1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/DerivedTypes.h"
33#include "llvm/Function.h"
34#include "llvm/Instructions.h"
35#include "llvm/Analysis/CodeMetrics.h"
36#include "llvm/Analysis/InstructionSimplify.h"
37#include "llvm/Analysis/LoopInfo.h"
38#include "llvm/Analysis/LoopPass.h"
39#include "llvm/Analysis/Dominators.h"
40#include "llvm/Analysis/ScalarEvolution.h"
41#include "llvm/Transforms/Utils/Cloning.h"
42#include "llvm/Transforms/Utils/Local.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/SmallPtrSet.h"
46#include "llvm/ADT/STLExtras.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/raw_ostream.h"
50#include <algorithm>
51#include <map>
52#include <set>
53using namespace llvm;
54
55STATISTIC(NumBranches, "Number of branches unswitched");
56STATISTIC(NumSwitches, "Number of switches unswitched");
57STATISTIC(NumSelects , "Number of selects unswitched");
58STATISTIC(NumTrivial , "Number of unswitches that are trivial");
59STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
60STATISTIC(TotalInsts,  "Total number of instructions analyzed");
61
62// The specific value of 100 here was chosen based only on intuition and a
63// few specific examples.
64static cl::opt<unsigned>
65Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
66          cl::init(100), cl::Hidden);
67
68namespace {
69
70  class LUAnalysisCache {
71
72    typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
73      UnswitchedValsMap;
74
75    typedef UnswitchedValsMap::iterator UnswitchedValsIt;
76
77    struct LoopProperties {
78      unsigned CanBeUnswitchedCount;
79      unsigned SizeEstimation;
80      UnswitchedValsMap UnswitchedVals;
81    };
82
83    // Here we use std::map instead of DenseMap, since we need to keep valid
84    // LoopProperties pointer for current loop for better performance.
85    typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
86    typedef LoopPropsMap::iterator LoopPropsMapIt;
87
88    LoopPropsMap LoopsProperties;
89    UnswitchedValsMap* CurLoopInstructions;
90    LoopProperties* CurrentLoopProperties;
91
92    // Max size of code we can produce on remained iterations.
93    unsigned MaxSize;
94
95    public:
96
97      LUAnalysisCache() :
98        CurLoopInstructions(NULL), CurrentLoopProperties(NULL),
99        MaxSize(Threshold)
100      {}
101
102      // Analyze loop. Check its size, calculate is it possible to unswitch
103      // it. Returns true if we can unswitch this loop.
104      bool countLoop(const Loop* L);
105
106      // Clean all data related to given loop.
107      void forgetLoop(const Loop* L);
108
109      // Mark case value as unswitched.
110      // Since SI instruction can be partly unswitched, in order to avoid
111      // extra unswitching in cloned loops keep track all unswitched values.
112      void setUnswitched(const SwitchInst* SI, const Value* V);
113
114      // Check was this case value unswitched before or not.
115      bool isUnswitched(const SwitchInst* SI, const Value* V);
116
117      // Clone all loop-unswitch related loop properties.
118      // Redistribute unswitching quotas.
119      // Note, that new loop data is stored inside the VMap.
120      void cloneData(const Loop* NewLoop, const Loop* OldLoop,
121                     const ValueToValueMapTy& VMap);
122  };
123
124  class LoopUnswitch : public LoopPass {
125    LoopInfo *LI;  // Loop information
126    LPPassManager *LPM;
127
128    // LoopProcessWorklist - Used to check if second loop needs processing
129    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
130    std::vector<Loop*> LoopProcessWorklist;
131
132    LUAnalysisCache BranchesInfo;
133
134    bool OptimizeForSize;
135    bool redoLoop;
136
137    Loop *currentLoop;
138    DominatorTree *DT;
139    BasicBlock *loopHeader;
140    BasicBlock *loopPreheader;
141
142    // LoopBlocks contains all of the basic blocks of the loop, including the
143    // preheader of the loop, the body of the loop, and the exit blocks of the
144    // loop, in that order.
145    std::vector<BasicBlock*> LoopBlocks;
146    // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
147    std::vector<BasicBlock*> NewBlocks;
148
149  public:
150    static char ID; // Pass ID, replacement for typeid
151    explicit LoopUnswitch(bool Os = false) :
152      LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
153      currentLoop(NULL), DT(NULL), loopHeader(NULL),
154      loopPreheader(NULL) {
155        initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
156      }
157
158    bool runOnLoop(Loop *L, LPPassManager &LPM);
159    bool processCurrentLoop();
160
161    /// This transformation requires natural loop information & requires that
162    /// loop preheaders be inserted into the CFG.
163    ///
164    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
165      AU.addRequiredID(LoopSimplifyID);
166      AU.addPreservedID(LoopSimplifyID);
167      AU.addRequired<LoopInfo>();
168      AU.addPreserved<LoopInfo>();
169      AU.addRequiredID(LCSSAID);
170      AU.addPreservedID(LCSSAID);
171      AU.addPreserved<DominatorTree>();
172      AU.addPreserved<ScalarEvolution>();
173    }
174
175  private:
176
177    virtual void releaseMemory() {
178      BranchesInfo.forgetLoop(currentLoop);
179    }
180
181    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
182    /// remove it.
183    void RemoveLoopFromWorklist(Loop *L) {
184      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
185                                                 LoopProcessWorklist.end(), L);
186      if (I != LoopProcessWorklist.end())
187        LoopProcessWorklist.erase(I);
188    }
189
190    void initLoopData() {
191      loopHeader = currentLoop->getHeader();
192      loopPreheader = currentLoop->getLoopPreheader();
193    }
194
195    /// Split all of the edges from inside the loop to their exit blocks.
196    /// Update the appropriate Phi nodes as we do so.
197    void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
198
199    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
200    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
201                                  BasicBlock *ExitBlock);
202    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
203
204    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
205                                              Constant *Val, bool isEqual);
206
207    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
208                                        BasicBlock *TrueDest,
209                                        BasicBlock *FalseDest,
210                                        Instruction *InsertPt);
211
212    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
213    void RemoveBlockIfDead(BasicBlock *BB,
214                           std::vector<Instruction*> &Worklist, Loop *l);
215    void RemoveLoopFromHierarchy(Loop *L);
216    bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
217                                    BasicBlock **LoopExit = 0);
218
219  };
220}
221
222// Analyze loop. Check its size, calculate is it possible to unswitch
223// it. Returns true if we can unswitch this loop.
224bool LUAnalysisCache::countLoop(const Loop* L) {
225
226  std::pair<LoopPropsMapIt, bool> InsertRes =
227      LoopsProperties.insert(std::make_pair(L, LoopProperties()));
228
229  LoopProperties& Props = InsertRes.first->second;
230
231  if (InsertRes.second) {
232    // New loop.
233
234    // Limit the number of instructions to avoid causing significant code
235    // expansion, and the number of basic blocks, to avoid loops with
236    // large numbers of branches which cause loop unswitching to go crazy.
237    // This is a very ad-hoc heuristic.
238
239    // FIXME: This is overly conservative because it does not take into
240    // consideration code simplification opportunities and code that can
241    // be shared by the resultant unswitched loops.
242    CodeMetrics Metrics;
243    for (Loop::block_iterator I = L->block_begin(),
244           E = L->block_end();
245         I != E; ++I)
246      Metrics.analyzeBasicBlock(*I);
247
248    Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5);
249    Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
250    MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
251  }
252
253  if (!Props.CanBeUnswitchedCount) {
254    DEBUG(dbgs() << "NOT unswitching loop %"
255          << L->getHeader()->getName() << ", cost too high: "
256          << L->getBlocks().size() << "\n");
257
258    return false;
259  }
260
261  // Be careful. This links are good only before new loop addition.
262  CurrentLoopProperties = &Props;
263  CurLoopInstructions = &Props.UnswitchedVals;
264
265  return true;
266}
267
268// Clean all data related to given loop.
269void LUAnalysisCache::forgetLoop(const Loop* L) {
270
271  LoopPropsMapIt LIt = LoopsProperties.find(L);
272
273  if (LIt != LoopsProperties.end()) {
274    LoopProperties& Props = LIt->second;
275    MaxSize += Props.CanBeUnswitchedCount * Props.SizeEstimation;
276    LoopsProperties.erase(LIt);
277  }
278
279  CurrentLoopProperties = NULL;
280  CurLoopInstructions = NULL;
281}
282
283// Mark case value as unswitched.
284// Since SI instruction can be partly unswitched, in order to avoid
285// extra unswitching in cloned loops keep track all unswitched values.
286void LUAnalysisCache::setUnswitched(const SwitchInst* SI, const Value* V) {
287  (*CurLoopInstructions)[SI].insert(V);
288}
289
290// Check was this case value unswitched before or not.
291bool LUAnalysisCache::isUnswitched(const SwitchInst* SI, const Value* V) {
292  return (*CurLoopInstructions)[SI].count(V);
293}
294
295// Clone all loop-unswitch related loop properties.
296// Redistribute unswitching quotas.
297// Note, that new loop data is stored inside the VMap.
298void LUAnalysisCache::cloneData(const Loop* NewLoop, const Loop* OldLoop,
299                     const ValueToValueMapTy& VMap) {
300
301  LoopProperties& NewLoopProps = LoopsProperties[NewLoop];
302  LoopProperties& OldLoopProps = *CurrentLoopProperties;
303  UnswitchedValsMap& Insts = OldLoopProps.UnswitchedVals;
304
305  // Reallocate "can-be-unswitched quota"
306
307  --OldLoopProps.CanBeUnswitchedCount;
308  unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
309  NewLoopProps.CanBeUnswitchedCount = Quota / 2;
310  OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
311
312  NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
313
314  // Clone unswitched values info:
315  // for new loop switches we clone info about values that was
316  // already unswitched and has redundant successors.
317  for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
318    const SwitchInst* OldInst = I->first;
319    Value* NewI = VMap.lookup(OldInst);
320    const SwitchInst* NewInst = cast_or_null<SwitchInst>(NewI);
321    assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
322
323    NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
324  }
325}
326
327char LoopUnswitch::ID = 0;
328INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
329                      false, false)
330INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
331INITIALIZE_PASS_DEPENDENCY(LoopInfo)
332INITIALIZE_PASS_DEPENDENCY(LCSSA)
333INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
334                      false, false)
335
336Pass *llvm::createLoopUnswitchPass(bool Os) {
337  return new LoopUnswitch(Os);
338}
339
340/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
341/// invariant in the loop, or has an invariant piece, return the invariant.
342/// Otherwise, return null.
343static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
344
345  // We started analyze new instruction, increment scanned instructions counter.
346  ++TotalInsts;
347
348  // We can never unswitch on vector conditions.
349  if (Cond->getType()->isVectorTy())
350    return 0;
351
352  // Constants should be folded, not unswitched on!
353  if (isa<Constant>(Cond)) return 0;
354
355  // TODO: Handle: br (VARIANT|INVARIANT).
356
357  // Hoist simple values out.
358  if (L->makeLoopInvariant(Cond, Changed))
359    return Cond;
360
361  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
362    if (BO->getOpcode() == Instruction::And ||
363        BO->getOpcode() == Instruction::Or) {
364      // If either the left or right side is invariant, we can unswitch on this,
365      // which will cause the branch to go away in one loop and the condition to
366      // simplify in the other one.
367      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
368        return LHS;
369      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
370        return RHS;
371    }
372
373  return 0;
374}
375
376bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
377  LI = &getAnalysis<LoopInfo>();
378  LPM = &LPM_Ref;
379  DT = getAnalysisIfAvailable<DominatorTree>();
380  currentLoop = L;
381  Function *F = currentLoop->getHeader()->getParent();
382  bool Changed = false;
383  do {
384    assert(currentLoop->isLCSSAForm(*DT));
385    redoLoop = false;
386    Changed |= processCurrentLoop();
387  } while(redoLoop);
388
389  if (Changed) {
390    // FIXME: Reconstruct dom info, because it is not preserved properly.
391    if (DT)
392      DT->runOnFunction(*F);
393  }
394  return Changed;
395}
396
397/// processCurrentLoop - Do actual work and unswitch loop if possible
398/// and profitable.
399bool LoopUnswitch::processCurrentLoop() {
400  bool Changed = false;
401
402  initLoopData();
403
404  // If LoopSimplify was unable to form a preheader, don't do any unswitching.
405  if (!loopPreheader)
406    return false;
407
408  // Loops with indirectbr cannot be cloned.
409  if (!currentLoop->isSafeToClone())
410    return false;
411
412  // Without dedicated exits, splitting the exit edge may fail.
413  if (!currentLoop->hasDedicatedExits())
414    return false;
415
416  LLVMContext &Context = loopHeader->getContext();
417
418  // Probably we reach the quota of branches for this loop. If so
419  // stop unswitching.
420  if (!BranchesInfo.countLoop(currentLoop))
421    return false;
422
423  // Loop over all of the basic blocks in the loop.  If we find an interior
424  // block that is branching on a loop-invariant condition, we can unswitch this
425  // loop.
426  for (Loop::block_iterator I = currentLoop->block_begin(),
427         E = currentLoop->block_end(); I != E; ++I) {
428    TerminatorInst *TI = (*I)->getTerminator();
429    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
430      // If this isn't branching on an invariant condition, we can't unswitch
431      // it.
432      if (BI->isConditional()) {
433        // See if this, or some part of it, is loop invariant.  If so, we can
434        // unswitch on it if we desire.
435        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
436                                               currentLoop, Changed);
437        if (LoopCond && UnswitchIfProfitable(LoopCond,
438                                             ConstantInt::getTrue(Context))) {
439          ++NumBranches;
440          return true;
441        }
442      }
443    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
444      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
445                                             currentLoop, Changed);
446      unsigned NumCases = SI->getNumCases();
447      if (LoopCond && NumCases) {
448        // Find a value to unswitch on:
449        // FIXME: this should chose the most expensive case!
450        // FIXME: scan for a case with a non-critical edge?
451        Constant *UnswitchVal = NULL;
452
453        // Do not process same value again and again.
454        // At this point we have some cases already unswitched and
455        // some not yet unswitched. Let's find the first not yet unswitched one.
456        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
457             i != e; ++i) {
458          Constant* UnswitchValCandidate = i.getCaseValue();
459          if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
460            UnswitchVal = UnswitchValCandidate;
461            break;
462          }
463        }
464
465        if (!UnswitchVal)
466          continue;
467
468        if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
469          ++NumSwitches;
470          return true;
471        }
472      }
473    }
474
475    // Scan the instructions to check for unswitchable values.
476    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
477         BBI != E; ++BBI)
478      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
479        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
480                                               currentLoop, Changed);
481        if (LoopCond && UnswitchIfProfitable(LoopCond,
482                                             ConstantInt::getTrue(Context))) {
483          ++NumSelects;
484          return true;
485        }
486      }
487  }
488  return Changed;
489}
490
491/// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
492/// loop with no side effects (including infinite loops).
493///
494/// If true, we return true and set ExitBB to the block we
495/// exit through.
496///
497static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
498                                         BasicBlock *&ExitBB,
499                                         std::set<BasicBlock*> &Visited) {
500  if (!Visited.insert(BB).second) {
501    // Already visited. Without more analysis, this could indicate an infinite
502    // loop.
503    return false;
504  } else if (!L->contains(BB)) {
505    // Otherwise, this is a loop exit, this is fine so long as this is the
506    // first exit.
507    if (ExitBB != 0) return false;
508    ExitBB = BB;
509    return true;
510  }
511
512  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
513  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
514    // Check to see if the successor is a trivial loop exit.
515    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
516      return false;
517  }
518
519  // Okay, everything after this looks good, check to make sure that this block
520  // doesn't include any side effects.
521  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
522    if (I->mayHaveSideEffects())
523      return false;
524
525  return true;
526}
527
528/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
529/// leads to an exit from the specified loop, and has no side-effects in the
530/// process.  If so, return the block that is exited to, otherwise return null.
531static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
532  std::set<BasicBlock*> Visited;
533  Visited.insert(L->getHeader());  // Branches to header make infinite loops.
534  BasicBlock *ExitBB = 0;
535  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
536    return ExitBB;
537  return 0;
538}
539
540/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
541/// trivial: that is, that the condition controls whether or not the loop does
542/// anything at all.  If this is a trivial condition, unswitching produces no
543/// code duplications (equivalently, it produces a simpler loop and a new empty
544/// loop, which gets deleted).
545///
546/// If this is a trivial condition, return true, otherwise return false.  When
547/// returning true, this sets Cond and Val to the condition that controls the
548/// trivial condition: when Cond dynamically equals Val, the loop is known to
549/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
550/// Cond == Val.
551///
552bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
553                                       BasicBlock **LoopExit) {
554  BasicBlock *Header = currentLoop->getHeader();
555  TerminatorInst *HeaderTerm = Header->getTerminator();
556  LLVMContext &Context = Header->getContext();
557
558  BasicBlock *LoopExitBB = 0;
559  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
560    // If the header block doesn't end with a conditional branch on Cond, we
561    // can't handle it.
562    if (!BI->isConditional() || BI->getCondition() != Cond)
563      return false;
564
565    // Check to see if a successor of the branch is guaranteed to
566    // exit through a unique exit block without having any
567    // side-effects.  If so, determine the value of Cond that causes it to do
568    // this.
569    if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
570                                             BI->getSuccessor(0)))) {
571      if (Val) *Val = ConstantInt::getTrue(Context);
572    } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
573                                                    BI->getSuccessor(1)))) {
574      if (Val) *Val = ConstantInt::getFalse(Context);
575    }
576  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
577    // If this isn't a switch on Cond, we can't handle it.
578    if (SI->getCondition() != Cond) return false;
579
580    // Check to see if a successor of the switch is guaranteed to go to the
581    // latch block or exit through a one exit block without having any
582    // side-effects.  If so, determine the value of Cond that causes it to do
583    // this.
584    // Note that we can't trivially unswitch on the default case or
585    // on already unswitched cases.
586    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
587         i != e; ++i) {
588      BasicBlock* LoopExitCandidate;
589      if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
590                                               i.getCaseSuccessor()))) {
591        // Okay, we found a trivial case, remember the value that is trivial.
592        ConstantInt* CaseVal = i.getCaseValue();
593
594        // Check that it was not unswitched before, since already unswitched
595        // trivial vals are looks trivial too.
596        if (BranchesInfo.isUnswitched(SI, CaseVal))
597          continue;
598        LoopExitBB = LoopExitCandidate;
599        if (Val) *Val = CaseVal;
600        break;
601      }
602    }
603  }
604
605  // If we didn't find a single unique LoopExit block, or if the loop exit block
606  // contains phi nodes, this isn't trivial.
607  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
608    return false;   // Can't handle this.
609
610  if (LoopExit) *LoopExit = LoopExitBB;
611
612  // We already know that nothing uses any scalar values defined inside of this
613  // loop.  As such, we just have to check to see if this loop will execute any
614  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
615  // part of the loop that the code *would* execute.  We already checked the
616  // tail, check the header now.
617  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
618    if (I->mayHaveSideEffects())
619      return false;
620  return true;
621}
622
623/// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
624/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
625/// unswitch the loop, reprocess the pieces, then return true.
626bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
627  Function *F = loopHeader->getParent();
628  Constant *CondVal = 0;
629  BasicBlock *ExitBlock = 0;
630
631  if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
632    // If the condition is trivial, always unswitch. There is no code growth
633    // for this case.
634    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
635    return true;
636  }
637
638  // Check to see if it would be profitable to unswitch current loop.
639
640  // Do not do non-trivial unswitch while optimizing for size.
641  if (OptimizeForSize || F->getFnAttributes().hasOptimizeForSizeAttr())
642    return false;
643
644  UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
645  return true;
646}
647
648/// CloneLoop - Recursively clone the specified loop and all of its children,
649/// mapping the blocks with the specified map.
650static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
651                       LoopInfo *LI, LPPassManager *LPM) {
652  Loop *New = new Loop();
653  LPM->insertLoop(New, PL);
654
655  // Add all of the blocks in L to the new loop.
656  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
657       I != E; ++I)
658    if (LI->getLoopFor(*I) == L)
659      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
660
661  // Add all of the subloops to the new loop.
662  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
663    CloneLoop(*I, New, VM, LI, LPM);
664
665  return New;
666}
667
668/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
669/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
670/// code immediately before InsertPt.
671void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
672                                                  BasicBlock *TrueDest,
673                                                  BasicBlock *FalseDest,
674                                                  Instruction *InsertPt) {
675  // Insert a conditional branch on LIC to the two preheaders.  The original
676  // code is the true version and the new code is the false version.
677  Value *BranchVal = LIC;
678  if (!isa<ConstantInt>(Val) ||
679      Val->getType() != Type::getInt1Ty(LIC->getContext()))
680    BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
681  else if (Val != ConstantInt::getTrue(Val->getContext()))
682    // We want to enter the new loop when the condition is true.
683    std::swap(TrueDest, FalseDest);
684
685  // Insert the new branch.
686  BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
687
688  // If either edge is critical, split it. This helps preserve LoopSimplify
689  // form for enclosing loops.
690  SplitCriticalEdge(BI, 0, this, false, false, true);
691  SplitCriticalEdge(BI, 1, this, false, false, true);
692}
693
694/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
695/// condition in it (a cond branch from its header block to its latch block,
696/// where the path through the loop that doesn't execute its body has no
697/// side-effects), unswitch it.  This doesn't involve any code duplication, just
698/// moving the conditional branch outside of the loop and updating loop info.
699void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
700                                            Constant *Val,
701                                            BasicBlock *ExitBlock) {
702  DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
703        << loopHeader->getName() << " [" << L->getBlocks().size()
704        << " blocks] in Function " << L->getHeader()->getParent()->getName()
705        << " on cond: " << *Val << " == " << *Cond << "\n");
706
707  // First step, split the preheader, so that we know that there is a safe place
708  // to insert the conditional branch.  We will change loopPreheader to have a
709  // conditional branch on Cond.
710  BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
711
712  // Now that we have a place to insert the conditional branch, create a place
713  // to branch to: this is the exit block out of the loop that we should
714  // short-circuit to.
715
716  // Split this block now, so that the loop maintains its exit block, and so
717  // that the jump from the preheader can execute the contents of the exit block
718  // without actually branching to it (the exit block should be dominated by the
719  // loop header, not the preheader).
720  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
721  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
722
723  // Okay, now we have a position to branch from and a position to branch to,
724  // insert the new conditional branch.
725  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
726                                 loopPreheader->getTerminator());
727  LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
728  loopPreheader->getTerminator()->eraseFromParent();
729
730  // We need to reprocess this loop, it could be unswitched again.
731  redoLoop = true;
732
733  // Now that we know that the loop is never entered when this condition is a
734  // particular value, rewrite the loop with this info.  We know that this will
735  // at least eliminate the old branch.
736  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
737  ++NumTrivial;
738}
739
740/// SplitExitEdges - Split all of the edges from inside the loop to their exit
741/// blocks.  Update the appropriate Phi nodes as we do so.
742void LoopUnswitch::SplitExitEdges(Loop *L,
743                                const SmallVector<BasicBlock *, 8> &ExitBlocks){
744
745  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
746    BasicBlock *ExitBlock = ExitBlocks[i];
747    SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
748                                       pred_end(ExitBlock));
749
750    // Although SplitBlockPredecessors doesn't preserve loop-simplify in
751    // general, if we call it on all predecessors of all exits then it does.
752    if (!ExitBlock->isLandingPad()) {
753      SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", this);
754    } else {
755      SmallVector<BasicBlock*, 2> NewBBs;
756      SplitLandingPadPredecessors(ExitBlock, Preds, ".us-lcssa", ".us-lcssa",
757                                  this, NewBBs);
758    }
759  }
760}
761
762/// UnswitchNontrivialCondition - We determined that the loop is profitable
763/// to unswitch when LIC equal Val.  Split it into loop versions and test the
764/// condition outside of either loop.  Return the loops created as Out1/Out2.
765void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
766                                               Loop *L) {
767  Function *F = loopHeader->getParent();
768  DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
769        << loopHeader->getName() << " [" << L->getBlocks().size()
770        << " blocks] in Function " << F->getName()
771        << " when '" << *Val << "' == " << *LIC << "\n");
772
773  if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
774    SE->forgetLoop(L);
775
776  LoopBlocks.clear();
777  NewBlocks.clear();
778
779  // First step, split the preheader and exit blocks, and add these blocks to
780  // the LoopBlocks list.
781  BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
782  LoopBlocks.push_back(NewPreheader);
783
784  // We want the loop to come after the preheader, but before the exit blocks.
785  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
786
787  SmallVector<BasicBlock*, 8> ExitBlocks;
788  L->getUniqueExitBlocks(ExitBlocks);
789
790  // Split all of the edges from inside the loop to their exit blocks.  Update
791  // the appropriate Phi nodes as we do so.
792  SplitExitEdges(L, ExitBlocks);
793
794  // The exit blocks may have been changed due to edge splitting, recompute.
795  ExitBlocks.clear();
796  L->getUniqueExitBlocks(ExitBlocks);
797
798  // Add exit blocks to the loop blocks.
799  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
800
801  // Next step, clone all of the basic blocks that make up the loop (including
802  // the loop preheader and exit blocks), keeping track of the mapping between
803  // the instructions and blocks.
804  NewBlocks.reserve(LoopBlocks.size());
805  ValueToValueMapTy VMap;
806  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
807    BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
808
809    NewBlocks.push_back(NewBB);
810    VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
811    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
812  }
813
814  // Splice the newly inserted blocks into the function right before the
815  // original preheader.
816  F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
817                                NewBlocks[0], F->end());
818
819  // Now we create the new Loop object for the versioned loop.
820  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
821
822  // Recalculate unswitching quota, inherit simplified switches info for NewBB,
823  // Probably clone more loop-unswitch related loop properties.
824  BranchesInfo.cloneData(NewLoop, L, VMap);
825
826  Loop *ParentLoop = L->getParentLoop();
827  if (ParentLoop) {
828    // Make sure to add the cloned preheader and exit blocks to the parent loop
829    // as well.
830    ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
831  }
832
833  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
834    BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
835    // The new exit block should be in the same loop as the old one.
836    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
837      ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
838
839    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
840           "Exit block should have been split to have one successor!");
841    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
842
843    // If the successor of the exit block had PHI nodes, add an entry for
844    // NewExit.
845    PHINode *PN;
846    for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) {
847      PN = cast<PHINode>(I);
848      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
849      ValueToValueMapTy::iterator It = VMap.find(V);
850      if (It != VMap.end()) V = It->second;
851      PN->addIncoming(V, NewExit);
852    }
853
854    if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
855      PN = PHINode::Create(LPad->getType(), 0, "",
856                           ExitSucc->getFirstInsertionPt());
857
858      for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
859           I != E; ++I) {
860        BasicBlock *BB = *I;
861        LandingPadInst *LPI = BB->getLandingPadInst();
862        LPI->replaceAllUsesWith(PN);
863        PN->addIncoming(LPI, BB);
864      }
865    }
866  }
867
868  // Rewrite the code to refer to itself.
869  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
870    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
871           E = NewBlocks[i]->end(); I != E; ++I)
872      RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
873
874  // Rewrite the original preheader to select between versions of the loop.
875  BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
876  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
877         "Preheader splitting did not work correctly!");
878
879  // Emit the new branch that selects between the two versions of this loop.
880  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
881  LPM->deleteSimpleAnalysisValue(OldBR, L);
882  OldBR->eraseFromParent();
883
884  LoopProcessWorklist.push_back(NewLoop);
885  redoLoop = true;
886
887  // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
888  // deletes the instruction (for example by simplifying a PHI that feeds into
889  // the condition that we're unswitching on), we don't rewrite the second
890  // iteration.
891  WeakVH LICHandle(LIC);
892
893  // Now we rewrite the original code to know that the condition is true and the
894  // new code to know that the condition is false.
895  RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
896
897  // It's possible that simplifying one loop could cause the other to be
898  // changed to another value or a constant.  If its a constant, don't simplify
899  // it.
900  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
901      LICHandle && !isa<Constant>(LICHandle))
902    RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
903}
904
905/// RemoveFromWorklist - Remove all instances of I from the worklist vector
906/// specified.
907static void RemoveFromWorklist(Instruction *I,
908                               std::vector<Instruction*> &Worklist) {
909  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
910                                                     Worklist.end(), I);
911  while (WI != Worklist.end()) {
912    unsigned Offset = WI-Worklist.begin();
913    Worklist.erase(WI);
914    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
915  }
916}
917
918/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
919/// program, replacing all uses with V and update the worklist.
920static void ReplaceUsesOfWith(Instruction *I, Value *V,
921                              std::vector<Instruction*> &Worklist,
922                              Loop *L, LPPassManager *LPM) {
923  DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
924
925  // Add uses to the worklist, which may be dead now.
926  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
927    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
928      Worklist.push_back(Use);
929
930  // Add users to the worklist which may be simplified now.
931  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
932       UI != E; ++UI)
933    Worklist.push_back(cast<Instruction>(*UI));
934  LPM->deleteSimpleAnalysisValue(I, L);
935  RemoveFromWorklist(I, Worklist);
936  I->replaceAllUsesWith(V);
937  I->eraseFromParent();
938  ++NumSimplify;
939}
940
941/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
942/// information, and remove any dead successors it has.
943///
944void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
945                                     std::vector<Instruction*> &Worklist,
946                                     Loop *L) {
947  if (pred_begin(BB) != pred_end(BB)) {
948    // This block isn't dead, since an edge to BB was just removed, see if there
949    // are any easy simplifications we can do now.
950    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
951      // If it has one pred, fold phi nodes in BB.
952      while (isa<PHINode>(BB->begin()))
953        ReplaceUsesOfWith(BB->begin(),
954                          cast<PHINode>(BB->begin())->getIncomingValue(0),
955                          Worklist, L, LPM);
956
957      // If this is the header of a loop and the only pred is the latch, we now
958      // have an unreachable loop.
959      if (Loop *L = LI->getLoopFor(BB))
960        if (loopHeader == BB && L->contains(Pred)) {
961          // Remove the branch from the latch to the header block, this makes
962          // the header dead, which will make the latch dead (because the header
963          // dominates the latch).
964          LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
965          Pred->getTerminator()->eraseFromParent();
966          new UnreachableInst(BB->getContext(), Pred);
967
968          // The loop is now broken, remove it from LI.
969          RemoveLoopFromHierarchy(L);
970
971          // Reprocess the header, which now IS dead.
972          RemoveBlockIfDead(BB, Worklist, L);
973          return;
974        }
975
976      // If pred ends in a uncond branch, add uncond branch to worklist so that
977      // the two blocks will get merged.
978      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
979        if (BI->isUnconditional())
980          Worklist.push_back(BI);
981    }
982    return;
983  }
984
985  DEBUG(dbgs() << "Nuking dead block: " << *BB);
986
987  // Remove the instructions in the basic block from the worklist.
988  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
989    RemoveFromWorklist(I, Worklist);
990
991    // Anything that uses the instructions in this basic block should have their
992    // uses replaced with undefs.
993    // If I is not void type then replaceAllUsesWith undef.
994    // This allows ValueHandlers and custom metadata to adjust itself.
995    if (!I->getType()->isVoidTy())
996      I->replaceAllUsesWith(UndefValue::get(I->getType()));
997  }
998
999  // If this is the edge to the header block for a loop, remove the loop and
1000  // promote all subloops.
1001  if (Loop *BBLoop = LI->getLoopFor(BB)) {
1002    if (BBLoop->getLoopLatch() == BB) {
1003      RemoveLoopFromHierarchy(BBLoop);
1004      if (currentLoop == BBLoop) {
1005        currentLoop = 0;
1006        redoLoop = false;
1007      }
1008    }
1009  }
1010
1011  // Remove the block from the loop info, which removes it from any loops it
1012  // was in.
1013  LI->removeBlock(BB);
1014
1015
1016  // Remove phi node entries in successors for this block.
1017  TerminatorInst *TI = BB->getTerminator();
1018  SmallVector<BasicBlock*, 4> Succs;
1019  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1020    Succs.push_back(TI->getSuccessor(i));
1021    TI->getSuccessor(i)->removePredecessor(BB);
1022  }
1023
1024  // Unique the successors, remove anything with multiple uses.
1025  array_pod_sort(Succs.begin(), Succs.end());
1026  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
1027
1028  // Remove the basic block, including all of the instructions contained in it.
1029  LPM->deleteSimpleAnalysisValue(BB, L);
1030  BB->eraseFromParent();
1031  // Remove successor blocks here that are not dead, so that we know we only
1032  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
1033  // then getting removed before we revisit them, which is badness.
1034  //
1035  for (unsigned i = 0; i != Succs.size(); ++i)
1036    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
1037      // One exception is loop headers.  If this block was the preheader for a
1038      // loop, then we DO want to visit the loop so the loop gets deleted.
1039      // We know that if the successor is a loop header, that this loop had to
1040      // be the preheader: the case where this was the latch block was handled
1041      // above and headers can only have two predecessors.
1042      if (!LI->isLoopHeader(Succs[i])) {
1043        Succs.erase(Succs.begin()+i);
1044        --i;
1045      }
1046    }
1047
1048  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
1049    RemoveBlockIfDead(Succs[i], Worklist, L);
1050}
1051
1052/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
1053/// become unwrapped, either because the backedge was deleted, or because the
1054/// edge into the header was removed.  If the edge into the header from the
1055/// latch block was removed, the loop is unwrapped but subloops are still alive,
1056/// so they just reparent loops.  If the loops are actually dead, they will be
1057/// removed later.
1058void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
1059  LPM->deleteLoopFromQueue(L);
1060  RemoveLoopFromWorklist(L);
1061}
1062
1063// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
1064// the value specified by Val in the specified loop, or we know it does NOT have
1065// that value.  Rewrite any uses of LIC or of properties correlated to it.
1066void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1067                                                        Constant *Val,
1068                                                        bool IsEqual) {
1069  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1070
1071  // FIXME: Support correlated properties, like:
1072  //  for (...)
1073  //    if (li1 < li2)
1074  //      ...
1075  //    if (li1 > li2)
1076  //      ...
1077
1078  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
1079  // selects, switches.
1080  std::vector<Instruction*> Worklist;
1081  LLVMContext &Context = Val->getContext();
1082
1083
1084  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1085  // in the loop with the appropriate one directly.
1086  if (IsEqual || (isa<ConstantInt>(Val) &&
1087      Val->getType()->isIntegerTy(1))) {
1088    Value *Replacement;
1089    if (IsEqual)
1090      Replacement = Val;
1091    else
1092      Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1093                                     !cast<ConstantInt>(Val)->getZExtValue());
1094
1095    for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
1096         UI != E; ++UI) {
1097      Instruction *U = dyn_cast<Instruction>(*UI);
1098      if (!U || !L->contains(U))
1099        continue;
1100      Worklist.push_back(U);
1101    }
1102
1103    for (std::vector<Instruction*>::iterator UI = Worklist.begin();
1104         UI != Worklist.end(); ++UI)
1105      (*UI)->replaceUsesOfWith(LIC, Replacement);
1106
1107    SimplifyCode(Worklist, L);
1108    return;
1109  }
1110
1111  // Otherwise, we don't know the precise value of LIC, but we do know that it
1112  // is certainly NOT "Val".  As such, simplify any uses in the loop that we
1113  // can.  This case occurs when we unswitch switch statements.
1114  for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
1115       UI != E; ++UI) {
1116    Instruction *U = dyn_cast<Instruction>(*UI);
1117    if (!U || !L->contains(U))
1118      continue;
1119
1120    Worklist.push_back(U);
1121
1122    // TODO: We could do other simplifications, for example, turning
1123    // 'icmp eq LIC, Val' -> false.
1124
1125    // If we know that LIC is not Val, use this info to simplify code.
1126    SwitchInst *SI = dyn_cast<SwitchInst>(U);
1127    if (SI == 0 || !isa<ConstantInt>(Val)) continue;
1128
1129    SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
1130    // Default case is live for multiple values.
1131    if (DeadCase == SI->case_default()) continue;
1132
1133    // Found a dead case value.  Don't remove PHI nodes in the
1134    // successor if they become single-entry, those PHI nodes may
1135    // be in the Users list.
1136
1137    BasicBlock *Switch = SI->getParent();
1138    BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1139    BasicBlock *Latch = L->getLoopLatch();
1140
1141    BranchesInfo.setUnswitched(SI, Val);
1142
1143    if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
1144    // If the DeadCase successor dominates the loop latch, then the
1145    // transformation isn't safe since it will delete the sole predecessor edge
1146    // to the latch.
1147    if (Latch && DT->dominates(SISucc, Latch))
1148      continue;
1149
1150    // FIXME: This is a hack.  We need to keep the successor around
1151    // and hooked up so as to preserve the loop structure, because
1152    // trying to update it is complicated.  So instead we preserve the
1153    // loop structure and put the block on a dead code path.
1154    SplitEdge(Switch, SISucc, this);
1155    // Compute the successors instead of relying on the return value
1156    // of SplitEdge, since it may have split the switch successor
1157    // after PHI nodes.
1158    BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1159    BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1160    // Create an "unreachable" destination.
1161    BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1162                                           Switch->getParent(),
1163                                           OldSISucc);
1164    new UnreachableInst(Context, Abort);
1165    // Force the new case destination to branch to the "unreachable"
1166    // block while maintaining a (dead) CFG edge to the old block.
1167    NewSISucc->getTerminator()->eraseFromParent();
1168    BranchInst::Create(Abort, OldSISucc,
1169                       ConstantInt::getTrue(Context), NewSISucc);
1170    // Release the PHI operands for this edge.
1171    for (BasicBlock::iterator II = NewSISucc->begin();
1172         PHINode *PN = dyn_cast<PHINode>(II); ++II)
1173      PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
1174                           UndefValue::get(PN->getType()));
1175    // Tell the domtree about the new block. We don't fully update the
1176    // domtree here -- instead we force it to do a full recomputation
1177    // after the pass is complete -- but we do need to inform it of
1178    // new blocks.
1179    if (DT)
1180      DT->addNewBlock(Abort, NewSISucc);
1181  }
1182
1183  SimplifyCode(Worklist, L);
1184}
1185
1186/// SimplifyCode - Okay, now that we have simplified some instructions in the
1187/// loop, walk over it and constant prop, dce, and fold control flow where
1188/// possible.  Note that this is effectively a very simple loop-structure-aware
1189/// optimizer.  During processing of this loop, L could very well be deleted, so
1190/// it must not be used.
1191///
1192/// FIXME: When the loop optimizer is more mature, separate this out to a new
1193/// pass.
1194///
1195void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1196  while (!Worklist.empty()) {
1197    Instruction *I = Worklist.back();
1198    Worklist.pop_back();
1199
1200    // Simple DCE.
1201    if (isInstructionTriviallyDead(I)) {
1202      DEBUG(dbgs() << "Remove dead instruction '" << *I);
1203
1204      // Add uses to the worklist, which may be dead now.
1205      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1206        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1207          Worklist.push_back(Use);
1208      LPM->deleteSimpleAnalysisValue(I, L);
1209      RemoveFromWorklist(I, Worklist);
1210      I->eraseFromParent();
1211      ++NumSimplify;
1212      continue;
1213    }
1214
1215    // See if instruction simplification can hack this up.  This is common for
1216    // things like "select false, X, Y" after unswitching made the condition be
1217    // 'false'.  TODO: update the domtree properly so we can pass it here.
1218    if (Value *V = SimplifyInstruction(I))
1219      if (LI->replacementPreservesLCSSAForm(I, V)) {
1220        ReplaceUsesOfWith(I, V, Worklist, L, LPM);
1221        continue;
1222      }
1223
1224    // Special case hacks that appear commonly in unswitched code.
1225    if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1226      if (BI->isUnconditional()) {
1227        // If BI's parent is the only pred of the successor, fold the two blocks
1228        // together.
1229        BasicBlock *Pred = BI->getParent();
1230        BasicBlock *Succ = BI->getSuccessor(0);
1231        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1232        if (!SinglePred) continue;  // Nothing to do.
1233        assert(SinglePred == Pred && "CFG broken");
1234
1235        DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1236              << Succ->getName() << "\n");
1237
1238        // Resolve any single entry PHI nodes in Succ.
1239        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1240          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1241
1242        // If Succ has any successors with PHI nodes, update them to have
1243        // entries coming from Pred instead of Succ.
1244        Succ->replaceAllUsesWith(Pred);
1245
1246        // Move all of the successor contents from Succ to Pred.
1247        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1248                                   Succ->end());
1249        LPM->deleteSimpleAnalysisValue(BI, L);
1250        BI->eraseFromParent();
1251        RemoveFromWorklist(BI, Worklist);
1252
1253        // Remove Succ from the loop tree.
1254        LI->removeBlock(Succ);
1255        LPM->deleteSimpleAnalysisValue(Succ, L);
1256        Succ->eraseFromParent();
1257        ++NumSimplify;
1258        continue;
1259      }
1260
1261      if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1262        // Conditional branch.  Turn it into an unconditional branch, then
1263        // remove dead blocks.
1264        continue;  // FIXME: Enable.
1265
1266        DEBUG(dbgs() << "Folded branch: " << *BI);
1267        BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1268        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1269        DeadSucc->removePredecessor(BI->getParent(), true);
1270        Worklist.push_back(BranchInst::Create(LiveSucc, BI));
1271        LPM->deleteSimpleAnalysisValue(BI, L);
1272        BI->eraseFromParent();
1273        RemoveFromWorklist(BI, Worklist);
1274        ++NumSimplify;
1275
1276        RemoveBlockIfDead(DeadSucc, Worklist, L);
1277      }
1278      continue;
1279    }
1280  }
1281}
1282