1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Instructions.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Type.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGISel.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/ADT/Statistic.h"
40using namespace llvm;
41
42STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
43
44//===----------------------------------------------------------------------===//
45//                      Pattern Matcher Implementation
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
50  /// SDValue's instead of register numbers for the leaves of the matched
51  /// tree.
52  struct X86ISelAddressMode {
53    enum {
54      RegBase,
55      FrameIndexBase
56    } BaseType;
57
58    // This is really a union, discriminated by BaseType!
59    SDValue Base_Reg;
60    int Base_FrameIndex;
61
62    unsigned Scale;
63    SDValue IndexReg;
64    int32_t Disp;
65    SDValue Segment;
66    const GlobalValue *GV;
67    const Constant *CP;
68    const BlockAddress *BlockAddr;
69    const char *ES;
70    int JT;
71    unsigned Align;    // CP alignment.
72    unsigned char SymbolFlags;  // X86II::MO_*
73
74    X86ISelAddressMode()
75      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
76        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
77        SymbolFlags(X86II::MO_NO_FLAG) {
78    }
79
80    bool hasSymbolicDisplacement() const {
81      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
82    }
83
84    bool hasBaseOrIndexReg() const {
85      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
86    }
87
88    /// isRIPRelative - Return true if this addressing mode is already RIP
89    /// relative.
90    bool isRIPRelative() const {
91      if (BaseType != RegBase) return false;
92      if (RegisterSDNode *RegNode =
93            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
94        return RegNode->getReg() == X86::RIP;
95      return false;
96    }
97
98    void setBaseReg(SDValue Reg) {
99      BaseType = RegBase;
100      Base_Reg = Reg;
101    }
102
103#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
104    void dump() {
105      dbgs() << "X86ISelAddressMode " << this << '\n';
106      dbgs() << "Base_Reg ";
107      if (Base_Reg.getNode() != 0)
108        Base_Reg.getNode()->dump();
109      else
110        dbgs() << "nul";
111      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
112             << " Scale" << Scale << '\n'
113             << "IndexReg ";
114      if (IndexReg.getNode() != 0)
115        IndexReg.getNode()->dump();
116      else
117        dbgs() << "nul";
118      dbgs() << " Disp " << Disp << '\n'
119             << "GV ";
120      if (GV)
121        GV->dump();
122      else
123        dbgs() << "nul";
124      dbgs() << " CP ";
125      if (CP)
126        CP->dump();
127      else
128        dbgs() << "nul";
129      dbgs() << '\n'
130             << "ES ";
131      if (ES)
132        dbgs() << ES;
133      else
134        dbgs() << "nul";
135      dbgs() << " JT" << JT << " Align" << Align << '\n';
136    }
137#endif
138  };
139}
140
141namespace {
142  //===--------------------------------------------------------------------===//
143  /// ISel - X86 specific code to select X86 machine instructions for
144  /// SelectionDAG operations.
145  ///
146  class X86DAGToDAGISel : public SelectionDAGISel {
147    /// X86Lowering - This object fully describes how to lower LLVM code to an
148    /// X86-specific SelectionDAG.
149    const X86TargetLowering &X86Lowering;
150
151    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
152    /// make the right decision when generating code for different targets.
153    const X86Subtarget *Subtarget;
154
155    /// OptForSize - If true, selector should try to optimize for code size
156    /// instead of performance.
157    bool OptForSize;
158
159  public:
160    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
161      : SelectionDAGISel(tm, OptLevel),
162        X86Lowering(*tm.getTargetLowering()),
163        Subtarget(&tm.getSubtarget<X86Subtarget>()),
164        OptForSize(false) {}
165
166    virtual const char *getPassName() const {
167      return "X86 DAG->DAG Instruction Selection";
168    }
169
170    virtual void EmitFunctionEntryCode();
171
172    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
173
174    virtual void PreprocessISelDAG();
175
176    inline bool immSext8(SDNode *N) const {
177      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
178    }
179
180    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
181    // sign extended field.
182    inline bool i64immSExt32(SDNode *N) const {
183      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
184      return (int64_t)v == (int32_t)v;
185    }
186
187// Include the pieces autogenerated from the target description.
188#include "X86GenDAGISel.inc"
189
190  private:
191    SDNode *Select(SDNode *N);
192    SDNode *SelectGather(SDNode *N, unsigned Opc);
193    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
194    SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
195
196    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
197    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
198    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
199    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
200    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
201                                 unsigned Depth);
202    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
203    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
204                    SDValue &Scale, SDValue &Index, SDValue &Disp,
205                    SDValue &Segment);
206    bool SelectLEAAddr(SDValue N, SDValue &Base,
207                       SDValue &Scale, SDValue &Index, SDValue &Disp,
208                       SDValue &Segment);
209    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
210                           SDValue &Scale, SDValue &Index, SDValue &Disp,
211                           SDValue &Segment);
212    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
213                             SDValue &Base, SDValue &Scale,
214                             SDValue &Index, SDValue &Disp,
215                             SDValue &Segment,
216                             SDValue &NodeWithChain);
217
218    bool TryFoldLoad(SDNode *P, SDValue N,
219                     SDValue &Base, SDValue &Scale,
220                     SDValue &Index, SDValue &Disp,
221                     SDValue &Segment);
222
223    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
224    /// inline asm expressions.
225    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
226                                              char ConstraintCode,
227                                              std::vector<SDValue> &OutOps);
228
229    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
230
231    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
232                                   SDValue &Scale, SDValue &Index,
233                                   SDValue &Disp, SDValue &Segment) {
234      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
235        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
236        AM.Base_Reg;
237      Scale = getI8Imm(AM.Scale);
238      Index = AM.IndexReg;
239      // These are 32-bit even in 64-bit mode since RIP relative offset
240      // is 32-bit.
241      if (AM.GV)
242        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
243                                              MVT::i32, AM.Disp,
244                                              AM.SymbolFlags);
245      else if (AM.CP)
246        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
247                                             AM.Align, AM.Disp, AM.SymbolFlags);
248      else if (AM.ES) {
249        assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
250        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
251      } else if (AM.JT != -1) {
252        assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
253        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
254      } else if (AM.BlockAddr)
255        Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
256                                             AM.SymbolFlags);
257      else
258        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
259
260      if (AM.Segment.getNode())
261        Segment = AM.Segment;
262      else
263        Segment = CurDAG->getRegister(0, MVT::i32);
264    }
265
266    /// getI8Imm - Return a target constant with the specified value, of type
267    /// i8.
268    inline SDValue getI8Imm(unsigned Imm) {
269      return CurDAG->getTargetConstant(Imm, MVT::i8);
270    }
271
272    /// getI32Imm - Return a target constant with the specified value, of type
273    /// i32.
274    inline SDValue getI32Imm(unsigned Imm) {
275      return CurDAG->getTargetConstant(Imm, MVT::i32);
276    }
277
278    /// getGlobalBaseReg - Return an SDNode that returns the value of
279    /// the global base register. Output instructions required to
280    /// initialize the global base register, if necessary.
281    ///
282    SDNode *getGlobalBaseReg();
283
284    /// getTargetMachine - Return a reference to the TargetMachine, casted
285    /// to the target-specific type.
286    const X86TargetMachine &getTargetMachine() {
287      return static_cast<const X86TargetMachine &>(TM);
288    }
289
290    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
291    /// to the target-specific type.
292    const X86InstrInfo *getInstrInfo() {
293      return getTargetMachine().getInstrInfo();
294    }
295  };
296}
297
298
299bool
300X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
301  if (OptLevel == CodeGenOpt::None) return false;
302
303  if (!N.hasOneUse())
304    return false;
305
306  if (N.getOpcode() != ISD::LOAD)
307    return true;
308
309  // If N is a load, do additional profitability checks.
310  if (U == Root) {
311    switch (U->getOpcode()) {
312    default: break;
313    case X86ISD::ADD:
314    case X86ISD::SUB:
315    case X86ISD::AND:
316    case X86ISD::XOR:
317    case X86ISD::OR:
318    case ISD::ADD:
319    case ISD::ADDC:
320    case ISD::ADDE:
321    case ISD::AND:
322    case ISD::OR:
323    case ISD::XOR: {
324      SDValue Op1 = U->getOperand(1);
325
326      // If the other operand is a 8-bit immediate we should fold the immediate
327      // instead. This reduces code size.
328      // e.g.
329      // movl 4(%esp), %eax
330      // addl $4, %eax
331      // vs.
332      // movl $4, %eax
333      // addl 4(%esp), %eax
334      // The former is 2 bytes shorter. In case where the increment is 1, then
335      // the saving can be 4 bytes (by using incl %eax).
336      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
337        if (Imm->getAPIntValue().isSignedIntN(8))
338          return false;
339
340      // If the other operand is a TLS address, we should fold it instead.
341      // This produces
342      // movl    %gs:0, %eax
343      // leal    i@NTPOFF(%eax), %eax
344      // instead of
345      // movl    $i@NTPOFF, %eax
346      // addl    %gs:0, %eax
347      // if the block also has an access to a second TLS address this will save
348      // a load.
349      // FIXME: This is probably also true for non TLS addresses.
350      if (Op1.getOpcode() == X86ISD::Wrapper) {
351        SDValue Val = Op1.getOperand(0);
352        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
353          return false;
354      }
355    }
356    }
357  }
358
359  return true;
360}
361
362/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
363/// load's chain operand and move load below the call's chain operand.
364static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
365                               SDValue Call, SDValue OrigChain) {
366  SmallVector<SDValue, 8> Ops;
367  SDValue Chain = OrigChain.getOperand(0);
368  if (Chain.getNode() == Load.getNode())
369    Ops.push_back(Load.getOperand(0));
370  else {
371    assert(Chain.getOpcode() == ISD::TokenFactor &&
372           "Unexpected chain operand");
373    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
374      if (Chain.getOperand(i).getNode() == Load.getNode())
375        Ops.push_back(Load.getOperand(0));
376      else
377        Ops.push_back(Chain.getOperand(i));
378    SDValue NewChain =
379      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
380                      MVT::Other, &Ops[0], Ops.size());
381    Ops.clear();
382    Ops.push_back(NewChain);
383  }
384  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
385    Ops.push_back(OrigChain.getOperand(i));
386  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
387  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
388                             Load.getOperand(1), Load.getOperand(2));
389
390  unsigned NumOps = Call.getNode()->getNumOperands();
391  Ops.clear();
392  Ops.push_back(SDValue(Load.getNode(), 1));
393  for (unsigned i = 1, e = NumOps; i != e; ++i)
394    Ops.push_back(Call.getOperand(i));
395  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], NumOps);
396}
397
398/// isCalleeLoad - Return true if call address is a load and it can be
399/// moved below CALLSEQ_START and the chains leading up to the call.
400/// Return the CALLSEQ_START by reference as a second output.
401/// In the case of a tail call, there isn't a callseq node between the call
402/// chain and the load.
403static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
404  // The transformation is somewhat dangerous if the call's chain was glued to
405  // the call. After MoveBelowOrigChain the load is moved between the call and
406  // the chain, this can create a cycle if the load is not folded. So it is
407  // *really* important that we are sure the load will be folded.
408  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
409    return false;
410  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
411  if (!LD ||
412      LD->isVolatile() ||
413      LD->getAddressingMode() != ISD::UNINDEXED ||
414      LD->getExtensionType() != ISD::NON_EXTLOAD)
415    return false;
416
417  // Now let's find the callseq_start.
418  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
419    if (!Chain.hasOneUse())
420      return false;
421    Chain = Chain.getOperand(0);
422  }
423
424  if (!Chain.getNumOperands())
425    return false;
426  if (Chain.getOperand(0).getNode() == Callee.getNode())
427    return true;
428  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
429      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
430      Callee.getValue(1).hasOneUse())
431    return true;
432  return false;
433}
434
435void X86DAGToDAGISel::PreprocessISelDAG() {
436  // OptForSize is used in pattern predicates that isel is matching.
437  OptForSize = MF->getFunction()->getFnAttributes().hasOptimizeForSizeAttr();
438
439  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
440       E = CurDAG->allnodes_end(); I != E; ) {
441    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
442
443    if (OptLevel != CodeGenOpt::None &&
444        (N->getOpcode() == X86ISD::CALL ||
445         (N->getOpcode() == X86ISD::TC_RETURN &&
446          // Only does this if load can be foled into TC_RETURN.
447          (Subtarget->is64Bit() ||
448           getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
449      /// Also try moving call address load from outside callseq_start to just
450      /// before the call to allow it to be folded.
451      ///
452      ///     [Load chain]
453      ///         ^
454      ///         |
455      ///       [Load]
456      ///       ^    ^
457      ///       |    |
458      ///      /      \--
459      ///     /          |
460      ///[CALLSEQ_START] |
461      ///     ^          |
462      ///     |          |
463      /// [LOAD/C2Reg]   |
464      ///     |          |
465      ///      \        /
466      ///       \      /
467      ///       [CALL]
468      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
469      SDValue Chain = N->getOperand(0);
470      SDValue Load  = N->getOperand(1);
471      if (!isCalleeLoad(Load, Chain, HasCallSeq))
472        continue;
473      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
474      ++NumLoadMoved;
475      continue;
476    }
477
478    // Lower fpround and fpextend nodes that target the FP stack to be store and
479    // load to the stack.  This is a gross hack.  We would like to simply mark
480    // these as being illegal, but when we do that, legalize produces these when
481    // it expands calls, then expands these in the same legalize pass.  We would
482    // like dag combine to be able to hack on these between the call expansion
483    // and the node legalization.  As such this pass basically does "really
484    // late" legalization of these inline with the X86 isel pass.
485    // FIXME: This should only happen when not compiled with -O0.
486    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
487      continue;
488
489    EVT SrcVT = N->getOperand(0).getValueType();
490    EVT DstVT = N->getValueType(0);
491
492    // If any of the sources are vectors, no fp stack involved.
493    if (SrcVT.isVector() || DstVT.isVector())
494      continue;
495
496    // If the source and destination are SSE registers, then this is a legal
497    // conversion that should not be lowered.
498    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
499    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
500    if (SrcIsSSE && DstIsSSE)
501      continue;
502
503    if (!SrcIsSSE && !DstIsSSE) {
504      // If this is an FPStack extension, it is a noop.
505      if (N->getOpcode() == ISD::FP_EXTEND)
506        continue;
507      // If this is a value-preserving FPStack truncation, it is a noop.
508      if (N->getConstantOperandVal(1))
509        continue;
510    }
511
512    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
513    // FPStack has extload and truncstore.  SSE can fold direct loads into other
514    // operations.  Based on this, decide what we want to do.
515    EVT MemVT;
516    if (N->getOpcode() == ISD::FP_ROUND)
517      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
518    else
519      MemVT = SrcIsSSE ? SrcVT : DstVT;
520
521    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
522    DebugLoc dl = N->getDebugLoc();
523
524    // FIXME: optimize the case where the src/dest is a load or store?
525    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
526                                          N->getOperand(0),
527                                          MemTmp, MachinePointerInfo(), MemVT,
528                                          false, false, 0);
529    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
530                                        MachinePointerInfo(),
531                                        MemVT, false, false, 0);
532
533    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
534    // extload we created.  This will cause general havok on the dag because
535    // anything below the conversion could be folded into other existing nodes.
536    // To avoid invalidating 'I', back it up to the convert node.
537    --I;
538    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
539
540    // Now that we did that, the node is dead.  Increment the iterator to the
541    // next node to process, then delete N.
542    ++I;
543    CurDAG->DeleteNode(N);
544  }
545}
546
547
548/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
549/// the main function.
550void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
551                                             MachineFrameInfo *MFI) {
552  const TargetInstrInfo *TII = TM.getInstrInfo();
553  if (Subtarget->isTargetCygMing()) {
554    unsigned CallOp =
555      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
556    BuildMI(BB, DebugLoc(),
557            TII->get(CallOp)).addExternalSymbol("__main");
558  }
559}
560
561void X86DAGToDAGISel::EmitFunctionEntryCode() {
562  // If this is main, emit special code for main.
563  if (const Function *Fn = MF->getFunction())
564    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
565      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
566}
567
568static bool isDispSafeForFrameIndex(int64_t Val) {
569  // On 64-bit platforms, we can run into an issue where a frame index
570  // includes a displacement that, when added to the explicit displacement,
571  // will overflow the displacement field. Assuming that the frame index
572  // displacement fits into a 31-bit integer  (which is only slightly more
573  // aggressive than the current fundamental assumption that it fits into
574  // a 32-bit integer), a 31-bit disp should always be safe.
575  return isInt<31>(Val);
576}
577
578bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
579                                            X86ISelAddressMode &AM) {
580  int64_t Val = AM.Disp + Offset;
581  CodeModel::Model M = TM.getCodeModel();
582  if (Subtarget->is64Bit()) {
583    if (!X86::isOffsetSuitableForCodeModel(Val, M,
584                                           AM.hasSymbolicDisplacement()))
585      return true;
586    // In addition to the checks required for a register base, check that
587    // we do not try to use an unsafe Disp with a frame index.
588    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
589        !isDispSafeForFrameIndex(Val))
590      return true;
591  }
592  AM.Disp = Val;
593  return false;
594
595}
596
597bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
598  SDValue Address = N->getOperand(1);
599
600  // load gs:0 -> GS segment register.
601  // load fs:0 -> FS segment register.
602  //
603  // This optimization is valid because the GNU TLS model defines that
604  // gs:0 (or fs:0 on X86-64) contains its own address.
605  // For more information see http://people.redhat.com/drepper/tls.pdf
606  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
607    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
608        Subtarget->isTargetLinux())
609      switch (N->getPointerInfo().getAddrSpace()) {
610      case 256:
611        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
612        return false;
613      case 257:
614        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
615        return false;
616      }
617
618  return true;
619}
620
621/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
622/// into an addressing mode.  These wrap things that will resolve down into a
623/// symbol reference.  If no match is possible, this returns true, otherwise it
624/// returns false.
625bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
626  // If the addressing mode already has a symbol as the displacement, we can
627  // never match another symbol.
628  if (AM.hasSymbolicDisplacement())
629    return true;
630
631  SDValue N0 = N.getOperand(0);
632  CodeModel::Model M = TM.getCodeModel();
633
634  // Handle X86-64 rip-relative addresses.  We check this before checking direct
635  // folding because RIP is preferable to non-RIP accesses.
636  if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
637      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
638      // they cannot be folded into immediate fields.
639      // FIXME: This can be improved for kernel and other models?
640      (M == CodeModel::Small || M == CodeModel::Kernel)) {
641    // Base and index reg must be 0 in order to use %rip as base.
642    if (AM.hasBaseOrIndexReg())
643      return true;
644    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
645      X86ISelAddressMode Backup = AM;
646      AM.GV = G->getGlobal();
647      AM.SymbolFlags = G->getTargetFlags();
648      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
649        AM = Backup;
650        return true;
651      }
652    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
653      X86ISelAddressMode Backup = AM;
654      AM.CP = CP->getConstVal();
655      AM.Align = CP->getAlignment();
656      AM.SymbolFlags = CP->getTargetFlags();
657      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
658        AM = Backup;
659        return true;
660      }
661    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
662      AM.ES = S->getSymbol();
663      AM.SymbolFlags = S->getTargetFlags();
664    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
665      AM.JT = J->getIndex();
666      AM.SymbolFlags = J->getTargetFlags();
667    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
668      X86ISelAddressMode Backup = AM;
669      AM.BlockAddr = BA->getBlockAddress();
670      AM.SymbolFlags = BA->getTargetFlags();
671      if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
672        AM = Backup;
673        return true;
674      }
675    } else
676      llvm_unreachable("Unhandled symbol reference node.");
677
678    if (N.getOpcode() == X86ISD::WrapperRIP)
679      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
680    return false;
681  }
682
683  // Handle the case when globals fit in our immediate field: This is true for
684  // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
685  // mode, this only applies to a non-RIP-relative computation.
686  if (!Subtarget->is64Bit() ||
687      M == CodeModel::Small || M == CodeModel::Kernel) {
688    assert(N.getOpcode() != X86ISD::WrapperRIP &&
689           "RIP-relative addressing already handled");
690    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
691      AM.GV = G->getGlobal();
692      AM.Disp += G->getOffset();
693      AM.SymbolFlags = G->getTargetFlags();
694    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
695      AM.CP = CP->getConstVal();
696      AM.Align = CP->getAlignment();
697      AM.Disp += CP->getOffset();
698      AM.SymbolFlags = CP->getTargetFlags();
699    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
700      AM.ES = S->getSymbol();
701      AM.SymbolFlags = S->getTargetFlags();
702    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
703      AM.JT = J->getIndex();
704      AM.SymbolFlags = J->getTargetFlags();
705    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
706      AM.BlockAddr = BA->getBlockAddress();
707      AM.Disp += BA->getOffset();
708      AM.SymbolFlags = BA->getTargetFlags();
709    } else
710      llvm_unreachable("Unhandled symbol reference node.");
711    return false;
712  }
713
714  return true;
715}
716
717/// MatchAddress - Add the specified node to the specified addressing mode,
718/// returning true if it cannot be done.  This just pattern matches for the
719/// addressing mode.
720bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
721  if (MatchAddressRecursively(N, AM, 0))
722    return true;
723
724  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
725  // a smaller encoding and avoids a scaled-index.
726  if (AM.Scale == 2 &&
727      AM.BaseType == X86ISelAddressMode::RegBase &&
728      AM.Base_Reg.getNode() == 0) {
729    AM.Base_Reg = AM.IndexReg;
730    AM.Scale = 1;
731  }
732
733  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
734  // because it has a smaller encoding.
735  // TODO: Which other code models can use this?
736  if (TM.getCodeModel() == CodeModel::Small &&
737      Subtarget->is64Bit() &&
738      AM.Scale == 1 &&
739      AM.BaseType == X86ISelAddressMode::RegBase &&
740      AM.Base_Reg.getNode() == 0 &&
741      AM.IndexReg.getNode() == 0 &&
742      AM.SymbolFlags == X86II::MO_NO_FLAG &&
743      AM.hasSymbolicDisplacement())
744    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
745
746  return false;
747}
748
749// Insert a node into the DAG at least before the Pos node's position. This
750// will reposition the node as needed, and will assign it a node ID that is <=
751// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
752// IDs! The selection DAG must no longer depend on their uniqueness when this
753// is used.
754static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
755  if (N.getNode()->getNodeId() == -1 ||
756      N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
757    DAG.RepositionNode(Pos.getNode(), N.getNode());
758    N.getNode()->setNodeId(Pos.getNode()->getNodeId());
759  }
760}
761
762// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
763// allows us to convert the shift and and into an h-register extract and
764// a scaled index. Returns false if the simplification is performed.
765static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
766                                      uint64_t Mask,
767                                      SDValue Shift, SDValue X,
768                                      X86ISelAddressMode &AM) {
769  if (Shift.getOpcode() != ISD::SRL ||
770      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
771      !Shift.hasOneUse())
772    return true;
773
774  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
775  if (ScaleLog <= 0 || ScaleLog >= 4 ||
776      Mask != (0xffu << ScaleLog))
777    return true;
778
779  EVT VT = N.getValueType();
780  DebugLoc DL = N.getDebugLoc();
781  SDValue Eight = DAG.getConstant(8, MVT::i8);
782  SDValue NewMask = DAG.getConstant(0xff, VT);
783  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
784  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
785  SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
786  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
787
788  // Insert the new nodes into the topological ordering. We must do this in
789  // a valid topological ordering as nothing is going to go back and re-sort
790  // these nodes. We continually insert before 'N' in sequence as this is
791  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
792  // hierarchy left to express.
793  InsertDAGNode(DAG, N, Eight);
794  InsertDAGNode(DAG, N, Srl);
795  InsertDAGNode(DAG, N, NewMask);
796  InsertDAGNode(DAG, N, And);
797  InsertDAGNode(DAG, N, ShlCount);
798  InsertDAGNode(DAG, N, Shl);
799  DAG.ReplaceAllUsesWith(N, Shl);
800  AM.IndexReg = And;
801  AM.Scale = (1 << ScaleLog);
802  return false;
803}
804
805// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
806// allows us to fold the shift into this addressing mode. Returns false if the
807// transform succeeded.
808static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
809                                        uint64_t Mask,
810                                        SDValue Shift, SDValue X,
811                                        X86ISelAddressMode &AM) {
812  if (Shift.getOpcode() != ISD::SHL ||
813      !isa<ConstantSDNode>(Shift.getOperand(1)))
814    return true;
815
816  // Not likely to be profitable if either the AND or SHIFT node has more
817  // than one use (unless all uses are for address computation). Besides,
818  // isel mechanism requires their node ids to be reused.
819  if (!N.hasOneUse() || !Shift.hasOneUse())
820    return true;
821
822  // Verify that the shift amount is something we can fold.
823  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
824  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
825    return true;
826
827  EVT VT = N.getValueType();
828  DebugLoc DL = N.getDebugLoc();
829  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
830  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
831  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
832
833  // Insert the new nodes into the topological ordering. We must do this in
834  // a valid topological ordering as nothing is going to go back and re-sort
835  // these nodes. We continually insert before 'N' in sequence as this is
836  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
837  // hierarchy left to express.
838  InsertDAGNode(DAG, N, NewMask);
839  InsertDAGNode(DAG, N, NewAnd);
840  InsertDAGNode(DAG, N, NewShift);
841  DAG.ReplaceAllUsesWith(N, NewShift);
842
843  AM.Scale = 1 << ShiftAmt;
844  AM.IndexReg = NewAnd;
845  return false;
846}
847
848// Implement some heroics to detect shifts of masked values where the mask can
849// be replaced by extending the shift and undoing that in the addressing mode
850// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
851// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
852// the addressing mode. This results in code such as:
853//
854//   int f(short *y, int *lookup_table) {
855//     ...
856//     return *y + lookup_table[*y >> 11];
857//   }
858//
859// Turning into:
860//   movzwl (%rdi), %eax
861//   movl %eax, %ecx
862//   shrl $11, %ecx
863//   addl (%rsi,%rcx,4), %eax
864//
865// Instead of:
866//   movzwl (%rdi), %eax
867//   movl %eax, %ecx
868//   shrl $9, %ecx
869//   andl $124, %rcx
870//   addl (%rsi,%rcx), %eax
871//
872// Note that this function assumes the mask is provided as a mask *after* the
873// value is shifted. The input chain may or may not match that, but computing
874// such a mask is trivial.
875static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
876                                    uint64_t Mask,
877                                    SDValue Shift, SDValue X,
878                                    X86ISelAddressMode &AM) {
879  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
880      !isa<ConstantSDNode>(Shift.getOperand(1)))
881    return true;
882
883  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
884  unsigned MaskLZ = CountLeadingZeros_64(Mask);
885  unsigned MaskTZ = CountTrailingZeros_64(Mask);
886
887  // The amount of shift we're trying to fit into the addressing mode is taken
888  // from the trailing zeros of the mask.
889  unsigned AMShiftAmt = MaskTZ;
890
891  // There is nothing we can do here unless the mask is removing some bits.
892  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
893  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
894
895  // We also need to ensure that mask is a continuous run of bits.
896  if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
897
898  // Scale the leading zero count down based on the actual size of the value.
899  // Also scale it down based on the size of the shift.
900  MaskLZ -= (64 - X.getValueSizeInBits()) + ShiftAmt;
901
902  // The final check is to ensure that any masked out high bits of X are
903  // already known to be zero. Otherwise, the mask has a semantic impact
904  // other than masking out a couple of low bits. Unfortunately, because of
905  // the mask, zero extensions will be removed from operands in some cases.
906  // This code works extra hard to look through extensions because we can
907  // replace them with zero extensions cheaply if necessary.
908  bool ReplacingAnyExtend = false;
909  if (X.getOpcode() == ISD::ANY_EXTEND) {
910    unsigned ExtendBits =
911      X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits();
912    // Assume that we'll replace the any-extend with a zero-extend, and
913    // narrow the search to the extended value.
914    X = X.getOperand(0);
915    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
916    ReplacingAnyExtend = true;
917  }
918  APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(),
919                                               MaskLZ);
920  APInt KnownZero, KnownOne;
921  DAG.ComputeMaskedBits(X, KnownZero, KnownOne);
922  if (MaskedHighBits != KnownZero) return true;
923
924  // We've identified a pattern that can be transformed into a single shift
925  // and an addressing mode. Make it so.
926  EVT VT = N.getValueType();
927  if (ReplacingAnyExtend) {
928    assert(X.getValueType() != VT);
929    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
930    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, X.getDebugLoc(), VT, X);
931    InsertDAGNode(DAG, N, NewX);
932    X = NewX;
933  }
934  DebugLoc DL = N.getDebugLoc();
935  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
936  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
937  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
938  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
939
940  // Insert the new nodes into the topological ordering. We must do this in
941  // a valid topological ordering as nothing is going to go back and re-sort
942  // these nodes. We continually insert before 'N' in sequence as this is
943  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
944  // hierarchy left to express.
945  InsertDAGNode(DAG, N, NewSRLAmt);
946  InsertDAGNode(DAG, N, NewSRL);
947  InsertDAGNode(DAG, N, NewSHLAmt);
948  InsertDAGNode(DAG, N, NewSHL);
949  DAG.ReplaceAllUsesWith(N, NewSHL);
950
951  AM.Scale = 1 << AMShiftAmt;
952  AM.IndexReg = NewSRL;
953  return false;
954}
955
956bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
957                                              unsigned Depth) {
958  DebugLoc dl = N.getDebugLoc();
959  DEBUG({
960      dbgs() << "MatchAddress: ";
961      AM.dump();
962    });
963  // Limit recursion.
964  if (Depth > 5)
965    return MatchAddressBase(N, AM);
966
967  // If this is already a %rip relative address, we can only merge immediates
968  // into it.  Instead of handling this in every case, we handle it here.
969  // RIP relative addressing: %rip + 32-bit displacement!
970  if (AM.isRIPRelative()) {
971    // FIXME: JumpTable and ExternalSymbol address currently don't like
972    // displacements.  It isn't very important, but this should be fixed for
973    // consistency.
974    if (!AM.ES && AM.JT != -1) return true;
975
976    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
977      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
978        return false;
979    return true;
980  }
981
982  switch (N.getOpcode()) {
983  default: break;
984  case ISD::Constant: {
985    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
986    if (!FoldOffsetIntoAddress(Val, AM))
987      return false;
988    break;
989  }
990
991  case X86ISD::Wrapper:
992  case X86ISD::WrapperRIP:
993    if (!MatchWrapper(N, AM))
994      return false;
995    break;
996
997  case ISD::LOAD:
998    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
999      return false;
1000    break;
1001
1002  case ISD::FrameIndex:
1003    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1004        AM.Base_Reg.getNode() == 0 &&
1005        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1006      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1007      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1008      return false;
1009    }
1010    break;
1011
1012  case ISD::SHL:
1013    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
1014      break;
1015
1016    if (ConstantSDNode
1017          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1018      unsigned Val = CN->getZExtValue();
1019      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1020      // that the base operand remains free for further matching. If
1021      // the base doesn't end up getting used, a post-processing step
1022      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1023      if (Val == 1 || Val == 2 || Val == 3) {
1024        AM.Scale = 1 << Val;
1025        SDValue ShVal = N.getNode()->getOperand(0);
1026
1027        // Okay, we know that we have a scale by now.  However, if the scaled
1028        // value is an add of something and a constant, we can fold the
1029        // constant into the disp field here.
1030        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1031          AM.IndexReg = ShVal.getNode()->getOperand(0);
1032          ConstantSDNode *AddVal =
1033            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1034          uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1035          if (!FoldOffsetIntoAddress(Disp, AM))
1036            return false;
1037        }
1038
1039        AM.IndexReg = ShVal;
1040        return false;
1041      }
1042    break;
1043    }
1044
1045  case ISD::SRL: {
1046    // Scale must not be used already.
1047    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1048
1049    SDValue And = N.getOperand(0);
1050    if (And.getOpcode() != ISD::AND) break;
1051    SDValue X = And.getOperand(0);
1052
1053    // We only handle up to 64-bit values here as those are what matter for
1054    // addressing mode optimizations.
1055    if (X.getValueSizeInBits() > 64) break;
1056
1057    // The mask used for the transform is expected to be post-shift, but we
1058    // found the shift first so just apply the shift to the mask before passing
1059    // it down.
1060    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1061        !isa<ConstantSDNode>(And.getOperand(1)))
1062      break;
1063    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1064
1065    // Try to fold the mask and shift into the scale, and return false if we
1066    // succeed.
1067    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1068      return false;
1069    break;
1070  }
1071
1072  case ISD::SMUL_LOHI:
1073  case ISD::UMUL_LOHI:
1074    // A mul_lohi where we need the low part can be folded as a plain multiply.
1075    if (N.getResNo() != 0) break;
1076    // FALL THROUGH
1077  case ISD::MUL:
1078  case X86ISD::MUL_IMM:
1079    // X*[3,5,9] -> X+X*[2,4,8]
1080    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1081        AM.Base_Reg.getNode() == 0 &&
1082        AM.IndexReg.getNode() == 0) {
1083      if (ConstantSDNode
1084            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1085        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1086            CN->getZExtValue() == 9) {
1087          AM.Scale = unsigned(CN->getZExtValue())-1;
1088
1089          SDValue MulVal = N.getNode()->getOperand(0);
1090          SDValue Reg;
1091
1092          // Okay, we know that we have a scale by now.  However, if the scaled
1093          // value is an add of something and a constant, we can fold the
1094          // constant into the disp field here.
1095          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1096              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1097            Reg = MulVal.getNode()->getOperand(0);
1098            ConstantSDNode *AddVal =
1099              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1100            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1101            if (FoldOffsetIntoAddress(Disp, AM))
1102              Reg = N.getNode()->getOperand(0);
1103          } else {
1104            Reg = N.getNode()->getOperand(0);
1105          }
1106
1107          AM.IndexReg = AM.Base_Reg = Reg;
1108          return false;
1109        }
1110    }
1111    break;
1112
1113  case ISD::SUB: {
1114    // Given A-B, if A can be completely folded into the address and
1115    // the index field with the index field unused, use -B as the index.
1116    // This is a win if a has multiple parts that can be folded into
1117    // the address. Also, this saves a mov if the base register has
1118    // other uses, since it avoids a two-address sub instruction, however
1119    // it costs an additional mov if the index register has other uses.
1120
1121    // Add an artificial use to this node so that we can keep track of
1122    // it if it gets CSE'd with a different node.
1123    HandleSDNode Handle(N);
1124
1125    // Test if the LHS of the sub can be folded.
1126    X86ISelAddressMode Backup = AM;
1127    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1128      AM = Backup;
1129      break;
1130    }
1131    // Test if the index field is free for use.
1132    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1133      AM = Backup;
1134      break;
1135    }
1136
1137    int Cost = 0;
1138    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1139    // If the RHS involves a register with multiple uses, this
1140    // transformation incurs an extra mov, due to the neg instruction
1141    // clobbering its operand.
1142    if (!RHS.getNode()->hasOneUse() ||
1143        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1144        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1145        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1146        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1147         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1148      ++Cost;
1149    // If the base is a register with multiple uses, this
1150    // transformation may save a mov.
1151    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1152         AM.Base_Reg.getNode() &&
1153         !AM.Base_Reg.getNode()->hasOneUse()) ||
1154        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1155      --Cost;
1156    // If the folded LHS was interesting, this transformation saves
1157    // address arithmetic.
1158    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1159        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1160        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1161      --Cost;
1162    // If it doesn't look like it may be an overall win, don't do it.
1163    if (Cost >= 0) {
1164      AM = Backup;
1165      break;
1166    }
1167
1168    // Ok, the transformation is legal and appears profitable. Go for it.
1169    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1170    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1171    AM.IndexReg = Neg;
1172    AM.Scale = 1;
1173
1174    // Insert the new nodes into the topological ordering.
1175    InsertDAGNode(*CurDAG, N, Zero);
1176    InsertDAGNode(*CurDAG, N, Neg);
1177    return false;
1178  }
1179
1180  case ISD::ADD: {
1181    // Add an artificial use to this node so that we can keep track of
1182    // it if it gets CSE'd with a different node.
1183    HandleSDNode Handle(N);
1184
1185    X86ISelAddressMode Backup = AM;
1186    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1187        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1188      return false;
1189    AM = Backup;
1190
1191    // Try again after commuting the operands.
1192    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1193        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1194      return false;
1195    AM = Backup;
1196
1197    // If we couldn't fold both operands into the address at the same time,
1198    // see if we can just put each operand into a register and fold at least
1199    // the add.
1200    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1201        !AM.Base_Reg.getNode() &&
1202        !AM.IndexReg.getNode()) {
1203      N = Handle.getValue();
1204      AM.Base_Reg = N.getOperand(0);
1205      AM.IndexReg = N.getOperand(1);
1206      AM.Scale = 1;
1207      return false;
1208    }
1209    N = Handle.getValue();
1210    break;
1211  }
1212
1213  case ISD::OR:
1214    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1215    if (CurDAG->isBaseWithConstantOffset(N)) {
1216      X86ISelAddressMode Backup = AM;
1217      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1218
1219      // Start with the LHS as an addr mode.
1220      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1221          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1222        return false;
1223      AM = Backup;
1224    }
1225    break;
1226
1227  case ISD::AND: {
1228    // Perform some heroic transforms on an and of a constant-count shift
1229    // with a constant to enable use of the scaled offset field.
1230
1231    // Scale must not be used already.
1232    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1233
1234    SDValue Shift = N.getOperand(0);
1235    if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1236    SDValue X = Shift.getOperand(0);
1237
1238    // We only handle up to 64-bit values here as those are what matter for
1239    // addressing mode optimizations.
1240    if (X.getValueSizeInBits() > 64) break;
1241
1242    if (!isa<ConstantSDNode>(N.getOperand(1)))
1243      break;
1244    uint64_t Mask = N.getConstantOperandVal(1);
1245
1246    // Try to fold the mask and shift into an extract and scale.
1247    if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1248      return false;
1249
1250    // Try to fold the mask and shift directly into the scale.
1251    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1252      return false;
1253
1254    // Try to swap the mask and shift to place shifts which can be done as
1255    // a scale on the outside of the mask.
1256    if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1257      return false;
1258    break;
1259  }
1260  }
1261
1262  return MatchAddressBase(N, AM);
1263}
1264
1265/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1266/// specified addressing mode without any further recursion.
1267bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1268  // Is the base register already occupied?
1269  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1270    // If so, check to see if the scale index register is set.
1271    if (AM.IndexReg.getNode() == 0) {
1272      AM.IndexReg = N;
1273      AM.Scale = 1;
1274      return false;
1275    }
1276
1277    // Otherwise, we cannot select it.
1278    return true;
1279  }
1280
1281  // Default, generate it as a register.
1282  AM.BaseType = X86ISelAddressMode::RegBase;
1283  AM.Base_Reg = N;
1284  return false;
1285}
1286
1287/// SelectAddr - returns true if it is able pattern match an addressing mode.
1288/// It returns the operands which make up the maximal addressing mode it can
1289/// match by reference.
1290///
1291/// Parent is the parent node of the addr operand that is being matched.  It
1292/// is always a load, store, atomic node, or null.  It is only null when
1293/// checking memory operands for inline asm nodes.
1294bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1295                                 SDValue &Scale, SDValue &Index,
1296                                 SDValue &Disp, SDValue &Segment) {
1297  X86ISelAddressMode AM;
1298
1299  if (Parent &&
1300      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1301      // that are not a MemSDNode, and thus don't have proper addrspace info.
1302      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1303      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1304      Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
1305    unsigned AddrSpace =
1306      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1307    // AddrSpace 256 -> GS, 257 -> FS.
1308    if (AddrSpace == 256)
1309      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1310    if (AddrSpace == 257)
1311      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1312  }
1313
1314  if (MatchAddress(N, AM))
1315    return false;
1316
1317  EVT VT = N.getValueType();
1318  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1319    if (!AM.Base_Reg.getNode())
1320      AM.Base_Reg = CurDAG->getRegister(0, VT);
1321  }
1322
1323  if (!AM.IndexReg.getNode())
1324    AM.IndexReg = CurDAG->getRegister(0, VT);
1325
1326  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1327  return true;
1328}
1329
1330/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1331/// match a load whose top elements are either undef or zeros.  The load flavor
1332/// is derived from the type of N, which is either v4f32 or v2f64.
1333///
1334/// We also return:
1335///   PatternChainNode: this is the matched node that has a chain input and
1336///   output.
1337bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1338                                          SDValue N, SDValue &Base,
1339                                          SDValue &Scale, SDValue &Index,
1340                                          SDValue &Disp, SDValue &Segment,
1341                                          SDValue &PatternNodeWithChain) {
1342  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1343    PatternNodeWithChain = N.getOperand(0);
1344    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1345        PatternNodeWithChain.hasOneUse() &&
1346        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1347        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1348      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1349      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1350        return false;
1351      return true;
1352    }
1353  }
1354
1355  // Also handle the case where we explicitly require zeros in the top
1356  // elements.  This is a vector shuffle from the zero vector.
1357  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1358      // Check to see if the top elements are all zeros (or bitcast of zeros).
1359      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1360      N.getOperand(0).getNode()->hasOneUse() &&
1361      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1362      N.getOperand(0).getOperand(0).hasOneUse() &&
1363      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1364      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1365    // Okay, this is a zero extending load.  Fold it.
1366    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1367    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1368      return false;
1369    PatternNodeWithChain = SDValue(LD, 0);
1370    return true;
1371  }
1372  return false;
1373}
1374
1375
1376/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1377/// mode it matches can be cost effectively emitted as an LEA instruction.
1378bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1379                                    SDValue &Base, SDValue &Scale,
1380                                    SDValue &Index, SDValue &Disp,
1381                                    SDValue &Segment) {
1382  X86ISelAddressMode AM;
1383
1384  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1385  // segments.
1386  SDValue Copy = AM.Segment;
1387  SDValue T = CurDAG->getRegister(0, MVT::i32);
1388  AM.Segment = T;
1389  if (MatchAddress(N, AM))
1390    return false;
1391  assert (T == AM.Segment);
1392  AM.Segment = Copy;
1393
1394  EVT VT = N.getValueType();
1395  unsigned Complexity = 0;
1396  if (AM.BaseType == X86ISelAddressMode::RegBase)
1397    if (AM.Base_Reg.getNode())
1398      Complexity = 1;
1399    else
1400      AM.Base_Reg = CurDAG->getRegister(0, VT);
1401  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1402    Complexity = 4;
1403
1404  if (AM.IndexReg.getNode())
1405    Complexity++;
1406  else
1407    AM.IndexReg = CurDAG->getRegister(0, VT);
1408
1409  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1410  // a simple shift.
1411  if (AM.Scale > 1)
1412    Complexity++;
1413
1414  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1415  // to a LEA. This is determined with some expermentation but is by no means
1416  // optimal (especially for code size consideration). LEA is nice because of
1417  // its three-address nature. Tweak the cost function again when we can run
1418  // convertToThreeAddress() at register allocation time.
1419  if (AM.hasSymbolicDisplacement()) {
1420    // For X86-64, we should always use lea to materialize RIP relative
1421    // addresses.
1422    if (Subtarget->is64Bit())
1423      Complexity = 4;
1424    else
1425      Complexity += 2;
1426  }
1427
1428  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1429    Complexity++;
1430
1431  // If it isn't worth using an LEA, reject it.
1432  if (Complexity <= 2)
1433    return false;
1434
1435  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1436  return true;
1437}
1438
1439/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1440bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1441                                        SDValue &Scale, SDValue &Index,
1442                                        SDValue &Disp, SDValue &Segment) {
1443  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1444  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1445
1446  X86ISelAddressMode AM;
1447  AM.GV = GA->getGlobal();
1448  AM.Disp += GA->getOffset();
1449  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1450  AM.SymbolFlags = GA->getTargetFlags();
1451
1452  if (N.getValueType() == MVT::i32) {
1453    AM.Scale = 1;
1454    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1455  } else {
1456    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1457  }
1458
1459  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1460  return true;
1461}
1462
1463
1464bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1465                                  SDValue &Base, SDValue &Scale,
1466                                  SDValue &Index, SDValue &Disp,
1467                                  SDValue &Segment) {
1468  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1469      !IsProfitableToFold(N, P, P) ||
1470      !IsLegalToFold(N, P, P, OptLevel))
1471    return false;
1472
1473  return SelectAddr(N.getNode(),
1474                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1475}
1476
1477/// getGlobalBaseReg - Return an SDNode that returns the value of
1478/// the global base register. Output instructions required to
1479/// initialize the global base register, if necessary.
1480///
1481SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1482  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1483  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1484}
1485
1486SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1487  SDValue Chain = Node->getOperand(0);
1488  SDValue In1 = Node->getOperand(1);
1489  SDValue In2L = Node->getOperand(2);
1490  SDValue In2H = Node->getOperand(3);
1491
1492  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1493  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1494    return NULL;
1495  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1496  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1497  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1498  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1499                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1500                                           array_lengthof(Ops));
1501  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1502  return ResNode;
1503}
1504
1505/// Atomic opcode table
1506///
1507enum AtomicOpc {
1508  ADD,
1509  SUB,
1510  INC,
1511  DEC,
1512  OR,
1513  AND,
1514  XOR,
1515  AtomicOpcEnd
1516};
1517
1518enum AtomicSz {
1519  ConstantI8,
1520  I8,
1521  SextConstantI16,
1522  ConstantI16,
1523  I16,
1524  SextConstantI32,
1525  ConstantI32,
1526  I32,
1527  SextConstantI64,
1528  ConstantI64,
1529  I64,
1530  AtomicSzEnd
1531};
1532
1533static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1534  {
1535    X86::LOCK_ADD8mi,
1536    X86::LOCK_ADD8mr,
1537    X86::LOCK_ADD16mi8,
1538    X86::LOCK_ADD16mi,
1539    X86::LOCK_ADD16mr,
1540    X86::LOCK_ADD32mi8,
1541    X86::LOCK_ADD32mi,
1542    X86::LOCK_ADD32mr,
1543    X86::LOCK_ADD64mi8,
1544    X86::LOCK_ADD64mi32,
1545    X86::LOCK_ADD64mr,
1546  },
1547  {
1548    X86::LOCK_SUB8mi,
1549    X86::LOCK_SUB8mr,
1550    X86::LOCK_SUB16mi8,
1551    X86::LOCK_SUB16mi,
1552    X86::LOCK_SUB16mr,
1553    X86::LOCK_SUB32mi8,
1554    X86::LOCK_SUB32mi,
1555    X86::LOCK_SUB32mr,
1556    X86::LOCK_SUB64mi8,
1557    X86::LOCK_SUB64mi32,
1558    X86::LOCK_SUB64mr,
1559  },
1560  {
1561    0,
1562    X86::LOCK_INC8m,
1563    0,
1564    0,
1565    X86::LOCK_INC16m,
1566    0,
1567    0,
1568    X86::LOCK_INC32m,
1569    0,
1570    0,
1571    X86::LOCK_INC64m,
1572  },
1573  {
1574    0,
1575    X86::LOCK_DEC8m,
1576    0,
1577    0,
1578    X86::LOCK_DEC16m,
1579    0,
1580    0,
1581    X86::LOCK_DEC32m,
1582    0,
1583    0,
1584    X86::LOCK_DEC64m,
1585  },
1586  {
1587    X86::LOCK_OR8mi,
1588    X86::LOCK_OR8mr,
1589    X86::LOCK_OR16mi8,
1590    X86::LOCK_OR16mi,
1591    X86::LOCK_OR16mr,
1592    X86::LOCK_OR32mi8,
1593    X86::LOCK_OR32mi,
1594    X86::LOCK_OR32mr,
1595    X86::LOCK_OR64mi8,
1596    X86::LOCK_OR64mi32,
1597    X86::LOCK_OR64mr,
1598  },
1599  {
1600    X86::LOCK_AND8mi,
1601    X86::LOCK_AND8mr,
1602    X86::LOCK_AND16mi8,
1603    X86::LOCK_AND16mi,
1604    X86::LOCK_AND16mr,
1605    X86::LOCK_AND32mi8,
1606    X86::LOCK_AND32mi,
1607    X86::LOCK_AND32mr,
1608    X86::LOCK_AND64mi8,
1609    X86::LOCK_AND64mi32,
1610    X86::LOCK_AND64mr,
1611  },
1612  {
1613    X86::LOCK_XOR8mi,
1614    X86::LOCK_XOR8mr,
1615    X86::LOCK_XOR16mi8,
1616    X86::LOCK_XOR16mi,
1617    X86::LOCK_XOR16mr,
1618    X86::LOCK_XOR32mi8,
1619    X86::LOCK_XOR32mi,
1620    X86::LOCK_XOR32mr,
1621    X86::LOCK_XOR64mi8,
1622    X86::LOCK_XOR64mi32,
1623    X86::LOCK_XOR64mr,
1624  }
1625};
1626
1627// Return the target constant operand for atomic-load-op and do simple
1628// translations, such as from atomic-load-add to lock-sub. The return value is
1629// one of the following 3 cases:
1630// + target-constant, the operand could be supported as a target constant.
1631// + empty, the operand is not needed any more with the new op selected.
1632// + non-empty, otherwise.
1633static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
1634                                                DebugLoc dl,
1635                                                enum AtomicOpc &Op, EVT NVT,
1636                                                SDValue Val) {
1637  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
1638    int64_t CNVal = CN->getSExtValue();
1639    // Quit if not 32-bit imm.
1640    if ((int32_t)CNVal != CNVal)
1641      return Val;
1642    // For atomic-load-add, we could do some optimizations.
1643    if (Op == ADD) {
1644      // Translate to INC/DEC if ADD by 1 or -1.
1645      if ((CNVal == 1) || (CNVal == -1)) {
1646        Op = (CNVal == 1) ? INC : DEC;
1647        // No more constant operand after being translated into INC/DEC.
1648        return SDValue();
1649      }
1650      // Translate to SUB if ADD by negative value.
1651      if (CNVal < 0) {
1652        Op = SUB;
1653        CNVal = -CNVal;
1654      }
1655    }
1656    return CurDAG->getTargetConstant(CNVal, NVT);
1657  }
1658
1659  // If the value operand is single-used, try to optimize it.
1660  if (Op == ADD && Val.hasOneUse()) {
1661    // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
1662    if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
1663      Op = SUB;
1664      return Val.getOperand(1);
1665    }
1666    // A special case for i16, which needs truncating as, in most cases, it's
1667    // promoted to i32. We will translate
1668    // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
1669    if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
1670        Val.getOperand(0).getOpcode() == ISD::SUB &&
1671        X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
1672      Op = SUB;
1673      Val = Val.getOperand(0);
1674      return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
1675                                            Val.getOperand(1));
1676    }
1677  }
1678
1679  return Val;
1680}
1681
1682SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
1683  if (Node->hasAnyUseOfValue(0))
1684    return 0;
1685
1686  DebugLoc dl = Node->getDebugLoc();
1687
1688  // Optimize common patterns for __sync_or_and_fetch and similar arith
1689  // operations where the result is not used. This allows us to use the "lock"
1690  // version of the arithmetic instruction.
1691  SDValue Chain = Node->getOperand(0);
1692  SDValue Ptr = Node->getOperand(1);
1693  SDValue Val = Node->getOperand(2);
1694  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1695  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1696    return 0;
1697
1698  // Which index into the table.
1699  enum AtomicOpc Op;
1700  switch (Node->getOpcode()) {
1701    default:
1702      return 0;
1703    case ISD::ATOMIC_LOAD_OR:
1704      Op = OR;
1705      break;
1706    case ISD::ATOMIC_LOAD_AND:
1707      Op = AND;
1708      break;
1709    case ISD::ATOMIC_LOAD_XOR:
1710      Op = XOR;
1711      break;
1712    case ISD::ATOMIC_LOAD_ADD:
1713      Op = ADD;
1714      break;
1715  }
1716
1717  Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
1718  bool isUnOp = !Val.getNode();
1719  bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
1720
1721  unsigned Opc = 0;
1722  switch (NVT.getSimpleVT().SimpleTy) {
1723    default: return 0;
1724    case MVT::i8:
1725      if (isCN)
1726        Opc = AtomicOpcTbl[Op][ConstantI8];
1727      else
1728        Opc = AtomicOpcTbl[Op][I8];
1729      break;
1730    case MVT::i16:
1731      if (isCN) {
1732        if (immSext8(Val.getNode()))
1733          Opc = AtomicOpcTbl[Op][SextConstantI16];
1734        else
1735          Opc = AtomicOpcTbl[Op][ConstantI16];
1736      } else
1737        Opc = AtomicOpcTbl[Op][I16];
1738      break;
1739    case MVT::i32:
1740      if (isCN) {
1741        if (immSext8(Val.getNode()))
1742          Opc = AtomicOpcTbl[Op][SextConstantI32];
1743        else
1744          Opc = AtomicOpcTbl[Op][ConstantI32];
1745      } else
1746        Opc = AtomicOpcTbl[Op][I32];
1747      break;
1748    case MVT::i64:
1749      Opc = AtomicOpcTbl[Op][I64];
1750      if (isCN) {
1751        if (immSext8(Val.getNode()))
1752          Opc = AtomicOpcTbl[Op][SextConstantI64];
1753        else if (i64immSExt32(Val.getNode()))
1754          Opc = AtomicOpcTbl[Op][ConstantI64];
1755      }
1756      break;
1757  }
1758
1759  assert(Opc != 0 && "Invalid arith lock transform!");
1760
1761  SDValue Ret;
1762  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1763                                                 dl, NVT), 0);
1764  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1765  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1766  if (isUnOp) {
1767    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1768    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops,
1769                                         array_lengthof(Ops)), 0);
1770  } else {
1771    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1772    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops,
1773                                         array_lengthof(Ops)), 0);
1774  }
1775  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1776  SDValue RetVals[] = { Undef, Ret };
1777  return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1778}
1779
1780/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1781/// any uses which require the SF or OF bits to be accurate.
1782static bool HasNoSignedComparisonUses(SDNode *N) {
1783  // Examine each user of the node.
1784  for (SDNode::use_iterator UI = N->use_begin(),
1785         UE = N->use_end(); UI != UE; ++UI) {
1786    // Only examine CopyToReg uses.
1787    if (UI->getOpcode() != ISD::CopyToReg)
1788      return false;
1789    // Only examine CopyToReg uses that copy to EFLAGS.
1790    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1791          X86::EFLAGS)
1792      return false;
1793    // Examine each user of the CopyToReg use.
1794    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1795           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1796      // Only examine the Flag result.
1797      if (FlagUI.getUse().getResNo() != 1) continue;
1798      // Anything unusual: assume conservatively.
1799      if (!FlagUI->isMachineOpcode()) return false;
1800      // Examine the opcode of the user.
1801      switch (FlagUI->getMachineOpcode()) {
1802      // These comparisons don't treat the most significant bit specially.
1803      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1804      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1805      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1806      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1807      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1808      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1809      case X86::CMOVA16rr: case X86::CMOVA16rm:
1810      case X86::CMOVA32rr: case X86::CMOVA32rm:
1811      case X86::CMOVA64rr: case X86::CMOVA64rm:
1812      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1813      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1814      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1815      case X86::CMOVB16rr: case X86::CMOVB16rm:
1816      case X86::CMOVB32rr: case X86::CMOVB32rm:
1817      case X86::CMOVB64rr: case X86::CMOVB64rm:
1818      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1819      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1820      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1821      case X86::CMOVE16rr: case X86::CMOVE16rm:
1822      case X86::CMOVE32rr: case X86::CMOVE32rm:
1823      case X86::CMOVE64rr: case X86::CMOVE64rm:
1824      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1825      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1826      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1827      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1828      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1829      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1830      case X86::CMOVP16rr: case X86::CMOVP16rm:
1831      case X86::CMOVP32rr: case X86::CMOVP32rm:
1832      case X86::CMOVP64rr: case X86::CMOVP64rm:
1833        continue;
1834      // Anything else: assume conservatively.
1835      default: return false;
1836      }
1837    }
1838  }
1839  return true;
1840}
1841
1842/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
1843/// is suitable for doing the {load; increment or decrement; store} to modify
1844/// transformation.
1845static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1846                                SDValue StoredVal, SelectionDAG *CurDAG,
1847                                LoadSDNode* &LoadNode, SDValue &InputChain) {
1848
1849  // is the value stored the result of a DEC or INC?
1850  if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1851
1852  // is the stored value result 0 of the load?
1853  if (StoredVal.getResNo() != 0) return false;
1854
1855  // are there other uses of the loaded value than the inc or dec?
1856  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1857
1858  // is the store non-extending and non-indexed?
1859  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1860    return false;
1861
1862  SDValue Load = StoredVal->getOperand(0);
1863  // Is the stored value a non-extending and non-indexed load?
1864  if (!ISD::isNormalLoad(Load.getNode())) return false;
1865
1866  // Return LoadNode by reference.
1867  LoadNode = cast<LoadSDNode>(Load);
1868  // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1869  EVT LdVT = LoadNode->getMemoryVT();
1870  if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1871      LdVT != MVT::i8)
1872    return false;
1873
1874  // Is store the only read of the loaded value?
1875  if (!Load.hasOneUse())
1876    return false;
1877
1878  // Is the address of the store the same as the load?
1879  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1880      LoadNode->getOffset() != StoreNode->getOffset())
1881    return false;
1882
1883  // Check if the chain is produced by the load or is a TokenFactor with
1884  // the load output chain as an operand. Return InputChain by reference.
1885  SDValue Chain = StoreNode->getChain();
1886
1887  bool ChainCheck = false;
1888  if (Chain == Load.getValue(1)) {
1889    ChainCheck = true;
1890    InputChain = LoadNode->getChain();
1891  } else if (Chain.getOpcode() == ISD::TokenFactor) {
1892    SmallVector<SDValue, 4> ChainOps;
1893    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1894      SDValue Op = Chain.getOperand(i);
1895      if (Op == Load.getValue(1)) {
1896        ChainCheck = true;
1897        continue;
1898      }
1899
1900      // Make sure using Op as part of the chain would not cause a cycle here.
1901      // In theory, we could check whether the chain node is a predecessor of
1902      // the load. But that can be very expensive. Instead visit the uses and
1903      // make sure they all have smaller node id than the load.
1904      int LoadId = LoadNode->getNodeId();
1905      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1906             UE = UI->use_end(); UI != UE; ++UI) {
1907        if (UI.getUse().getResNo() != 0)
1908          continue;
1909        if (UI->getNodeId() > LoadId)
1910          return false;
1911      }
1912
1913      ChainOps.push_back(Op);
1914    }
1915
1916    if (ChainCheck)
1917      // Make a new TokenFactor with all the other input chains except
1918      // for the load.
1919      InputChain = CurDAG->getNode(ISD::TokenFactor, Chain.getDebugLoc(),
1920                                   MVT::Other, &ChainOps[0], ChainOps.size());
1921  }
1922  if (!ChainCheck)
1923    return false;
1924
1925  return true;
1926}
1927
1928/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
1929/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
1930static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
1931  if (Opc == X86ISD::DEC) {
1932    if (LdVT == MVT::i64) return X86::DEC64m;
1933    if (LdVT == MVT::i32) return X86::DEC32m;
1934    if (LdVT == MVT::i16) return X86::DEC16m;
1935    if (LdVT == MVT::i8)  return X86::DEC8m;
1936  } else {
1937    assert(Opc == X86ISD::INC && "unrecognized opcode");
1938    if (LdVT == MVT::i64) return X86::INC64m;
1939    if (LdVT == MVT::i32) return X86::INC32m;
1940    if (LdVT == MVT::i16) return X86::INC16m;
1941    if (LdVT == MVT::i8)  return X86::INC8m;
1942  }
1943  llvm_unreachable("unrecognized size for LdVT");
1944}
1945
1946/// SelectGather - Customized ISel for GATHER operations.
1947///
1948SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
1949  // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
1950  SDValue Chain = Node->getOperand(0);
1951  SDValue VSrc = Node->getOperand(2);
1952  SDValue Base = Node->getOperand(3);
1953  SDValue VIdx = Node->getOperand(4);
1954  SDValue VMask = Node->getOperand(5);
1955  ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
1956  if (!Scale)
1957    return 0;
1958
1959  SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
1960                                   MVT::Other);
1961
1962  // Memory Operands: Base, Scale, Index, Disp, Segment
1963  SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
1964  SDValue Segment = CurDAG->getRegister(0, MVT::i32);
1965  const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
1966                          Disp, Segment, VMask, Chain};
1967  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1968                                           VTs, Ops, array_lengthof(Ops));
1969  // Node has 2 outputs: VDst and MVT::Other.
1970  // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
1971  // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
1972  // of ResNode.
1973  ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
1974  ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
1975  return ResNode;
1976}
1977
1978SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1979  EVT NVT = Node->getValueType(0);
1980  unsigned Opc, MOpc;
1981  unsigned Opcode = Node->getOpcode();
1982  DebugLoc dl = Node->getDebugLoc();
1983
1984  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1985
1986  if (Node->isMachineOpcode()) {
1987    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
1988    return NULL;   // Already selected.
1989  }
1990
1991  switch (Opcode) {
1992  default: break;
1993  case ISD::INTRINSIC_W_CHAIN: {
1994    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
1995    switch (IntNo) {
1996    default: break;
1997    case Intrinsic::x86_avx2_gather_d_pd:
1998    case Intrinsic::x86_avx2_gather_d_pd_256:
1999    case Intrinsic::x86_avx2_gather_q_pd:
2000    case Intrinsic::x86_avx2_gather_q_pd_256:
2001    case Intrinsic::x86_avx2_gather_d_ps:
2002    case Intrinsic::x86_avx2_gather_d_ps_256:
2003    case Intrinsic::x86_avx2_gather_q_ps:
2004    case Intrinsic::x86_avx2_gather_q_ps_256:
2005    case Intrinsic::x86_avx2_gather_d_q:
2006    case Intrinsic::x86_avx2_gather_d_q_256:
2007    case Intrinsic::x86_avx2_gather_q_q:
2008    case Intrinsic::x86_avx2_gather_q_q_256:
2009    case Intrinsic::x86_avx2_gather_d_d:
2010    case Intrinsic::x86_avx2_gather_d_d_256:
2011    case Intrinsic::x86_avx2_gather_q_d:
2012    case Intrinsic::x86_avx2_gather_q_d_256: {
2013      unsigned Opc;
2014      switch (IntNo) {
2015      default: llvm_unreachable("Impossible intrinsic");
2016      case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
2017      case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2018      case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
2019      case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2020      case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
2021      case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2022      case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
2023      case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2024      case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
2025      case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
2026      case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
2027      case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
2028      case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
2029      case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
2030      case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
2031      case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
2032      }
2033      SDNode *RetVal = SelectGather(Node, Opc);
2034      if (RetVal)
2035        // We already called ReplaceUses inside SelectGather.
2036        return NULL;
2037      break;
2038    }
2039    }
2040    break;
2041  }
2042  case X86ISD::GlobalBaseReg:
2043    return getGlobalBaseReg();
2044
2045
2046  case X86ISD::ATOMOR64_DAG:
2047  case X86ISD::ATOMXOR64_DAG:
2048  case X86ISD::ATOMADD64_DAG:
2049  case X86ISD::ATOMSUB64_DAG:
2050  case X86ISD::ATOMNAND64_DAG:
2051  case X86ISD::ATOMAND64_DAG:
2052  case X86ISD::ATOMMAX64_DAG:
2053  case X86ISD::ATOMMIN64_DAG:
2054  case X86ISD::ATOMUMAX64_DAG:
2055  case X86ISD::ATOMUMIN64_DAG:
2056  case X86ISD::ATOMSWAP64_DAG: {
2057    unsigned Opc;
2058    switch (Opcode) {
2059    default: llvm_unreachable("Impossible opcode");
2060    case X86ISD::ATOMOR64_DAG:   Opc = X86::ATOMOR6432;   break;
2061    case X86ISD::ATOMXOR64_DAG:  Opc = X86::ATOMXOR6432;  break;
2062    case X86ISD::ATOMADD64_DAG:  Opc = X86::ATOMADD6432;  break;
2063    case X86ISD::ATOMSUB64_DAG:  Opc = X86::ATOMSUB6432;  break;
2064    case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break;
2065    case X86ISD::ATOMAND64_DAG:  Opc = X86::ATOMAND6432;  break;
2066    case X86ISD::ATOMMAX64_DAG:  Opc = X86::ATOMMAX6432;  break;
2067    case X86ISD::ATOMMIN64_DAG:  Opc = X86::ATOMMIN6432;  break;
2068    case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break;
2069    case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break;
2070    case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break;
2071    }
2072    SDNode *RetVal = SelectAtomic64(Node, Opc);
2073    if (RetVal)
2074      return RetVal;
2075    break;
2076  }
2077
2078  case ISD::ATOMIC_LOAD_XOR:
2079  case ISD::ATOMIC_LOAD_AND:
2080  case ISD::ATOMIC_LOAD_OR:
2081  case ISD::ATOMIC_LOAD_ADD: {
2082    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
2083    if (RetVal)
2084      return RetVal;
2085    break;
2086  }
2087  case ISD::AND:
2088  case ISD::OR:
2089  case ISD::XOR: {
2090    // For operations of the form (x << C1) op C2, check if we can use a smaller
2091    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2092    SDValue N0 = Node->getOperand(0);
2093    SDValue N1 = Node->getOperand(1);
2094
2095    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2096      break;
2097
2098    // i8 is unshrinkable, i16 should be promoted to i32.
2099    if (NVT != MVT::i32 && NVT != MVT::i64)
2100      break;
2101
2102    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2103    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2104    if (!Cst || !ShlCst)
2105      break;
2106
2107    int64_t Val = Cst->getSExtValue();
2108    uint64_t ShlVal = ShlCst->getZExtValue();
2109
2110    // Make sure that we don't change the operation by removing bits.
2111    // This only matters for OR and XOR, AND is unaffected.
2112    uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2113    if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2114      break;
2115
2116    unsigned ShlOp, Op;
2117    EVT CstVT = NVT;
2118
2119    // Check the minimum bitwidth for the new constant.
2120    // TODO: AND32ri is the same as AND64ri32 with zext imm.
2121    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2122    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2123    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2124      CstVT = MVT::i8;
2125    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2126      CstVT = MVT::i32;
2127
2128    // Bail if there is no smaller encoding.
2129    if (NVT == CstVT)
2130      break;
2131
2132    switch (NVT.getSimpleVT().SimpleTy) {
2133    default: llvm_unreachable("Unsupported VT!");
2134    case MVT::i32:
2135      assert(CstVT == MVT::i8);
2136      ShlOp = X86::SHL32ri;
2137
2138      switch (Opcode) {
2139      default: llvm_unreachable("Impossible opcode");
2140      case ISD::AND: Op = X86::AND32ri8; break;
2141      case ISD::OR:  Op =  X86::OR32ri8; break;
2142      case ISD::XOR: Op = X86::XOR32ri8; break;
2143      }
2144      break;
2145    case MVT::i64:
2146      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2147      ShlOp = X86::SHL64ri;
2148
2149      switch (Opcode) {
2150      default: llvm_unreachable("Impossible opcode");
2151      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2152      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
2153      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2154      }
2155      break;
2156    }
2157
2158    // Emit the smaller op and the shift.
2159    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2160    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2161    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2162                                getI8Imm(ShlVal));
2163  }
2164  case X86ISD::UMUL: {
2165    SDValue N0 = Node->getOperand(0);
2166    SDValue N1 = Node->getOperand(1);
2167
2168    unsigned LoReg;
2169    switch (NVT.getSimpleVT().SimpleTy) {
2170    default: llvm_unreachable("Unsupported VT!");
2171    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
2172    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
2173    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2174    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2175    }
2176
2177    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2178                                          N0, SDValue()).getValue(1);
2179
2180    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2181    SDValue Ops[] = {N1, InFlag};
2182    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
2183
2184    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2185    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2186    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2187    return NULL;
2188  }
2189
2190  case ISD::SMUL_LOHI:
2191  case ISD::UMUL_LOHI: {
2192    SDValue N0 = Node->getOperand(0);
2193    SDValue N1 = Node->getOperand(1);
2194
2195    bool isSigned = Opcode == ISD::SMUL_LOHI;
2196    bool hasBMI2 = Subtarget->hasBMI2();
2197    if (!isSigned) {
2198      switch (NVT.getSimpleVT().SimpleTy) {
2199      default: llvm_unreachable("Unsupported VT!");
2200      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
2201      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2202      case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2203                     MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2204      case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2205                     MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2206      }
2207    } else {
2208      switch (NVT.getSimpleVT().SimpleTy) {
2209      default: llvm_unreachable("Unsupported VT!");
2210      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
2211      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2212      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2213      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2214      }
2215    }
2216
2217    unsigned SrcReg, LoReg, HiReg;
2218    switch (Opc) {
2219    default: llvm_unreachable("Unknown MUL opcode!");
2220    case X86::IMUL8r:
2221    case X86::MUL8r:
2222      SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2223      break;
2224    case X86::IMUL16r:
2225    case X86::MUL16r:
2226      SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2227      break;
2228    case X86::IMUL32r:
2229    case X86::MUL32r:
2230      SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2231      break;
2232    case X86::IMUL64r:
2233    case X86::MUL64r:
2234      SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2235      break;
2236    case X86::MULX32rr:
2237      SrcReg = X86::EDX; LoReg = HiReg = 0;
2238      break;
2239    case X86::MULX64rr:
2240      SrcReg = X86::RDX; LoReg = HiReg = 0;
2241      break;
2242    }
2243
2244    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2245    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2246    // Multiply is commmutative.
2247    if (!foldedLoad) {
2248      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2249      if (foldedLoad)
2250        std::swap(N0, N1);
2251    }
2252
2253    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2254                                          N0, SDValue()).getValue(1);
2255    SDValue ResHi, ResLo;
2256
2257    if (foldedLoad) {
2258      SDValue Chain;
2259      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2260                        InFlag };
2261      if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2262        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2263        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops,
2264                                               array_lengthof(Ops));
2265        ResHi = SDValue(CNode, 0);
2266        ResLo = SDValue(CNode, 1);
2267        Chain = SDValue(CNode, 2);
2268        InFlag = SDValue(CNode, 3);
2269      } else {
2270        SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2271        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops,
2272                                               array_lengthof(Ops));
2273        Chain = SDValue(CNode, 0);
2274        InFlag = SDValue(CNode, 1);
2275      }
2276
2277      // Update the chain.
2278      ReplaceUses(N1.getValue(1), Chain);
2279    } else {
2280      SDValue Ops[] = { N1, InFlag };
2281      if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2282        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2283        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops,
2284                                               array_lengthof(Ops));
2285        ResHi = SDValue(CNode, 0);
2286        ResLo = SDValue(CNode, 1);
2287        InFlag = SDValue(CNode, 2);
2288      } else {
2289        SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2290        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops,
2291                                               array_lengthof(Ops));
2292        InFlag = SDValue(CNode, 0);
2293      }
2294    }
2295
2296    // Prevent use of AH in a REX instruction by referencing AX instead.
2297    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2298        !SDValue(Node, 1).use_empty()) {
2299      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2300                                              X86::AX, MVT::i16, InFlag);
2301      InFlag = Result.getValue(2);
2302      // Get the low part if needed. Don't use getCopyFromReg for aliasing
2303      // registers.
2304      if (!SDValue(Node, 0).use_empty())
2305        ReplaceUses(SDValue(Node, 1),
2306          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2307
2308      // Shift AX down 8 bits.
2309      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2310                                              Result,
2311                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
2312      // Then truncate it down to i8.
2313      ReplaceUses(SDValue(Node, 1),
2314        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2315    }
2316    // Copy the low half of the result, if it is needed.
2317    if (!SDValue(Node, 0).use_empty()) {
2318      if (ResLo.getNode() == 0) {
2319        assert(LoReg && "Register for low half is not defined!");
2320        ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2321                                       InFlag);
2322        InFlag = ResLo.getValue(2);
2323      }
2324      ReplaceUses(SDValue(Node, 0), ResLo);
2325      DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2326    }
2327    // Copy the high half of the result, if it is needed.
2328    if (!SDValue(Node, 1).use_empty()) {
2329      if (ResHi.getNode() == 0) {
2330        assert(HiReg && "Register for high half is not defined!");
2331        ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2332                                       InFlag);
2333        InFlag = ResHi.getValue(2);
2334      }
2335      ReplaceUses(SDValue(Node, 1), ResHi);
2336      DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2337    }
2338
2339    return NULL;
2340  }
2341
2342  case ISD::SDIVREM:
2343  case ISD::UDIVREM: {
2344    SDValue N0 = Node->getOperand(0);
2345    SDValue N1 = Node->getOperand(1);
2346
2347    bool isSigned = Opcode == ISD::SDIVREM;
2348    if (!isSigned) {
2349      switch (NVT.getSimpleVT().SimpleTy) {
2350      default: llvm_unreachable("Unsupported VT!");
2351      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
2352      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2353      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2354      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2355      }
2356    } else {
2357      switch (NVT.getSimpleVT().SimpleTy) {
2358      default: llvm_unreachable("Unsupported VT!");
2359      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
2360      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2361      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2362      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2363      }
2364    }
2365
2366    unsigned LoReg, HiReg, ClrReg;
2367    unsigned ClrOpcode, SExtOpcode;
2368    switch (NVT.getSimpleVT().SimpleTy) {
2369    default: llvm_unreachable("Unsupported VT!");
2370    case MVT::i8:
2371      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
2372      ClrOpcode  = 0;
2373      SExtOpcode = X86::CBW;
2374      break;
2375    case MVT::i16:
2376      LoReg = X86::AX;  HiReg = X86::DX;
2377      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
2378      SExtOpcode = X86::CWD;
2379      break;
2380    case MVT::i32:
2381      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2382      ClrOpcode  = X86::MOV32r0;
2383      SExtOpcode = X86::CDQ;
2384      break;
2385    case MVT::i64:
2386      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2387      ClrOpcode  = X86::MOV64r0;
2388      SExtOpcode = X86::CQO;
2389      break;
2390    }
2391
2392    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2393    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2394    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2395
2396    SDValue InFlag;
2397    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2398      // Special case for div8, just use a move with zero extension to AX to
2399      // clear the upper 8 bits (AH).
2400      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2401      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2402        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2403        Move =
2404          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2405                                         MVT::Other, Ops,
2406                                         array_lengthof(Ops)), 0);
2407        Chain = Move.getValue(1);
2408        ReplaceUses(N0.getValue(1), Chain);
2409      } else {
2410        Move =
2411          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2412        Chain = CurDAG->getEntryNode();
2413      }
2414      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2415      InFlag = Chain.getValue(1);
2416    } else {
2417      InFlag =
2418        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2419                             LoReg, N0, SDValue()).getValue(1);
2420      if (isSigned && !signBitIsZero) {
2421        // Sign extend the low part into the high part.
2422        InFlag =
2423          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2424      } else {
2425        // Zero out the high part, effectively zero extending the input.
2426        SDValue ClrNode =
2427          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
2428        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2429                                      ClrNode, InFlag).getValue(1);
2430      }
2431    }
2432
2433    if (foldedLoad) {
2434      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2435                        InFlag };
2436      SDNode *CNode =
2437        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
2438                               array_lengthof(Ops));
2439      InFlag = SDValue(CNode, 1);
2440      // Update the chain.
2441      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2442    } else {
2443      InFlag =
2444        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2445    }
2446
2447    // Prevent use of AH in a REX instruction by referencing AX instead.
2448    // Shift it down 8 bits.
2449    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2450        !SDValue(Node, 1).use_empty()) {
2451      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2452                                              X86::AX, MVT::i16, InFlag);
2453      InFlag = Result.getValue(2);
2454
2455      // If we also need AL (the quotient), get it by extracting a subreg from
2456      // Result. The fast register allocator does not like multiple CopyFromReg
2457      // nodes using aliasing registers.
2458      if (!SDValue(Node, 0).use_empty())
2459        ReplaceUses(SDValue(Node, 0),
2460          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2461
2462      // Shift AX right by 8 bits instead of using AH.
2463      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2464                                         Result,
2465                                         CurDAG->getTargetConstant(8, MVT::i8)),
2466                       0);
2467      ReplaceUses(SDValue(Node, 1),
2468        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2469    }
2470    // Copy the division (low) result, if it is needed.
2471    if (!SDValue(Node, 0).use_empty()) {
2472      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2473                                                LoReg, NVT, InFlag);
2474      InFlag = Result.getValue(2);
2475      ReplaceUses(SDValue(Node, 0), Result);
2476      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2477    }
2478    // Copy the remainder (high) result, if it is needed.
2479    if (!SDValue(Node, 1).use_empty()) {
2480      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2481                                              HiReg, NVT, InFlag);
2482      InFlag = Result.getValue(2);
2483      ReplaceUses(SDValue(Node, 1), Result);
2484      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2485    }
2486    return NULL;
2487  }
2488
2489  case X86ISD::CMP:
2490  case X86ISD::SUB: {
2491    // Sometimes a SUB is used to perform comparison.
2492    if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2493      // This node is not a CMP.
2494      break;
2495    SDValue N0 = Node->getOperand(0);
2496    SDValue N1 = Node->getOperand(1);
2497
2498    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2499    // use a smaller encoding.
2500    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2501        HasNoSignedComparisonUses(Node))
2502      // Look past the truncate if CMP is the only use of it.
2503      N0 = N0.getOperand(0);
2504    if ((N0.getNode()->getOpcode() == ISD::AND ||
2505         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2506        N0.getNode()->hasOneUse() &&
2507        N0.getValueType() != MVT::i8 &&
2508        X86::isZeroNode(N1)) {
2509      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2510      if (!C) break;
2511
2512      // For example, convert "testl %eax, $8" to "testb %al, $8"
2513      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2514          (!(C->getZExtValue() & 0x80) ||
2515           HasNoSignedComparisonUses(Node))) {
2516        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2517        SDValue Reg = N0.getNode()->getOperand(0);
2518
2519        // On x86-32, only the ABCD registers have 8-bit subregisters.
2520        if (!Subtarget->is64Bit()) {
2521          const TargetRegisterClass *TRC;
2522          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2523          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2524          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2525          default: llvm_unreachable("Unsupported TEST operand type!");
2526          }
2527          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2528          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2529                                               Reg.getValueType(), Reg, RC), 0);
2530        }
2531
2532        // Extract the l-register.
2533        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2534                                                        MVT::i8, Reg);
2535
2536        // Emit a testb.
2537        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2538                                                 Subreg, Imm);
2539        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2540        // one, do not call ReplaceAllUsesWith.
2541        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2542                    SDValue(NewNode, 0));
2543        return NULL;
2544      }
2545
2546      // For example, "testl %eax, $2048" to "testb %ah, $8".
2547      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2548          (!(C->getZExtValue() & 0x8000) ||
2549           HasNoSignedComparisonUses(Node))) {
2550        // Shift the immediate right by 8 bits.
2551        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2552                                                       MVT::i8);
2553        SDValue Reg = N0.getNode()->getOperand(0);
2554
2555        // Put the value in an ABCD register.
2556        const TargetRegisterClass *TRC;
2557        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2558        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2559        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2560        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2561        default: llvm_unreachable("Unsupported TEST operand type!");
2562        }
2563        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2564        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2565                                             Reg.getValueType(), Reg, RC), 0);
2566
2567        // Extract the h-register.
2568        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2569                                                        MVT::i8, Reg);
2570
2571        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2572        // target GR8_NOREX registers, so make sure the register class is
2573        // forced.
2574        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
2575                                                 MVT::i32, Subreg, ShiftedImm);
2576        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2577        // one, do not call ReplaceAllUsesWith.
2578        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2579                    SDValue(NewNode, 0));
2580        return NULL;
2581      }
2582
2583      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2584      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2585          N0.getValueType() != MVT::i16 &&
2586          (!(C->getZExtValue() & 0x8000) ||
2587           HasNoSignedComparisonUses(Node))) {
2588        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2589        SDValue Reg = N0.getNode()->getOperand(0);
2590
2591        // Extract the 16-bit subregister.
2592        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2593                                                        MVT::i16, Reg);
2594
2595        // Emit a testw.
2596        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
2597                                                 Subreg, Imm);
2598        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2599        // one, do not call ReplaceAllUsesWith.
2600        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2601                    SDValue(NewNode, 0));
2602        return NULL;
2603      }
2604
2605      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2606      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2607          N0.getValueType() == MVT::i64 &&
2608          (!(C->getZExtValue() & 0x80000000) ||
2609           HasNoSignedComparisonUses(Node))) {
2610        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2611        SDValue Reg = N0.getNode()->getOperand(0);
2612
2613        // Extract the 32-bit subregister.
2614        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2615                                                        MVT::i32, Reg);
2616
2617        // Emit a testl.
2618        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
2619                                                 Subreg, Imm);
2620        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2621        // one, do not call ReplaceAllUsesWith.
2622        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2623                    SDValue(NewNode, 0));
2624        return NULL;
2625      }
2626    }
2627    break;
2628  }
2629  case ISD::STORE: {
2630    // Change a chain of {load; incr or dec; store} of the same value into
2631    // a simple increment or decrement through memory of that value, if the
2632    // uses of the modified value and its address are suitable.
2633    // The DEC64m tablegen pattern is currently not able to match the case where
2634    // the EFLAGS on the original DEC are used. (This also applies to
2635    // {INC,DEC}X{64,32,16,8}.)
2636    // We'll need to improve tablegen to allow flags to be transferred from a
2637    // node in the pattern to the result node.  probably with a new keyword
2638    // for example, we have this
2639    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2640    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2641    //   (implicit EFLAGS)]>;
2642    // but maybe need something like this
2643    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2644    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2645    //   (transferrable EFLAGS)]>;
2646
2647    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2648    SDValue StoredVal = StoreNode->getOperand(1);
2649    unsigned Opc = StoredVal->getOpcode();
2650
2651    LoadSDNode *LoadNode = 0;
2652    SDValue InputChain;
2653    if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2654                             LoadNode, InputChain))
2655      break;
2656
2657    SDValue Base, Scale, Index, Disp, Segment;
2658    if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2659                    Base, Scale, Index, Disp, Segment))
2660      break;
2661
2662    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2663    MemOp[0] = StoreNode->getMemOperand();
2664    MemOp[1] = LoadNode->getMemOperand();
2665    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2666    EVT LdVT = LoadNode->getMemoryVT();
2667    unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2668    MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2669                                                   Node->getDebugLoc(),
2670                                                   MVT::i32, MVT::Other, Ops,
2671                                                   array_lengthof(Ops));
2672    Result->setMemRefs(MemOp, MemOp + 2);
2673
2674    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2675    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2676
2677    return Result;
2678  }
2679
2680  // FIXME: Custom handling because TableGen doesn't support multiple implicit
2681  // defs in an instruction pattern
2682  case X86ISD::PCMPESTRI: {
2683    SDValue N0 = Node->getOperand(0);
2684    SDValue N1 = Node->getOperand(1);
2685    SDValue N2 = Node->getOperand(2);
2686    SDValue N3 = Node->getOperand(3);
2687    SDValue N4 = Node->getOperand(4);
2688
2689    // Make sure last argument is a constant
2690    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N4);
2691    if (!Cst)
2692      break;
2693
2694    uint64_t Imm = Cst->getZExtValue();
2695
2696    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2697                                          X86::EAX, N1, SDValue()).getValue(1);
2698    InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
2699                                  N3, InFlag).getValue(1);
2700
2701    SDValue Ops[] = { N0, N2, getI8Imm(Imm), InFlag };
2702    unsigned Opc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr :
2703                                         X86::PCMPESTRIrr;
2704    InFlag = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Ops,
2705                                            array_lengthof(Ops)), 0);
2706
2707    if (!SDValue(Node, 0).use_empty()) {
2708      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2709                                              X86::ECX, NVT, InFlag);
2710      InFlag = Result.getValue(2);
2711      ReplaceUses(SDValue(Node, 0), Result);
2712    }
2713    if (!SDValue(Node, 1).use_empty()) {
2714      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2715                                              X86::EFLAGS, NVT, InFlag);
2716      InFlag = Result.getValue(2);
2717      ReplaceUses(SDValue(Node, 1), Result);
2718    }
2719
2720    return NULL;
2721  }
2722
2723  // FIXME: Custom handling because TableGen doesn't support multiple implicit
2724  // defs in an instruction pattern
2725  case X86ISD::PCMPISTRI: {
2726    SDValue N0 = Node->getOperand(0);
2727    SDValue N1 = Node->getOperand(1);
2728    SDValue N2 = Node->getOperand(2);
2729
2730    // Make sure last argument is a constant
2731    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N2);
2732    if (!Cst)
2733      break;
2734
2735    uint64_t Imm = Cst->getZExtValue();
2736
2737    SDValue Ops[] = { N0, N1, getI8Imm(Imm) };
2738    unsigned Opc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr :
2739                                         X86::PCMPISTRIrr;
2740    SDValue InFlag = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Ops,
2741                                                    array_lengthof(Ops)), 0);
2742
2743    if (!SDValue(Node, 0).use_empty()) {
2744      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2745                                              X86::ECX, NVT, InFlag);
2746      InFlag = Result.getValue(2);
2747      ReplaceUses(SDValue(Node, 0), Result);
2748    }
2749    if (!SDValue(Node, 1).use_empty()) {
2750      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2751                                              X86::EFLAGS, NVT, InFlag);
2752      InFlag = Result.getValue(2);
2753      ReplaceUses(SDValue(Node, 1), Result);
2754    }
2755
2756    return NULL;
2757  }
2758  }
2759
2760  SDNode *ResNode = SelectCode(Node);
2761
2762  DEBUG(dbgs() << "=> ";
2763        if (ResNode == NULL || ResNode == Node)
2764          Node->dump(CurDAG);
2765        else
2766          ResNode->dump(CurDAG);
2767        dbgs() << '\n');
2768
2769  return ResNode;
2770}
2771
2772bool X86DAGToDAGISel::
2773SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2774                             std::vector<SDValue> &OutOps) {
2775  SDValue Op0, Op1, Op2, Op3, Op4;
2776  switch (ConstraintCode) {
2777  case 'o':   // offsetable        ??
2778  case 'v':   // not offsetable    ??
2779  default: return true;
2780  case 'm':   // memory
2781    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2782      return true;
2783    break;
2784  }
2785
2786  OutOps.push_back(Op0);
2787  OutOps.push_back(Op1);
2788  OutOps.push_back(Op2);
2789  OutOps.push_back(Op3);
2790  OutOps.push_back(Op4);
2791  return false;
2792}
2793
2794/// createX86ISelDag - This pass converts a legalized DAG into a
2795/// X86-specific DAG, ready for instruction scheduling.
2796///
2797FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2798                                     CodeGenOpt::Level OptLevel) {
2799  return new X86DAGToDAGISel(TM, OptLevel);
2800}
2801