1//===- InstCombineAddSub.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for add, fadd, sub, and fsub.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/InstructionSimplify.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Support/GetElementPtrTypeIterator.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22/// AddOne - Add one to a ConstantInt.
23static Constant *AddOne(Constant *C) {
24  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
25}
26/// SubOne - Subtract one from a ConstantInt.
27static Constant *SubOne(ConstantInt *C) {
28  return ConstantInt::get(C->getContext(), C->getValue()-1);
29}
30
31
32// dyn_castFoldableMul - If this value is a multiply that can be folded into
33// other computations (because it has a constant operand), return the
34// non-constant operand of the multiply, and set CST to point to the multiplier.
35// Otherwise, return null.
36//
37static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
38  if (!V->hasOneUse() || !V->getType()->isIntegerTy())
39    return 0;
40
41  Instruction *I = dyn_cast<Instruction>(V);
42  if (I == 0) return 0;
43
44  if (I->getOpcode() == Instruction::Mul)
45    if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
46      return I->getOperand(0);
47  if (I->getOpcode() == Instruction::Shl)
48    if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
49      // The multiplier is really 1 << CST.
50      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
51      uint32_t CSTVal = CST->getLimitedValue(BitWidth);
52      CST = ConstantInt::get(V->getType()->getContext(),
53                             APInt(BitWidth, 1).shl(CSTVal));
54      return I->getOperand(0);
55    }
56  return 0;
57}
58
59
60/// WillNotOverflowSignedAdd - Return true if we can prove that:
61///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
62/// This basically requires proving that the add in the original type would not
63/// overflow to change the sign bit or have a carry out.
64bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
65  // There are different heuristics we can use for this.  Here are some simple
66  // ones.
67
68  // Add has the property that adding any two 2's complement numbers can only
69  // have one carry bit which can change a sign.  As such, if LHS and RHS each
70  // have at least two sign bits, we know that the addition of the two values
71  // will sign extend fine.
72  if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
73    return true;
74
75
76  // If one of the operands only has one non-zero bit, and if the other operand
77  // has a known-zero bit in a more significant place than it (not including the
78  // sign bit) the ripple may go up to and fill the zero, but won't change the
79  // sign.  For example, (X & ~4) + 1.
80
81  // TODO: Implement.
82
83  return false;
84}
85
86Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
87  bool Changed = SimplifyAssociativeOrCommutative(I);
88  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
89
90  if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
91                                 I.hasNoUnsignedWrap(), TD))
92    return ReplaceInstUsesWith(I, V);
93
94  // (A*B)+(A*C) -> A*(B+C) etc
95  if (Value *V = SimplifyUsingDistributiveLaws(I))
96    return ReplaceInstUsesWith(I, V);
97
98  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
99    // X + (signbit) --> X ^ signbit
100    const APInt &Val = CI->getValue();
101    if (Val.isSignBit())
102      return BinaryOperator::CreateXor(LHS, RHS);
103
104    // See if SimplifyDemandedBits can simplify this.  This handles stuff like
105    // (X & 254)+1 -> (X&254)|1
106    if (SimplifyDemandedInstructionBits(I))
107      return &I;
108
109    // zext(bool) + C -> bool ? C + 1 : C
110    if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
111      if (ZI->getSrcTy()->isIntegerTy(1))
112        return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
113
114    Value *XorLHS = 0; ConstantInt *XorRHS = 0;
115    if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
116      uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
117      const APInt &RHSVal = CI->getValue();
118      unsigned ExtendAmt = 0;
119      // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
120      // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
121      if (XorRHS->getValue() == -RHSVal) {
122        if (RHSVal.isPowerOf2())
123          ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
124        else if (XorRHS->getValue().isPowerOf2())
125          ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
126      }
127
128      if (ExtendAmt) {
129        APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
130        if (!MaskedValueIsZero(XorLHS, Mask))
131          ExtendAmt = 0;
132      }
133
134      if (ExtendAmt) {
135        Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
136        Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
137        return BinaryOperator::CreateAShr(NewShl, ShAmt);
138      }
139
140      // If this is a xor that was canonicalized from a sub, turn it back into
141      // a sub and fuse this add with it.
142      if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
143        IntegerType *IT = cast<IntegerType>(I.getType());
144        APInt LHSKnownOne(IT->getBitWidth(), 0);
145        APInt LHSKnownZero(IT->getBitWidth(), 0);
146        ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne);
147        if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
148          return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
149                                           XorLHS);
150      }
151    }
152  }
153
154  if (isa<Constant>(RHS) && isa<PHINode>(LHS))
155    if (Instruction *NV = FoldOpIntoPhi(I))
156      return NV;
157
158  if (I.getType()->isIntegerTy(1))
159    return BinaryOperator::CreateXor(LHS, RHS);
160
161  // X + X --> X << 1
162  if (LHS == RHS) {
163    BinaryOperator *New =
164      BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
165    New->setHasNoSignedWrap(I.hasNoSignedWrap());
166    New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
167    return New;
168  }
169
170  // -A + B  -->  B - A
171  // -A + -B  -->  -(A + B)
172  if (Value *LHSV = dyn_castNegVal(LHS)) {
173    if (!isa<Constant>(RHS))
174      if (Value *RHSV = dyn_castNegVal(RHS)) {
175        Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
176        return BinaryOperator::CreateNeg(NewAdd);
177      }
178
179    return BinaryOperator::CreateSub(RHS, LHSV);
180  }
181
182  // A + -B  -->  A - B
183  if (!isa<Constant>(RHS))
184    if (Value *V = dyn_castNegVal(RHS))
185      return BinaryOperator::CreateSub(LHS, V);
186
187
188  ConstantInt *C2;
189  if (Value *X = dyn_castFoldableMul(LHS, C2)) {
190    if (X == RHS)   // X*C + X --> X * (C+1)
191      return BinaryOperator::CreateMul(RHS, AddOne(C2));
192
193    // X*C1 + X*C2 --> X * (C1+C2)
194    ConstantInt *C1;
195    if (X == dyn_castFoldableMul(RHS, C1))
196      return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
197  }
198
199  // X + X*C --> X * (C+1)
200  if (dyn_castFoldableMul(RHS, C2) == LHS)
201    return BinaryOperator::CreateMul(LHS, AddOne(C2));
202
203  // A+B --> A|B iff A and B have no bits set in common.
204  if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
205    APInt LHSKnownOne(IT->getBitWidth(), 0);
206    APInt LHSKnownZero(IT->getBitWidth(), 0);
207    ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
208    if (LHSKnownZero != 0) {
209      APInt RHSKnownOne(IT->getBitWidth(), 0);
210      APInt RHSKnownZero(IT->getBitWidth(), 0);
211      ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
212
213      // No bits in common -> bitwise or.
214      if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
215        return BinaryOperator::CreateOr(LHS, RHS);
216    }
217  }
218
219  // W*X + Y*Z --> W * (X+Z)  iff W == Y
220  {
221    Value *W, *X, *Y, *Z;
222    if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
223        match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
224      if (W != Y) {
225        if (W == Z) {
226          std::swap(Y, Z);
227        } else if (Y == X) {
228          std::swap(W, X);
229        } else if (X == Z) {
230          std::swap(Y, Z);
231          std::swap(W, X);
232        }
233      }
234
235      if (W == Y) {
236        Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
237        return BinaryOperator::CreateMul(W, NewAdd);
238      }
239    }
240  }
241
242  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
243    Value *X = 0;
244    if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X
245      return BinaryOperator::CreateSub(SubOne(CRHS), X);
246
247    // (X & FF00) + xx00  -> (X+xx00) & FF00
248    if (LHS->hasOneUse() &&
249        match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
250        CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
251      // See if all bits from the first bit set in the Add RHS up are included
252      // in the mask.  First, get the rightmost bit.
253      const APInt &AddRHSV = CRHS->getValue();
254
255      // Form a mask of all bits from the lowest bit added through the top.
256      APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
257
258      // See if the and mask includes all of these bits.
259      APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
260
261      if (AddRHSHighBits == AddRHSHighBitsAnd) {
262        // Okay, the xform is safe.  Insert the new add pronto.
263        Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
264        return BinaryOperator::CreateAnd(NewAdd, C2);
265      }
266    }
267
268    // Try to fold constant add into select arguments.
269    if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
270      if (Instruction *R = FoldOpIntoSelect(I, SI))
271        return R;
272  }
273
274  // add (select X 0 (sub n A)) A  -->  select X A n
275  {
276    SelectInst *SI = dyn_cast<SelectInst>(LHS);
277    Value *A = RHS;
278    if (!SI) {
279      SI = dyn_cast<SelectInst>(RHS);
280      A = LHS;
281    }
282    if (SI && SI->hasOneUse()) {
283      Value *TV = SI->getTrueValue();
284      Value *FV = SI->getFalseValue();
285      Value *N;
286
287      // Can we fold the add into the argument of the select?
288      // We check both true and false select arguments for a matching subtract.
289      if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
290        // Fold the add into the true select value.
291        return SelectInst::Create(SI->getCondition(), N, A);
292
293      if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
294        // Fold the add into the false select value.
295        return SelectInst::Create(SI->getCondition(), A, N);
296    }
297  }
298
299  // Check for (add (sext x), y), see if we can merge this into an
300  // integer add followed by a sext.
301  if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
302    // (add (sext x), cst) --> (sext (add x, cst'))
303    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
304      Constant *CI =
305        ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
306      if (LHSConv->hasOneUse() &&
307          ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
308          WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
309        // Insert the new, smaller add.
310        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
311                                              CI, "addconv");
312        return new SExtInst(NewAdd, I.getType());
313      }
314    }
315
316    // (add (sext x), (sext y)) --> (sext (add int x, y))
317    if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
318      // Only do this if x/y have the same type, if at last one of them has a
319      // single use (so we don't increase the number of sexts), and if the
320      // integer add will not overflow.
321      if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
322          (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
323          WillNotOverflowSignedAdd(LHSConv->getOperand(0),
324                                   RHSConv->getOperand(0))) {
325        // Insert the new integer add.
326        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
327                                             RHSConv->getOperand(0), "addconv");
328        return new SExtInst(NewAdd, I.getType());
329      }
330    }
331  }
332
333  // Check for (x & y) + (x ^ y)
334  {
335    Value *A = 0, *B = 0;
336    if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
337        (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
338         match(LHS, m_And(m_Specific(B), m_Specific(A)))))
339      return BinaryOperator::CreateOr(A, B);
340
341    if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
342        (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
343         match(RHS, m_And(m_Specific(B), m_Specific(A)))))
344      return BinaryOperator::CreateOr(A, B);
345  }
346
347  return Changed ? &I : 0;
348}
349
350Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
351  bool Changed = SimplifyAssociativeOrCommutative(I);
352  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
353
354  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
355    // X + 0 --> X
356    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
357      if (CFP->isExactlyValue(ConstantFP::getNegativeZero
358                              (I.getType())->getValueAPF()))
359        return ReplaceInstUsesWith(I, LHS);
360    }
361
362    if (isa<PHINode>(LHS))
363      if (Instruction *NV = FoldOpIntoPhi(I))
364        return NV;
365  }
366
367  // -A + B  -->  B - A
368  // -A + -B  -->  -(A + B)
369  if (Value *LHSV = dyn_castFNegVal(LHS))
370    return BinaryOperator::CreateFSub(RHS, LHSV);
371
372  // A + -B  -->  A - B
373  if (!isa<Constant>(RHS))
374    if (Value *V = dyn_castFNegVal(RHS))
375      return BinaryOperator::CreateFSub(LHS, V);
376
377  // Check for X+0.0.  Simplify it to X if we know X is not -0.0.
378  if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
379    if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
380      return ReplaceInstUsesWith(I, LHS);
381
382  // Check for (fadd double (sitofp x), y), see if we can merge this into an
383  // integer add followed by a promotion.
384  if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
385    // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
386    // ... if the constant fits in the integer value.  This is useful for things
387    // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
388    // requires a constant pool load, and generally allows the add to be better
389    // instcombined.
390    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
391      Constant *CI =
392      ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
393      if (LHSConv->hasOneUse() &&
394          ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
395          WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
396        // Insert the new integer add.
397        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
398                                              CI, "addconv");
399        return new SIToFPInst(NewAdd, I.getType());
400      }
401    }
402
403    // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
404    if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
405      // Only do this if x/y have the same type, if at last one of them has a
406      // single use (so we don't increase the number of int->fp conversions),
407      // and if the integer add will not overflow.
408      if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
409          (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
410          WillNotOverflowSignedAdd(LHSConv->getOperand(0),
411                                   RHSConv->getOperand(0))) {
412        // Insert the new integer add.
413        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
414                                              RHSConv->getOperand(0),"addconv");
415        return new SIToFPInst(NewAdd, I.getType());
416      }
417    }
418  }
419
420  return Changed ? &I : 0;
421}
422
423
424/// Optimize pointer differences into the same array into a size.  Consider:
425///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
426/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
427///
428Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
429                                               Type *Ty) {
430  assert(TD && "Must have target data info for this");
431
432  // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
433  // this.
434  bool Swapped = false;
435  GEPOperator *GEP1 = 0, *GEP2 = 0;
436
437  // For now we require one side to be the base pointer "A" or a constant
438  // GEP derived from it.
439  if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
440    // (gep X, ...) - X
441    if (LHSGEP->getOperand(0) == RHS) {
442      GEP1 = LHSGEP;
443      Swapped = false;
444    } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
445      // (gep X, ...) - (gep X, ...)
446      if (LHSGEP->getOperand(0)->stripPointerCasts() ==
447            RHSGEP->getOperand(0)->stripPointerCasts()) {
448        GEP2 = RHSGEP;
449        GEP1 = LHSGEP;
450        Swapped = false;
451      }
452    }
453  }
454
455  if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
456    // X - (gep X, ...)
457    if (RHSGEP->getOperand(0) == LHS) {
458      GEP1 = RHSGEP;
459      Swapped = true;
460    } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
461      // (gep X, ...) - (gep X, ...)
462      if (RHSGEP->getOperand(0)->stripPointerCasts() ==
463            LHSGEP->getOperand(0)->stripPointerCasts()) {
464        GEP2 = LHSGEP;
465        GEP1 = RHSGEP;
466        Swapped = true;
467      }
468    }
469  }
470
471  // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
472  // multiple users.
473  if (GEP1 == 0 ||
474      (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
475    return 0;
476
477  // Emit the offset of the GEP and an intptr_t.
478  Value *Result = EmitGEPOffset(GEP1);
479
480  // If we had a constant expression GEP on the other side offsetting the
481  // pointer, subtract it from the offset we have.
482  if (GEP2) {
483    Value *Offset = EmitGEPOffset(GEP2);
484    Result = Builder->CreateSub(Result, Offset);
485  }
486
487  // If we have p - gep(p, ...)  then we have to negate the result.
488  if (Swapped)
489    Result = Builder->CreateNeg(Result, "diff.neg");
490
491  return Builder->CreateIntCast(Result, Ty, true);
492}
493
494
495Instruction *InstCombiner::visitSub(BinaryOperator &I) {
496  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
497
498  if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
499                                 I.hasNoUnsignedWrap(), TD))
500    return ReplaceInstUsesWith(I, V);
501
502  // (A*B)-(A*C) -> A*(B-C) etc
503  if (Value *V = SimplifyUsingDistributiveLaws(I))
504    return ReplaceInstUsesWith(I, V);
505
506  // If this is a 'B = x-(-A)', change to B = x+A.  This preserves NSW/NUW.
507  if (Value *V = dyn_castNegVal(Op1)) {
508    BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
509    Res->setHasNoSignedWrap(I.hasNoSignedWrap());
510    Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
511    return Res;
512  }
513
514  if (I.getType()->isIntegerTy(1))
515    return BinaryOperator::CreateXor(Op0, Op1);
516
517  // Replace (-1 - A) with (~A).
518  if (match(Op0, m_AllOnes()))
519    return BinaryOperator::CreateNot(Op1);
520
521  if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
522    // C - ~X == X + (1+C)
523    Value *X = 0;
524    if (match(Op1, m_Not(m_Value(X))))
525      return BinaryOperator::CreateAdd(X, AddOne(C));
526
527    // -(X >>u 31) -> (X >>s 31)
528    // -(X >>s 31) -> (X >>u 31)
529    if (C->isZero()) {
530      Value *X; ConstantInt *CI;
531      if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
532          // Verify we are shifting out everything but the sign bit.
533          CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
534        return BinaryOperator::CreateAShr(X, CI);
535
536      if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
537          // Verify we are shifting out everything but the sign bit.
538          CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
539        return BinaryOperator::CreateLShr(X, CI);
540    }
541
542    // Try to fold constant sub into select arguments.
543    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
544      if (Instruction *R = FoldOpIntoSelect(I, SI))
545        return R;
546
547    // C-(X+C2) --> (C-C2)-X
548    ConstantInt *C2;
549    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2))))
550      return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
551
552    if (SimplifyDemandedInstructionBits(I))
553      return &I;
554  }
555
556
557  { Value *Y;
558    // X-(X+Y) == -Y    X-(Y+X) == -Y
559    if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
560        match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
561      return BinaryOperator::CreateNeg(Y);
562
563    // (X-Y)-X == -Y
564    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
565      return BinaryOperator::CreateNeg(Y);
566  }
567
568  if (Op1->hasOneUse()) {
569    Value *X = 0, *Y = 0, *Z = 0;
570    Constant *C = 0;
571    ConstantInt *CI = 0;
572
573    // (X - (Y - Z))  -->  (X + (Z - Y)).
574    if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
575      return BinaryOperator::CreateAdd(Op0,
576                                      Builder->CreateSub(Z, Y, Op1->getName()));
577
578    // (X - (X & Y))   -->   (X & ~Y)
579    //
580    if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
581        match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
582      return BinaryOperator::CreateAnd(Op0,
583                                  Builder->CreateNot(Y, Y->getName() + ".not"));
584
585    // 0 - (X sdiv C)  -> (X sdiv -C)
586    if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
587        match(Op0, m_Zero()))
588      return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
589
590    // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
591    if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
592      if (Value *XNeg = dyn_castNegVal(X))
593        return BinaryOperator::CreateShl(XNeg, Y);
594
595    // X - X*C --> X * (1-C)
596    if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) {
597      Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
598      return BinaryOperator::CreateMul(Op0, CP1);
599    }
600
601    // X - X<<C --> X * (1-(1<<C))
602    if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) {
603      Constant *One = ConstantInt::get(I.getType(), 1);
604      C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
605      return BinaryOperator::CreateMul(Op0, C);
606    }
607
608    // X - A*-B -> X + A*B
609    // X - -A*B -> X + A*B
610    Value *A, *B;
611    if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
612        match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
613      return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
614
615    // X - A*CI -> X + A*-CI
616    // X - CI*A -> X + A*-CI
617    if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
618        match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) {
619      Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
620      return BinaryOperator::CreateAdd(Op0, NewMul);
621    }
622  }
623
624  ConstantInt *C1;
625  if (Value *X = dyn_castFoldableMul(Op0, C1)) {
626    if (X == Op1)  // X*C - X --> X * (C-1)
627      return BinaryOperator::CreateMul(Op1, SubOne(C1));
628
629    ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
630    if (X == dyn_castFoldableMul(Op1, C2))
631      return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
632  }
633
634  // Optimize pointer differences into the same array into a size.  Consider:
635  //  &A[10] - &A[0]: we should compile this to "10".
636  if (TD) {
637    Value *LHSOp, *RHSOp;
638    if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
639        match(Op1, m_PtrToInt(m_Value(RHSOp))))
640      if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
641        return ReplaceInstUsesWith(I, Res);
642
643    // trunc(p)-trunc(q) -> trunc(p-q)
644    if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
645        match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
646      if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
647        return ReplaceInstUsesWith(I, Res);
648  }
649
650  return 0;
651}
652
653Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
654  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
655
656  // If this is a 'B = x-(-A)', change to B = x+A...
657  if (Value *V = dyn_castFNegVal(Op1))
658    return BinaryOperator::CreateFAdd(Op0, V);
659
660  return 0;
661}
662