1//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains logic for simplifying instructions based on information
11// about how they are used.
12//
13//===----------------------------------------------------------------------===//
14
15
16#include "InstCombine.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/IntrinsicInst.h"
19
20using namespace llvm;
21
22
23/// ShrinkDemandedConstant - Check to see if the specified operand of the
24/// specified instruction is a constant integer.  If so, check to see if there
25/// are any bits set in the constant that are not demanded.  If so, shrink the
26/// constant and return true.
27static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
28                                   APInt Demanded) {
29  assert(I && "No instruction?");
30  assert(OpNo < I->getNumOperands() && "Operand index too large");
31
32  // If the operand is not a constant integer, nothing to do.
33  ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
34  if (!OpC) return false;
35
36  // If there are no bits set that aren't demanded, nothing to do.
37  Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
38  if ((~Demanded & OpC->getValue()) == 0)
39    return false;
40
41  // This instruction is producing bits that are not demanded. Shrink the RHS.
42  Demanded &= OpC->getValue();
43  I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
44  return true;
45}
46
47
48
49/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
50/// SimplifyDemandedBits knows about.  See if the instruction has any
51/// properties that allow us to simplify its operands.
52bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
53  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
54  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
55  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
56
57  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
58                                     KnownZero, KnownOne, 0);
59  if (V == 0) return false;
60  if (V == &Inst) return true;
61  ReplaceInstUsesWith(Inst, V);
62  return true;
63}
64
65/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
66/// specified instruction operand if possible, updating it in place.  It returns
67/// true if it made any change and false otherwise.
68bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
69                                        APInt &KnownZero, APInt &KnownOne,
70                                        unsigned Depth) {
71  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
72                                          KnownZero, KnownOne, Depth);
73  if (NewVal == 0) return false;
74  U = NewVal;
75  return true;
76}
77
78
79/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
80/// value based on the demanded bits.  When this function is called, it is known
81/// that only the bits set in DemandedMask of the result of V are ever used
82/// downstream. Consequently, depending on the mask and V, it may be possible
83/// to replace V with a constant or one of its operands. In such cases, this
84/// function does the replacement and returns true. In all other cases, it
85/// returns false after analyzing the expression and setting KnownOne and known
86/// to be one in the expression.  KnownZero contains all the bits that are known
87/// to be zero in the expression. These are provided to potentially allow the
88/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
89/// the expression. KnownOne and KnownZero always follow the invariant that
90/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
91/// the bits in KnownOne and KnownZero may only be accurate for those bits set
92/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
93/// and KnownOne must all be the same.
94///
95/// This returns null if it did not change anything and it permits no
96/// simplification.  This returns V itself if it did some simplification of V's
97/// operands based on the information about what bits are demanded. This returns
98/// some other non-null value if it found out that V is equal to another value
99/// in the context where the specified bits are demanded, but not for all users.
100Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
101                                             APInt &KnownZero, APInt &KnownOne,
102                                             unsigned Depth) {
103  assert(V != 0 && "Null pointer of Value???");
104  assert(Depth <= 6 && "Limit Search Depth");
105  uint32_t BitWidth = DemandedMask.getBitWidth();
106  Type *VTy = V->getType();
107  assert((TD || !VTy->isPointerTy()) &&
108         "SimplifyDemandedBits needs to know bit widths!");
109  assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
110         (!VTy->isIntOrIntVectorTy() ||
111          VTy->getScalarSizeInBits() == BitWidth) &&
112         KnownZero.getBitWidth() == BitWidth &&
113         KnownOne.getBitWidth() == BitWidth &&
114         "Value *V, DemandedMask, KnownZero and KnownOne "
115         "must have same BitWidth");
116  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
117    // We know all of the bits for a constant!
118    KnownOne = CI->getValue() & DemandedMask;
119    KnownZero = ~KnownOne & DemandedMask;
120    return 0;
121  }
122  if (isa<ConstantPointerNull>(V)) {
123    // We know all of the bits for a constant!
124    KnownOne.clearAllBits();
125    KnownZero = DemandedMask;
126    return 0;
127  }
128
129  KnownZero.clearAllBits();
130  KnownOne.clearAllBits();
131  if (DemandedMask == 0) {   // Not demanding any bits from V.
132    if (isa<UndefValue>(V))
133      return 0;
134    return UndefValue::get(VTy);
135  }
136
137  if (Depth == 6)        // Limit search depth.
138    return 0;
139
140  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
141  APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
142
143  Instruction *I = dyn_cast<Instruction>(V);
144  if (!I) {
145    ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
146    return 0;        // Only analyze instructions.
147  }
148
149  // If there are multiple uses of this value and we aren't at the root, then
150  // we can't do any simplifications of the operands, because DemandedMask
151  // only reflects the bits demanded by *one* of the users.
152  if (Depth != 0 && !I->hasOneUse()) {
153    // Despite the fact that we can't simplify this instruction in all User's
154    // context, we can at least compute the knownzero/knownone bits, and we can
155    // do simplifications that apply to *just* the one user if we know that
156    // this instruction has a simpler value in that context.
157    if (I->getOpcode() == Instruction::And) {
158      // If either the LHS or the RHS are Zero, the result is zero.
159      ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
160      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
161
162      // If all of the demanded bits are known 1 on one side, return the other.
163      // These bits cannot contribute to the result of the 'and' in this
164      // context.
165      if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
166          (DemandedMask & ~LHSKnownZero))
167        return I->getOperand(0);
168      if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
169          (DemandedMask & ~RHSKnownZero))
170        return I->getOperand(1);
171
172      // If all of the demanded bits in the inputs are known zeros, return zero.
173      if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
174        return Constant::getNullValue(VTy);
175
176    } else if (I->getOpcode() == Instruction::Or) {
177      // We can simplify (X|Y) -> X or Y in the user's context if we know that
178      // only bits from X or Y are demanded.
179
180      // If either the LHS or the RHS are One, the result is One.
181      ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
182      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
183
184      // If all of the demanded bits are known zero on one side, return the
185      // other.  These bits cannot contribute to the result of the 'or' in this
186      // context.
187      if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
188          (DemandedMask & ~LHSKnownOne))
189        return I->getOperand(0);
190      if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
191          (DemandedMask & ~RHSKnownOne))
192        return I->getOperand(1);
193
194      // If all of the potentially set bits on one side are known to be set on
195      // the other side, just use the 'other' side.
196      if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
197          (DemandedMask & (~RHSKnownZero)))
198        return I->getOperand(0);
199      if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
200          (DemandedMask & (~LHSKnownZero)))
201        return I->getOperand(1);
202    }
203
204    // Compute the KnownZero/KnownOne bits to simplify things downstream.
205    ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
206    return 0;
207  }
208
209  // If this is the root being simplified, allow it to have multiple uses,
210  // just set the DemandedMask to all bits so that we can try to simplify the
211  // operands.  This allows visitTruncInst (for example) to simplify the
212  // operand of a trunc without duplicating all the logic below.
213  if (Depth == 0 && !V->hasOneUse())
214    DemandedMask = APInt::getAllOnesValue(BitWidth);
215
216  switch (I->getOpcode()) {
217  default:
218    ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
219    break;
220  case Instruction::And:
221    // If either the LHS or the RHS are Zero, the result is zero.
222    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
223                             RHSKnownZero, RHSKnownOne, Depth+1) ||
224        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
225                             LHSKnownZero, LHSKnownOne, Depth+1))
226      return I;
227    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
228    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
229
230    // If all of the demanded bits are known 1 on one side, return the other.
231    // These bits cannot contribute to the result of the 'and'.
232    if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
233        (DemandedMask & ~LHSKnownZero))
234      return I->getOperand(0);
235    if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
236        (DemandedMask & ~RHSKnownZero))
237      return I->getOperand(1);
238
239    // If all of the demanded bits in the inputs are known zeros, return zero.
240    if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
241      return Constant::getNullValue(VTy);
242
243    // If the RHS is a constant, see if we can simplify it.
244    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
245      return I;
246
247    // Output known-1 bits are only known if set in both the LHS & RHS.
248    KnownOne = RHSKnownOne & LHSKnownOne;
249    // Output known-0 are known to be clear if zero in either the LHS | RHS.
250    KnownZero = RHSKnownZero | LHSKnownZero;
251    break;
252  case Instruction::Or:
253    // If either the LHS or the RHS are One, the result is One.
254    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
255                             RHSKnownZero, RHSKnownOne, Depth+1) ||
256        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
257                             LHSKnownZero, LHSKnownOne, Depth+1))
258      return I;
259    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
260    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
261
262    // If all of the demanded bits are known zero on one side, return the other.
263    // These bits cannot contribute to the result of the 'or'.
264    if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
265        (DemandedMask & ~LHSKnownOne))
266      return I->getOperand(0);
267    if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
268        (DemandedMask & ~RHSKnownOne))
269      return I->getOperand(1);
270
271    // If all of the potentially set bits on one side are known to be set on
272    // the other side, just use the 'other' side.
273    if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
274        (DemandedMask & (~RHSKnownZero)))
275      return I->getOperand(0);
276    if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
277        (DemandedMask & (~LHSKnownZero)))
278      return I->getOperand(1);
279
280    // If the RHS is a constant, see if we can simplify it.
281    if (ShrinkDemandedConstant(I, 1, DemandedMask))
282      return I;
283
284    // Output known-0 bits are only known if clear in both the LHS & RHS.
285    KnownZero = RHSKnownZero & LHSKnownZero;
286    // Output known-1 are known to be set if set in either the LHS | RHS.
287    KnownOne = RHSKnownOne | LHSKnownOne;
288    break;
289  case Instruction::Xor: {
290    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
291                             RHSKnownZero, RHSKnownOne, Depth+1) ||
292        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
293                             LHSKnownZero, LHSKnownOne, Depth+1))
294      return I;
295    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
296    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
297
298    // If all of the demanded bits are known zero on one side, return the other.
299    // These bits cannot contribute to the result of the 'xor'.
300    if ((DemandedMask & RHSKnownZero) == DemandedMask)
301      return I->getOperand(0);
302    if ((DemandedMask & LHSKnownZero) == DemandedMask)
303      return I->getOperand(1);
304
305    // If all of the demanded bits are known to be zero on one side or the
306    // other, turn this into an *inclusive* or.
307    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
308    if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
309      Instruction *Or =
310        BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
311                                 I->getName());
312      return InsertNewInstWith(Or, *I);
313    }
314
315    // If all of the demanded bits on one side are known, and all of the set
316    // bits on that side are also known to be set on the other side, turn this
317    // into an AND, as we know the bits will be cleared.
318    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
319    if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
320      // all known
321      if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
322        Constant *AndC = Constant::getIntegerValue(VTy,
323                                                   ~RHSKnownOne & DemandedMask);
324        Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
325        return InsertNewInstWith(And, *I);
326      }
327    }
328
329    // If the RHS is a constant, see if we can simplify it.
330    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
331    if (ShrinkDemandedConstant(I, 1, DemandedMask))
332      return I;
333
334    // If our LHS is an 'and' and if it has one use, and if any of the bits we
335    // are flipping are known to be set, then the xor is just resetting those
336    // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
337    // simplifying both of them.
338    if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
339      if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
340          isa<ConstantInt>(I->getOperand(1)) &&
341          isa<ConstantInt>(LHSInst->getOperand(1)) &&
342          (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
343        ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
344        ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
345        APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
346
347        Constant *AndC =
348          ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
349        Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
350        InsertNewInstWith(NewAnd, *I);
351
352        Constant *XorC =
353          ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
354        Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
355        return InsertNewInstWith(NewXor, *I);
356      }
357
358    // Output known-0 bits are known if clear or set in both the LHS & RHS.
359    KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
360    // Output known-1 are known to be set if set in only one of the LHS, RHS.
361    KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
362    break;
363  }
364  case Instruction::Select:
365    if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
366                             RHSKnownZero, RHSKnownOne, Depth+1) ||
367        SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
368                             LHSKnownZero, LHSKnownOne, Depth+1))
369      return I;
370    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
371    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
372
373    // If the operands are constants, see if we can simplify them.
374    if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
375        ShrinkDemandedConstant(I, 2, DemandedMask))
376      return I;
377
378    // Only known if known in both the LHS and RHS.
379    KnownOne = RHSKnownOne & LHSKnownOne;
380    KnownZero = RHSKnownZero & LHSKnownZero;
381    break;
382  case Instruction::Trunc: {
383    unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
384    DemandedMask = DemandedMask.zext(truncBf);
385    KnownZero = KnownZero.zext(truncBf);
386    KnownOne = KnownOne.zext(truncBf);
387    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
388                             KnownZero, KnownOne, Depth+1))
389      return I;
390    DemandedMask = DemandedMask.trunc(BitWidth);
391    KnownZero = KnownZero.trunc(BitWidth);
392    KnownOne = KnownOne.trunc(BitWidth);
393    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
394    break;
395  }
396  case Instruction::BitCast:
397    if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
398      return 0;  // vector->int or fp->int?
399
400    if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
401      if (VectorType *SrcVTy =
402            dyn_cast<VectorType>(I->getOperand(0)->getType())) {
403        if (DstVTy->getNumElements() != SrcVTy->getNumElements())
404          // Don't touch a bitcast between vectors of different element counts.
405          return 0;
406      } else
407        // Don't touch a scalar-to-vector bitcast.
408        return 0;
409    } else if (I->getOperand(0)->getType()->isVectorTy())
410      // Don't touch a vector-to-scalar bitcast.
411      return 0;
412
413    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
414                             KnownZero, KnownOne, Depth+1))
415      return I;
416    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
417    break;
418  case Instruction::ZExt: {
419    // Compute the bits in the result that are not present in the input.
420    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
421
422    DemandedMask = DemandedMask.trunc(SrcBitWidth);
423    KnownZero = KnownZero.trunc(SrcBitWidth);
424    KnownOne = KnownOne.trunc(SrcBitWidth);
425    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
426                             KnownZero, KnownOne, Depth+1))
427      return I;
428    DemandedMask = DemandedMask.zext(BitWidth);
429    KnownZero = KnownZero.zext(BitWidth);
430    KnownOne = KnownOne.zext(BitWidth);
431    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
432    // The top bits are known to be zero.
433    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
434    break;
435  }
436  case Instruction::SExt: {
437    // Compute the bits in the result that are not present in the input.
438    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
439
440    APInt InputDemandedBits = DemandedMask &
441                              APInt::getLowBitsSet(BitWidth, SrcBitWidth);
442
443    APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
444    // If any of the sign extended bits are demanded, we know that the sign
445    // bit is demanded.
446    if ((NewBits & DemandedMask) != 0)
447      InputDemandedBits.setBit(SrcBitWidth-1);
448
449    InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
450    KnownZero = KnownZero.trunc(SrcBitWidth);
451    KnownOne = KnownOne.trunc(SrcBitWidth);
452    if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
453                             KnownZero, KnownOne, Depth+1))
454      return I;
455    InputDemandedBits = InputDemandedBits.zext(BitWidth);
456    KnownZero = KnownZero.zext(BitWidth);
457    KnownOne = KnownOne.zext(BitWidth);
458    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
459
460    // If the sign bit of the input is known set or clear, then we know the
461    // top bits of the result.
462
463    // If the input sign bit is known zero, or if the NewBits are not demanded
464    // convert this into a zero extension.
465    if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
466      // Convert to ZExt cast
467      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
468      return InsertNewInstWith(NewCast, *I);
469    } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
470      KnownOne |= NewBits;
471    }
472    break;
473  }
474  case Instruction::Add: {
475    // Figure out what the input bits are.  If the top bits of the and result
476    // are not demanded, then the add doesn't demand them from its input
477    // either.
478    unsigned NLZ = DemandedMask.countLeadingZeros();
479
480    // If there is a constant on the RHS, there are a variety of xformations
481    // we can do.
482    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
483      // If null, this should be simplified elsewhere.  Some of the xforms here
484      // won't work if the RHS is zero.
485      if (RHS->isZero())
486        break;
487
488      // If the top bit of the output is demanded, demand everything from the
489      // input.  Otherwise, we demand all the input bits except NLZ top bits.
490      APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
491
492      // Find information about known zero/one bits in the input.
493      if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
494                               LHSKnownZero, LHSKnownOne, Depth+1))
495        return I;
496
497      // If the RHS of the add has bits set that can't affect the input, reduce
498      // the constant.
499      if (ShrinkDemandedConstant(I, 1, InDemandedBits))
500        return I;
501
502      // Avoid excess work.
503      if (LHSKnownZero == 0 && LHSKnownOne == 0)
504        break;
505
506      // Turn it into OR if input bits are zero.
507      if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
508        Instruction *Or =
509          BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
510                                   I->getName());
511        return InsertNewInstWith(Or, *I);
512      }
513
514      // We can say something about the output known-zero and known-one bits,
515      // depending on potential carries from the input constant and the
516      // unknowns.  For example if the LHS is known to have at most the 0x0F0F0
517      // bits set and the RHS constant is 0x01001, then we know we have a known
518      // one mask of 0x00001 and a known zero mask of 0xE0F0E.
519
520      // To compute this, we first compute the potential carry bits.  These are
521      // the bits which may be modified.  I'm not aware of a better way to do
522      // this scan.
523      const APInt &RHSVal = RHS->getValue();
524      APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
525
526      // Now that we know which bits have carries, compute the known-1/0 sets.
527
528      // Bits are known one if they are known zero in one operand and one in the
529      // other, and there is no input carry.
530      KnownOne = ((LHSKnownZero & RHSVal) |
531                  (LHSKnownOne & ~RHSVal)) & ~CarryBits;
532
533      // Bits are known zero if they are known zero in both operands and there
534      // is no input carry.
535      KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
536    } else {
537      // If the high-bits of this ADD are not demanded, then it does not demand
538      // the high bits of its LHS or RHS.
539      if (DemandedMask[BitWidth-1] == 0) {
540        // Right fill the mask of bits for this ADD to demand the most
541        // significant bit and all those below it.
542        APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
543        if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
544                                 LHSKnownZero, LHSKnownOne, Depth+1) ||
545            SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
546                                 LHSKnownZero, LHSKnownOne, Depth+1))
547          return I;
548      }
549    }
550    break;
551  }
552  case Instruction::Sub:
553    // If the high-bits of this SUB are not demanded, then it does not demand
554    // the high bits of its LHS or RHS.
555    if (DemandedMask[BitWidth-1] == 0) {
556      // Right fill the mask of bits for this SUB to demand the most
557      // significant bit and all those below it.
558      uint32_t NLZ = DemandedMask.countLeadingZeros();
559      APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
560      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
561                               LHSKnownZero, LHSKnownOne, Depth+1) ||
562          SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
563                               LHSKnownZero, LHSKnownOne, Depth+1))
564        return I;
565    }
566
567    // Otherwise just hand the sub off to ComputeMaskedBits to fill in
568    // the known zeros and ones.
569    ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
570
571    // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
572    // zero.
573    if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) {
574      APInt I0 = C0->getValue();
575      if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) {
576        Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0);
577        return InsertNewInstWith(Xor, *I);
578      }
579    }
580    break;
581  case Instruction::Shl:
582    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
583      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
584      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
585
586      // If the shift is NUW/NSW, then it does demand the high bits.
587      ShlOperator *IOp = cast<ShlOperator>(I);
588      if (IOp->hasNoSignedWrap())
589        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
590      else if (IOp->hasNoUnsignedWrap())
591        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
592
593      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
594                               KnownZero, KnownOne, Depth+1))
595        return I;
596      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
597      KnownZero <<= ShiftAmt;
598      KnownOne  <<= ShiftAmt;
599      // low bits known zero.
600      if (ShiftAmt)
601        KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
602    }
603    break;
604  case Instruction::LShr:
605    // For a logical shift right
606    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
607      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
608
609      // Unsigned shift right.
610      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
611
612      // If the shift is exact, then it does demand the low bits (and knows that
613      // they are zero).
614      if (cast<LShrOperator>(I)->isExact())
615        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
616
617      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
618                               KnownZero, KnownOne, Depth+1))
619        return I;
620      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
621      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
622      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
623      if (ShiftAmt) {
624        // Compute the new bits that are at the top now.
625        APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
626        KnownZero |= HighBits;  // high bits known zero.
627      }
628    }
629    break;
630  case Instruction::AShr:
631    // If this is an arithmetic shift right and only the low-bit is set, we can
632    // always convert this into a logical shr, even if the shift amount is
633    // variable.  The low bit of the shift cannot be an input sign bit unless
634    // the shift amount is >= the size of the datatype, which is undefined.
635    if (DemandedMask == 1) {
636      // Perform the logical shift right.
637      Instruction *NewVal = BinaryOperator::CreateLShr(
638                        I->getOperand(0), I->getOperand(1), I->getName());
639      return InsertNewInstWith(NewVal, *I);
640    }
641
642    // If the sign bit is the only bit demanded by this ashr, then there is no
643    // need to do it, the shift doesn't change the high bit.
644    if (DemandedMask.isSignBit())
645      return I->getOperand(0);
646
647    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
648      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
649
650      // Signed shift right.
651      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
652      // If any of the "high bits" are demanded, we should set the sign bit as
653      // demanded.
654      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
655        DemandedMaskIn.setBit(BitWidth-1);
656
657      // If the shift is exact, then it does demand the low bits (and knows that
658      // they are zero).
659      if (cast<AShrOperator>(I)->isExact())
660        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
661
662      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
663                               KnownZero, KnownOne, Depth+1))
664        return I;
665      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
666      // Compute the new bits that are at the top now.
667      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
668      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
669      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
670
671      // Handle the sign bits.
672      APInt SignBit(APInt::getSignBit(BitWidth));
673      // Adjust to where it is now in the mask.
674      SignBit = APIntOps::lshr(SignBit, ShiftAmt);
675
676      // If the input sign bit is known to be zero, or if none of the top bits
677      // are demanded, turn this into an unsigned shift right.
678      if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
679          (HighBits & ~DemandedMask) == HighBits) {
680        // Perform the logical shift right.
681        BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
682                                                            SA, I->getName());
683        NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
684        return InsertNewInstWith(NewVal, *I);
685      } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
686        KnownOne |= HighBits;
687      }
688    }
689    break;
690  case Instruction::SRem:
691    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
692      // X % -1 demands all the bits because we don't want to introduce
693      // INT_MIN % -1 (== undef) by accident.
694      if (Rem->isAllOnesValue())
695        break;
696      APInt RA = Rem->getValue().abs();
697      if (RA.isPowerOf2()) {
698        if (DemandedMask.ult(RA))    // srem won't affect demanded bits
699          return I->getOperand(0);
700
701        APInt LowBits = RA - 1;
702        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
703        if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
704                                 LHSKnownZero, LHSKnownOne, Depth+1))
705          return I;
706
707        // The low bits of LHS are unchanged by the srem.
708        KnownZero = LHSKnownZero & LowBits;
709        KnownOne = LHSKnownOne & LowBits;
710
711        // If LHS is non-negative or has all low bits zero, then the upper bits
712        // are all zero.
713        if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
714          KnownZero |= ~LowBits;
715
716        // If LHS is negative and not all low bits are zero, then the upper bits
717        // are all one.
718        if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
719          KnownOne |= ~LowBits;
720
721        assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
722      }
723    }
724
725    // The sign bit is the LHS's sign bit, except when the result of the
726    // remainder is zero.
727    if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
728      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
729      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
730      // If it's known zero, our sign bit is also zero.
731      if (LHSKnownZero.isNegative())
732        KnownZero |= LHSKnownZero;
733    }
734    break;
735  case Instruction::URem: {
736    APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
737    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
738    if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
739                             KnownZero2, KnownOne2, Depth+1) ||
740        SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
741                             KnownZero2, KnownOne2, Depth+1))
742      return I;
743
744    unsigned Leaders = KnownZero2.countLeadingOnes();
745    Leaders = std::max(Leaders,
746                       KnownZero2.countLeadingOnes());
747    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
748    break;
749  }
750  case Instruction::Call:
751    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
752      switch (II->getIntrinsicID()) {
753      default: break;
754      case Intrinsic::bswap: {
755        // If the only bits demanded come from one byte of the bswap result,
756        // just shift the input byte into position to eliminate the bswap.
757        unsigned NLZ = DemandedMask.countLeadingZeros();
758        unsigned NTZ = DemandedMask.countTrailingZeros();
759
760        // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
761        // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
762        // have 14 leading zeros, round to 8.
763        NLZ &= ~7;
764        NTZ &= ~7;
765        // If we need exactly one byte, we can do this transformation.
766        if (BitWidth-NLZ-NTZ == 8) {
767          unsigned ResultBit = NTZ;
768          unsigned InputBit = BitWidth-NTZ-8;
769
770          // Replace this with either a left or right shift to get the byte into
771          // the right place.
772          Instruction *NewVal;
773          if (InputBit > ResultBit)
774            NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
775                    ConstantInt::get(I->getType(), InputBit-ResultBit));
776          else
777            NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
778                    ConstantInt::get(I->getType(), ResultBit-InputBit));
779          NewVal->takeName(I);
780          return InsertNewInstWith(NewVal, *I);
781        }
782
783        // TODO: Could compute known zero/one bits based on the input.
784        break;
785      }
786      case Intrinsic::x86_sse42_crc32_64_8:
787      case Intrinsic::x86_sse42_crc32_64_64:
788        KnownZero = APInt::getHighBitsSet(64, 32);
789        return 0;
790      }
791    }
792    ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
793    break;
794  }
795
796  // If the client is only demanding bits that we know, return the known
797  // constant.
798  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
799    return Constant::getIntegerValue(VTy, KnownOne);
800  return 0;
801}
802
803
804/// SimplifyDemandedVectorElts - The specified value produces a vector with
805/// any number of elements. DemandedElts contains the set of elements that are
806/// actually used by the caller.  This method analyzes which elements of the
807/// operand are undef and returns that information in UndefElts.
808///
809/// If the information about demanded elements can be used to simplify the
810/// operation, the operation is simplified, then the resultant value is
811/// returned.  This returns null if no change was made.
812Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
813                                                APInt &UndefElts,
814                                                unsigned Depth) {
815  unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
816  APInt EltMask(APInt::getAllOnesValue(VWidth));
817  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
818
819  if (isa<UndefValue>(V)) {
820    // If the entire vector is undefined, just return this info.
821    UndefElts = EltMask;
822    return 0;
823  }
824
825  if (DemandedElts == 0) { // If nothing is demanded, provide undef.
826    UndefElts = EltMask;
827    return UndefValue::get(V->getType());
828  }
829
830  UndefElts = 0;
831
832  // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
833  if (Constant *C = dyn_cast<Constant>(V)) {
834    // Check if this is identity. If so, return 0 since we are not simplifying
835    // anything.
836    if (DemandedElts.isAllOnesValue())
837      return 0;
838
839    Type *EltTy = cast<VectorType>(V->getType())->getElementType();
840    Constant *Undef = UndefValue::get(EltTy);
841
842    SmallVector<Constant*, 16> Elts;
843    for (unsigned i = 0; i != VWidth; ++i) {
844      if (!DemandedElts[i]) {   // If not demanded, set to undef.
845        Elts.push_back(Undef);
846        UndefElts.setBit(i);
847        continue;
848      }
849
850      Constant *Elt = C->getAggregateElement(i);
851      if (Elt == 0) return 0;
852
853      if (isa<UndefValue>(Elt)) {   // Already undef.
854        Elts.push_back(Undef);
855        UndefElts.setBit(i);
856      } else {                               // Otherwise, defined.
857        Elts.push_back(Elt);
858      }
859    }
860
861    // If we changed the constant, return it.
862    Constant *NewCV = ConstantVector::get(Elts);
863    return NewCV != C ? NewCV : 0;
864  }
865
866  // Limit search depth.
867  if (Depth == 10)
868    return 0;
869
870  // If multiple users are using the root value, proceed with
871  // simplification conservatively assuming that all elements
872  // are needed.
873  if (!V->hasOneUse()) {
874    // Quit if we find multiple users of a non-root value though.
875    // They'll be handled when it's their turn to be visited by
876    // the main instcombine process.
877    if (Depth != 0)
878      // TODO: Just compute the UndefElts information recursively.
879      return 0;
880
881    // Conservatively assume that all elements are needed.
882    DemandedElts = EltMask;
883  }
884
885  Instruction *I = dyn_cast<Instruction>(V);
886  if (!I) return 0;        // Only analyze instructions.
887
888  bool MadeChange = false;
889  APInt UndefElts2(VWidth, 0);
890  Value *TmpV;
891  switch (I->getOpcode()) {
892  default: break;
893
894  case Instruction::InsertElement: {
895    // If this is a variable index, we don't know which element it overwrites.
896    // demand exactly the same input as we produce.
897    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
898    if (Idx == 0) {
899      // Note that we can't propagate undef elt info, because we don't know
900      // which elt is getting updated.
901      TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
902                                        UndefElts2, Depth+1);
903      if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
904      break;
905    }
906
907    // If this is inserting an element that isn't demanded, remove this
908    // insertelement.
909    unsigned IdxNo = Idx->getZExtValue();
910    if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
911      Worklist.Add(I);
912      return I->getOperand(0);
913    }
914
915    // Otherwise, the element inserted overwrites whatever was there, so the
916    // input demanded set is simpler than the output set.
917    APInt DemandedElts2 = DemandedElts;
918    DemandedElts2.clearBit(IdxNo);
919    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
920                                      UndefElts, Depth+1);
921    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
922
923    // The inserted element is defined.
924    UndefElts.clearBit(IdxNo);
925    break;
926  }
927  case Instruction::ShuffleVector: {
928    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
929    uint64_t LHSVWidth =
930      cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
931    APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
932    for (unsigned i = 0; i < VWidth; i++) {
933      if (DemandedElts[i]) {
934        unsigned MaskVal = Shuffle->getMaskValue(i);
935        if (MaskVal != -1u) {
936          assert(MaskVal < LHSVWidth * 2 &&
937                 "shufflevector mask index out of range!");
938          if (MaskVal < LHSVWidth)
939            LeftDemanded.setBit(MaskVal);
940          else
941            RightDemanded.setBit(MaskVal - LHSVWidth);
942        }
943      }
944    }
945
946    APInt UndefElts4(LHSVWidth, 0);
947    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
948                                      UndefElts4, Depth+1);
949    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
950
951    APInt UndefElts3(LHSVWidth, 0);
952    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
953                                      UndefElts3, Depth+1);
954    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
955
956    bool NewUndefElts = false;
957    for (unsigned i = 0; i < VWidth; i++) {
958      unsigned MaskVal = Shuffle->getMaskValue(i);
959      if (MaskVal == -1u) {
960        UndefElts.setBit(i);
961      } else if (!DemandedElts[i]) {
962        NewUndefElts = true;
963        UndefElts.setBit(i);
964      } else if (MaskVal < LHSVWidth) {
965        if (UndefElts4[MaskVal]) {
966          NewUndefElts = true;
967          UndefElts.setBit(i);
968        }
969      } else {
970        if (UndefElts3[MaskVal - LHSVWidth]) {
971          NewUndefElts = true;
972          UndefElts.setBit(i);
973        }
974      }
975    }
976
977    if (NewUndefElts) {
978      // Add additional discovered undefs.
979      SmallVector<Constant*, 16> Elts;
980      for (unsigned i = 0; i < VWidth; ++i) {
981        if (UndefElts[i])
982          Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
983        else
984          Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
985                                          Shuffle->getMaskValue(i)));
986      }
987      I->setOperand(2, ConstantVector::get(Elts));
988      MadeChange = true;
989    }
990    break;
991  }
992  case Instruction::Select: {
993    APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
994    if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
995      for (unsigned i = 0; i < VWidth; i++) {
996        if (CV->getAggregateElement(i)->isNullValue())
997          LeftDemanded.clearBit(i);
998        else
999          RightDemanded.clearBit(i);
1000      }
1001    }
1002
1003    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded,
1004                                      UndefElts, Depth+1);
1005    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1006
1007    TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1008                                      UndefElts2, Depth+1);
1009    if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1010
1011    // Output elements are undefined if both are undefined.
1012    UndefElts &= UndefElts2;
1013    break;
1014  }
1015  case Instruction::BitCast: {
1016    // Vector->vector casts only.
1017    VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1018    if (!VTy) break;
1019    unsigned InVWidth = VTy->getNumElements();
1020    APInt InputDemandedElts(InVWidth, 0);
1021    unsigned Ratio;
1022
1023    if (VWidth == InVWidth) {
1024      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1025      // elements as are demanded of us.
1026      Ratio = 1;
1027      InputDemandedElts = DemandedElts;
1028    } else if (VWidth > InVWidth) {
1029      // Untested so far.
1030      break;
1031
1032      // If there are more elements in the result than there are in the source,
1033      // then an input element is live if any of the corresponding output
1034      // elements are live.
1035      Ratio = VWidth/InVWidth;
1036      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1037        if (DemandedElts[OutIdx])
1038          InputDemandedElts.setBit(OutIdx/Ratio);
1039      }
1040    } else {
1041      // Untested so far.
1042      break;
1043
1044      // If there are more elements in the source than there are in the result,
1045      // then an input element is live if the corresponding output element is
1046      // live.
1047      Ratio = InVWidth/VWidth;
1048      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1049        if (DemandedElts[InIdx/Ratio])
1050          InputDemandedElts.setBit(InIdx);
1051    }
1052
1053    // div/rem demand all inputs, because they don't want divide by zero.
1054    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1055                                      UndefElts2, Depth+1);
1056    if (TmpV) {
1057      I->setOperand(0, TmpV);
1058      MadeChange = true;
1059    }
1060
1061    UndefElts = UndefElts2;
1062    if (VWidth > InVWidth) {
1063      llvm_unreachable("Unimp");
1064      // If there are more elements in the result than there are in the source,
1065      // then an output element is undef if the corresponding input element is
1066      // undef.
1067      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1068        if (UndefElts2[OutIdx/Ratio])
1069          UndefElts.setBit(OutIdx);
1070    } else if (VWidth < InVWidth) {
1071      llvm_unreachable("Unimp");
1072      // If there are more elements in the source than there are in the result,
1073      // then a result element is undef if all of the corresponding input
1074      // elements are undef.
1075      UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef.
1076      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1077        if (!UndefElts2[InIdx])            // Not undef?
1078          UndefElts.clearBit(InIdx/Ratio);    // Clear undef bit.
1079    }
1080    break;
1081  }
1082  case Instruction::And:
1083  case Instruction::Or:
1084  case Instruction::Xor:
1085  case Instruction::Add:
1086  case Instruction::Sub:
1087  case Instruction::Mul:
1088    // div/rem demand all inputs, because they don't want divide by zero.
1089    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1090                                      UndefElts, Depth+1);
1091    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1092    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1093                                      UndefElts2, Depth+1);
1094    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1095
1096    // Output elements are undefined if both are undefined.  Consider things
1097    // like undef&0.  The result is known zero, not undef.
1098    UndefElts &= UndefElts2;
1099    break;
1100  case Instruction::FPTrunc:
1101  case Instruction::FPExt:
1102    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1103                                      UndefElts, Depth+1);
1104    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1105    break;
1106
1107  case Instruction::Call: {
1108    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1109    if (!II) break;
1110    switch (II->getIntrinsicID()) {
1111    default: break;
1112
1113    // Binary vector operations that work column-wise.  A dest element is a
1114    // function of the corresponding input elements from the two inputs.
1115    case Intrinsic::x86_sse_sub_ss:
1116    case Intrinsic::x86_sse_mul_ss:
1117    case Intrinsic::x86_sse_min_ss:
1118    case Intrinsic::x86_sse_max_ss:
1119    case Intrinsic::x86_sse2_sub_sd:
1120    case Intrinsic::x86_sse2_mul_sd:
1121    case Intrinsic::x86_sse2_min_sd:
1122    case Intrinsic::x86_sse2_max_sd:
1123      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1124                                        UndefElts, Depth+1);
1125      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1126      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1127                                        UndefElts2, Depth+1);
1128      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1129
1130      // If only the low elt is demanded and this is a scalarizable intrinsic,
1131      // scalarize it now.
1132      if (DemandedElts == 1) {
1133        switch (II->getIntrinsicID()) {
1134        default: break;
1135        case Intrinsic::x86_sse_sub_ss:
1136        case Intrinsic::x86_sse_mul_ss:
1137        case Intrinsic::x86_sse2_sub_sd:
1138        case Intrinsic::x86_sse2_mul_sd:
1139          // TODO: Lower MIN/MAX/ABS/etc
1140          Value *LHS = II->getArgOperand(0);
1141          Value *RHS = II->getArgOperand(1);
1142          // Extract the element as scalars.
1143          LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1144            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1145          RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1146            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1147
1148          switch (II->getIntrinsicID()) {
1149          default: llvm_unreachable("Case stmts out of sync!");
1150          case Intrinsic::x86_sse_sub_ss:
1151          case Intrinsic::x86_sse2_sub_sd:
1152            TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1153                                                        II->getName()), *II);
1154            break;
1155          case Intrinsic::x86_sse_mul_ss:
1156          case Intrinsic::x86_sse2_mul_sd:
1157            TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1158                                                         II->getName()), *II);
1159            break;
1160          }
1161
1162          Instruction *New =
1163            InsertElementInst::Create(
1164              UndefValue::get(II->getType()), TmpV,
1165              ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1166                                      II->getName());
1167          InsertNewInstWith(New, *II);
1168          return New;
1169        }
1170      }
1171
1172      // Output elements are undefined if both are undefined.  Consider things
1173      // like undef&0.  The result is known zero, not undef.
1174      UndefElts &= UndefElts2;
1175      break;
1176    }
1177    break;
1178  }
1179  }
1180  return MadeChange ? I : 0;
1181}
1182