649          "Attributes after last parameter!", &F);
650
651  // Check function attributes.
652  VerifyFunctionAttrs(FT, Attrs, &F);
653
654  // Check that this function meets the restrictions on this calling convention.
655  switch (F.getCallingConv()) {
656  default:
657    break;
658  case CallingConv::C:
659    break;
660  case CallingConv::Fast:
661  case CallingConv::Cold:
662  case CallingConv::X86_FastCall:
663  case CallingConv::X86_ThisCall:
664  case CallingConv::Intel_OCL_BI:
665  case CallingConv::PTX_Kernel:
666  case CallingConv::PTX_Device:
667    Assert1(!F.isVarArg(),
668            "Varargs functions must have C calling conventions!", &F);
669    break;
670  }
671
672  bool isLLVMdotName = F.getName().size() >= 5 &&
673                       F.getName().substr(0, 5) == "llvm.";
674
675  // Check that the argument values match the function type for this function...
676  unsigned i = 0;
677  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
678       I != E; ++I, ++i) {
679    Assert2(I->getType() == FT->getParamType(i),
680            "Argument value does not match function argument type!",
681            I, FT->getParamType(i));
682    Assert1(I->getType()->isFirstClassType(),
683            "Function arguments must have first-class types!", I);
684    if (!isLLVMdotName)
685      Assert2(!I->getType()->isMetadataTy(),
686              "Function takes metadata but isn't an intrinsic", I, &F);
687  }
688
689  if (F.isMaterializable()) {
690    // Function has a body somewhere we can't see.
691  } else if (F.isDeclaration()) {
692    Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
693            F.hasExternalWeakLinkage(),
694            "invalid linkage type for function declaration", &F);
695  } else {
696    // Verify that this function (which has a body) is not named "llvm.*".  It
697    // is not legal to define intrinsics.
698    Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
699
700    // Check the entry node
701    BasicBlock *Entry = &F.getEntryBlock();
702    Assert1(pred_begin(Entry) == pred_end(Entry),
703            "Entry block to function must not have predecessors!", Entry);
704
705    // The address of the entry block cannot be taken, unless it is dead.
706    if (Entry->hasAddressTaken()) {
707      Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
708              "blockaddress may not be used with the entry block!", Entry);
709    }
710  }
711
712  // If this function is actually an intrinsic, verify that it is only used in
713  // direct call/invokes, never having its "address taken".
714  if (F.getIntrinsicID()) {
715    const User *U;
716    if (F.hasAddressTaken(&U))
717      Assert1(0, "Invalid user of intrinsic instruction!", U);
718  }
719}
720
721// verifyBasicBlock - Verify that a basic block is well formed...
722//
723void Verifier::visitBasicBlock(BasicBlock &BB) {
724  InstsInThisBlock.clear();
725
726  // Ensure that basic blocks have terminators!
727  Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
728
729  // Check constraints that this basic block imposes on all of the PHI nodes in
730  // it.
731  if (isa<PHINode>(BB.front())) {
732    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
733    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
734    std::sort(Preds.begin(), Preds.end());
735    PHINode *PN;
736    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
737      // Ensure that PHI nodes have at least one entry!
738      Assert1(PN->getNumIncomingValues() != 0,
739              "PHI nodes must have at least one entry.  If the block is dead, "
740              "the PHI should be removed!", PN);
741      Assert1(PN->getNumIncomingValues() == Preds.size(),
742              "PHINode should have one entry for each predecessor of its "
743              "parent basic block!", PN);
744
745      // Get and sort all incoming values in the PHI node...
746      Values.clear();
747      Values.reserve(PN->getNumIncomingValues());
748      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
749        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
750                                        PN->getIncomingValue(i)));
751      std::sort(Values.begin(), Values.end());
752
753      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
754        // Check to make sure that if there is more than one entry for a
755        // particular basic block in this PHI node, that the incoming values are
756        // all identical.
757        //
758        Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
759                Values[i].second == Values[i-1].second,
760                "PHI node has multiple entries for the same basic block with "
761                "different incoming values!", PN, Values[i].first,
762                Values[i].second, Values[i-1].second);
763
764        // Check to make sure that the predecessors and PHI node entries are
765        // matched up.
766        Assert3(Values[i].first == Preds[i],
767                "PHI node entries do not match predecessors!", PN,
768                Values[i].first, Preds[i]);
769      }
770    }
771  }
772}
773
774void Verifier::visitTerminatorInst(TerminatorInst &I) {
775  // Ensure that terminators only exist at the end of the basic block.
776  Assert1(&I == I.getParent()->getTerminator(),
777          "Terminator found in the middle of a basic block!", I.getParent());
778  visitInstruction(I);
779}
780
781void Verifier::visitBranchInst(BranchInst &BI) {
782  if (BI.isConditional()) {
783    Assert2(BI.getCondition()->getType()->isIntegerTy(1),
784            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
785  }
786  visitTerminatorInst(BI);
787}
788
789void Verifier::visitReturnInst(ReturnInst &RI) {
790  Function *F = RI.getParent()->getParent();
791  unsigned N = RI.getNumOperands();
792  if (F->getReturnType()->isVoidTy())
793    Assert2(N == 0,
794            "Found return instr that returns non-void in Function of void "
795            "return type!", &RI, F->getReturnType());
796  else
797    Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
798            "Function return type does not match operand "
799            "type of return inst!", &RI, F->getReturnType());
800
801  // Check to make sure that the return value has necessary properties for
802  // terminators...
803  visitTerminatorInst(RI);
804}
805
806void Verifier::visitSwitchInst(SwitchInst &SI) {
807  // Check to make sure that all of the constants in the switch instruction
808  // have the same type as the switched-on value.
809  Type *SwitchTy = SI.getCondition()->getType();
810  IntegerType *IntTy = cast<IntegerType>(SwitchTy);
811  IntegersSubsetToBB Mapping;
812  std::map<IntegersSubset::Range, unsigned> RangeSetMap;
813  for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
814    IntegersSubset CaseRanges = i.getCaseValueEx();
815    for (unsigned ri = 0, rie = CaseRanges.getNumItems(); ri < rie; ++ri) {
816      IntegersSubset::Range r = CaseRanges.getItem(ri);
817      Assert1(((const APInt&)r.getLow()).getBitWidth() == IntTy->getBitWidth(),
818              "Switch constants must all be same type as switch value!", &SI);
819      Assert1(((const APInt&)r.getHigh()).getBitWidth() == IntTy->getBitWidth(),
820              "Switch constants must all be same type as switch value!", &SI);
821      Mapping.add(r);
822      RangeSetMap[r] = i.getCaseIndex();
823    }
824  }
825
826  IntegersSubsetToBB::RangeIterator errItem;
827  if (!Mapping.verify(errItem)) {
828    unsigned CaseIndex = RangeSetMap[errItem->first];
829    SwitchInst::CaseIt i(&SI, CaseIndex);
830    Assert2(false, "Duplicate integer as switch case", &SI, i.getCaseValueEx());
831  }
832
833  visitTerminatorInst(SI);
834}
835
836void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
837  Assert1(BI.getAddress()->getType()->isPointerTy(),
838          "Indirectbr operand must have pointer type!", &BI);
839  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
840    Assert1(BI.getDestination(i)->getType()->isLabelTy(),
841            "Indirectbr destinations must all have pointer type!", &BI);
842
843  visitTerminatorInst(BI);
844}
845
846void Verifier::visitSelectInst(SelectInst &SI) {
847  Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
848                                          SI.getOperand(2)),
849          "Invalid operands for select instruction!", &SI);
850
851  Assert1(SI.getTrueValue()->getType() == SI.getType(),
852          "Select values must have same type as select instruction!", &SI);
853  visitInstruction(SI);
854}
855
856/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
857/// a pass, if any exist, it's an error.
858///
859void Verifier::visitUserOp1(Instruction &I) {
860  Assert1(0, "User-defined operators should not live outside of a pass!", &I);
861}
862
863void Verifier::visitTruncInst(TruncInst &I) {
864  // Get the source and destination types
865  Type *SrcTy = I.getOperand(0)->getType();
866  Type *DestTy = I.getType();
867
868  // Get the size of the types in bits, we'll need this later
869  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
870  unsigned DestBitSize = DestTy->getScalarSizeInBits();
871
872  Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
873  Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
874  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
875          "trunc source and destination must both be a vector or neither", &I);
876  Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
877
878  visitInstruction(I);
879}
880
881void Verifier::visitZExtInst(ZExtInst &I) {
882  // Get the source and destination types
883  Type *SrcTy = I.getOperand(0)->getType();
884  Type *DestTy = I.getType();
885
886  // Get the size of the types in bits, we'll need this later
887  Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
888  Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
889  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
890          "zext source and destination must both be a vector or neither", &I);
891  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
892  unsigned DestBitSize = DestTy->getScalarSizeInBits();
893
894  Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
895
896  visitInstruction(I);
897}
898
899void Verifier::visitSExtInst(SExtInst &I) {
900  // Get the source and destination types
901  Type *SrcTy = I.getOperand(0)->getType();
902  Type *DestTy = I.getType();
903
904  // Get the size of the types in bits, we'll need this later
905  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
906  unsigned DestBitSize = DestTy->getScalarSizeInBits();
907
908  Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
909  Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
910  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
911          "sext source and destination must both be a vector or neither", &I);
912  Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
913
914  visitInstruction(I);
915}
916
917void Verifier::visitFPTruncInst(FPTruncInst &I) {
918  // Get the source and destination types
919  Type *SrcTy = I.getOperand(0)->getType();
920  Type *DestTy = I.getType();
921  // Get the size of the types in bits, we'll need this later
922  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
923  unsigned DestBitSize = DestTy->getScalarSizeInBits();
924
925  Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
926  Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
927  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
928          "fptrunc source and destination must both be a vector or neither",&I);
929  Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
930
931  visitInstruction(I);
932}
933
934void Verifier::visitFPExtInst(FPExtInst &I) {
935  // Get the source and destination types
936  Type *SrcTy = I.getOperand(0)->getType();
937  Type *DestTy = I.getType();
938
939  // Get the size of the types in bits, we'll need this later
940  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
941  unsigned DestBitSize = DestTy->getScalarSizeInBits();
942
943  Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
944  Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
945  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
946          "fpext source and destination must both be a vector or neither", &I);
947  Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
948
949  visitInstruction(I);
950}
951
952void Verifier::visitUIToFPInst(UIToFPInst &I) {
953  // Get the source and destination types
954  Type *SrcTy = I.getOperand(0)->getType();
955  Type *DestTy = I.getType();
956
957  bool SrcVec = SrcTy->isVectorTy();
958  bool DstVec = DestTy->isVectorTy();
959
960  Assert1(SrcVec == DstVec,
961          "UIToFP source and dest must both be vector or scalar", &I);
962  Assert1(SrcTy->isIntOrIntVectorTy(),
963          "UIToFP source must be integer or integer vector", &I);
964  Assert1(DestTy->isFPOrFPVectorTy(),
965          "UIToFP result must be FP or FP vector", &I);
966
967  if (SrcVec && DstVec)
968    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
969            cast<VectorType>(DestTy)->getNumElements(),
970            "UIToFP source and dest vector length mismatch", &I);
971
972  visitInstruction(I);
973}
974
975void Verifier::visitSIToFPInst(SIToFPInst &I) {
976  // Get the source and destination types
977  Type *SrcTy = I.getOperand(0)->getType();
978  Type *DestTy = I.getType();
979
980  bool SrcVec = SrcTy->isVectorTy();
981  bool DstVec = DestTy->isVectorTy();
982
983  Assert1(SrcVec == DstVec,
984          "SIToFP source and dest must both be vector or scalar", &I);
985  Assert1(SrcTy->isIntOrIntVectorTy(),
986          "SIToFP source must be integer or integer vector", &I);
987  Assert1(DestTy->isFPOrFPVectorTy(),
988          "SIToFP result must be FP or FP vector", &I);
989
990  if (SrcVec && DstVec)
991    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
992            cast<VectorType>(DestTy)->getNumElements(),
993            "SIToFP source and dest vector length mismatch", &I);
994
995  visitInstruction(I);
996}
997
998void Verifier::visitFPToUIInst(FPToUIInst &I) {
999  // Get the source and destination types
1000  Type *SrcTy = I.getOperand(0)->getType();
1001  Type *DestTy = I.getType();
1002
1003  bool SrcVec = SrcTy->isVectorTy();
1004  bool DstVec = DestTy->isVectorTy();
1005
1006  Assert1(SrcVec == DstVec,
1007          "FPToUI source and dest must both be vector or scalar", &I);
1008  Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1009          &I);
1010  Assert1(DestTy->isIntOrIntVectorTy(),
1011          "FPToUI result must be integer or integer vector", &I);
1012
1013  if (SrcVec && DstVec)
1014    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1015            cast<VectorType>(DestTy)->getNumElements(),
1016            "FPToUI source and dest vector length mismatch", &I);
1017
1018  visitInstruction(I);
1019}
1020
1021void Verifier::visitFPToSIInst(FPToSIInst &I) {
1022  // Get the source and destination types
1023  Type *SrcTy = I.getOperand(0)->getType();
1024  Type *DestTy = I.getType();
1025
1026  bool SrcVec = SrcTy->isVectorTy();
1027  bool DstVec = DestTy->isVectorTy();
1028
1029  Assert1(SrcVec == DstVec,
1030          "FPToSI source and dest must both be vector or scalar", &I);
1031  Assert1(SrcTy->isFPOrFPVectorTy(),
1032          "FPToSI source must be FP or FP vector", &I);
1033  Assert1(DestTy->isIntOrIntVectorTy(),
1034          "FPToSI result must be integer or integer vector", &I);
1035
1036  if (SrcVec && DstVec)
1037    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1038            cast<VectorType>(DestTy)->getNumElements(),
1039            "FPToSI source and dest vector length mismatch", &I);
1040
1041  visitInstruction(I);
1042}
1043
1044void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1045  // Get the source and destination types
1046  Type *SrcTy = I.getOperand(0)->getType();
1047  Type *DestTy = I.getType();
1048
1049  Assert1(SrcTy->getScalarType()->isPointerTy(),
1050          "PtrToInt source must be pointer", &I);
1051  Assert1(DestTy->getScalarType()->isIntegerTy(),
1052          "PtrToInt result must be integral", &I);
1053  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1054          "PtrToInt type mismatch", &I);
1055
1056  if (SrcTy->isVectorTy()) {
1057    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1058    VectorType *VDest = dyn_cast<VectorType>(DestTy);
1059    Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1060          "PtrToInt Vector width mismatch", &I);
1061  }
1062
1063  visitInstruction(I);
1064}
1065
1066void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1067  // Get the source and destination types
1068  Type *SrcTy = I.getOperand(0)->getType();
1069  Type *DestTy = I.getType();
1070
1071  Assert1(SrcTy->getScalarType()->isIntegerTy(),
1072          "IntToPtr source must be an integral", &I);
1073  Assert1(DestTy->getScalarType()->isPointerTy(),
1074          "IntToPtr result must be a pointer",&I);
1075  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1076          "IntToPtr type mismatch", &I);
1077  if (SrcTy->isVectorTy()) {
1078    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1079    VectorType *VDest = dyn_cast<VectorType>(DestTy);
1080    Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1081          "IntToPtr Vector width mismatch", &I);
1082  }
1083  visitInstruction(I);
1084}
1085
1086void Verifier::visitBitCastInst(BitCastInst &I) {
1087  // Get the source and destination types
1088  Type *SrcTy = I.getOperand(0)->getType();
1089  Type *DestTy = I.getType();
1090
1091  // Get the size of the types in bits, we'll need this later
1092  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1093  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
1094
1095  // BitCast implies a no-op cast of type only. No bits change.
1096  // However, you can't cast pointers to anything but pointers.
1097  Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
1098          "Bitcast requires both operands to be pointer or neither", &I);
1099  Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
1100
1101  // Disallow aggregates.
1102  Assert1(!SrcTy->isAggregateType(),
1103          "Bitcast operand must not be aggregate", &I);
1104  Assert1(!DestTy->isAggregateType(),
1105          "Bitcast type must not be aggregate", &I);
1106
1107  visitInstruction(I);
1108}
1109
1110/// visitPHINode - Ensure that a PHI node is well formed.
1111///
1112void Verifier::visitPHINode(PHINode &PN) {
1113  // Ensure that the PHI nodes are all grouped together at the top of the block.
1114  // This can be tested by checking whether the instruction before this is
1115  // either nonexistent (because this is begin()) or is a PHI node.  If not,
1116  // then there is some other instruction before a PHI.
1117  Assert2(&PN == &PN.getParent()->front() ||
1118          isa<PHINode>(--BasicBlock::iterator(&PN)),
1119          "PHI nodes not grouped at top of basic block!",
1120          &PN, PN.getParent());
1121
1122  // Check that all of the values of the PHI node have the same type as the
1123  // result, and that the incoming blocks are really basic blocks.
1124  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1125    Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1126            "PHI node operands are not the same type as the result!", &PN);
1127  }
1128
1129  // All other PHI node constraints are checked in the visitBasicBlock method.
1130
1131  visitInstruction(PN);
1132}
1133
1134void Verifier::VerifyCallSite(CallSite CS) {
1135  Instruction *I = CS.getInstruction();
1136
1137  Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1138          "Called function must be a pointer!", I);
1139  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1140
1141  Assert1(FPTy->getElementType()->isFunctionTy(),
1142          "Called function is not pointer to function type!", I);
1143  FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1144
1145  // Verify that the correct number of arguments are being passed
1146  if (FTy->isVarArg())
1147    Assert1(CS.arg_size() >= FTy->getNumParams(),
1148            "Called function requires more parameters than were provided!",I);
1149  else
1150    Assert1(CS.arg_size() == FTy->getNumParams(),
1151            "Incorrect number of arguments passed to called function!", I);
1152
1153  // Verify that all arguments to the call match the function type.
1154  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1155    Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1156            "Call parameter type does not match function signature!",
1157            CS.getArgument(i), FTy->getParamType(i), I);
1158
1159  const AttrListPtr &Attrs = CS.getAttributes();
1160
1161  Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1162          "Attributes after last parameter!", I);
1163
1164  // Verify call attributes.
1165  VerifyFunctionAttrs(FTy, Attrs, I);
1166
1167  if (FTy->isVarArg())
1168    // Check attributes on the varargs part.
1169    for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1170      Attributes Attr = Attrs.getParamAttributes(Idx);
1171
1172      VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
1173
1174      Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
1175      Assert1(!VArgI, "Attribute " + VArgI.getAsString() +
1176              " cannot be used for vararg call arguments!", I);
1177    }
1178
1179  // Verify that there's no metadata unless it's a direct call to an intrinsic.
1180  if (CS.getCalledFunction() == 0 ||
1181      !CS.getCalledFunction()->getName().startswith("llvm.")) {
1182    for (FunctionType::param_iterator PI = FTy->param_begin(),
1183           PE = FTy->param_end(); PI != PE; ++PI)
1184      Assert1(!(*PI)->isMetadataTy(),
1185              "Function has metadata parameter but isn't an intrinsic", I);
1186  }
1187
1188  visitInstruction(*I);
1189}
1190
1191void Verifier::visitCallInst(CallInst &CI) {
1192  VerifyCallSite(&CI);
1193
1194  if (Function *F = CI.getCalledFunction())
1195    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1196      visitIntrinsicFunctionCall(ID, CI);
1197}
1198
1199void Verifier::visitInvokeInst(InvokeInst &II) {
1200  VerifyCallSite(&II);
1201
1202  // Verify that there is a landingpad instruction as the first non-PHI
1203  // instruction of the 'unwind' destination.
1204  Assert1(II.getUnwindDest()->isLandingPad(),
1205          "The unwind destination does not have a landingpad instruction!",&II);
1206
1207  visitTerminatorInst(II);
1208}
1209
1210/// visitBinaryOperator - Check that both arguments to the binary operator are
1211/// of the same type!
1212///
1213void Verifier::visitBinaryOperator(BinaryOperator &B) {
1214  Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1215          "Both operands to a binary operator are not of the same type!", &B);
1216
1217  switch (B.getOpcode()) {
1218  // Check that integer arithmetic operators are only used with
1219  // integral operands.
1220  case Instruction::Add:
1221  case Instruction::Sub:
1222  case Instruction::Mul:
1223  case Instruction::SDiv:
1224  case Instruction::UDiv:
1225  case Instruction::SRem:
1226  case Instruction::URem:
1227    Assert1(B.getType()->isIntOrIntVectorTy(),
1228            "Integer arithmetic operators only work with integral types!", &B);
1229    Assert1(B.getType() == B.getOperand(0)->getType(),
1230            "Integer arithmetic operators must have same type "
1231            "for operands and result!", &B);
1232    break;
1233  // Check that floating-point arithmetic operators are only used with
1234  // floating-point operands.
1235  case Instruction::FAdd:
1236  case Instruction::FSub:
1237  case Instruction::FMul:
1238  case Instruction::FDiv:
1239  case Instruction::FRem:
1240    Assert1(B.getType()->isFPOrFPVectorTy(),
1241            "Floating-point arithmetic operators only work with "
1242            "floating-point types!", &B);
1243    Assert1(B.getType() == B.getOperand(0)->getType(),
1244            "Floating-point arithmetic operators must have same type "
1245            "for operands and result!", &B);
1246    break;
1247  // Check that logical operators are only used with integral operands.
1248  case Instruction::And:
1249  case Instruction::Or:
1250  case Instruction::Xor:
1251    Assert1(B.getType()->isIntOrIntVectorTy(),
1252            "Logical operators only work with integral types!", &B);
1253    Assert1(B.getType() == B.getOperand(0)->getType(),
1254            "Logical operators must have same type for operands and result!",
1255            &B);
1256    break;
1257  case Instruction::Shl:
1258  case Instruction::LShr:
1259  case Instruction::AShr:
1260    Assert1(B.getType()->isIntOrIntVectorTy(),
1261            "Shifts only work with integral types!", &B);
1262    Assert1(B.getType() == B.getOperand(0)->getType(),
1263            "Shift return type must be same as operands!", &B);
1264    break;
1265  default:
1266    llvm_unreachable("Unknown BinaryOperator opcode!");
1267  }
1268
1269  visitInstruction(B);
1270}
1271
1272void Verifier::visitICmpInst(ICmpInst &IC) {
1273  // Check that the operands are the same type
1274  Type *Op0Ty = IC.getOperand(0)->getType();
1275  Type *Op1Ty = IC.getOperand(1)->getType();
1276  Assert1(Op0Ty == Op1Ty,
1277          "Both operands to ICmp instruction are not of the same type!", &IC);
1278  // Check that the operands are the right type
1279  Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
1280          "Invalid operand types for ICmp instruction", &IC);
1281  // Check that the predicate is valid.
1282  Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1283          IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1284          "Invalid predicate in ICmp instruction!", &IC);
1285
1286  visitInstruction(IC);
1287}
1288
1289void Verifier::visitFCmpInst(FCmpInst &FC) {
1290  // Check that the operands are the same type
1291  Type *Op0Ty = FC.getOperand(0)->getType();
1292  Type *Op1Ty = FC.getOperand(1)->getType();
1293  Assert1(Op0Ty == Op1Ty,
1294          "Both operands to FCmp instruction are not of the same type!", &FC);
1295  // Check that the operands are the right type
1296  Assert1(Op0Ty->isFPOrFPVectorTy(),
1297          "Invalid operand types for FCmp instruction", &FC);
1298  // Check that the predicate is valid.
1299  Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1300          FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1301          "Invalid predicate in FCmp instruction!", &FC);
1302
1303  visitInstruction(FC);
1304}
1305
1306void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1307  Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1308                                              EI.getOperand(1)),
1309          "Invalid extractelement operands!", &EI);
1310  visitInstruction(EI);
1311}
1312
1313void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1314  Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1315                                             IE.getOperand(1),
1316                                             IE.getOperand(2)),
1317          "Invalid insertelement operands!", &IE);
1318  visitInstruction(IE);
1319}
1320
1321void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1322  Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1323                                             SV.getOperand(2)),
1324          "Invalid shufflevector operands!", &SV);
1325  visitInstruction(SV);
1326}
1327
1328void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1329  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
1330
1331  Assert1(isa<PointerType>(TargetTy),
1332    "GEP base pointer is not a vector or a vector of pointers", &GEP);
1333  Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
1334          "GEP into unsized type!", &GEP);
1335
1336  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1337  Type *ElTy =
1338    GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
1339  Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1340
1341  if (GEP.getPointerOperandType()->isPointerTy()) {
1342    // Validate GEPs with scalar indices.
1343    Assert2(GEP.getType()->isPointerTy() &&
1344           cast<PointerType>(GEP.getType())->getElementType() == ElTy,
1345           "GEP is not of right type for indices!", &GEP, ElTy);
1346  } else {
1347    // Validate GEPs with a vector index.
1348    Assert1(Idxs.size() == 1, "Invalid number of indices!", &GEP);
1349    Value *Index = Idxs[0];
1350    Type  *IndexTy = Index->getType();
1351    Assert1(IndexTy->isVectorTy(),
1352      "Vector GEP must have vector indices!", &GEP);
1353    Assert1(GEP.getType()->isVectorTy(),
1354      "Vector GEP must return a vector value", &GEP);
1355    Type *ElemPtr = cast<VectorType>(GEP.getType())->getElementType();
1356    Assert1(ElemPtr->isPointerTy(),
1357      "Vector GEP pointer operand is not a pointer!", &GEP);
1358    unsigned IndexWidth = cast<VectorType>(IndexTy)->getNumElements();
1359    unsigned GepWidth = cast<VectorType>(GEP.getType())->getNumElements();
1360    Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
1361    Assert1(ElTy == cast<PointerType>(ElemPtr)->getElementType(),
1362      "Vector GEP type does not match pointer type!", &GEP);
1363  }
1364  visitInstruction(GEP);
1365}
1366
1367static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1368  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1369}
1370
1371void Verifier::visitLoadInst(LoadInst &LI) {
1372  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1373  Assert1(PTy, "Load operand must be a pointer.", &LI);
1374  Type *ElTy = PTy->getElementType();
1375  Assert2(ElTy == LI.getType(),
1376          "Load result type does not match pointer operand type!", &LI, ElTy);
1377  if (LI.isAtomic()) {
1378    Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
1379            "Load cannot have Release ordering", &LI);
1380    Assert1(LI.getAlignment() != 0,
1381            "Atomic load must specify explicit alignment", &LI);
1382    if (!ElTy->isPointerTy()) {
1383      Assert2(ElTy->isIntegerTy(),
1384              "atomic store operand must have integer type!",
1385              &LI, ElTy);
1386      unsigned Size = ElTy->getPrimitiveSizeInBits();
1387      Assert2(Size >= 8 && !(Size & (Size - 1)),
1388              "atomic store operand must be power-of-two byte-sized integer",
1389              &LI, ElTy);
1390    }
1391  } else {
1392    Assert1(LI.getSynchScope() == CrossThread,
1393            "Non-atomic load cannot have SynchronizationScope specified", &LI);
1394  }
1395
1396  if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
1397    unsigned NumOperands = Range->getNumOperands();
1398    Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
1399    unsigned NumRanges = NumOperands / 2;
1400    Assert1(NumRanges >= 1, "It should have at least one range!", Range);
1401
1402    ConstantRange LastRange(1); // Dummy initial value
1403    for (unsigned i = 0; i < NumRanges; ++i) {
1404      ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
1405      Assert1(Low, "The lower limit must be an integer!", Low);
1406      ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
1407      Assert1(High, "The upper limit must be an integer!", High);
1408      Assert1(High->getType() == Low->getType() &&
1409              High->getType() == ElTy, "Range types must match load type!",
1410              &LI);
1411
1412      APInt HighV = High->getValue();
1413      APInt LowV = Low->getValue();
1414      ConstantRange CurRange(LowV, HighV);
1415      Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
1416              "Range must not be empty!", Range);
1417      if (i != 0) {
1418        Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
1419                "Intervals are overlapping", Range);
1420        Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
1421                Range);
1422        Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
1423                Range);
1424      }
1425      LastRange = ConstantRange(LowV, HighV);
1426    }
1427    if (NumRanges > 2) {
1428      APInt FirstLow =
1429        dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
1430      APInt FirstHigh =
1431        dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
1432      ConstantRange FirstRange(FirstLow, FirstHigh);
1433      Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
1434              "Intervals are overlapping", Range);
1435      Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
1436              Range);
1437    }
1438
1439
1440  }
1441
1442  visitInstruction(LI);
1443}
1444
1445void Verifier::visitStoreInst(StoreInst &SI) {
1446  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1447  Assert1(PTy, "Store operand must be a pointer.", &SI);
1448  Type *ElTy = PTy->getElementType();
1449  Assert2(ElTy == SI.getOperand(0)->getType(),
1450          "Stored value type does not match pointer operand type!",
1451          &SI, ElTy);
1452  if (SI.isAtomic()) {
1453    Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
1454            "Store cannot have Acquire ordering", &SI);
1455    Assert1(SI.getAlignment() != 0,
1456            "Atomic store must specify explicit alignment", &SI);
1457    if (!ElTy->isPointerTy()) {
1458      Assert2(ElTy->isIntegerTy(),
1459              "atomic store operand must have integer type!",
1460              &SI, ElTy);
1461      unsigned Size = ElTy->getPrimitiveSizeInBits();
1462      Assert2(Size >= 8 && !(Size & (Size - 1)),
1463              "atomic store operand must be power-of-two byte-sized integer",
1464              &SI, ElTy);
1465    }
1466  } else {
1467    Assert1(SI.getSynchScope() == CrossThread,
1468            "Non-atomic store cannot have SynchronizationScope specified", &SI);
1469  }
1470  visitInstruction(SI);
1471}
1472
1473void Verifier::visitAllocaInst(AllocaInst &AI) {
1474  PointerType *PTy = AI.getType();
1475  Assert1(PTy->getAddressSpace() == 0,
1476          "Allocation instruction pointer not in the generic address space!",
1477          &AI);
1478  Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
1479          &AI);
1480  Assert1(AI.getArraySize()->getType()->isIntegerTy(),
1481          "Alloca array size must have integer type", &AI);
1482  visitInstruction(AI);
1483}
1484
1485void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
1486  Assert1(CXI.getOrdering() != NotAtomic,
1487          "cmpxchg instructions must be atomic.", &CXI);
1488  Assert1(CXI.getOrdering() != Unordered,
1489          "cmpxchg instructions cannot be unordered.", &CXI);
1490  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
1491  Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
1492  Type *ElTy = PTy->getElementType();
1493  Assert2(ElTy->isIntegerTy(),
1494          "cmpxchg operand must have integer type!",
1495          &CXI, ElTy);
1496  unsigned Size = ElTy->getPrimitiveSizeInBits();
1497  Assert2(Size >= 8 && !(Size & (Size - 1)),
1498          "cmpxchg operand must be power-of-two byte-sized integer",
1499          &CXI, ElTy);
1500  Assert2(ElTy == CXI.getOperand(1)->getType(),
1501          "Expected value type does not match pointer operand type!",
1502          &CXI, ElTy);
1503  Assert2(ElTy == CXI.getOperand(2)->getType(),
1504          "Stored value type does not match pointer operand type!",
1505          &CXI, ElTy);
1506  visitInstruction(CXI);
1507}
1508
1509void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
1510  Assert1(RMWI.getOrdering() != NotAtomic,
1511          "atomicrmw instructions must be atomic.", &RMWI);
1512  Assert1(RMWI.getOrdering() != Unordered,
1513          "atomicrmw instructions cannot be unordered.", &RMWI);
1514  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
1515  Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
1516  Type *ElTy = PTy->getElementType();
1517  Assert2(ElTy->isIntegerTy(),
1518          "atomicrmw operand must have integer type!",
1519          &RMWI, ElTy);
1520  unsigned Size = ElTy->getPrimitiveSizeInBits();
1521  Assert2(Size >= 8 && !(Size & (Size - 1)),
1522          "atomicrmw operand must be power-of-two byte-sized integer",
1523          &RMWI, ElTy);
1524  Assert2(ElTy == RMWI.getOperand(1)->getType(),
1525          "Argument value type does not match pointer operand type!",
1526          &RMWI, ElTy);
1527  Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
1528          RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
1529          "Invalid binary operation!", &RMWI);
1530  visitInstruction(RMWI);
1531}
1532
1533void Verifier::visitFenceInst(FenceInst &FI) {
1534  const AtomicOrdering Ordering = FI.getOrdering();
1535  Assert1(Ordering == Acquire || Ordering == Release ||
1536          Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
1537          "fence instructions may only have "
1538          "acquire, release, acq_rel, or seq_cst ordering.", &FI);
1539  visitInstruction(FI);
1540}
1541
1542void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
1543  Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
1544                                           EVI.getIndices()) ==
1545          EVI.getType(),
1546          "Invalid ExtractValueInst operands!", &EVI);
1547
1548  visitInstruction(EVI);
1549}
1550
1551void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
1552  Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
1553                                           IVI.getIndices()) ==
1554          IVI.getOperand(1)->getType(),
1555          "Invalid InsertValueInst operands!", &IVI);
1556
1557  visitInstruction(IVI);
1558}
1559
1560void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
1561  BasicBlock *BB = LPI.getParent();
1562
1563  // The landingpad instruction is ill-formed if it doesn't have any clauses and
1564  // isn't a cleanup.
1565  Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
1566          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
1567
1568  // The landingpad instruction defines its parent as a landing pad block. The
1569  // landing pad block may be branched to only by the unwind edge of an invoke.
1570  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1571    const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
1572    Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
1573            "Block containing LandingPadInst must be jumped to "
1574            "only by the unwind edge of an invoke.", &LPI);
1575  }
1576
1577  // The landingpad instruction must be the first non-PHI instruction in the
1578  // block.
1579  Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
1580          "LandingPadInst not the first non-PHI instruction in the block.",
1581          &LPI);
1582
1583  // The personality functions for all landingpad instructions within the same
1584  // function should match.
1585  if (PersonalityFn)
1586    Assert1(LPI.getPersonalityFn() == PersonalityFn,
1587            "Personality function doesn't match others in function", &LPI);
1588  PersonalityFn = LPI.getPersonalityFn();
1589
1590  // All operands must be constants.
1591  Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
1592          &LPI);
1593  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
1594    Value *Clause = LPI.getClause(i);
1595    Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
1596    if (LPI.isCatch(i)) {
1597      Assert1(isa<PointerType>(Clause->getType()),
1598              "Catch operand does not have pointer type!", &LPI);
1599    } else {
1600      Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
1601      Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
1602              "Filter operand is not an array of constants!", &LPI);
1603    }
1604  }
1605
1606  visitInstruction(LPI);
1607}
1608
1609void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
1610  Instruction *Op = cast<Instruction>(I.getOperand(i));
1611  // If the we have an invalid invoke, don't try to compute the dominance.
1612  // We already reject it in the invoke specific checks and the dominance
1613  // computation doesn't handle multiple edges.
1614  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
1615    if (II->getNormalDest() == II->getUnwindDest())
1616      return;
1617  }
1618
1619  const Use &U = I.getOperandUse(i);
1620  Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, U),
1621          "Instruction does not dominate all uses!", Op, &I);
1622}
1623
1624/// verifyInstruction - Verify that an instruction is well formed.
1625///
1626void Verifier::visitInstruction(Instruction &I) {
1627  BasicBlock *BB = I.getParent();
1628  Assert1(BB, "Instruction not embedded in basic block!", &I);
1629
1630  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
1631    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
1632         UI != UE; ++UI)
1633      Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
1634              "Only PHI nodes may reference their own value!", &I);
1635  }
1636
1637  // Check that void typed values don't have names
1638  Assert1(!I.getType()->isVoidTy() || !I.hasName(),
1639          "Instruction has a name, but provides a void value!", &I);
1640
1641  // Check that the return value of the instruction is either void or a legal
1642  // value type.
1643  Assert1(I.getType()->isVoidTy() ||
1644          I.getType()->isFirstClassType(),
1645          "Instruction returns a non-scalar type!", &I);
1646
1647  // Check that the instruction doesn't produce metadata. Calls are already
1648  // checked against the callee type.
1649  Assert1(!I.getType()->isMetadataTy() ||
1650          isa<CallInst>(I) || isa<InvokeInst>(I),
1651          "Invalid use of metadata!", &I);
1652
1653  // Check that all uses of the instruction, if they are instructions
1654  // themselves, actually have parent basic blocks.  If the use is not an
1655  // instruction, it is an error!
1656  for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
1657       UI != UE; ++UI) {
1658    if (Instruction *Used = dyn_cast<Instruction>(*UI))
1659      Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
1660              " embedded in a basic block!", &I, Used);
1661    else {
1662      CheckFailed("Use of instruction is not an instruction!", *UI);
1663      return;
1664    }
1665  }
1666
1667  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1668    Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
1669
1670    // Check to make sure that only first-class-values are operands to
1671    // instructions.
1672    if (!I.getOperand(i)->getType()->isFirstClassType()) {
1673      Assert1(0, "Instruction operands must be first-class values!", &I);
1674    }
1675
1676    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
1677      // Check to make sure that the "address of" an intrinsic function is never
1678      // taken.
1679      Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
1680              "Cannot take the address of an intrinsic!", &I);
1681      Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
1682              F->getIntrinsicID() == Intrinsic::donothing,
1683              "Cannot invoke an intrinsinc other than donothing", &I);
1684      Assert1(F->getParent() == Mod, "Referencing function in another module!",
1685              &I);
1686    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
1687      Assert1(OpBB->getParent() == BB->getParent(),
1688              "Referring to a basic block in another function!", &I);
1689    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
1690      Assert1(OpArg->getParent() == BB->getParent(),
1691              "Referring to an argument in another function!", &I);
1692    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
1693      Assert1(GV->getParent() == Mod, "Referencing global in another module!",
1694              &I);
1695    } else if (isa<Instruction>(I.getOperand(i))) {
1696      verifyDominatesUse(I, i);
1697    } else if (isa<InlineAsm>(I.getOperand(i))) {
1698      Assert1((i + 1 == e && isa<CallInst>(I)) ||
1699              (i + 3 == e && isa<InvokeInst>(I)),
1700              "Cannot take the address of an inline asm!", &I);
1701    }
1702  }
1703
1704  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
1705    Assert1(I.getType()->isFPOrFPVectorTy(),
1706            "fpmath requires a floating point result!", &I);
1707    Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
1708    Value *Op0 = MD->getOperand(0);
1709    if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
1710      APFloat Accuracy = CFP0->getValueAPF();
1711      Assert1(Accuracy.isNormal() && !Accuracy.isNegative(),
1712              "fpmath accuracy not a positive number!", &I);
1713    } else {
1714      Assert1(false, "invalid fpmath accuracy!", &I);
1715    }
1716  }
1717
1718  MDNode *MD = I.getMetadata(LLVMContext::MD_range);
1719  Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I);
1720
1721  InstsInThisBlock.insert(&I);
1722}
1723
1724/// VerifyIntrinsicType - Verify that the specified type (which comes from an
1725/// intrinsic argument or return value) matches the type constraints specified
1726/// by the .td file (e.g. an "any integer" argument really is an integer).
1727///
1728/// This return true on error but does not print a message.
1729bool Verifier::VerifyIntrinsicType(Type *Ty,
1730                                   ArrayRef<Intrinsic::IITDescriptor> &Infos,
1731                                   SmallVectorImpl<Type*> &ArgTys) {
1732  using namespace Intrinsic;
1733
1734  // If we ran out of descriptors, there are too many arguments.
1735  if (Infos.empty()) return true;
1736  IITDescriptor D = Infos.front();
1737  Infos = Infos.slice(1);
1738
1739  switch (D.Kind) {
1740  case IITDescriptor::Void: return !Ty->isVoidTy();
1741  case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1742  case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1743  case IITDescriptor::Float: return !Ty->isFloatTy();
1744  case IITDescriptor::Double: return !Ty->isDoubleTy();
1745  case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1746  case IITDescriptor::Vector: {
1747    VectorType *VT = dyn_cast<VectorType>(Ty);
1748    return VT == 0 || VT->getNumElements() != D.Vector_Width ||
1749           VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
1750  }
1751  case IITDescriptor::Pointer: {
1752    PointerType *PT = dyn_cast<PointerType>(Ty);
1753    return PT == 0 || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1754           VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
1755  }
1756
1757  case IITDescriptor::Struct: {
1758    StructType *ST = dyn_cast<StructType>(Ty);
1759    if (ST == 0 || ST->getNumElements() != D.Struct_NumElements)
1760      return true;
1761
1762    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1763      if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
1764        return true;
1765    return false;
1766  }
1767
1768  case IITDescriptor::Argument:
1769    // Two cases here - If this is the second occurrence of an argument, verify
1770    // that the later instance matches the previous instance.
1771    if (D.getArgumentNumber() < ArgTys.size())
1772      return Ty != ArgTys[D.getArgumentNumber()];
1773
1774    // Otherwise, if this is the first instance of an argument, record it and
1775    // verify the "Any" kind.
1776    assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
1777    ArgTys.push_back(Ty);
1778
1779    switch (D.getArgumentKind()) {
1780    case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1781    case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1782    case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1783    case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1784    }
1785    llvm_unreachable("all argument kinds not covered");
1786
1787  case IITDescriptor::ExtendVecArgument:
1788    // This may only be used when referring to a previous vector argument.
1789    return D.getArgumentNumber() >= ArgTys.size() ||
1790           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1791           VectorType::getExtendedElementVectorType(
1792                       cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1793
1794  case IITDescriptor::TruncVecArgument:
1795    // This may only be used when referring to a previous vector argument.
1796    return D.getArgumentNumber() >= ArgTys.size() ||
1797           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1798           VectorType::getTruncatedElementVectorType(
1799                         cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1800  }
1801  llvm_unreachable("unhandled");
1802}
1803
1804/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1805///
1806void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
1807  Function *IF = CI.getCalledFunction();
1808  Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
1809          IF);
1810
1811  // Verify that the intrinsic prototype lines up with what the .td files
1812  // describe.
1813  FunctionType *IFTy = IF->getFunctionType();
1814  Assert1(!IFTy->isVarArg(), "Intrinsic prototypes are not varargs", IF);
1815
1816  SmallVector<Intrinsic::IITDescriptor, 8> Table;
1817  getIntrinsicInfoTableEntries(ID, Table);
1818  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1819
1820  SmallVector<Type *, 4> ArgTys;
1821  Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
1822          "Intrinsic has incorrect return type!", IF);
1823  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
1824    Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
1825            "Intrinsic has incorrect argument type!", IF);
1826  Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
1827
1828  // Now that we have the intrinsic ID and the actual argument types (and we
1829  // know they are legal for the intrinsic!) get the intrinsic name through the
1830  // usual means.  This allows us to verify the mangling of argument types into
1831  // the name.
1832  Assert1(Intrinsic::getName(ID, ArgTys) == IF->getName(),
1833          "Intrinsic name not mangled correctly for type arguments!", IF);
1834
1835  // If the intrinsic takes MDNode arguments, verify that they are either global
1836  // or are local to *this* function.
1837  for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
1838    if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
1839      visitMDNode(*MD, CI.getParent()->getParent());
1840
1841  switch (ID) {
1842  default:
1843    break;
1844  case Intrinsic::ctlz:  // llvm.ctlz
1845  case Intrinsic::cttz:  // llvm.cttz
1846    Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
1847            "is_zero_undef argument of bit counting intrinsics must be a "
1848            "constant int", &CI);
1849    break;
1850  case Intrinsic::dbg_declare: {  // llvm.dbg.declare
1851    Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
1852                "invalid llvm.dbg.declare intrinsic call 1", &CI);
1853    MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
1854    Assert1(MD->getNumOperands() == 1,
1855                "invalid llvm.dbg.declare intrinsic call 2", &CI);
1856  } break;
1857  case Intrinsic::memcpy:
1858  case Intrinsic::memmove:
1859  case Intrinsic::memset:
1860    Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
1861            "alignment argument of memory intrinsics must be a constant int",
1862            &CI);
1863    Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
1864            "isvolatile argument of memory intrinsics must be a constant int",
1865            &CI);
1866    break;
1867  case Intrinsic::gcroot:
1868  case Intrinsic::gcwrite:
1869  case Intrinsic::gcread:
1870    if (ID == Intrinsic::gcroot) {
1871      AllocaInst *AI =
1872        dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
1873      Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
1874      Assert1(isa<Constant>(CI.getArgOperand(1)),
1875              "llvm.gcroot parameter #2 must be a constant.", &CI);
1876      if (!AI->getType()->getElementType()->isPointerTy()) {
1877        Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
1878                "llvm.gcroot parameter #1 must either be a pointer alloca, "
1879                "or argument #2 must be a non-null constant.", &CI);
1880      }
1881    }
1882
1883    Assert1(CI.getParent()->getParent()->hasGC(),
1884            "Enclosing function does not use GC.", &CI);
1885    break;
1886  case Intrinsic::init_trampoline:
1887    Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
1888            "llvm.init_trampoline parameter #2 must resolve to a function.",
1889            &CI);
1890    break;
1891  case Intrinsic::prefetch:
1892    Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
1893            isa<ConstantInt>(CI.getArgOperand(2)) &&
1894            cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
1895            cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
1896            "invalid arguments to llvm.prefetch",
1897            &CI);
1898    break;
1899  case Intrinsic::stackprotector:
1900    Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
1901            "llvm.stackprotector parameter #2 must resolve to an alloca.",
1902            &CI);
1903    break;
1904  case Intrinsic::lifetime_start:
1905  case Intrinsic::lifetime_end:
1906  case Intrinsic::invariant_start:
1907    Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
1908            "size argument of memory use markers must be a constant integer",
1909            &CI);
1910    break;
1911  case Intrinsic::invariant_end:
1912    Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
1913            "llvm.invariant.end parameter #2 must be a constant integer", &CI);
1914    break;
1915  }
1916}
1917
1918//===----------------------------------------------------------------------===//
1919//  Implement the public interfaces to this file...
1920//===----------------------------------------------------------------------===//
1921
1922FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
1923  return new Verifier(action);
1924}
1925
1926
1927/// verifyFunction - Check a function for errors, printing messages on stderr.
1928/// Return true if the function is corrupt.
1929///
1930bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
1931  Function &F = const_cast<Function&>(f);
1932  assert(!F.isDeclaration() && "Cannot verify external functions");
1933
1934  FunctionPassManager FPM(F.getParent());
1935  Verifier *V = new Verifier(action);
1936  FPM.add(V);
1937  FPM.run(F);
1938  return V->Broken;
1939}
1940
1941/// verifyModule - Check a module for errors, printing messages on stderr.
1942/// Return true if the module is corrupt.
1943///
1944bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
1945                        std::string *ErrorInfo) {
1946  PassManager PM;
1947  Verifier *V = new Verifier(action);
1948  PM.add(V);
1949  PM.run(const_cast<Module&>(M));
1950
1951  if (ErrorInfo && V->Broken)
1952    *ErrorInfo = V->MessagesStr.str();
1953  return V->Broken;
1954}
1955