1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// A hash is computed from the function, based on its type and number of
13// basic blocks.
14//
15// Once all hashes are computed, we perform an expensive equality comparison
16// on each function pair. This takes n^2/2 comparisons per bucket, so it's
17// important that the hash function be high quality. The equality comparison
18// iterates through each instruction in each basic block.
19//
20// When a match is found the functions are folded. If both functions are
21// overridable, we move the functionality into a new internal function and
22// leave two overridable thunks to it.
23//
24//===----------------------------------------------------------------------===//
25//
26// Future work:
27//
28// * virtual functions.
29//
30// Many functions have their address taken by the virtual function table for
31// the object they belong to. However, as long as it's only used for a lookup
32// and call, this is irrelevant, and we'd like to fold such functions.
33//
34// * switch from n^2 pair-wise comparisons to an n-way comparison for each
35// bucket.
36//
37// * be smarter about bitcasts.
38//
39// In order to fold functions, we will sometimes add either bitcast instructions
40// or bitcast constant expressions. Unfortunately, this can confound further
41// analysis since the two functions differ where one has a bitcast and the
42// other doesn't. We should learn to look through bitcasts.
43//
44//===----------------------------------------------------------------------===//
45
46#define DEBUG_TYPE "mergefunc"
47#include "llvm/Transforms/IPO.h"
48#include "llvm/Constants.h"
49#include "llvm/IRBuilder.h"
50#include "llvm/InlineAsm.h"
51#include "llvm/Instructions.h"
52#include "llvm/LLVMContext.h"
53#include "llvm/Module.h"
54#include "llvm/Operator.h"
55#include "llvm/Pass.h"
56#include "llvm/ADT/DenseSet.h"
57#include "llvm/ADT/FoldingSet.h"
58#include "llvm/ADT/STLExtras.h"
59#include "llvm/ADT/SmallSet.h"
60#include "llvm/ADT/Statistic.h"
61#include "llvm/Support/CallSite.h"
62#include "llvm/Support/Debug.h"
63#include "llvm/Support/ErrorHandling.h"
64#include "llvm/Support/ValueHandle.h"
65#include "llvm/Support/raw_ostream.h"
66#include "llvm/Target/TargetData.h"
67#include <vector>
68using namespace llvm;
69
70STATISTIC(NumFunctionsMerged, "Number of functions merged");
71STATISTIC(NumThunksWritten, "Number of thunks generated");
72STATISTIC(NumAliasesWritten, "Number of aliases generated");
73STATISTIC(NumDoubleWeak, "Number of new functions created");
74
75/// Creates a hash-code for the function which is the same for any two
76/// functions that will compare equal, without looking at the instructions
77/// inside the function.
78static unsigned profileFunction(const Function *F) {
79  FunctionType *FTy = F->getFunctionType();
80
81  FoldingSetNodeID ID;
82  ID.AddInteger(F->size());
83  ID.AddInteger(F->getCallingConv());
84  ID.AddBoolean(F->hasGC());
85  ID.AddBoolean(FTy->isVarArg());
86  ID.AddInteger(FTy->getReturnType()->getTypeID());
87  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
88    ID.AddInteger(FTy->getParamType(i)->getTypeID());
89  return ID.ComputeHash();
90}
91
92namespace {
93
94/// ComparableFunction - A struct that pairs together functions with a
95/// TargetData so that we can keep them together as elements in the DenseSet.
96class ComparableFunction {
97public:
98  static const ComparableFunction EmptyKey;
99  static const ComparableFunction TombstoneKey;
100  static TargetData * const LookupOnly;
101
102  ComparableFunction(Function *Func, TargetData *TD)
103    : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
104
105  Function *getFunc() const { return Func; }
106  unsigned getHash() const { return Hash; }
107  TargetData *getTD() const { return TD; }
108
109  // Drops AssertingVH reference to the function. Outside of debug mode, this
110  // does nothing.
111  void release() {
112    assert(Func &&
113           "Attempted to release function twice, or release empty/tombstone!");
114    Func = NULL;
115  }
116
117private:
118  explicit ComparableFunction(unsigned Hash)
119    : Func(NULL), Hash(Hash), TD(NULL) {}
120
121  AssertingVH<Function> Func;
122  unsigned Hash;
123  TargetData *TD;
124};
125
126const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
127const ComparableFunction ComparableFunction::TombstoneKey =
128    ComparableFunction(1);
129TargetData *const ComparableFunction::LookupOnly = (TargetData*)(-1);
130
131}
132
133namespace llvm {
134  template <>
135  struct DenseMapInfo<ComparableFunction> {
136    static ComparableFunction getEmptyKey() {
137      return ComparableFunction::EmptyKey;
138    }
139    static ComparableFunction getTombstoneKey() {
140      return ComparableFunction::TombstoneKey;
141    }
142    static unsigned getHashValue(const ComparableFunction &CF) {
143      return CF.getHash();
144    }
145    static bool isEqual(const ComparableFunction &LHS,
146                        const ComparableFunction &RHS);
147  };
148}
149
150namespace {
151
152/// FunctionComparator - Compares two functions to determine whether or not
153/// they will generate machine code with the same behaviour. TargetData is
154/// used if available. The comparator always fails conservatively (erring on the
155/// side of claiming that two functions are different).
156class FunctionComparator {
157public:
158  FunctionComparator(const TargetData *TD, const Function *F1,
159                     const Function *F2)
160    : F1(F1), F2(F2), TD(TD) {}
161
162  /// Test whether the two functions have equivalent behaviour.
163  bool compare();
164
165private:
166  /// Test whether two basic blocks have equivalent behaviour.
167  bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
168
169  /// Assign or look up previously assigned numbers for the two values, and
170  /// return whether the numbers are equal. Numbers are assigned in the order
171  /// visited.
172  bool enumerate(const Value *V1, const Value *V2);
173
174  /// Compare two Instructions for equivalence, similar to
175  /// Instruction::isSameOperationAs but with modifications to the type
176  /// comparison.
177  bool isEquivalentOperation(const Instruction *I1,
178                             const Instruction *I2) const;
179
180  /// Compare two GEPs for equivalent pointer arithmetic.
181  bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
182  bool isEquivalentGEP(const GetElementPtrInst *GEP1,
183                       const GetElementPtrInst *GEP2) {
184    return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
185  }
186
187  /// Compare two Types, treating all pointer types as equal.
188  bool isEquivalentType(Type *Ty1, Type *Ty2) const;
189
190  // The two functions undergoing comparison.
191  const Function *F1, *F2;
192
193  const TargetData *TD;
194
195  DenseMap<const Value *, const Value *> id_map;
196  DenseSet<const Value *> seen_values;
197};
198
199}
200
201// Any two pointers in the same address space are equivalent, intptr_t and
202// pointers are equivalent. Otherwise, standard type equivalence rules apply.
203bool FunctionComparator::isEquivalentType(Type *Ty1,
204                                          Type *Ty2) const {
205  if (Ty1 == Ty2)
206    return true;
207  if (Ty1->getTypeID() != Ty2->getTypeID()) {
208    if (TD) {
209      LLVMContext &Ctx = Ty1->getContext();
210      if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true;
211      if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true;
212    }
213    return false;
214  }
215
216  switch (Ty1->getTypeID()) {
217  default:
218    llvm_unreachable("Unknown type!");
219    // Fall through in Release mode.
220  case Type::IntegerTyID:
221  case Type::VectorTyID:
222    // Ty1 == Ty2 would have returned true earlier.
223    return false;
224
225  case Type::VoidTyID:
226  case Type::FloatTyID:
227  case Type::DoubleTyID:
228  case Type::X86_FP80TyID:
229  case Type::FP128TyID:
230  case Type::PPC_FP128TyID:
231  case Type::LabelTyID:
232  case Type::MetadataTyID:
233    return true;
234
235  case Type::PointerTyID: {
236    PointerType *PTy1 = cast<PointerType>(Ty1);
237    PointerType *PTy2 = cast<PointerType>(Ty2);
238    return PTy1->getAddressSpace() == PTy2->getAddressSpace();
239  }
240
241  case Type::StructTyID: {
242    StructType *STy1 = cast<StructType>(Ty1);
243    StructType *STy2 = cast<StructType>(Ty2);
244    if (STy1->getNumElements() != STy2->getNumElements())
245      return false;
246
247    if (STy1->isPacked() != STy2->isPacked())
248      return false;
249
250    for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
251      if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
252        return false;
253    }
254    return true;
255  }
256
257  case Type::FunctionTyID: {
258    FunctionType *FTy1 = cast<FunctionType>(Ty1);
259    FunctionType *FTy2 = cast<FunctionType>(Ty2);
260    if (FTy1->getNumParams() != FTy2->getNumParams() ||
261        FTy1->isVarArg() != FTy2->isVarArg())
262      return false;
263
264    if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
265      return false;
266
267    for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
268      if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
269        return false;
270    }
271    return true;
272  }
273
274  case Type::ArrayTyID: {
275    ArrayType *ATy1 = cast<ArrayType>(Ty1);
276    ArrayType *ATy2 = cast<ArrayType>(Ty2);
277    return ATy1->getNumElements() == ATy2->getNumElements() &&
278           isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
279  }
280  }
281}
282
283// Determine whether the two operations are the same except that pointer-to-A
284// and pointer-to-B are equivalent. This should be kept in sync with
285// Instruction::isSameOperationAs.
286bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
287                                               const Instruction *I2) const {
288  // Differences from Instruction::isSameOperationAs:
289  //  * replace type comparison with calls to isEquivalentType.
290  //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
291  //  * because of the above, we don't test for the tail bit on calls later on
292  if (I1->getOpcode() != I2->getOpcode() ||
293      I1->getNumOperands() != I2->getNumOperands() ||
294      !isEquivalentType(I1->getType(), I2->getType()) ||
295      !I1->hasSameSubclassOptionalData(I2))
296    return false;
297
298  // We have two instructions of identical opcode and #operands.  Check to see
299  // if all operands are the same type
300  for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
301    if (!isEquivalentType(I1->getOperand(i)->getType(),
302                          I2->getOperand(i)->getType()))
303      return false;
304
305  // Check special state that is a part of some instructions.
306  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
307    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
308           LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() &&
309           LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
310           LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
311  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
312    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
313           SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() &&
314           SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
315           SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
316  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
317    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
318  if (const CallInst *CI = dyn_cast<CallInst>(I1))
319    return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
320           CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
321  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
322    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
323           CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
324  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
325    return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
326  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
327    return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
328  if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
329    return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
330           FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
331  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
332    return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
333           CXI->getOrdering() == cast<AtomicCmpXchgInst>(I2)->getOrdering() &&
334           CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
335  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
336    return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
337           RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
338           RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
339           RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
340
341  return true;
342}
343
344// Determine whether two GEP operations perform the same underlying arithmetic.
345bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
346                                         const GEPOperator *GEP2) {
347  // When we have target data, we can reduce the GEP down to the value in bytes
348  // added to the address.
349  if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
350    SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
351    SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
352    uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
353                                            Indices1);
354    uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
355                                            Indices2);
356    return Offset1 == Offset2;
357  }
358
359  if (GEP1->getPointerOperand()->getType() !=
360      GEP2->getPointerOperand()->getType())
361    return false;
362
363  if (GEP1->getNumOperands() != GEP2->getNumOperands())
364    return false;
365
366  for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
367    if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
368      return false;
369  }
370
371  return true;
372}
373
374// Compare two values used by the two functions under pair-wise comparison. If
375// this is the first time the values are seen, they're added to the mapping so
376// that we will detect mismatches on next use.
377bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
378  // Check for function @f1 referring to itself and function @f2 referring to
379  // itself, or referring to each other, or both referring to either of them.
380  // They're all equivalent if the two functions are otherwise equivalent.
381  if (V1 == F1 && V2 == F2)
382    return true;
383  if (V1 == F2 && V2 == F1)
384    return true;
385
386  if (const Constant *C1 = dyn_cast<Constant>(V1)) {
387    if (V1 == V2) return true;
388    const Constant *C2 = dyn_cast<Constant>(V2);
389    if (!C2) return false;
390    // TODO: constant expressions with GEP or references to F1 or F2.
391    if (C1->isNullValue() && C2->isNullValue() &&
392        isEquivalentType(C1->getType(), C2->getType()))
393      return true;
394    // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
395    // then they must have equal bit patterns.
396    return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
397      C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
398  }
399
400  if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
401    return V1 == V2;
402
403  // Check that V1 maps to V2. If we find a value that V1 maps to then we simply
404  // check whether it's equal to V2. When there is no mapping then we need to
405  // ensure that V2 isn't already equivalent to something else. For this
406  // purpose, we track the V2 values in a set.
407
408  const Value *&map_elem = id_map[V1];
409  if (map_elem)
410    return map_elem == V2;
411  if (!seen_values.insert(V2).second)
412    return false;
413  map_elem = V2;
414  return true;
415}
416
417// Test whether two basic blocks have equivalent behaviour.
418bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
419  BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
420  BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
421
422  do {
423    if (!enumerate(F1I, F2I))
424      return false;
425
426    if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
427      const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
428      if (!GEP2)
429        return false;
430
431      if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
432        return false;
433
434      if (!isEquivalentGEP(GEP1, GEP2))
435        return false;
436    } else {
437      if (!isEquivalentOperation(F1I, F2I))
438        return false;
439
440      assert(F1I->getNumOperands() == F2I->getNumOperands());
441      for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
442        Value *OpF1 = F1I->getOperand(i);
443        Value *OpF2 = F2I->getOperand(i);
444
445        if (!enumerate(OpF1, OpF2))
446          return false;
447
448        if (OpF1->getValueID() != OpF2->getValueID() ||
449            !isEquivalentType(OpF1->getType(), OpF2->getType()))
450          return false;
451      }
452    }
453
454    ++F1I, ++F2I;
455  } while (F1I != F1E && F2I != F2E);
456
457  return F1I == F1E && F2I == F2E;
458}
459
460// Test whether the two functions have equivalent behaviour.
461bool FunctionComparator::compare() {
462  // We need to recheck everything, but check the things that weren't included
463  // in the hash first.
464
465  if (F1->getAttributes() != F2->getAttributes())
466    return false;
467
468  if (F1->hasGC() != F2->hasGC())
469    return false;
470
471  if (F1->hasGC() && F1->getGC() != F2->getGC())
472    return false;
473
474  if (F1->hasSection() != F2->hasSection())
475    return false;
476
477  if (F1->hasSection() && F1->getSection() != F2->getSection())
478    return false;
479
480  if (F1->isVarArg() != F2->isVarArg())
481    return false;
482
483  // TODO: if it's internal and only used in direct calls, we could handle this
484  // case too.
485  if (F1->getCallingConv() != F2->getCallingConv())
486    return false;
487
488  if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
489    return false;
490
491  assert(F1->arg_size() == F2->arg_size() &&
492         "Identically typed functions have different numbers of args!");
493
494  // Visit the arguments so that they get enumerated in the order they're
495  // passed in.
496  for (Function::const_arg_iterator f1i = F1->arg_begin(),
497         f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
498    if (!enumerate(f1i, f2i))
499      llvm_unreachable("Arguments repeat!");
500  }
501
502  // We do a CFG-ordered walk since the actual ordering of the blocks in the
503  // linked list is immaterial. Our walk starts at the entry block for both
504  // functions, then takes each block from each terminator in order. As an
505  // artifact, this also means that unreachable blocks are ignored.
506  SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
507  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
508
509  F1BBs.push_back(&F1->getEntryBlock());
510  F2BBs.push_back(&F2->getEntryBlock());
511
512  VisitedBBs.insert(F1BBs[0]);
513  while (!F1BBs.empty()) {
514    const BasicBlock *F1BB = F1BBs.pop_back_val();
515    const BasicBlock *F2BB = F2BBs.pop_back_val();
516
517    if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
518      return false;
519
520    const TerminatorInst *F1TI = F1BB->getTerminator();
521    const TerminatorInst *F2TI = F2BB->getTerminator();
522
523    assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
524    for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
525      if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
526        continue;
527
528      F1BBs.push_back(F1TI->getSuccessor(i));
529      F2BBs.push_back(F2TI->getSuccessor(i));
530    }
531  }
532  return true;
533}
534
535namespace {
536
537/// MergeFunctions finds functions which will generate identical machine code,
538/// by considering all pointer types to be equivalent. Once identified,
539/// MergeFunctions will fold them by replacing a call to one to a call to a
540/// bitcast of the other.
541///
542class MergeFunctions : public ModulePass {
543public:
544  static char ID;
545  MergeFunctions()
546    : ModulePass(ID), HasGlobalAliases(false) {
547    initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
548  }
549
550  bool runOnModule(Module &M);
551
552private:
553  typedef DenseSet<ComparableFunction> FnSetType;
554
555  /// A work queue of functions that may have been modified and should be
556  /// analyzed again.
557  std::vector<WeakVH> Deferred;
558
559  /// Insert a ComparableFunction into the FnSet, or merge it away if it's
560  /// equal to one that's already present.
561  bool insert(ComparableFunction &NewF);
562
563  /// Remove a Function from the FnSet and queue it up for a second sweep of
564  /// analysis.
565  void remove(Function *F);
566
567  /// Find the functions that use this Value and remove them from FnSet and
568  /// queue the functions.
569  void removeUsers(Value *V);
570
571  /// Replace all direct calls of Old with calls of New. Will bitcast New if
572  /// necessary to make types match.
573  void replaceDirectCallers(Function *Old, Function *New);
574
575  /// Merge two equivalent functions. Upon completion, G may be deleted, or may
576  /// be converted into a thunk. In either case, it should never be visited
577  /// again.
578  void mergeTwoFunctions(Function *F, Function *G);
579
580  /// Replace G with a thunk or an alias to F. Deletes G.
581  void writeThunkOrAlias(Function *F, Function *G);
582
583  /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
584  /// of G with bitcast(F). Deletes G.
585  void writeThunk(Function *F, Function *G);
586
587  /// Replace G with an alias to F. Deletes G.
588  void writeAlias(Function *F, Function *G);
589
590  /// The set of all distinct functions. Use the insert() and remove() methods
591  /// to modify it.
592  FnSetType FnSet;
593
594  /// TargetData for more accurate GEP comparisons. May be NULL.
595  TargetData *TD;
596
597  /// Whether or not the target supports global aliases.
598  bool HasGlobalAliases;
599};
600
601}  // end anonymous namespace
602
603char MergeFunctions::ID = 0;
604INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
605
606ModulePass *llvm::createMergeFunctionsPass() {
607  return new MergeFunctions();
608}
609
610bool MergeFunctions::runOnModule(Module &M) {
611  bool Changed = false;
612  TD = getAnalysisIfAvailable<TargetData>();
613
614  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
615    if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
616      Deferred.push_back(WeakVH(I));
617  }
618  FnSet.resize(Deferred.size());
619
620  do {
621    std::vector<WeakVH> Worklist;
622    Deferred.swap(Worklist);
623
624    DEBUG(dbgs() << "size of module: " << M.size() << '\n');
625    DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
626
627    // Insert only strong functions and merge them. Strong function merging
628    // always deletes one of them.
629    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
630           E = Worklist.end(); I != E; ++I) {
631      if (!*I) continue;
632      Function *F = cast<Function>(*I);
633      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
634          !F->mayBeOverridden()) {
635        ComparableFunction CF = ComparableFunction(F, TD);
636        Changed |= insert(CF);
637      }
638    }
639
640    // Insert only weak functions and merge them. By doing these second we
641    // create thunks to the strong function when possible. When two weak
642    // functions are identical, we create a new strong function with two weak
643    // weak thunks to it which are identical but not mergable.
644    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
645           E = Worklist.end(); I != E; ++I) {
646      if (!*I) continue;
647      Function *F = cast<Function>(*I);
648      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
649          F->mayBeOverridden()) {
650        ComparableFunction CF = ComparableFunction(F, TD);
651        Changed |= insert(CF);
652      }
653    }
654    DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
655  } while (!Deferred.empty());
656
657  FnSet.clear();
658
659  return Changed;
660}
661
662bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
663                                               const ComparableFunction &RHS) {
664  if (LHS.getFunc() == RHS.getFunc() &&
665      LHS.getHash() == RHS.getHash())
666    return true;
667  if (!LHS.getFunc() || !RHS.getFunc())
668    return false;
669
670  // One of these is a special "underlying pointer comparison only" object.
671  if (LHS.getTD() == ComparableFunction::LookupOnly ||
672      RHS.getTD() == ComparableFunction::LookupOnly)
673    return false;
674
675  assert(LHS.getTD() == RHS.getTD() &&
676         "Comparing functions for different targets");
677
678  return FunctionComparator(LHS.getTD(), LHS.getFunc(),
679                            RHS.getFunc()).compare();
680}
681
682// Replace direct callers of Old with New.
683void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
684  Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
685  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
686       UI != UE;) {
687    Value::use_iterator TheIter = UI;
688    ++UI;
689    CallSite CS(*TheIter);
690    if (CS && CS.isCallee(TheIter)) {
691      remove(CS.getInstruction()->getParent()->getParent());
692      TheIter.getUse().set(BitcastNew);
693    }
694  }
695}
696
697// Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
698void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
699  if (HasGlobalAliases && G->hasUnnamedAddr()) {
700    if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
701        G->hasWeakLinkage()) {
702      writeAlias(F, G);
703      return;
704    }
705  }
706
707  writeThunk(F, G);
708}
709
710// Replace G with a simple tail call to bitcast(F). Also replace direct uses
711// of G with bitcast(F). Deletes G.
712void MergeFunctions::writeThunk(Function *F, Function *G) {
713  if (!G->mayBeOverridden()) {
714    // Redirect direct callers of G to F.
715    replaceDirectCallers(G, F);
716  }
717
718  // If G was internal then we may have replaced all uses of G with F. If so,
719  // stop here and delete G. There's no need for a thunk.
720  if (G->hasLocalLinkage() && G->use_empty()) {
721    G->eraseFromParent();
722    return;
723  }
724
725  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
726                                    G->getParent());
727  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
728  IRBuilder<false> Builder(BB);
729
730  SmallVector<Value *, 16> Args;
731  unsigned i = 0;
732  FunctionType *FFTy = F->getFunctionType();
733  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
734       AI != AE; ++AI) {
735    Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
736    ++i;
737  }
738
739  CallInst *CI = Builder.CreateCall(F, Args);
740  CI->setTailCall();
741  CI->setCallingConv(F->getCallingConv());
742  if (NewG->getReturnType()->isVoidTy()) {
743    Builder.CreateRetVoid();
744  } else {
745    Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
746  }
747
748  NewG->copyAttributesFrom(G);
749  NewG->takeName(G);
750  removeUsers(G);
751  G->replaceAllUsesWith(NewG);
752  G->eraseFromParent();
753
754  DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
755  ++NumThunksWritten;
756}
757
758// Replace G with an alias to F and delete G.
759void MergeFunctions::writeAlias(Function *F, Function *G) {
760  Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
761  GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
762                                    BitcastF, G->getParent());
763  F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
764  GA->takeName(G);
765  GA->setVisibility(G->getVisibility());
766  removeUsers(G);
767  G->replaceAllUsesWith(GA);
768  G->eraseFromParent();
769
770  DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
771  ++NumAliasesWritten;
772}
773
774// Merge two equivalent functions. Upon completion, Function G is deleted.
775void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
776  if (F->mayBeOverridden()) {
777    assert(G->mayBeOverridden());
778
779    if (HasGlobalAliases) {
780      // Make them both thunks to the same internal function.
781      Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
782                                     F->getParent());
783      H->copyAttributesFrom(F);
784      H->takeName(F);
785      removeUsers(F);
786      F->replaceAllUsesWith(H);
787
788      unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
789
790      writeAlias(F, G);
791      writeAlias(F, H);
792
793      F->setAlignment(MaxAlignment);
794      F->setLinkage(GlobalValue::PrivateLinkage);
795    } else {
796      // We can't merge them. Instead, pick one and update all direct callers
797      // to call it and hope that we improve the instruction cache hit rate.
798      replaceDirectCallers(G, F);
799    }
800
801    ++NumDoubleWeak;
802  } else {
803    writeThunkOrAlias(F, G);
804  }
805
806  ++NumFunctionsMerged;
807}
808
809// Insert a ComparableFunction into the FnSet, or merge it away if equal to one
810// that was already inserted.
811bool MergeFunctions::insert(ComparableFunction &NewF) {
812  std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
813  if (Result.second) {
814    DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
815    return false;
816  }
817
818  const ComparableFunction &OldF = *Result.first;
819
820  // Never thunk a strong function to a weak function.
821  assert(!OldF.getFunc()->mayBeOverridden() ||
822         NewF.getFunc()->mayBeOverridden());
823
824  DEBUG(dbgs() << "  " << OldF.getFunc()->getName() << " == "
825               << NewF.getFunc()->getName() << '\n');
826
827  Function *DeleteF = NewF.getFunc();
828  NewF.release();
829  mergeTwoFunctions(OldF.getFunc(), DeleteF);
830  return true;
831}
832
833// Remove a function from FnSet. If it was already in FnSet, add it to Deferred
834// so that we'll look at it in the next round.
835void MergeFunctions::remove(Function *F) {
836  // We need to make sure we remove F, not a function "equal" to F per the
837  // function equality comparator.
838  //
839  // The special "lookup only" ComparableFunction bypasses the expensive
840  // function comparison in favour of a pointer comparison on the underlying
841  // Function*'s.
842  ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
843  if (FnSet.erase(CF)) {
844    DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
845    Deferred.push_back(F);
846  }
847}
848
849// For each instruction used by the value, remove() the function that contains
850// the instruction. This should happen right before a call to RAUW.
851void MergeFunctions::removeUsers(Value *V) {
852  std::vector<Value *> Worklist;
853  Worklist.push_back(V);
854  while (!Worklist.empty()) {
855    Value *V = Worklist.back();
856    Worklist.pop_back();
857
858    for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
859         UI != UE; ++UI) {
860      Use &U = UI.getUse();
861      if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
862        remove(I->getParent()->getParent());
863      } else if (isa<GlobalValue>(U.getUser())) {
864        // do nothing
865      } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
866        for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
867             CUI != CUE; ++CUI)
868          Worklist.push_back(*CUI);
869      }
870    }
871  }
872}
873