1//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements some loop unrolling utilities for loops with run-time
11// trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
12// trip counts.
13//
14// The functions in this file are used to generate extra code when the
15// run-time trip count modulo the unroll factor is not 0.  When this is the
16// case, we need to generate code to execute these 'left over' iterations.
17//
18// The current strategy generates an if-then-else sequence prior to the
19// unrolled loop to execute the 'left over' iterations.  Other strategies
20// include generate a loop before or after the unrolled loop.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "loop-unroll"
25#include "llvm/Transforms/Utils/UnrollLoop.h"
26#include "llvm/BasicBlock.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/Analysis/LoopIterator.h"
29#include "llvm/Analysis/LoopPass.h"
30#include "llvm/Analysis/ScalarEvolution.h"
31#include "llvm/Analysis/ScalarEvolutionExpander.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include <algorithm>
37
38using namespace llvm;
39
40STATISTIC(NumRuntimeUnrolled,
41          "Number of loops unrolled with run-time trip counts");
42
43/// Connect the unrolling prolog code to the original loop.
44/// The unrolling prolog code contains code to execute the
45/// 'extra' iterations if the run-time trip count modulo the
46/// unroll count is non-zero.
47///
48/// This function performs the following:
49/// - Create PHI nodes at prolog end block to combine values
50///   that exit the prolog code and jump around the prolog.
51/// - Add a PHI operand to a PHI node at the loop exit block
52///   for values that exit the prolog and go around the loop.
53/// - Branch around the original loop if the trip count is less
54///   than the unroll factor.
55///
56static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
57                          BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
58                          BasicBlock *OrigPH, BasicBlock *NewPH,
59                          ValueToValueMapTy &LVMap, Pass *P) {
60  BasicBlock *Latch = L->getLoopLatch();
61  assert(Latch != 0 && "Loop must have a latch");
62
63  // Create a PHI node for each outgoing value from the original loop
64  // (which means it is an outgoing value from the prolog code too).
65  // The new PHI node is inserted in the prolog end basic block.
66  // The new PHI name is added as an operand of a PHI node in either
67  // the loop header or the loop exit block.
68  for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
69       SBI != SBE; ++SBI) {
70    for (BasicBlock::iterator BBI = (*SBI)->begin();
71         PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
72
73      // Add a new PHI node to the prolog end block and add the
74      // appropriate incoming values.
75      PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
76                                       PrologEnd->getTerminator());
77      // Adding a value to the new PHI node from the original loop preheader.
78      // This is the value that skips all the prolog code.
79      if (L->contains(PN)) {
80        NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
81      } else {
82        NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
83      }
84
85      Value *V = PN->getIncomingValueForBlock(Latch);
86      if (Instruction *I = dyn_cast<Instruction>(V)) {
87        if (L->contains(I)) {
88          V = LVMap[I];
89        }
90      }
91      // Adding a value to the new PHI node from the last prolog block
92      // that was created.
93      NewPN->addIncoming(V, LastPrologBB);
94
95      // Update the existing PHI node operand with the value from the
96      // new PHI node.  How this is done depends on if the existing
97      // PHI node is in the original loop block, or the exit block.
98      if (L->contains(PN)) {
99        PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
100      } else {
101        PN->addIncoming(NewPN, PrologEnd);
102      }
103    }
104  }
105
106  // Create a branch around the orignal loop, which is taken if the
107  // trip count is less than the unroll factor.
108  Instruction *InsertPt = PrologEnd->getTerminator();
109  Instruction *BrLoopExit =
110    new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount,
111                 ConstantInt::get(TripCount->getType(), Count));
112  BasicBlock *Exit = L->getUniqueExitBlock();
113  assert(Exit != 0 && "Loop must have a single exit block only");
114  // Split the exit to maintain loop canonicalization guarantees
115  SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
116  if (!Exit->isLandingPad()) {
117    SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P);
118  } else {
119    SmallVector<BasicBlock*, 2> NewBBs;
120    SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa",
121                                P, NewBBs);
122  }
123  // Add the branch to the exit block (around the unrolled loop)
124  BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
125  InsertPt->eraseFromParent();
126}
127
128/// Create a clone of the blocks in a loop and connect them together.
129/// This function doesn't create a clone of the loop structure.
130///
131/// There are two value maps that are defined and used.  VMap is
132/// for the values in the current loop instance.  LVMap contains
133/// the values from the last loop instance.  We need the LVMap values
134/// to update the initial values for the current loop instance.
135///
136static void CloneLoopBlocks(Loop *L,
137                            bool FirstCopy,
138                            BasicBlock *InsertTop,
139                            BasicBlock *InsertBot,
140                            std::vector<BasicBlock *> &NewBlocks,
141                            LoopBlocksDFS &LoopBlocks,
142                            ValueToValueMapTy &VMap,
143                            ValueToValueMapTy &LVMap,
144                            LoopInfo *LI) {
145
146  BasicBlock *Preheader = L->getLoopPreheader();
147  BasicBlock *Header = L->getHeader();
148  BasicBlock *Latch = L->getLoopLatch();
149  Function *F = Header->getParent();
150  LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
151  LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
152  // For each block in the original loop, create a new copy,
153  // and update the value map with the newly created values.
154  for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
155    BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".unr", F);
156    NewBlocks.push_back(NewBB);
157
158    if (Loop *ParentLoop = L->getParentLoop())
159      ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
160
161    VMap[*BB] = NewBB;
162    if (Header == *BB) {
163      // For the first block, add a CFG connection to this newly
164      // created block
165      InsertTop->getTerminator()->setSuccessor(0, NewBB);
166
167      // Change the incoming values to the ones defined in the
168      // previously cloned loop.
169      for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
170        PHINode *NewPHI = cast<PHINode>(VMap[I]);
171        if (FirstCopy) {
172          // We replace the first phi node with the value from the preheader
173          VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
174          NewBB->getInstList().erase(NewPHI);
175        } else {
176          // Update VMap with values from the previous block
177          unsigned idx = NewPHI->getBasicBlockIndex(Latch);
178          Value *InVal = NewPHI->getIncomingValue(idx);
179          if (Instruction *I = dyn_cast<Instruction>(InVal))
180            if (L->contains(I))
181              InVal = LVMap[InVal];
182          NewPHI->setIncomingValue(idx, InVal);
183          NewPHI->setIncomingBlock(idx, InsertTop);
184        }
185      }
186    }
187
188    if (Latch == *BB) {
189      VMap.erase((*BB)->getTerminator());
190      NewBB->getTerminator()->eraseFromParent();
191      BranchInst::Create(InsertBot, NewBB);
192    }
193  }
194  // LastValueMap is updated with the values for the current loop
195  // which are used the next time this function is called.
196  for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
197       VI != VE; ++VI) {
198    LVMap[VI->first] = VI->second;
199  }
200}
201
202/// Insert code in the prolog code when unrolling a loop with a
203/// run-time trip-count.
204///
205/// This method assumes that the loop unroll factor is total number
206/// of loop bodes in the loop after unrolling. (Some folks refer
207/// to the unroll factor as the number of *extra* copies added).
208/// We assume also that the loop unroll factor is a power-of-two. So, after
209/// unrolling the loop, the number of loop bodies executed is 2,
210/// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
211/// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
212/// the switch instruction is generated.
213///
214///    extraiters = tripcount % loopfactor
215///    if (extraiters == 0) jump Loop:
216///    if (extraiters == loopfactor) jump L1
217///    if (extraiters == loopfactor-1) jump L2
218///    ...
219///    L1:  LoopBody;
220///    L2:  LoopBody;
221///    ...
222///    if tripcount < loopfactor jump End
223///    Loop:
224///    ...
225///    End:
226///
227bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
228                                   LPPassManager *LPM) {
229  // for now, only unroll loops that contain a single exit
230  if (!L->getExitingBlock())
231    return false;
232
233  // Make sure the loop is in canonical form, and there is a single
234  // exit block only.
235  if (!L->isLoopSimplifyForm() || L->getUniqueExitBlock() == 0)
236    return false;
237
238  // Use Scalar Evolution to compute the trip count.  This allows more
239  // loops to be unrolled than relying on induction var simplification
240  if (!LPM)
241    return false;
242  ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
243  if (SE == 0)
244    return false;
245
246  // Only unroll loops with a computable trip count and the trip count needs
247  // to be an int value (allowing a pointer type is a TODO item)
248  const SCEV *BECount = SE->getBackedgeTakenCount(L);
249  if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
250    return false;
251
252  // Add 1 since the backedge count doesn't include the first loop iteration
253  const SCEV *TripCountSC =
254    SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
255  if (isa<SCEVCouldNotCompute>(TripCountSC))
256    return false;
257
258  // We only handle cases when the unroll factor is a power of 2.
259  // Count is the loop unroll factor, the number of extra copies added + 1.
260  if ((Count & (Count-1)) != 0)
261    return false;
262
263  // If this loop is nested, then the loop unroller changes the code in
264  // parent loop, so the Scalar Evolution pass needs to be run again
265  if (Loop *ParentLoop = L->getParentLoop())
266    SE->forgetLoop(ParentLoop);
267
268  BasicBlock *PH = L->getLoopPreheader();
269  BasicBlock *Header = L->getHeader();
270  BasicBlock *Latch = L->getLoopLatch();
271  // It helps to splits the original preheader twice, one for the end of the
272  // prolog code and one for a new loop preheader
273  BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
274  BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass());
275  BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
276
277  // Compute the number of extra iterations required, which is:
278  //  extra iterations = run-time trip count % (loop unroll factor + 1)
279  SCEVExpander Expander(*SE, "loop-unroll");
280  Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
281                                            PreHeaderBR);
282  Type *CountTy = TripCount->getType();
283  BinaryOperator *ModVal =
284    BinaryOperator::CreateURem(TripCount,
285                               ConstantInt::get(CountTy, Count),
286                               "xtraiter");
287  ModVal->insertBefore(PreHeaderBR);
288
289  // Check if for no extra iterations, then jump to unrolled loop
290  Value *BranchVal = new ICmpInst(PreHeaderBR,
291                                  ICmpInst::ICMP_NE, ModVal,
292                                  ConstantInt::get(CountTy, 0), "lcmp");
293  // Branch to either the extra iterations or the unrolled loop
294  // We will fix up the true branch label when adding loop body copies
295  BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
296  assert(PreHeaderBR->isUnconditional() &&
297         PreHeaderBR->getSuccessor(0) == PEnd &&
298         "CFG edges in Preheader are not correct");
299  PreHeaderBR->eraseFromParent();
300
301  ValueToValueMapTy LVMap;
302  Function *F = Header->getParent();
303  // These variables are used to update the CFG links in each iteration
304  BasicBlock *CompareBB = 0;
305  BasicBlock *LastLoopBB = PH;
306  // Get an ordered list of blocks in the loop to help with the ordering of the
307  // cloned blocks in the prolog code
308  LoopBlocksDFS LoopBlocks(L);
309  LoopBlocks.perform(LI);
310
311  //
312  // For each extra loop iteration, create a copy of the loop's basic blocks
313  // and generate a condition that branches to the copy depending on the
314  // number of 'left over' iterations.
315  //
316  for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) {
317    std::vector<BasicBlock*> NewBlocks;
318    ValueToValueMapTy VMap;
319
320    // Clone all the basic blocks in the loop, but we don't clone the loop
321    // This function adds the appropriate CFG connections.
322    CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks,
323                    LoopBlocks, VMap, LVMap, LI);
324    LastLoopBB = cast<BasicBlock>(VMap[Latch]);
325
326    // Insert the cloned blocks into function just before the original loop
327    F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(),
328                                  NewBlocks[0], F->end());
329
330    // Generate the code for the comparison which determines if the loop
331    // prolog code needs to be executed.
332    if (leftOverIters == Count-1) {
333      // There is no compare block for the fall-thru case when for the last
334      // left over iteration
335      CompareBB = NewBlocks[0];
336    } else {
337      // Create a new block for the comparison
338      BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp",
339                                             F, CompareBB);
340      if (Loop *ParentLoop = L->getParentLoop()) {
341        // Add the new block to the parent loop, if needed
342        ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
343      }
344
345      // The comparison w/ the extra iteration value and branch
346      Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal,
347                                      ConstantInt::get(CountTy, leftOverIters),
348                                      "un.tmp");
349      // Branch to either the extra iterations or the unrolled loop
350      BranchInst::Create(NewBlocks[0], CompareBB,
351                         BranchVal, NewBB);
352      CompareBB = NewBB;
353      PH->getTerminator()->setSuccessor(0, NewBB);
354      VMap[NewPH] = CompareBB;
355    }
356
357    // Rewrite the cloned instruction operands to use the values
358    // created when the clone is created.
359    for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
360      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
361             E = NewBlocks[i]->end(); I != E; ++I) {
362        RemapInstruction(I, VMap,
363                         RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
364      }
365    }
366  }
367
368  // Connect the prolog code to the original loop and update the
369  // PHI functions.
370  ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap,
371                LPM->getAsPass());
372  NumRuntimeUnrolled++;
373  return true;
374}
375