1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the SSAUpdater to construct the appropriate SSA form for the value.
30//
31//===----------------------------------------------------------------------===//
32
33#define DEBUG_TYPE "licm"
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Constants.h"
36#include "llvm/DerivedTypes.h"
37#include "llvm/IntrinsicInst.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/AliasSetTracker.h"
42#include "llvm/Analysis/ConstantFolding.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Analysis/LoopPass.h"
45#include "llvm/Analysis/Dominators.h"
46#include "llvm/Analysis/ValueTracking.h"
47#include "llvm/Transforms/Utils/Local.h"
48#include "llvm/Transforms/Utils/SSAUpdater.h"
49#include "llvm/Target/TargetData.h"
50#include "llvm/Target/TargetLibraryInfo.h"
51#include "llvm/Support/CFG.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/ADT/Statistic.h"
56#include <algorithm>
57using namespace llvm;
58
59STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
60STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
61STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
62STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
63STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
64
65static cl::opt<bool>
66DisablePromotion("disable-licm-promotion", cl::Hidden,
67                 cl::desc("Disable memory promotion in LICM pass"));
68
69namespace {
70  struct LICM : public LoopPass {
71    static char ID; // Pass identification, replacement for typeid
72    LICM() : LoopPass(ID) {
73      initializeLICMPass(*PassRegistry::getPassRegistry());
74    }
75
76    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
77
78    /// This transformation requires natural loop information & requires that
79    /// loop preheaders be inserted into the CFG...
80    ///
81    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
82      AU.setPreservesCFG();
83      AU.addRequired<DominatorTree>();
84      AU.addRequired<LoopInfo>();
85      AU.addRequiredID(LoopSimplifyID);
86      AU.addRequired<AliasAnalysis>();
87      AU.addPreserved<AliasAnalysis>();
88      AU.addPreserved("scalar-evolution");
89      AU.addPreservedID(LoopSimplifyID);
90      AU.addRequired<TargetLibraryInfo>();
91    }
92
93    bool doFinalization() {
94      assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
95      return false;
96    }
97
98  private:
99    AliasAnalysis *AA;       // Current AliasAnalysis information
100    LoopInfo      *LI;       // Current LoopInfo
101    DominatorTree *DT;       // Dominator Tree for the current Loop.
102
103    TargetData *TD;          // TargetData for constant folding.
104    TargetLibraryInfo *TLI;  // TargetLibraryInfo for constant folding.
105
106    // State that is updated as we process loops.
107    bool Changed;            // Set to true when we change anything.
108    BasicBlock *Preheader;   // The preheader block of the current loop...
109    Loop *CurLoop;           // The current loop we are working on...
110    AliasSetTracker *CurAST; // AliasSet information for the current loop...
111    bool MayThrow;           // The current loop contains an instruction which
112                             // may throw, thus preventing code motion of
113                             // instructions with side effects.
114    DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
115
116    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
117    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
118
119    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
120    /// set.
121    void deleteAnalysisValue(Value *V, Loop *L);
122
123    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
124    /// dominated by the specified block, and that are in the current loop) in
125    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
126    /// visit uses before definitions, allowing us to sink a loop body in one
127    /// pass without iteration.
128    ///
129    void SinkRegion(DomTreeNode *N);
130
131    /// HoistRegion - Walk the specified region of the CFG (defined by all
132    /// blocks dominated by the specified block, and that are in the current
133    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
134    /// visit definitions before uses, allowing us to hoist a loop body in one
135    /// pass without iteration.
136    ///
137    void HoistRegion(DomTreeNode *N);
138
139    /// inSubLoop - Little predicate that returns true if the specified basic
140    /// block is in a subloop of the current one, not the current one itself.
141    ///
142    bool inSubLoop(BasicBlock *BB) {
143      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
144      return LI->getLoopFor(BB) != CurLoop;
145    }
146
147    /// sink - When an instruction is found to only be used outside of the loop,
148    /// this function moves it to the exit blocks and patches up SSA form as
149    /// needed.
150    ///
151    void sink(Instruction &I);
152
153    /// hoist - When an instruction is found to only use loop invariant operands
154    /// that is safe to hoist, this instruction is called to do the dirty work.
155    ///
156    void hoist(Instruction &I);
157
158    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
159    /// is not a trapping instruction or if it is a trapping instruction and is
160    /// guaranteed to execute.
161    ///
162    bool isSafeToExecuteUnconditionally(Instruction &I);
163
164    /// isGuaranteedToExecute - Check that the instruction is guaranteed to
165    /// execute.
166    ///
167    bool isGuaranteedToExecute(Instruction &I);
168
169    /// pointerInvalidatedByLoop - Return true if the body of this loop may
170    /// store into the memory location pointed to by V.
171    ///
172    bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
173                                  const MDNode *TBAAInfo) {
174      // Check to see if any of the basic blocks in CurLoop invalidate *V.
175      return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
176    }
177
178    bool canSinkOrHoistInst(Instruction &I);
179    bool isNotUsedInLoop(Instruction &I);
180
181    void PromoteAliasSet(AliasSet &AS,
182                         SmallVectorImpl<BasicBlock*> &ExitBlocks,
183                         SmallVectorImpl<Instruction*> &InsertPts);
184  };
185}
186
187char LICM::ID = 0;
188INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
189INITIALIZE_PASS_DEPENDENCY(DominatorTree)
190INITIALIZE_PASS_DEPENDENCY(LoopInfo)
191INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
192INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
193INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
194INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
195
196Pass *llvm::createLICMPass() { return new LICM(); }
197
198/// Hoist expressions out of the specified loop. Note, alias info for inner
199/// loop is not preserved so it is not a good idea to run LICM multiple
200/// times on one loop.
201///
202bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
203  Changed = false;
204
205  // Get our Loop and Alias Analysis information...
206  LI = &getAnalysis<LoopInfo>();
207  AA = &getAnalysis<AliasAnalysis>();
208  DT = &getAnalysis<DominatorTree>();
209
210  TD = getAnalysisIfAvailable<TargetData>();
211  TLI = &getAnalysis<TargetLibraryInfo>();
212
213  CurAST = new AliasSetTracker(*AA);
214  // Collect Alias info from subloops.
215  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
216       LoopItr != LoopItrE; ++LoopItr) {
217    Loop *InnerL = *LoopItr;
218    AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
219    assert(InnerAST && "Where is my AST?");
220
221    // What if InnerLoop was modified by other passes ?
222    CurAST->add(*InnerAST);
223
224    // Once we've incorporated the inner loop's AST into ours, we don't need the
225    // subloop's anymore.
226    delete InnerAST;
227    LoopToAliasSetMap.erase(InnerL);
228  }
229
230  CurLoop = L;
231
232  // Get the preheader block to move instructions into...
233  Preheader = L->getLoopPreheader();
234
235  // Loop over the body of this loop, looking for calls, invokes, and stores.
236  // Because subloops have already been incorporated into AST, we skip blocks in
237  // subloops.
238  //
239  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
240       I != E; ++I) {
241    BasicBlock *BB = *I;
242    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops.
243      CurAST->add(*BB);                 // Incorporate the specified basic block
244  }
245
246  MayThrow = false;
247  // TODO: We've already searched for instructions which may throw in subloops.
248  // We may want to reuse this information.
249  for (Loop::block_iterator BB = L->block_begin(), BBE = L->block_end();
250       (BB != BBE) && !MayThrow ; ++BB)
251    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end();
252         (I != E) && !MayThrow; ++I)
253      MayThrow |= I->mayThrow();
254
255  // We want to visit all of the instructions in this loop... that are not parts
256  // of our subloops (they have already had their invariants hoisted out of
257  // their loop, into this loop, so there is no need to process the BODIES of
258  // the subloops).
259  //
260  // Traverse the body of the loop in depth first order on the dominator tree so
261  // that we are guaranteed to see definitions before we see uses.  This allows
262  // us to sink instructions in one pass, without iteration.  After sinking
263  // instructions, we perform another pass to hoist them out of the loop.
264  //
265  if (L->hasDedicatedExits())
266    SinkRegion(DT->getNode(L->getHeader()));
267  if (Preheader)
268    HoistRegion(DT->getNode(L->getHeader()));
269
270  // Now that all loop invariants have been removed from the loop, promote any
271  // memory references to scalars that we can.
272  if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
273    SmallVector<BasicBlock *, 8> ExitBlocks;
274    SmallVector<Instruction *, 8> InsertPts;
275
276    // Loop over all of the alias sets in the tracker object.
277    for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
278         I != E; ++I)
279      PromoteAliasSet(*I, ExitBlocks, InsertPts);
280  }
281
282  // Clear out loops state information for the next iteration
283  CurLoop = 0;
284  Preheader = 0;
285
286  // If this loop is nested inside of another one, save the alias information
287  // for when we process the outer loop.
288  if (L->getParentLoop())
289    LoopToAliasSetMap[L] = CurAST;
290  else
291    delete CurAST;
292  return Changed;
293}
294
295/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
296/// dominated by the specified block, and that are in the current loop) in
297/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
298/// uses before definitions, allowing us to sink a loop body in one pass without
299/// iteration.
300///
301void LICM::SinkRegion(DomTreeNode *N) {
302  assert(N != 0 && "Null dominator tree node?");
303  BasicBlock *BB = N->getBlock();
304
305  // If this subregion is not in the top level loop at all, exit.
306  if (!CurLoop->contains(BB)) return;
307
308  // We are processing blocks in reverse dfo, so process children first.
309  const std::vector<DomTreeNode*> &Children = N->getChildren();
310  for (unsigned i = 0, e = Children.size(); i != e; ++i)
311    SinkRegion(Children[i]);
312
313  // Only need to process the contents of this block if it is not part of a
314  // subloop (which would already have been processed).
315  if (inSubLoop(BB)) return;
316
317  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
318    Instruction &I = *--II;
319
320    // If the instruction is dead, we would try to sink it because it isn't used
321    // in the loop, instead, just delete it.
322    if (isInstructionTriviallyDead(&I, TLI)) {
323      DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
324      ++II;
325      CurAST->deleteValue(&I);
326      I.eraseFromParent();
327      Changed = true;
328      continue;
329    }
330
331    // Check to see if we can sink this instruction to the exit blocks
332    // of the loop.  We can do this if the all users of the instruction are
333    // outside of the loop.  In this case, it doesn't even matter if the
334    // operands of the instruction are loop invariant.
335    //
336    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
337      ++II;
338      sink(I);
339    }
340  }
341}
342
343/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
344/// dominated by the specified block, and that are in the current loop) in depth
345/// first order w.r.t the DominatorTree.  This allows us to visit definitions
346/// before uses, allowing us to hoist a loop body in one pass without iteration.
347///
348void LICM::HoistRegion(DomTreeNode *N) {
349  assert(N != 0 && "Null dominator tree node?");
350  BasicBlock *BB = N->getBlock();
351
352  // If this subregion is not in the top level loop at all, exit.
353  if (!CurLoop->contains(BB)) return;
354
355  // Only need to process the contents of this block if it is not part of a
356  // subloop (which would already have been processed).
357  if (!inSubLoop(BB))
358    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
359      Instruction &I = *II++;
360
361      // Try constant folding this instruction.  If all the operands are
362      // constants, it is technically hoistable, but it would be better to just
363      // fold it.
364      if (Constant *C = ConstantFoldInstruction(&I, TD, TLI)) {
365        DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C << '\n');
366        CurAST->copyValue(&I, C);
367        CurAST->deleteValue(&I);
368        I.replaceAllUsesWith(C);
369        I.eraseFromParent();
370        continue;
371      }
372
373      // Try hoisting the instruction out to the preheader.  We can only do this
374      // if all of the operands of the instruction are loop invariant and if it
375      // is safe to hoist the instruction.
376      //
377      if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) &&
378          isSafeToExecuteUnconditionally(I))
379        hoist(I);
380    }
381
382  const std::vector<DomTreeNode*> &Children = N->getChildren();
383  for (unsigned i = 0, e = Children.size(); i != e; ++i)
384    HoistRegion(Children[i]);
385}
386
387/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
388/// instruction.
389///
390bool LICM::canSinkOrHoistInst(Instruction &I) {
391  // Loads have extra constraints we have to verify before we can hoist them.
392  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
393    if (!LI->isUnordered())
394      return false;        // Don't hoist volatile/atomic loads!
395
396    // Loads from constant memory are always safe to move, even if they end up
397    // in the same alias set as something that ends up being modified.
398    if (AA->pointsToConstantMemory(LI->getOperand(0)))
399      return true;
400    if (LI->getMetadata("invariant.load"))
401      return true;
402
403    // Don't hoist loads which have may-aliased stores in loop.
404    uint64_t Size = 0;
405    if (LI->getType()->isSized())
406      Size = AA->getTypeStoreSize(LI->getType());
407    return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
408                                     LI->getMetadata(LLVMContext::MD_tbaa));
409  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
410    // Don't sink or hoist dbg info; it's legal, but not useful.
411    if (isa<DbgInfoIntrinsic>(I))
412      return false;
413
414    // Handle simple cases by querying alias analysis.
415    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
416    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
417      return true;
418    if (AliasAnalysis::onlyReadsMemory(Behavior)) {
419      // If this call only reads from memory and there are no writes to memory
420      // in the loop, we can hoist or sink the call as appropriate.
421      bool FoundMod = false;
422      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
423           I != E; ++I) {
424        AliasSet &AS = *I;
425        if (!AS.isForwardingAliasSet() && AS.isMod()) {
426          FoundMod = true;
427          break;
428        }
429      }
430      if (!FoundMod) return true;
431    }
432
433    // FIXME: This should use mod/ref information to see if we can hoist or
434    // sink the call.
435
436    return false;
437  }
438
439  // Only these instructions are hoistable/sinkable.
440  bool HoistableKind = (isa<BinaryOperator>(I) || isa<CastInst>(I) ||
441                            isa<SelectInst>(I) || isa<GetElementPtrInst>(I) ||
442                            isa<CmpInst>(I)    || isa<InsertElementInst>(I) ||
443                            isa<ExtractElementInst>(I) ||
444                            isa<ShuffleVectorInst>(I));
445  if (!HoistableKind)
446      return false;
447
448  return isSafeToExecuteUnconditionally(I);
449}
450
451/// isNotUsedInLoop - Return true if the only users of this instruction are
452/// outside of the loop.  If this is true, we can sink the instruction to the
453/// exit blocks of the loop.
454///
455bool LICM::isNotUsedInLoop(Instruction &I) {
456  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
457    Instruction *User = cast<Instruction>(*UI);
458    if (PHINode *PN = dyn_cast<PHINode>(User)) {
459      // PHI node uses occur in predecessor blocks!
460      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
461        if (PN->getIncomingValue(i) == &I)
462          if (CurLoop->contains(PN->getIncomingBlock(i)))
463            return false;
464    } else if (CurLoop->contains(User)) {
465      return false;
466    }
467  }
468  return true;
469}
470
471
472/// sink - When an instruction is found to only be used outside of the loop,
473/// this function moves it to the exit blocks and patches up SSA form as needed.
474/// This method is guaranteed to remove the original instruction from its
475/// position, and may either delete it or move it to outside of the loop.
476///
477void LICM::sink(Instruction &I) {
478  DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
479
480  SmallVector<BasicBlock*, 8> ExitBlocks;
481  CurLoop->getUniqueExitBlocks(ExitBlocks);
482
483  if (isa<LoadInst>(I)) ++NumMovedLoads;
484  else if (isa<CallInst>(I)) ++NumMovedCalls;
485  ++NumSunk;
486  Changed = true;
487
488  // The case where there is only a single exit node of this loop is common
489  // enough that we handle it as a special (more efficient) case.  It is more
490  // efficient to handle because there are no PHI nodes that need to be placed.
491  if (ExitBlocks.size() == 1) {
492    if (!DT->dominates(I.getParent(), ExitBlocks[0])) {
493      // Instruction is not used, just delete it.
494      CurAST->deleteValue(&I);
495      // If I has users in unreachable blocks, eliminate.
496      // If I is not void type then replaceAllUsesWith undef.
497      // This allows ValueHandlers and custom metadata to adjust itself.
498      if (!I.use_empty())
499        I.replaceAllUsesWith(UndefValue::get(I.getType()));
500      I.eraseFromParent();
501    } else {
502      // Move the instruction to the start of the exit block, after any PHI
503      // nodes in it.
504      I.moveBefore(ExitBlocks[0]->getFirstInsertionPt());
505
506      // This instruction is no longer in the AST for the current loop, because
507      // we just sunk it out of the loop.  If we just sunk it into an outer
508      // loop, we will rediscover the operation when we process it.
509      CurAST->deleteValue(&I);
510    }
511    return;
512  }
513
514  if (ExitBlocks.empty()) {
515    // The instruction is actually dead if there ARE NO exit blocks.
516    CurAST->deleteValue(&I);
517    // If I has users in unreachable blocks, eliminate.
518    // If I is not void type then replaceAllUsesWith undef.
519    // This allows ValueHandlers and custom metadata to adjust itself.
520    if (!I.use_empty())
521      I.replaceAllUsesWith(UndefValue::get(I.getType()));
522    I.eraseFromParent();
523    return;
524  }
525
526  // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
527  // hard work of inserting PHI nodes as necessary.
528  SmallVector<PHINode*, 8> NewPHIs;
529  SSAUpdater SSA(&NewPHIs);
530
531  if (!I.use_empty())
532    SSA.Initialize(I.getType(), I.getName());
533
534  // Insert a copy of the instruction in each exit block of the loop that is
535  // dominated by the instruction.  Each exit block is known to only be in the
536  // ExitBlocks list once.
537  BasicBlock *InstOrigBB = I.getParent();
538  unsigned NumInserted = 0;
539
540  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
541    BasicBlock *ExitBlock = ExitBlocks[i];
542
543    if (!DT->dominates(InstOrigBB, ExitBlock))
544      continue;
545
546    // Insert the code after the last PHI node.
547    BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
548
549    // If this is the first exit block processed, just move the original
550    // instruction, otherwise clone the original instruction and insert
551    // the copy.
552    Instruction *New;
553    if (NumInserted++ == 0) {
554      I.moveBefore(InsertPt);
555      New = &I;
556    } else {
557      New = I.clone();
558      if (!I.getName().empty())
559        New->setName(I.getName()+".le");
560      ExitBlock->getInstList().insert(InsertPt, New);
561    }
562
563    // Now that we have inserted the instruction, inform SSAUpdater.
564    if (!I.use_empty())
565      SSA.AddAvailableValue(ExitBlock, New);
566  }
567
568  // If the instruction doesn't dominate any exit blocks, it must be dead.
569  if (NumInserted == 0) {
570    CurAST->deleteValue(&I);
571    if (!I.use_empty())
572      I.replaceAllUsesWith(UndefValue::get(I.getType()));
573    I.eraseFromParent();
574    return;
575  }
576
577  // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
578  for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
579    // Grab the use before incrementing the iterator.
580    Use &U = UI.getUse();
581    // Increment the iterator before removing the use from the list.
582    ++UI;
583    SSA.RewriteUseAfterInsertions(U);
584  }
585
586  // Update CurAST for NewPHIs if I had pointer type.
587  if (I.getType()->isPointerTy())
588    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
589      CurAST->copyValue(&I, NewPHIs[i]);
590
591  // Finally, remove the instruction from CurAST.  It is no longer in the loop.
592  CurAST->deleteValue(&I);
593}
594
595/// hoist - When an instruction is found to only use loop invariant operands
596/// that is safe to hoist, this instruction is called to do the dirty work.
597///
598void LICM::hoist(Instruction &I) {
599  DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
600        << I << "\n");
601
602  // Move the new node to the Preheader, before its terminator.
603  I.moveBefore(Preheader->getTerminator());
604
605  if (isa<LoadInst>(I)) ++NumMovedLoads;
606  else if (isa<CallInst>(I)) ++NumMovedCalls;
607  ++NumHoisted;
608  Changed = true;
609}
610
611/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
612/// not a trapping instruction or if it is a trapping instruction and is
613/// guaranteed to execute.
614///
615bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
616  // If it is not a trapping instruction, it is always safe to hoist.
617  if (isSafeToSpeculativelyExecute(&Inst))
618    return true;
619
620  return isGuaranteedToExecute(Inst);
621}
622
623bool LICM::isGuaranteedToExecute(Instruction &Inst) {
624
625  // Somewhere in this loop there is an instruction which may throw and make us
626  // exit the loop.
627  if (MayThrow)
628    return false;
629
630  // Otherwise we have to check to make sure that the instruction dominates all
631  // of the exit blocks.  If it doesn't, then there is a path out of the loop
632  // which does not execute this instruction, so we can't hoist it.
633
634  // If the instruction is in the header block for the loop (which is very
635  // common), it is always guaranteed to dominate the exit blocks.  Since this
636  // is a common case, and can save some work, check it now.
637  if (Inst.getParent() == CurLoop->getHeader())
638    return true;
639
640  // Get the exit blocks for the current loop.
641  SmallVector<BasicBlock*, 8> ExitBlocks;
642  CurLoop->getExitBlocks(ExitBlocks);
643
644  // Verify that the block dominates each of the exit blocks of the loop.
645  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
646    if (!DT->dominates(Inst.getParent(), ExitBlocks[i]))
647      return false;
648
649  // As a degenerate case, if the loop is statically infinite then we haven't
650  // proven anything since there are no exit blocks.
651  if (ExitBlocks.empty())
652    return false;
653
654  return true;
655}
656
657namespace {
658  class LoopPromoter : public LoadAndStorePromoter {
659    Value *SomePtr;  // Designated pointer to store to.
660    SmallPtrSet<Value*, 4> &PointerMustAliases;
661    SmallVectorImpl<BasicBlock*> &LoopExitBlocks;
662    SmallVectorImpl<Instruction*> &LoopInsertPts;
663    AliasSetTracker &AST;
664    DebugLoc DL;
665    int Alignment;
666  public:
667    LoopPromoter(Value *SP,
668                 const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
669                 SmallPtrSet<Value*, 4> &PMA,
670                 SmallVectorImpl<BasicBlock*> &LEB,
671                 SmallVectorImpl<Instruction*> &LIP,
672                 AliasSetTracker &ast, DebugLoc dl, int alignment)
673      : LoadAndStorePromoter(Insts, S), SomePtr(SP),
674        PointerMustAliases(PMA), LoopExitBlocks(LEB), LoopInsertPts(LIP),
675        AST(ast), DL(dl), Alignment(alignment) {}
676
677    virtual bool isInstInList(Instruction *I,
678                              const SmallVectorImpl<Instruction*> &) const {
679      Value *Ptr;
680      if (LoadInst *LI = dyn_cast<LoadInst>(I))
681        Ptr = LI->getOperand(0);
682      else
683        Ptr = cast<StoreInst>(I)->getPointerOperand();
684      return PointerMustAliases.count(Ptr);
685    }
686
687    virtual void doExtraRewritesBeforeFinalDeletion() const {
688      // Insert stores after in the loop exit blocks.  Each exit block gets a
689      // store of the live-out values that feed them.  Since we've already told
690      // the SSA updater about the defs in the loop and the preheader
691      // definition, it is all set and we can start using it.
692      for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
693        BasicBlock *ExitBlock = LoopExitBlocks[i];
694        Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
695        Instruction *InsertPos = LoopInsertPts[i];
696        StoreInst *NewSI = new StoreInst(LiveInValue, SomePtr, InsertPos);
697        NewSI->setAlignment(Alignment);
698        NewSI->setDebugLoc(DL);
699      }
700    }
701
702    virtual void replaceLoadWithValue(LoadInst *LI, Value *V) const {
703      // Update alias analysis.
704      AST.copyValue(LI, V);
705    }
706    virtual void instructionDeleted(Instruction *I) const {
707      AST.deleteValue(I);
708    }
709  };
710} // end anon namespace
711
712/// PromoteAliasSet - Try to promote memory values to scalars by sinking
713/// stores out of the loop and moving loads to before the loop.  We do this by
714/// looping over the stores in the loop, looking for stores to Must pointers
715/// which are loop invariant.
716///
717void LICM::PromoteAliasSet(AliasSet &AS,
718                           SmallVectorImpl<BasicBlock*> &ExitBlocks,
719                           SmallVectorImpl<Instruction*> &InsertPts) {
720  // We can promote this alias set if it has a store, if it is a "Must" alias
721  // set, if the pointer is loop invariant, and if we are not eliminating any
722  // volatile loads or stores.
723  if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
724      AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
725    return;
726
727  assert(!AS.empty() &&
728         "Must alias set should have at least one pointer element in it!");
729  Value *SomePtr = AS.begin()->getValue();
730
731  // It isn't safe to promote a load/store from the loop if the load/store is
732  // conditional.  For example, turning:
733  //
734  //    for () { if (c) *P += 1; }
735  //
736  // into:
737  //
738  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
739  //
740  // is not safe, because *P may only be valid to access if 'c' is true.
741  //
742  // It is safe to promote P if all uses are direct load/stores and if at
743  // least one is guaranteed to be executed.
744  bool GuaranteedToExecute = false;
745
746  SmallVector<Instruction*, 64> LoopUses;
747  SmallPtrSet<Value*, 4> PointerMustAliases;
748
749  // We start with an alignment of one and try to find instructions that allow
750  // us to prove better alignment.
751  unsigned Alignment = 1;
752
753  // Check that all of the pointers in the alias set have the same type.  We
754  // cannot (yet) promote a memory location that is loaded and stored in
755  // different sizes.
756  for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
757    Value *ASIV = ASI->getValue();
758    PointerMustAliases.insert(ASIV);
759
760    // Check that all of the pointers in the alias set have the same type.  We
761    // cannot (yet) promote a memory location that is loaded and stored in
762    // different sizes.
763    if (SomePtr->getType() != ASIV->getType())
764      return;
765
766    for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
767         UI != UE; ++UI) {
768      // Ignore instructions that are outside the loop.
769      Instruction *Use = dyn_cast<Instruction>(*UI);
770      if (!Use || !CurLoop->contains(Use))
771        continue;
772
773      // If there is an non-load/store instruction in the loop, we can't promote
774      // it.
775      if (LoadInst *load = dyn_cast<LoadInst>(Use)) {
776        assert(!load->isVolatile() && "AST broken");
777        if (!load->isSimple())
778          return;
779      } else if (StoreInst *store = dyn_cast<StoreInst>(Use)) {
780        // Stores *of* the pointer are not interesting, only stores *to* the
781        // pointer.
782        if (Use->getOperand(1) != ASIV)
783          continue;
784        assert(!store->isVolatile() && "AST broken");
785        if (!store->isSimple())
786          return;
787
788        // Note that we only check GuaranteedToExecute inside the store case
789        // so that we do not introduce stores where they did not exist before
790        // (which would break the LLVM concurrency model).
791
792        // If the alignment of this instruction allows us to specify a more
793        // restrictive (and performant) alignment and if we are sure this
794        // instruction will be executed, update the alignment.
795        // Larger is better, with the exception of 0 being the best alignment.
796        unsigned InstAlignment = store->getAlignment();
797        if ((InstAlignment > Alignment || InstAlignment == 0)
798            && (Alignment != 0))
799          if (isGuaranteedToExecute(*Use)) {
800            GuaranteedToExecute = true;
801            Alignment = InstAlignment;
802          }
803
804        if (!GuaranteedToExecute)
805          GuaranteedToExecute = isGuaranteedToExecute(*Use);
806
807      } else
808        return; // Not a load or store.
809
810      LoopUses.push_back(Use);
811    }
812  }
813
814  // If there isn't a guaranteed-to-execute instruction, we can't promote.
815  if (!GuaranteedToExecute)
816    return;
817
818  // Otherwise, this is safe to promote, lets do it!
819  DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
820  Changed = true;
821  ++NumPromoted;
822
823  // Grab a debug location for the inserted loads/stores; given that the
824  // inserted loads/stores have little relation to the original loads/stores,
825  // this code just arbitrarily picks a location from one, since any debug
826  // location is better than none.
827  DebugLoc DL = LoopUses[0]->getDebugLoc();
828
829  // Figure out the loop exits and their insertion points, if this is the
830  // first promotion.
831  if (ExitBlocks.empty()) {
832    CurLoop->getUniqueExitBlocks(ExitBlocks);
833    InsertPts.resize(ExitBlocks.size());
834    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
835      InsertPts[i] = ExitBlocks[i]->getFirstInsertionPt();
836  }
837
838  // We use the SSAUpdater interface to insert phi nodes as required.
839  SmallVector<PHINode*, 16> NewPHIs;
840  SSAUpdater SSA(&NewPHIs);
841  LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
842                        InsertPts, *CurAST, DL, Alignment);
843
844  // Set up the preheader to have a definition of the value.  It is the live-out
845  // value from the preheader that uses in the loop will use.
846  LoadInst *PreheaderLoad =
847    new LoadInst(SomePtr, SomePtr->getName()+".promoted",
848                 Preheader->getTerminator());
849  PreheaderLoad->setAlignment(Alignment);
850  PreheaderLoad->setDebugLoc(DL);
851  SSA.AddAvailableValue(Preheader, PreheaderLoad);
852
853  // Rewrite all the loads in the loop and remember all the definitions from
854  // stores in the loop.
855  Promoter.run(LoopUses);
856
857  // If the SSAUpdater didn't use the load in the preheader, just zap it now.
858  if (PreheaderLoad->use_empty())
859    PreheaderLoad->eraseFromParent();
860}
861
862
863/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
864void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
865  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
866  if (!AST)
867    return;
868
869  AST->copyValue(From, To);
870}
871
872/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
873/// set.
874void LICM::deleteAnalysisValue(Value *V, Loop *L) {
875  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
876  if (!AST)
877    return;
878
879  AST->deleteValue(V);
880}
881