1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPerfectShuffle.h"
17#include "PPCTargetMachine.h"
18#include "MCTargetDesc/PPCPredicates.h"
19#include "llvm/CallingConv.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/SelectionDAG.h"
31#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetOptions.h"
37using namespace llvm;
38
39static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
40                                     CCValAssign::LocInfo &LocInfo,
41                                     ISD::ArgFlagsTy &ArgFlags,
42                                     CCState &State);
43static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
44                                            MVT &LocVT,
45                                            CCValAssign::LocInfo &LocInfo,
46                                            ISD::ArgFlagsTy &ArgFlags,
47                                            CCState &State);
48static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
49                                              MVT &LocVT,
50                                              CCValAssign::LocInfo &LocInfo,
51                                              ISD::ArgFlagsTy &ArgFlags,
52                                              CCState &State);
53
54static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
55cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
56
57static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
58cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63
64  return new TargetLoweringObjectFileELF();
65}
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69  const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
70
71  setPow2DivIsCheap();
72
73  // Use _setjmp/_longjmp instead of setjmp/longjmp.
74  setUseUnderscoreSetJmp(true);
75  setUseUnderscoreLongJmp(true);
76
77  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
78  // arguments are at least 4/8 bytes aligned.
79  bool isPPC64 = Subtarget->isPPC64();
80  setMinStackArgumentAlignment(isPPC64 ? 8:4);
81
82  // Set up the register classes.
83  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
84  addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
85  addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
86
87  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
88  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
89  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
90
91  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
92
93  // PowerPC has pre-inc load and store's.
94  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
95  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
96  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
97  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
98  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
100  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
101  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
102  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
103  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
104
105  // This is used in the ppcf128->int sequence.  Note it has different semantics
106  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
107  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
108
109  // We do not currently implement these libm ops for PowerPC.
110  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
111  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
112  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
113  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
114  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
115
116  // PowerPC has no SREM/UREM instructions
117  setOperationAction(ISD::SREM, MVT::i32, Expand);
118  setOperationAction(ISD::UREM, MVT::i32, Expand);
119  setOperationAction(ISD::SREM, MVT::i64, Expand);
120  setOperationAction(ISD::UREM, MVT::i64, Expand);
121
122  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
123  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
124  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
125  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
126  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
127  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
128  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
129  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
130  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
131
132  // We don't support sin/cos/sqrt/fmod/pow
133  setOperationAction(ISD::FSIN , MVT::f64, Expand);
134  setOperationAction(ISD::FCOS , MVT::f64, Expand);
135  setOperationAction(ISD::FREM , MVT::f64, Expand);
136  setOperationAction(ISD::FPOW , MVT::f64, Expand);
137  setOperationAction(ISD::FMA  , MVT::f64, Legal);
138  setOperationAction(ISD::FSIN , MVT::f32, Expand);
139  setOperationAction(ISD::FCOS , MVT::f32, Expand);
140  setOperationAction(ISD::FREM , MVT::f32, Expand);
141  setOperationAction(ISD::FPOW , MVT::f32, Expand);
142  setOperationAction(ISD::FMA  , MVT::f32, Legal);
143
144  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
145
146  // If we're enabling GP optimizations, use hardware square root
147  if (!Subtarget->hasFSQRT()) {
148    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
149    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
150  }
151
152  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
153  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
154
155  // PowerPC does not have BSWAP, CTPOP or CTTZ
156  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
157  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
158  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
159  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
160  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
161  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
162  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
163  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
164  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
165  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
166
167  // PowerPC does not have ROTR
168  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
169  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
170
171  // PowerPC does not have Select
172  setOperationAction(ISD::SELECT, MVT::i32, Expand);
173  setOperationAction(ISD::SELECT, MVT::i64, Expand);
174  setOperationAction(ISD::SELECT, MVT::f32, Expand);
175  setOperationAction(ISD::SELECT, MVT::f64, Expand);
176
177  // PowerPC wants to turn select_cc of FP into fsel when possible.
178  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
179  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
180
181  // PowerPC wants to optimize integer setcc a bit
182  setOperationAction(ISD::SETCC, MVT::i32, Custom);
183
184  // PowerPC does not have BRCOND which requires SetCC
185  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
186
187  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
188
189  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
190  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
191
192  // PowerPC does not have [U|S]INT_TO_FP
193  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
194  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
195
196  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
197  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
198  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
199  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
200
201  // We cannot sextinreg(i1).  Expand to shifts.
202  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
203
204  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
205  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
206  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
207  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
208
209
210  // We want to legalize GlobalAddress and ConstantPool nodes into the
211  // appropriate instructions to materialize the address.
212  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
213  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
214  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
215  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
216  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
217  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
218  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
219  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
220  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
221  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
222
223  // TRAP is legal.
224  setOperationAction(ISD::TRAP, MVT::Other, Legal);
225
226  // TRAMPOLINE is custom lowered.
227  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
228  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
229
230  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
231  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
232
233  if (Subtarget->isSVR4ABI()) {
234    if (isPPC64) {
235      // VAARG always uses double-word chunks, so promote anything smaller.
236      setOperationAction(ISD::VAARG, MVT::i1, Promote);
237      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
238      setOperationAction(ISD::VAARG, MVT::i8, Promote);
239      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
240      setOperationAction(ISD::VAARG, MVT::i16, Promote);
241      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
242      setOperationAction(ISD::VAARG, MVT::i32, Promote);
243      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
244      setOperationAction(ISD::VAARG, MVT::Other, Expand);
245    } else {
246      // VAARG is custom lowered with the 32-bit SVR4 ABI.
247      setOperationAction(ISD::VAARG, MVT::Other, Custom);
248      setOperationAction(ISD::VAARG, MVT::i64, Custom);
249    }
250  } else
251    setOperationAction(ISD::VAARG, MVT::Other, Expand);
252
253  // Use the default implementation.
254  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
255  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
256  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
257  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
258  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
259  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
260
261  // We want to custom lower some of our intrinsics.
262  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
263
264  // Comparisons that require checking two conditions.
265  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
266  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
267  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
268  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
269  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
270  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
271  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
272  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
273  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
274  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
275  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
276  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
277
278  if (Subtarget->has64BitSupport()) {
279    // They also have instructions for converting between i64 and fp.
280    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
281    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
282    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
283    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
284    // This is just the low 32 bits of a (signed) fp->i64 conversion.
285    // We cannot do this with Promote because i64 is not a legal type.
286    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
287
288    // FIXME: disable this lowered code.  This generates 64-bit register values,
289    // and we don't model the fact that the top part is clobbered by calls.  We
290    // need to flag these together so that the value isn't live across a call.
291    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
292  } else {
293    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
294    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
295  }
296
297  if (Subtarget->use64BitRegs()) {
298    // 64-bit PowerPC implementations can support i64 types directly
299    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
300    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
301    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
302    // 64-bit PowerPC wants to expand i128 shifts itself.
303    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
304    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
305    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
306  } else {
307    // 32-bit PowerPC wants to expand i64 shifts itself.
308    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
309    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
310    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
311  }
312
313  if (Subtarget->hasAltivec()) {
314    // First set operation action for all vector types to expand. Then we
315    // will selectively turn on ones that can be effectively codegen'd.
316    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
317         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
318      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
319
320      // add/sub are legal for all supported vector VT's.
321      setOperationAction(ISD::ADD , VT, Legal);
322      setOperationAction(ISD::SUB , VT, Legal);
323
324      // We promote all shuffles to v16i8.
325      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
326      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
327
328      // We promote all non-typed operations to v4i32.
329      setOperationAction(ISD::AND   , VT, Promote);
330      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
331      setOperationAction(ISD::OR    , VT, Promote);
332      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
333      setOperationAction(ISD::XOR   , VT, Promote);
334      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
335      setOperationAction(ISD::LOAD  , VT, Promote);
336      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
337      setOperationAction(ISD::SELECT, VT, Promote);
338      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
339      setOperationAction(ISD::STORE, VT, Promote);
340      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
341
342      // No other operations are legal.
343      setOperationAction(ISD::MUL , VT, Expand);
344      setOperationAction(ISD::SDIV, VT, Expand);
345      setOperationAction(ISD::SREM, VT, Expand);
346      setOperationAction(ISD::UDIV, VT, Expand);
347      setOperationAction(ISD::UREM, VT, Expand);
348      setOperationAction(ISD::FDIV, VT, Expand);
349      setOperationAction(ISD::FNEG, VT, Expand);
350      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
351      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
352      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
353      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
354      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
355      setOperationAction(ISD::UDIVREM, VT, Expand);
356      setOperationAction(ISD::SDIVREM, VT, Expand);
357      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
358      setOperationAction(ISD::FPOW, VT, Expand);
359      setOperationAction(ISD::CTPOP, VT, Expand);
360      setOperationAction(ISD::CTLZ, VT, Expand);
361      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
362      setOperationAction(ISD::CTTZ, VT, Expand);
363      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
364    }
365
366    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
367    // with merges, splats, etc.
368    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
369
370    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
371    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
372    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
373    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
374    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
375    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
376
377    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
378    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
379    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
380    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
381
382    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
383    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
384    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
385    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
386    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
387
388    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
389    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
390
391    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
392    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
393    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
394    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
395  }
396
397  if (Subtarget->has64BitSupport()) {
398    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
399    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
400  }
401
402  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
403  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
404
405  setBooleanContents(ZeroOrOneBooleanContent);
406  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
407
408  if (isPPC64) {
409    setStackPointerRegisterToSaveRestore(PPC::X1);
410    setExceptionPointerRegister(PPC::X3);
411    setExceptionSelectorRegister(PPC::X4);
412  } else {
413    setStackPointerRegisterToSaveRestore(PPC::R1);
414    setExceptionPointerRegister(PPC::R3);
415    setExceptionSelectorRegister(PPC::R4);
416  }
417
418  // We have target-specific dag combine patterns for the following nodes:
419  setTargetDAGCombine(ISD::SINT_TO_FP);
420  setTargetDAGCombine(ISD::STORE);
421  setTargetDAGCombine(ISD::BR_CC);
422  setTargetDAGCombine(ISD::BSWAP);
423
424  // Darwin long double math library functions have $LDBL128 appended.
425  if (Subtarget->isDarwin()) {
426    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
427    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
428    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
429    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
430    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
431    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
432    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
433    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
434    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
435    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
436  }
437
438  setMinFunctionAlignment(2);
439  if (PPCSubTarget.isDarwin())
440    setPrefFunctionAlignment(4);
441
442  if (isPPC64 && Subtarget->isJITCodeModel())
443    // Temporary workaround for the inability of PPC64 JIT to handle jump
444    // tables.
445    setSupportJumpTables(false);
446
447  setInsertFencesForAtomic(true);
448
449  setSchedulingPreference(Sched::Hybrid);
450
451  computeRegisterProperties();
452
453  // The Freescale cores does better with aggressive inlining of memcpy and
454  // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
455  if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
456      Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
457    maxStoresPerMemset = 32;
458    maxStoresPerMemsetOptSize = 16;
459    maxStoresPerMemcpy = 32;
460    maxStoresPerMemcpyOptSize = 8;
461    maxStoresPerMemmove = 32;
462    maxStoresPerMemmoveOptSize = 8;
463
464    setPrefFunctionAlignment(4);
465    benefitFromCodePlacementOpt = true;
466  }
467}
468
469/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
470/// function arguments in the caller parameter area.
471unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
472  const TargetMachine &TM = getTargetMachine();
473  // Darwin passes everything on 4 byte boundary.
474  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
475    return 4;
476
477  // 16byte and wider vectors are passed on 16byte boundary.
478  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
479    if (VTy->getBitWidth() >= 128)
480      return 16;
481
482  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
483   if (PPCSubTarget.isPPC64())
484     return 8;
485
486  return 4;
487}
488
489const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
490  switch (Opcode) {
491  default: return 0;
492  case PPCISD::FSEL:            return "PPCISD::FSEL";
493  case PPCISD::FCFID:           return "PPCISD::FCFID";
494  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
495  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
496  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
497  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
498  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
499  case PPCISD::VPERM:           return "PPCISD::VPERM";
500  case PPCISD::Hi:              return "PPCISD::Hi";
501  case PPCISD::Lo:              return "PPCISD::Lo";
502  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
503  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
504  case PPCISD::LOAD:            return "PPCISD::LOAD";
505  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
506  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
507  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
508  case PPCISD::SRL:             return "PPCISD::SRL";
509  case PPCISD::SRA:             return "PPCISD::SRA";
510  case PPCISD::SHL:             return "PPCISD::SHL";
511  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
512  case PPCISD::STD_32:          return "PPCISD::STD_32";
513  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
514  case PPCISD::CALL_NOP_SVR4:   return "PPCISD::CALL_NOP_SVR4";
515  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
516  case PPCISD::NOP:             return "PPCISD::NOP";
517  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
518  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
519  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
520  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
521  case PPCISD::MFCR:            return "PPCISD::MFCR";
522  case PPCISD::VCMP:            return "PPCISD::VCMP";
523  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
524  case PPCISD::LBRX:            return "PPCISD::LBRX";
525  case PPCISD::STBRX:           return "PPCISD::STBRX";
526  case PPCISD::LARX:            return "PPCISD::LARX";
527  case PPCISD::STCX:            return "PPCISD::STCX";
528  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
529  case PPCISD::MFFS:            return "PPCISD::MFFS";
530  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
531  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
532  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
533  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
534  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
535  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
536  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
537  }
538}
539
540EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
541  return MVT::i32;
542}
543
544//===----------------------------------------------------------------------===//
545// Node matching predicates, for use by the tblgen matching code.
546//===----------------------------------------------------------------------===//
547
548/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
549static bool isFloatingPointZero(SDValue Op) {
550  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
551    return CFP->getValueAPF().isZero();
552  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
553    // Maybe this has already been legalized into the constant pool?
554    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
555      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
556        return CFP->getValueAPF().isZero();
557  }
558  return false;
559}
560
561/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
562/// true if Op is undef or if it matches the specified value.
563static bool isConstantOrUndef(int Op, int Val) {
564  return Op < 0 || Op == Val;
565}
566
567/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
568/// VPKUHUM instruction.
569bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
570  if (!isUnary) {
571    for (unsigned i = 0; i != 16; ++i)
572      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
573        return false;
574  } else {
575    for (unsigned i = 0; i != 8; ++i)
576      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
577          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
578        return false;
579  }
580  return true;
581}
582
583/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
584/// VPKUWUM instruction.
585bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
586  if (!isUnary) {
587    for (unsigned i = 0; i != 16; i += 2)
588      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
589          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
590        return false;
591  } else {
592    for (unsigned i = 0; i != 8; i += 2)
593      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
594          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
595          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
596          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
597        return false;
598  }
599  return true;
600}
601
602/// isVMerge - Common function, used to match vmrg* shuffles.
603///
604static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
605                     unsigned LHSStart, unsigned RHSStart) {
606  assert(N->getValueType(0) == MVT::v16i8 &&
607         "PPC only supports shuffles by bytes!");
608  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
609         "Unsupported merge size!");
610
611  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
612    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
613      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
614                             LHSStart+j+i*UnitSize) ||
615          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
616                             RHSStart+j+i*UnitSize))
617        return false;
618    }
619  return true;
620}
621
622/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
623/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
624bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
625                             bool isUnary) {
626  if (!isUnary)
627    return isVMerge(N, UnitSize, 8, 24);
628  return isVMerge(N, UnitSize, 8, 8);
629}
630
631/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
632/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
633bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
634                             bool isUnary) {
635  if (!isUnary)
636    return isVMerge(N, UnitSize, 0, 16);
637  return isVMerge(N, UnitSize, 0, 0);
638}
639
640
641/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
642/// amount, otherwise return -1.
643int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
644  assert(N->getValueType(0) == MVT::v16i8 &&
645         "PPC only supports shuffles by bytes!");
646
647  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
648
649  // Find the first non-undef value in the shuffle mask.
650  unsigned i;
651  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
652    /*search*/;
653
654  if (i == 16) return -1;  // all undef.
655
656  // Otherwise, check to see if the rest of the elements are consecutively
657  // numbered from this value.
658  unsigned ShiftAmt = SVOp->getMaskElt(i);
659  if (ShiftAmt < i) return -1;
660  ShiftAmt -= i;
661
662  if (!isUnary) {
663    // Check the rest of the elements to see if they are consecutive.
664    for (++i; i != 16; ++i)
665      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
666        return -1;
667  } else {
668    // Check the rest of the elements to see if they are consecutive.
669    for (++i; i != 16; ++i)
670      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
671        return -1;
672  }
673  return ShiftAmt;
674}
675
676/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
677/// specifies a splat of a single element that is suitable for input to
678/// VSPLTB/VSPLTH/VSPLTW.
679bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
680  assert(N->getValueType(0) == MVT::v16i8 &&
681         (EltSize == 1 || EltSize == 2 || EltSize == 4));
682
683  // This is a splat operation if each element of the permute is the same, and
684  // if the value doesn't reference the second vector.
685  unsigned ElementBase = N->getMaskElt(0);
686
687  // FIXME: Handle UNDEF elements too!
688  if (ElementBase >= 16)
689    return false;
690
691  // Check that the indices are consecutive, in the case of a multi-byte element
692  // splatted with a v16i8 mask.
693  for (unsigned i = 1; i != EltSize; ++i)
694    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
695      return false;
696
697  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
698    if (N->getMaskElt(i) < 0) continue;
699    for (unsigned j = 0; j != EltSize; ++j)
700      if (N->getMaskElt(i+j) != N->getMaskElt(j))
701        return false;
702  }
703  return true;
704}
705
706/// isAllNegativeZeroVector - Returns true if all elements of build_vector
707/// are -0.0.
708bool PPC::isAllNegativeZeroVector(SDNode *N) {
709  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
710
711  APInt APVal, APUndef;
712  unsigned BitSize;
713  bool HasAnyUndefs;
714
715  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
716    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
717      return CFP->getValueAPF().isNegZero();
718
719  return false;
720}
721
722/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
723/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
724unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
725  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
726  assert(isSplatShuffleMask(SVOp, EltSize));
727  return SVOp->getMaskElt(0) / EltSize;
728}
729
730/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
731/// by using a vspltis[bhw] instruction of the specified element size, return
732/// the constant being splatted.  The ByteSize field indicates the number of
733/// bytes of each element [124] -> [bhw].
734SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
735  SDValue OpVal(0, 0);
736
737  // If ByteSize of the splat is bigger than the element size of the
738  // build_vector, then we have a case where we are checking for a splat where
739  // multiple elements of the buildvector are folded together into a single
740  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
741  unsigned EltSize = 16/N->getNumOperands();
742  if (EltSize < ByteSize) {
743    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
744    SDValue UniquedVals[4];
745    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
746
747    // See if all of the elements in the buildvector agree across.
748    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
749      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
750      // If the element isn't a constant, bail fully out.
751      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
752
753
754      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
755        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
756      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
757        return SDValue();  // no match.
758    }
759
760    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
761    // either constant or undef values that are identical for each chunk.  See
762    // if these chunks can form into a larger vspltis*.
763
764    // Check to see if all of the leading entries are either 0 or -1.  If
765    // neither, then this won't fit into the immediate field.
766    bool LeadingZero = true;
767    bool LeadingOnes = true;
768    for (unsigned i = 0; i != Multiple-1; ++i) {
769      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
770
771      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
772      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
773    }
774    // Finally, check the least significant entry.
775    if (LeadingZero) {
776      if (UniquedVals[Multiple-1].getNode() == 0)
777        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
778      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
779      if (Val < 16)
780        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
781    }
782    if (LeadingOnes) {
783      if (UniquedVals[Multiple-1].getNode() == 0)
784        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
785      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
786      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
787        return DAG.getTargetConstant(Val, MVT::i32);
788    }
789
790    return SDValue();
791  }
792
793  // Check to see if this buildvec has a single non-undef value in its elements.
794  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
795    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
796    if (OpVal.getNode() == 0)
797      OpVal = N->getOperand(i);
798    else if (OpVal != N->getOperand(i))
799      return SDValue();
800  }
801
802  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
803
804  unsigned ValSizeInBytes = EltSize;
805  uint64_t Value = 0;
806  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
807    Value = CN->getZExtValue();
808  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
809    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
810    Value = FloatToBits(CN->getValueAPF().convertToFloat());
811  }
812
813  // If the splat value is larger than the element value, then we can never do
814  // this splat.  The only case that we could fit the replicated bits into our
815  // immediate field for would be zero, and we prefer to use vxor for it.
816  if (ValSizeInBytes < ByteSize) return SDValue();
817
818  // If the element value is larger than the splat value, cut it in half and
819  // check to see if the two halves are equal.  Continue doing this until we
820  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
821  while (ValSizeInBytes > ByteSize) {
822    ValSizeInBytes >>= 1;
823
824    // If the top half equals the bottom half, we're still ok.
825    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
826         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
827      return SDValue();
828  }
829
830  // Properly sign extend the value.
831  int MaskVal = SignExtend32(Value, ByteSize * 8);
832
833  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
834  if (MaskVal == 0) return SDValue();
835
836  // Finally, if this value fits in a 5 bit sext field, return it
837  if (SignExtend32<5>(MaskVal) == MaskVal)
838    return DAG.getTargetConstant(MaskVal, MVT::i32);
839  return SDValue();
840}
841
842//===----------------------------------------------------------------------===//
843//  Addressing Mode Selection
844//===----------------------------------------------------------------------===//
845
846/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
847/// or 64-bit immediate, and if the value can be accurately represented as a
848/// sign extension from a 16-bit value.  If so, this returns true and the
849/// immediate.
850static bool isIntS16Immediate(SDNode *N, short &Imm) {
851  if (N->getOpcode() != ISD::Constant)
852    return false;
853
854  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
855  if (N->getValueType(0) == MVT::i32)
856    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
857  else
858    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
859}
860static bool isIntS16Immediate(SDValue Op, short &Imm) {
861  return isIntS16Immediate(Op.getNode(), Imm);
862}
863
864
865/// SelectAddressRegReg - Given the specified addressed, check to see if it
866/// can be represented as an indexed [r+r] operation.  Returns false if it
867/// can be more efficiently represented with [r+imm].
868bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
869                                            SDValue &Index,
870                                            SelectionDAG &DAG) const {
871  short imm = 0;
872  if (N.getOpcode() == ISD::ADD) {
873    if (isIntS16Immediate(N.getOperand(1), imm))
874      return false;    // r+i
875    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
876      return false;    // r+i
877
878    Base = N.getOperand(0);
879    Index = N.getOperand(1);
880    return true;
881  } else if (N.getOpcode() == ISD::OR) {
882    if (isIntS16Immediate(N.getOperand(1), imm))
883      return false;    // r+i can fold it if we can.
884
885    // If this is an or of disjoint bitfields, we can codegen this as an add
886    // (for better address arithmetic) if the LHS and RHS of the OR are provably
887    // disjoint.
888    APInt LHSKnownZero, LHSKnownOne;
889    APInt RHSKnownZero, RHSKnownOne;
890    DAG.ComputeMaskedBits(N.getOperand(0),
891                          LHSKnownZero, LHSKnownOne);
892
893    if (LHSKnownZero.getBoolValue()) {
894      DAG.ComputeMaskedBits(N.getOperand(1),
895                            RHSKnownZero, RHSKnownOne);
896      // If all of the bits are known zero on the LHS or RHS, the add won't
897      // carry.
898      if (~(LHSKnownZero | RHSKnownZero) == 0) {
899        Base = N.getOperand(0);
900        Index = N.getOperand(1);
901        return true;
902      }
903    }
904  }
905
906  return false;
907}
908
909/// Returns true if the address N can be represented by a base register plus
910/// a signed 16-bit displacement [r+imm], and if it is not better
911/// represented as reg+reg.
912bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
913                                            SDValue &Base,
914                                            SelectionDAG &DAG) const {
915  // FIXME dl should come from parent load or store, not from address
916  DebugLoc dl = N.getDebugLoc();
917  // If this can be more profitably realized as r+r, fail.
918  if (SelectAddressRegReg(N, Disp, Base, DAG))
919    return false;
920
921  if (N.getOpcode() == ISD::ADD) {
922    short imm = 0;
923    if (isIntS16Immediate(N.getOperand(1), imm)) {
924      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
925      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
926        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
927      } else {
928        Base = N.getOperand(0);
929      }
930      return true; // [r+i]
931    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
932      // Match LOAD (ADD (X, Lo(G))).
933      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
934             && "Cannot handle constant offsets yet!");
935      Disp = N.getOperand(1).getOperand(0);  // The global address.
936      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
937             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
938             Disp.getOpcode() == ISD::TargetConstantPool ||
939             Disp.getOpcode() == ISD::TargetJumpTable);
940      Base = N.getOperand(0);
941      return true;  // [&g+r]
942    }
943  } else if (N.getOpcode() == ISD::OR) {
944    short imm = 0;
945    if (isIntS16Immediate(N.getOperand(1), imm)) {
946      // If this is an or of disjoint bitfields, we can codegen this as an add
947      // (for better address arithmetic) if the LHS and RHS of the OR are
948      // provably disjoint.
949      APInt LHSKnownZero, LHSKnownOne;
950      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
951
952      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
953        // If all of the bits are known zero on the LHS or RHS, the add won't
954        // carry.
955        Base = N.getOperand(0);
956        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
957        return true;
958      }
959    }
960  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
961    // Loading from a constant address.
962
963    // If this address fits entirely in a 16-bit sext immediate field, codegen
964    // this as "d, 0"
965    short Imm;
966    if (isIntS16Immediate(CN, Imm)) {
967      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
968      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
969                             CN->getValueType(0));
970      return true;
971    }
972
973    // Handle 32-bit sext immediates with LIS + addr mode.
974    if (CN->getValueType(0) == MVT::i32 ||
975        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
976      int Addr = (int)CN->getZExtValue();
977
978      // Otherwise, break this down into an LIS + disp.
979      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
980
981      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
982      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
983      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
984      return true;
985    }
986  }
987
988  Disp = DAG.getTargetConstant(0, getPointerTy());
989  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
990    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
991  else
992    Base = N;
993  return true;      // [r+0]
994}
995
996/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
997/// represented as an indexed [r+r] operation.
998bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
999                                                SDValue &Index,
1000                                                SelectionDAG &DAG) const {
1001  // Check to see if we can easily represent this as an [r+r] address.  This
1002  // will fail if it thinks that the address is more profitably represented as
1003  // reg+imm, e.g. where imm = 0.
1004  if (SelectAddressRegReg(N, Base, Index, DAG))
1005    return true;
1006
1007  // If the operand is an addition, always emit this as [r+r], since this is
1008  // better (for code size, and execution, as the memop does the add for free)
1009  // than emitting an explicit add.
1010  if (N.getOpcode() == ISD::ADD) {
1011    Base = N.getOperand(0);
1012    Index = N.getOperand(1);
1013    return true;
1014  }
1015
1016  // Otherwise, do it the hard way, using R0 as the base register.
1017  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1018                         N.getValueType());
1019  Index = N;
1020  return true;
1021}
1022
1023/// SelectAddressRegImmShift - Returns true if the address N can be
1024/// represented by a base register plus a signed 14-bit displacement
1025/// [r+imm*4].  Suitable for use by STD and friends.
1026bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
1027                                                 SDValue &Base,
1028                                                 SelectionDAG &DAG) const {
1029  // FIXME dl should come from the parent load or store, not the address
1030  DebugLoc dl = N.getDebugLoc();
1031  // If this can be more profitably realized as r+r, fail.
1032  if (SelectAddressRegReg(N, Disp, Base, DAG))
1033    return false;
1034
1035  if (N.getOpcode() == ISD::ADD) {
1036    short imm = 0;
1037    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1038      Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1039      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1040        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1041      } else {
1042        Base = N.getOperand(0);
1043      }
1044      return true; // [r+i]
1045    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1046      // Match LOAD (ADD (X, Lo(G))).
1047      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1048             && "Cannot handle constant offsets yet!");
1049      Disp = N.getOperand(1).getOperand(0);  // The global address.
1050      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1051             Disp.getOpcode() == ISD::TargetConstantPool ||
1052             Disp.getOpcode() == ISD::TargetJumpTable);
1053      Base = N.getOperand(0);
1054      return true;  // [&g+r]
1055    }
1056  } else if (N.getOpcode() == ISD::OR) {
1057    short imm = 0;
1058    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1059      // If this is an or of disjoint bitfields, we can codegen this as an add
1060      // (for better address arithmetic) if the LHS and RHS of the OR are
1061      // provably disjoint.
1062      APInt LHSKnownZero, LHSKnownOne;
1063      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1064      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1065        // If all of the bits are known zero on the LHS or RHS, the add won't
1066        // carry.
1067        Base = N.getOperand(0);
1068        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1069        return true;
1070      }
1071    }
1072  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1073    // Loading from a constant address.  Verify low two bits are clear.
1074    if ((CN->getZExtValue() & 3) == 0) {
1075      // If this address fits entirely in a 14-bit sext immediate field, codegen
1076      // this as "d, 0"
1077      short Imm;
1078      if (isIntS16Immediate(CN, Imm)) {
1079        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1080        Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1081                               CN->getValueType(0));
1082        return true;
1083      }
1084
1085      // Fold the low-part of 32-bit absolute addresses into addr mode.
1086      if (CN->getValueType(0) == MVT::i32 ||
1087          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1088        int Addr = (int)CN->getZExtValue();
1089
1090        // Otherwise, break this down into an LIS + disp.
1091        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1092        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1093        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1094        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1095        return true;
1096      }
1097    }
1098  }
1099
1100  Disp = DAG.getTargetConstant(0, getPointerTy());
1101  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1102    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1103  else
1104    Base = N;
1105  return true;      // [r+0]
1106}
1107
1108
1109/// getPreIndexedAddressParts - returns true by value, base pointer and
1110/// offset pointer and addressing mode by reference if the node's address
1111/// can be legally represented as pre-indexed load / store address.
1112bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1113                                                  SDValue &Offset,
1114                                                  ISD::MemIndexedMode &AM,
1115                                                  SelectionDAG &DAG) const {
1116  if (DisablePPCPreinc) return false;
1117
1118  SDValue Ptr;
1119  EVT VT;
1120  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1121    Ptr = LD->getBasePtr();
1122    VT = LD->getMemoryVT();
1123
1124  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1125    Ptr = ST->getBasePtr();
1126    VT  = ST->getMemoryVT();
1127  } else
1128    return false;
1129
1130  // PowerPC doesn't have preinc load/store instructions for vectors.
1131  if (VT.isVector())
1132    return false;
1133
1134  if (SelectAddressRegReg(Ptr, Offset, Base, DAG)) {
1135    AM = ISD::PRE_INC;
1136    return true;
1137  }
1138
1139  // LDU/STU use reg+imm*4, others use reg+imm.
1140  if (VT != MVT::i64) {
1141    // reg + imm
1142    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1143      return false;
1144  } else {
1145    // reg + imm * 4.
1146    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1147      return false;
1148  }
1149
1150  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1151    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1152    // sext i32 to i64 when addr mode is r+i.
1153    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1154        LD->getExtensionType() == ISD::SEXTLOAD &&
1155        isa<ConstantSDNode>(Offset))
1156      return false;
1157  }
1158
1159  AM = ISD::PRE_INC;
1160  return true;
1161}
1162
1163//===----------------------------------------------------------------------===//
1164//  LowerOperation implementation
1165//===----------------------------------------------------------------------===//
1166
1167/// GetLabelAccessInfo - Return true if we should reference labels using a
1168/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1169static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1170                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1171  HiOpFlags = PPCII::MO_HA16;
1172  LoOpFlags = PPCII::MO_LO16;
1173
1174  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1175  // non-darwin platform.  We don't support PIC on other platforms yet.
1176  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1177               TM.getSubtarget<PPCSubtarget>().isDarwin();
1178  if (isPIC) {
1179    HiOpFlags |= PPCII::MO_PIC_FLAG;
1180    LoOpFlags |= PPCII::MO_PIC_FLAG;
1181  }
1182
1183  // If this is a reference to a global value that requires a non-lazy-ptr, make
1184  // sure that instruction lowering adds it.
1185  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1186    HiOpFlags |= PPCII::MO_NLP_FLAG;
1187    LoOpFlags |= PPCII::MO_NLP_FLAG;
1188
1189    if (GV->hasHiddenVisibility()) {
1190      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1191      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1192    }
1193  }
1194
1195  return isPIC;
1196}
1197
1198static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1199                             SelectionDAG &DAG) {
1200  EVT PtrVT = HiPart.getValueType();
1201  SDValue Zero = DAG.getConstant(0, PtrVT);
1202  DebugLoc DL = HiPart.getDebugLoc();
1203
1204  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1205  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1206
1207  // With PIC, the first instruction is actually "GR+hi(&G)".
1208  if (isPIC)
1209    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1210                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1211
1212  // Generate non-pic code that has direct accesses to the constant pool.
1213  // The address of the global is just (hi(&g)+lo(&g)).
1214  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1215}
1216
1217SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1218                                             SelectionDAG &DAG) const {
1219  EVT PtrVT = Op.getValueType();
1220  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1221  const Constant *C = CP->getConstVal();
1222
1223  // 64-bit SVR4 ABI code is always position-independent.
1224  // The actual address of the GlobalValue is stored in the TOC.
1225  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1226    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1227    return DAG.getNode(PPCISD::TOC_ENTRY, CP->getDebugLoc(), MVT::i64, GA,
1228                       DAG.getRegister(PPC::X2, MVT::i64));
1229  }
1230
1231  unsigned MOHiFlag, MOLoFlag;
1232  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1233  SDValue CPIHi =
1234    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1235  SDValue CPILo =
1236    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1237  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1238}
1239
1240SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1241  EVT PtrVT = Op.getValueType();
1242  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1243
1244  // 64-bit SVR4 ABI code is always position-independent.
1245  // The actual address of the GlobalValue is stored in the TOC.
1246  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1247    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1248    return DAG.getNode(PPCISD::TOC_ENTRY, JT->getDebugLoc(), MVT::i64, GA,
1249                       DAG.getRegister(PPC::X2, MVT::i64));
1250  }
1251
1252  unsigned MOHiFlag, MOLoFlag;
1253  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1254  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1255  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1256  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1257}
1258
1259SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1260                                             SelectionDAG &DAG) const {
1261  EVT PtrVT = Op.getValueType();
1262
1263  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1264
1265  unsigned MOHiFlag, MOLoFlag;
1266  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1267  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1268  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1269  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1270}
1271
1272SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1273                                              SelectionDAG &DAG) const {
1274
1275  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1276  DebugLoc dl = GA->getDebugLoc();
1277  const GlobalValue *GV = GA->getGlobal();
1278  EVT PtrVT = getPointerTy();
1279  bool is64bit = PPCSubTarget.isPPC64();
1280
1281  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1282
1283  SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1284                                             PPCII::MO_TPREL16_HA);
1285  SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1286                                             PPCII::MO_TPREL16_LO);
1287
1288  if (model != TLSModel::LocalExec)
1289    llvm_unreachable("only local-exec TLS mode supported");
1290  SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1291                                   is64bit ? MVT::i64 : MVT::i32);
1292  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1293  return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1294}
1295
1296SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1297                                              SelectionDAG &DAG) const {
1298  EVT PtrVT = Op.getValueType();
1299  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1300  DebugLoc DL = GSDN->getDebugLoc();
1301  const GlobalValue *GV = GSDN->getGlobal();
1302
1303  // 64-bit SVR4 ABI code is always position-independent.
1304  // The actual address of the GlobalValue is stored in the TOC.
1305  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1306    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1307    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1308                       DAG.getRegister(PPC::X2, MVT::i64));
1309  }
1310
1311  unsigned MOHiFlag, MOLoFlag;
1312  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1313
1314  SDValue GAHi =
1315    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1316  SDValue GALo =
1317    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1318
1319  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1320
1321  // If the global reference is actually to a non-lazy-pointer, we have to do an
1322  // extra load to get the address of the global.
1323  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1324    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1325                      false, false, false, 0);
1326  return Ptr;
1327}
1328
1329SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1330  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1331  DebugLoc dl = Op.getDebugLoc();
1332
1333  // If we're comparing for equality to zero, expose the fact that this is
1334  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1335  // fold the new nodes.
1336  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1337    if (C->isNullValue() && CC == ISD::SETEQ) {
1338      EVT VT = Op.getOperand(0).getValueType();
1339      SDValue Zext = Op.getOperand(0);
1340      if (VT.bitsLT(MVT::i32)) {
1341        VT = MVT::i32;
1342        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1343      }
1344      unsigned Log2b = Log2_32(VT.getSizeInBits());
1345      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1346      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1347                                DAG.getConstant(Log2b, MVT::i32));
1348      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1349    }
1350    // Leave comparisons against 0 and -1 alone for now, since they're usually
1351    // optimized.  FIXME: revisit this when we can custom lower all setcc
1352    // optimizations.
1353    if (C->isAllOnesValue() || C->isNullValue())
1354      return SDValue();
1355  }
1356
1357  // If we have an integer seteq/setne, turn it into a compare against zero
1358  // by xor'ing the rhs with the lhs, which is faster than setting a
1359  // condition register, reading it back out, and masking the correct bit.  The
1360  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1361  // the result to other bit-twiddling opportunities.
1362  EVT LHSVT = Op.getOperand(0).getValueType();
1363  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1364    EVT VT = Op.getValueType();
1365    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1366                                Op.getOperand(1));
1367    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1368  }
1369  return SDValue();
1370}
1371
1372SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1373                                      const PPCSubtarget &Subtarget) const {
1374  SDNode *Node = Op.getNode();
1375  EVT VT = Node->getValueType(0);
1376  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1377  SDValue InChain = Node->getOperand(0);
1378  SDValue VAListPtr = Node->getOperand(1);
1379  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1380  DebugLoc dl = Node->getDebugLoc();
1381
1382  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1383
1384  // gpr_index
1385  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1386                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1387                                    false, false, 0);
1388  InChain = GprIndex.getValue(1);
1389
1390  if (VT == MVT::i64) {
1391    // Check if GprIndex is even
1392    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1393                                 DAG.getConstant(1, MVT::i32));
1394    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1395                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1396    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1397                                          DAG.getConstant(1, MVT::i32));
1398    // Align GprIndex to be even if it isn't
1399    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1400                           GprIndex);
1401  }
1402
1403  // fpr index is 1 byte after gpr
1404  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1405                               DAG.getConstant(1, MVT::i32));
1406
1407  // fpr
1408  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1409                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1410                                    false, false, 0);
1411  InChain = FprIndex.getValue(1);
1412
1413  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1414                                       DAG.getConstant(8, MVT::i32));
1415
1416  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1417                                        DAG.getConstant(4, MVT::i32));
1418
1419  // areas
1420  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1421                                     MachinePointerInfo(), false, false,
1422                                     false, 0);
1423  InChain = OverflowArea.getValue(1);
1424
1425  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1426                                    MachinePointerInfo(), false, false,
1427                                    false, 0);
1428  InChain = RegSaveArea.getValue(1);
1429
1430  // select overflow_area if index > 8
1431  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1432                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1433
1434  // adjustment constant gpr_index * 4/8
1435  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1436                                    VT.isInteger() ? GprIndex : FprIndex,
1437                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1438                                                    MVT::i32));
1439
1440  // OurReg = RegSaveArea + RegConstant
1441  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1442                               RegConstant);
1443
1444  // Floating types are 32 bytes into RegSaveArea
1445  if (VT.isFloatingPoint())
1446    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1447                         DAG.getConstant(32, MVT::i32));
1448
1449  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1450  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1451                                   VT.isInteger() ? GprIndex : FprIndex,
1452                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1453                                                   MVT::i32));
1454
1455  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1456                              VT.isInteger() ? VAListPtr : FprPtr,
1457                              MachinePointerInfo(SV),
1458                              MVT::i8, false, false, 0);
1459
1460  // determine if we should load from reg_save_area or overflow_area
1461  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1462
1463  // increase overflow_area by 4/8 if gpr/fpr > 8
1464  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1465                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1466                                          MVT::i32));
1467
1468  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1469                             OverflowAreaPlusN);
1470
1471  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1472                              OverflowAreaPtr,
1473                              MachinePointerInfo(),
1474                              MVT::i32, false, false, 0);
1475
1476  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1477                     false, false, false, 0);
1478}
1479
1480SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1481                                                  SelectionDAG &DAG) const {
1482  return Op.getOperand(0);
1483}
1484
1485SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1486                                                SelectionDAG &DAG) const {
1487  SDValue Chain = Op.getOperand(0);
1488  SDValue Trmp = Op.getOperand(1); // trampoline
1489  SDValue FPtr = Op.getOperand(2); // nested function
1490  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1491  DebugLoc dl = Op.getDebugLoc();
1492
1493  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1494  bool isPPC64 = (PtrVT == MVT::i64);
1495  Type *IntPtrTy =
1496    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1497                                                             *DAG.getContext());
1498
1499  TargetLowering::ArgListTy Args;
1500  TargetLowering::ArgListEntry Entry;
1501
1502  Entry.Ty = IntPtrTy;
1503  Entry.Node = Trmp; Args.push_back(Entry);
1504
1505  // TrampSize == (isPPC64 ? 48 : 40);
1506  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1507                               isPPC64 ? MVT::i64 : MVT::i32);
1508  Args.push_back(Entry);
1509
1510  Entry.Node = FPtr; Args.push_back(Entry);
1511  Entry.Node = Nest; Args.push_back(Entry);
1512
1513  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1514  TargetLowering::CallLoweringInfo CLI(Chain,
1515                                       Type::getVoidTy(*DAG.getContext()),
1516                                       false, false, false, false, 0,
1517                                       CallingConv::C,
1518                /*isTailCall=*/false,
1519                                       /*doesNotRet=*/false,
1520                                       /*isReturnValueUsed=*/true,
1521                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1522                Args, DAG, dl);
1523  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1524
1525  return CallResult.second;
1526}
1527
1528SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1529                                        const PPCSubtarget &Subtarget) const {
1530  MachineFunction &MF = DAG.getMachineFunction();
1531  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1532
1533  DebugLoc dl = Op.getDebugLoc();
1534
1535  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1536    // vastart just stores the address of the VarArgsFrameIndex slot into the
1537    // memory location argument.
1538    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1539    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1540    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1541    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1542                        MachinePointerInfo(SV),
1543                        false, false, 0);
1544  }
1545
1546  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1547  // We suppose the given va_list is already allocated.
1548  //
1549  // typedef struct {
1550  //  char gpr;     /* index into the array of 8 GPRs
1551  //                 * stored in the register save area
1552  //                 * gpr=0 corresponds to r3,
1553  //                 * gpr=1 to r4, etc.
1554  //                 */
1555  //  char fpr;     /* index into the array of 8 FPRs
1556  //                 * stored in the register save area
1557  //                 * fpr=0 corresponds to f1,
1558  //                 * fpr=1 to f2, etc.
1559  //                 */
1560  //  char *overflow_arg_area;
1561  //                /* location on stack that holds
1562  //                 * the next overflow argument
1563  //                 */
1564  //  char *reg_save_area;
1565  //               /* where r3:r10 and f1:f8 (if saved)
1566  //                * are stored
1567  //                */
1568  // } va_list[1];
1569
1570
1571  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1572  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1573
1574
1575  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1576
1577  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1578                                            PtrVT);
1579  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1580                                 PtrVT);
1581
1582  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1583  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1584
1585  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1586  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1587
1588  uint64_t FPROffset = 1;
1589  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1590
1591  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1592
1593  // Store first byte : number of int regs
1594  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1595                                         Op.getOperand(1),
1596                                         MachinePointerInfo(SV),
1597                                         MVT::i8, false, false, 0);
1598  uint64_t nextOffset = FPROffset;
1599  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1600                                  ConstFPROffset);
1601
1602  // Store second byte : number of float regs
1603  SDValue secondStore =
1604    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1605                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1606                      false, false, 0);
1607  nextOffset += StackOffset;
1608  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1609
1610  // Store second word : arguments given on stack
1611  SDValue thirdStore =
1612    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1613                 MachinePointerInfo(SV, nextOffset),
1614                 false, false, 0);
1615  nextOffset += FrameOffset;
1616  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1617
1618  // Store third word : arguments given in registers
1619  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1620                      MachinePointerInfo(SV, nextOffset),
1621                      false, false, 0);
1622
1623}
1624
1625#include "PPCGenCallingConv.inc"
1626
1627static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1628                                     CCValAssign::LocInfo &LocInfo,
1629                                     ISD::ArgFlagsTy &ArgFlags,
1630                                     CCState &State) {
1631  return true;
1632}
1633
1634static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1635                                            MVT &LocVT,
1636                                            CCValAssign::LocInfo &LocInfo,
1637                                            ISD::ArgFlagsTy &ArgFlags,
1638                                            CCState &State) {
1639  static const uint16_t ArgRegs[] = {
1640    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1641    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1642  };
1643  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1644
1645  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1646
1647  // Skip one register if the first unallocated register has an even register
1648  // number and there are still argument registers available which have not been
1649  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1650  // need to skip a register if RegNum is odd.
1651  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1652    State.AllocateReg(ArgRegs[RegNum]);
1653  }
1654
1655  // Always return false here, as this function only makes sure that the first
1656  // unallocated register has an odd register number and does not actually
1657  // allocate a register for the current argument.
1658  return false;
1659}
1660
1661static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1662                                              MVT &LocVT,
1663                                              CCValAssign::LocInfo &LocInfo,
1664                                              ISD::ArgFlagsTy &ArgFlags,
1665                                              CCState &State) {
1666  static const uint16_t ArgRegs[] = {
1667    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1668    PPC::F8
1669  };
1670
1671  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1672
1673  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1674
1675  // If there is only one Floating-point register left we need to put both f64
1676  // values of a split ppc_fp128 value on the stack.
1677  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1678    State.AllocateReg(ArgRegs[RegNum]);
1679  }
1680
1681  // Always return false here, as this function only makes sure that the two f64
1682  // values a ppc_fp128 value is split into are both passed in registers or both
1683  // passed on the stack and does not actually allocate a register for the
1684  // current argument.
1685  return false;
1686}
1687
1688/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1689/// on Darwin.
1690static const uint16_t *GetFPR() {
1691  static const uint16_t FPR[] = {
1692    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1693    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1694  };
1695
1696  return FPR;
1697}
1698
1699/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1700/// the stack.
1701static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1702                                       unsigned PtrByteSize) {
1703  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1704  if (Flags.isByVal())
1705    ArgSize = Flags.getByValSize();
1706  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1707
1708  return ArgSize;
1709}
1710
1711SDValue
1712PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1713                                        CallingConv::ID CallConv, bool isVarArg,
1714                                        const SmallVectorImpl<ISD::InputArg>
1715                                          &Ins,
1716                                        DebugLoc dl, SelectionDAG &DAG,
1717                                        SmallVectorImpl<SDValue> &InVals)
1718                                          const {
1719  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1720    return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
1721                                       dl, DAG, InVals);
1722  } else {
1723    return LowerFormalArguments_Darwin_Or_64SVR4(Chain, CallConv, isVarArg, Ins,
1724                                                 dl, DAG, InVals);
1725  }
1726}
1727
1728SDValue
1729PPCTargetLowering::LowerFormalArguments_32SVR4(
1730                                      SDValue Chain,
1731                                      CallingConv::ID CallConv, bool isVarArg,
1732                                      const SmallVectorImpl<ISD::InputArg>
1733                                        &Ins,
1734                                      DebugLoc dl, SelectionDAG &DAG,
1735                                      SmallVectorImpl<SDValue> &InVals) const {
1736
1737  // 32-bit SVR4 ABI Stack Frame Layout:
1738  //              +-----------------------------------+
1739  //        +-->  |            Back chain             |
1740  //        |     +-----------------------------------+
1741  //        |     | Floating-point register save area |
1742  //        |     +-----------------------------------+
1743  //        |     |    General register save area     |
1744  //        |     +-----------------------------------+
1745  //        |     |          CR save word             |
1746  //        |     +-----------------------------------+
1747  //        |     |         VRSAVE save word          |
1748  //        |     +-----------------------------------+
1749  //        |     |         Alignment padding         |
1750  //        |     +-----------------------------------+
1751  //        |     |     Vector register save area     |
1752  //        |     +-----------------------------------+
1753  //        |     |       Local variable space        |
1754  //        |     +-----------------------------------+
1755  //        |     |        Parameter list area        |
1756  //        |     +-----------------------------------+
1757  //        |     |           LR save word            |
1758  //        |     +-----------------------------------+
1759  // SP-->  +---  |            Back chain             |
1760  //              +-----------------------------------+
1761  //
1762  // Specifications:
1763  //   System V Application Binary Interface PowerPC Processor Supplement
1764  //   AltiVec Technology Programming Interface Manual
1765
1766  MachineFunction &MF = DAG.getMachineFunction();
1767  MachineFrameInfo *MFI = MF.getFrameInfo();
1768  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1769
1770  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1771  // Potential tail calls could cause overwriting of argument stack slots.
1772  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1773                       (CallConv == CallingConv::Fast));
1774  unsigned PtrByteSize = 4;
1775
1776  // Assign locations to all of the incoming arguments.
1777  SmallVector<CCValAssign, 16> ArgLocs;
1778  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1779                 getTargetMachine(), ArgLocs, *DAG.getContext());
1780
1781  // Reserve space for the linkage area on the stack.
1782  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1783
1784  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1785
1786  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1787    CCValAssign &VA = ArgLocs[i];
1788
1789    // Arguments stored in registers.
1790    if (VA.isRegLoc()) {
1791      const TargetRegisterClass *RC;
1792      EVT ValVT = VA.getValVT();
1793
1794      switch (ValVT.getSimpleVT().SimpleTy) {
1795        default:
1796          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1797        case MVT::i32:
1798          RC = &PPC::GPRCRegClass;
1799          break;
1800        case MVT::f32:
1801          RC = &PPC::F4RCRegClass;
1802          break;
1803        case MVT::f64:
1804          RC = &PPC::F8RCRegClass;
1805          break;
1806        case MVT::v16i8:
1807        case MVT::v8i16:
1808        case MVT::v4i32:
1809        case MVT::v4f32:
1810          RC = &PPC::VRRCRegClass;
1811          break;
1812      }
1813
1814      // Transform the arguments stored in physical registers into virtual ones.
1815      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1816      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1817
1818      InVals.push_back(ArgValue);
1819    } else {
1820      // Argument stored in memory.
1821      assert(VA.isMemLoc());
1822
1823      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1824      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1825                                      isImmutable);
1826
1827      // Create load nodes to retrieve arguments from the stack.
1828      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1829      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1830                                   MachinePointerInfo(),
1831                                   false, false, false, 0));
1832    }
1833  }
1834
1835  // Assign locations to all of the incoming aggregate by value arguments.
1836  // Aggregates passed by value are stored in the local variable space of the
1837  // caller's stack frame, right above the parameter list area.
1838  SmallVector<CCValAssign, 16> ByValArgLocs;
1839  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1840                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
1841
1842  // Reserve stack space for the allocations in CCInfo.
1843  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1844
1845  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1846
1847  // Area that is at least reserved in the caller of this function.
1848  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1849
1850  // Set the size that is at least reserved in caller of this function.  Tail
1851  // call optimized function's reserved stack space needs to be aligned so that
1852  // taking the difference between two stack areas will result in an aligned
1853  // stack.
1854  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1855
1856  MinReservedArea =
1857    std::max(MinReservedArea,
1858             PPCFrameLowering::getMinCallFrameSize(false, false));
1859
1860  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1861    getStackAlignment();
1862  unsigned AlignMask = TargetAlign-1;
1863  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1864
1865  FI->setMinReservedArea(MinReservedArea);
1866
1867  SmallVector<SDValue, 8> MemOps;
1868
1869  // If the function takes variable number of arguments, make a frame index for
1870  // the start of the first vararg value... for expansion of llvm.va_start.
1871  if (isVarArg) {
1872    static const uint16_t GPArgRegs[] = {
1873      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1874      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1875    };
1876    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1877
1878    static const uint16_t FPArgRegs[] = {
1879      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1880      PPC::F8
1881    };
1882    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1883
1884    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1885                                                          NumGPArgRegs));
1886    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1887                                                          NumFPArgRegs));
1888
1889    // Make room for NumGPArgRegs and NumFPArgRegs.
1890    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1891                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1892
1893    FuncInfo->setVarArgsStackOffset(
1894      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1895                             CCInfo.getNextStackOffset(), true));
1896
1897    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1898    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1899
1900    // The fixed integer arguments of a variadic function are stored to the
1901    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1902    // the result of va_next.
1903    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1904      // Get an existing live-in vreg, or add a new one.
1905      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1906      if (!VReg)
1907        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1908
1909      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1910      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1911                                   MachinePointerInfo(), false, false, 0);
1912      MemOps.push_back(Store);
1913      // Increment the address by four for the next argument to store
1914      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1915      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1916    }
1917
1918    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1919    // is set.
1920    // The double arguments are stored to the VarArgsFrameIndex
1921    // on the stack.
1922    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1923      // Get an existing live-in vreg, or add a new one.
1924      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1925      if (!VReg)
1926        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1927
1928      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1929      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1930                                   MachinePointerInfo(), false, false, 0);
1931      MemOps.push_back(Store);
1932      // Increment the address by eight for the next argument to store
1933      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1934                                         PtrVT);
1935      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1936    }
1937  }
1938
1939  if (!MemOps.empty())
1940    Chain = DAG.getNode(ISD::TokenFactor, dl,
1941                        MVT::Other, &MemOps[0], MemOps.size());
1942
1943  return Chain;
1944}
1945
1946SDValue
1947PPCTargetLowering::LowerFormalArguments_Darwin_Or_64SVR4(
1948                                      SDValue Chain,
1949                                      CallingConv::ID CallConv, bool isVarArg,
1950                                      const SmallVectorImpl<ISD::InputArg>
1951                                        &Ins,
1952                                      DebugLoc dl, SelectionDAG &DAG,
1953                                      SmallVectorImpl<SDValue> &InVals) const {
1954  // TODO: add description of PPC stack frame format, or at least some docs.
1955  //
1956  MachineFunction &MF = DAG.getMachineFunction();
1957  MachineFrameInfo *MFI = MF.getFrameInfo();
1958  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1959
1960  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1961  bool isPPC64 = PtrVT == MVT::i64;
1962  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
1963  // Potential tail calls could cause overwriting of argument stack slots.
1964  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1965                       (CallConv == CallingConv::Fast));
1966  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1967
1968  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
1969  // Area that is at least reserved in caller of this function.
1970  unsigned MinReservedArea = ArgOffset;
1971
1972  static const uint16_t GPR_32[] = {           // 32-bit registers.
1973    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1974    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1975  };
1976  static const uint16_t GPR_64[] = {           // 64-bit registers.
1977    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1978    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1979  };
1980
1981  static const uint16_t *FPR = GetFPR();
1982
1983  static const uint16_t VR[] = {
1984    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1985    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1986  };
1987
1988  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1989  const unsigned Num_FPR_Regs = 13;
1990  const unsigned Num_VR_Regs  = array_lengthof( VR);
1991
1992  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1993
1994  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
1995
1996  // In 32-bit non-varargs functions, the stack space for vectors is after the
1997  // stack space for non-vectors.  We do not use this space unless we have
1998  // too many vectors to fit in registers, something that only occurs in
1999  // constructed examples:), but we have to walk the arglist to figure
2000  // that out...for the pathological case, compute VecArgOffset as the
2001  // start of the vector parameter area.  Computing VecArgOffset is the
2002  // entire point of the following loop.
2003  unsigned VecArgOffset = ArgOffset;
2004  if (!isVarArg && !isPPC64) {
2005    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2006         ++ArgNo) {
2007      EVT ObjectVT = Ins[ArgNo].VT;
2008      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2009
2010      if (Flags.isByVal()) {
2011        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2012        unsigned ObjSize = Flags.getByValSize();
2013        unsigned ArgSize =
2014                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2015        VecArgOffset += ArgSize;
2016        continue;
2017      }
2018
2019      switch(ObjectVT.getSimpleVT().SimpleTy) {
2020      default: llvm_unreachable("Unhandled argument type!");
2021      case MVT::i32:
2022      case MVT::f32:
2023        VecArgOffset += 4;
2024        break;
2025      case MVT::i64:  // PPC64
2026      case MVT::f64:
2027        // FIXME: We are guaranteed to be !isPPC64 at this point.
2028        // Does MVT::i64 apply?
2029        VecArgOffset += 8;
2030        break;
2031      case MVT::v4f32:
2032      case MVT::v4i32:
2033      case MVT::v8i16:
2034      case MVT::v16i8:
2035        // Nothing to do, we're only looking at Nonvector args here.
2036        break;
2037      }
2038    }
2039  }
2040  // We've found where the vector parameter area in memory is.  Skip the
2041  // first 12 parameters; these don't use that memory.
2042  VecArgOffset = ((VecArgOffset+15)/16)*16;
2043  VecArgOffset += 12*16;
2044
2045  // Add DAG nodes to load the arguments or copy them out of registers.  On
2046  // entry to a function on PPC, the arguments start after the linkage area,
2047  // although the first ones are often in registers.
2048
2049  SmallVector<SDValue, 8> MemOps;
2050  unsigned nAltivecParamsAtEnd = 0;
2051  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2052  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) {
2053    SDValue ArgVal;
2054    bool needsLoad = false;
2055    EVT ObjectVT = Ins[ArgNo].VT;
2056    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2057    unsigned ArgSize = ObjSize;
2058    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2059
2060    unsigned CurArgOffset = ArgOffset;
2061
2062    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2063    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2064        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2065      if (isVarArg || isPPC64) {
2066        MinReservedArea = ((MinReservedArea+15)/16)*16;
2067        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2068                                                  Flags,
2069                                                  PtrByteSize);
2070      } else  nAltivecParamsAtEnd++;
2071    } else
2072      // Calculate min reserved area.
2073      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2074                                                Flags,
2075                                                PtrByteSize);
2076
2077    // FIXME the codegen can be much improved in some cases.
2078    // We do not have to keep everything in memory.
2079    if (Flags.isByVal()) {
2080      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2081      ObjSize = Flags.getByValSize();
2082      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2083      // FOR DARWIN: Objects of size 1 and 2 are right justified, everything
2084      // else is left justified.  This means the memory address is adjusted
2085      // forwards.
2086      // FOR 64-BIT SVR4: All aggregates smaller than 8 bytes must be passed
2087      // right-justified.
2088      if (ObjSize==1 || ObjSize==2) {
2089        CurArgOffset = CurArgOffset + (4 - ObjSize);
2090      }
2091      // The value of the object is its address.
2092      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2093      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2094      InVals.push_back(FIN);
2095      if (ObjSize==1 || ObjSize==2 ||
2096          (ObjSize==4 && isSVR4ABI)) {
2097        if (GPR_idx != Num_GPR_Regs) {
2098          unsigned VReg;
2099          if (isPPC64)
2100            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2101          else
2102            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2103          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2104          EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2105                         (ObjSize == 2 ? MVT::i16 : MVT::i32));
2106          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2107                                            MachinePointerInfo(FuncArg,
2108                                              CurArgOffset),
2109                                            ObjType, false, false, 0);
2110          MemOps.push_back(Store);
2111          ++GPR_idx;
2112        }
2113
2114        ArgOffset += PtrByteSize;
2115
2116        continue;
2117      }
2118      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2119        // Store whatever pieces of the object are in registers
2120        // to memory.  ArgOffset will be the address of the beginning
2121        // of the object.
2122        if (GPR_idx != Num_GPR_Regs) {
2123          unsigned VReg;
2124          if (isPPC64)
2125            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2126          else
2127            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2128          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2129          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2130          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2131          SDValue Shifted = Val;
2132
2133          // For 64-bit SVR4, small structs come in right-adjusted.
2134          // Shift them left so the following logic works as expected.
2135          if (ObjSize < 8 && isSVR4ABI) {
2136            SDValue ShiftAmt = DAG.getConstant(64 - 8 * ObjSize, PtrVT);
2137            Shifted = DAG.getNode(ISD::SHL, dl, PtrVT, Val, ShiftAmt);
2138          }
2139
2140          SDValue Store = DAG.getStore(Val.getValue(1), dl, Shifted, FIN,
2141                                       MachinePointerInfo(FuncArg, ArgOffset),
2142                                       false, false, 0);
2143          MemOps.push_back(Store);
2144          ++GPR_idx;
2145          ArgOffset += PtrByteSize;
2146        } else {
2147          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2148          break;
2149        }
2150      }
2151      continue;
2152    }
2153
2154    switch (ObjectVT.getSimpleVT().SimpleTy) {
2155    default: llvm_unreachable("Unhandled argument type!");
2156    case MVT::i32:
2157      if (!isPPC64) {
2158        if (GPR_idx != Num_GPR_Regs) {
2159          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2160          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2161          ++GPR_idx;
2162        } else {
2163          needsLoad = true;
2164          ArgSize = PtrByteSize;
2165        }
2166        // All int arguments reserve stack space in the Darwin ABI.
2167        ArgOffset += PtrByteSize;
2168        break;
2169      }
2170      // FALLTHROUGH
2171    case MVT::i64:  // PPC64
2172      if (GPR_idx != Num_GPR_Regs) {
2173        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2174        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2175
2176        if (ObjectVT == MVT::i32) {
2177          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2178          // value to MVT::i64 and then truncate to the correct register size.
2179          if (Flags.isSExt())
2180            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2181                                 DAG.getValueType(ObjectVT));
2182          else if (Flags.isZExt())
2183            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2184                                 DAG.getValueType(ObjectVT));
2185
2186          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2187        }
2188
2189        ++GPR_idx;
2190      } else {
2191        needsLoad = true;
2192        ArgSize = PtrByteSize;
2193      }
2194      // All int arguments reserve stack space in the Darwin ABI.
2195      ArgOffset += 8;
2196      break;
2197
2198    case MVT::f32:
2199    case MVT::f64:
2200      // Every 4 bytes of argument space consumes one of the GPRs available for
2201      // argument passing.
2202      if (GPR_idx != Num_GPR_Regs) {
2203        ++GPR_idx;
2204        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2205          ++GPR_idx;
2206      }
2207      if (FPR_idx != Num_FPR_Regs) {
2208        unsigned VReg;
2209
2210        if (ObjectVT == MVT::f32)
2211          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2212        else
2213          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2214
2215        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2216        ++FPR_idx;
2217      } else {
2218        needsLoad = true;
2219      }
2220
2221      // All FP arguments reserve stack space in the Darwin ABI.
2222      ArgOffset += isPPC64 ? 8 : ObjSize;
2223      break;
2224    case MVT::v4f32:
2225    case MVT::v4i32:
2226    case MVT::v8i16:
2227    case MVT::v16i8:
2228      // Note that vector arguments in registers don't reserve stack space,
2229      // except in varargs functions.
2230      if (VR_idx != Num_VR_Regs) {
2231        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2232        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2233        if (isVarArg) {
2234          while ((ArgOffset % 16) != 0) {
2235            ArgOffset += PtrByteSize;
2236            if (GPR_idx != Num_GPR_Regs)
2237              GPR_idx++;
2238          }
2239          ArgOffset += 16;
2240          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2241        }
2242        ++VR_idx;
2243      } else {
2244        if (!isVarArg && !isPPC64) {
2245          // Vectors go after all the nonvectors.
2246          CurArgOffset = VecArgOffset;
2247          VecArgOffset += 16;
2248        } else {
2249          // Vectors are aligned.
2250          ArgOffset = ((ArgOffset+15)/16)*16;
2251          CurArgOffset = ArgOffset;
2252          ArgOffset += 16;
2253        }
2254        needsLoad = true;
2255      }
2256      break;
2257    }
2258
2259    // We need to load the argument to a virtual register if we determined above
2260    // that we ran out of physical registers of the appropriate type.
2261    if (needsLoad) {
2262      int FI = MFI->CreateFixedObject(ObjSize,
2263                                      CurArgOffset + (ArgSize - ObjSize),
2264                                      isImmutable);
2265      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2266      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2267                           false, false, false, 0);
2268    }
2269
2270    InVals.push_back(ArgVal);
2271  }
2272
2273  // Set the size that is at least reserved in caller of this function.  Tail
2274  // call optimized function's reserved stack space needs to be aligned so that
2275  // taking the difference between two stack areas will result in an aligned
2276  // stack.
2277  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2278  // Add the Altivec parameters at the end, if needed.
2279  if (nAltivecParamsAtEnd) {
2280    MinReservedArea = ((MinReservedArea+15)/16)*16;
2281    MinReservedArea += 16*nAltivecParamsAtEnd;
2282  }
2283  MinReservedArea =
2284    std::max(MinReservedArea,
2285             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2286  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2287    getStackAlignment();
2288  unsigned AlignMask = TargetAlign-1;
2289  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2290  FI->setMinReservedArea(MinReservedArea);
2291
2292  // If the function takes variable number of arguments, make a frame index for
2293  // the start of the first vararg value... for expansion of llvm.va_start.
2294  if (isVarArg) {
2295    int Depth = ArgOffset;
2296
2297    FuncInfo->setVarArgsFrameIndex(
2298      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2299                             Depth, true));
2300    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2301
2302    // If this function is vararg, store any remaining integer argument regs
2303    // to their spots on the stack so that they may be loaded by deferencing the
2304    // result of va_next.
2305    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2306      unsigned VReg;
2307
2308      if (isPPC64)
2309        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2310      else
2311        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2312
2313      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2314      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2315                                   MachinePointerInfo(), false, false, 0);
2316      MemOps.push_back(Store);
2317      // Increment the address by four for the next argument to store
2318      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2319      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2320    }
2321  }
2322
2323  if (!MemOps.empty())
2324    Chain = DAG.getNode(ISD::TokenFactor, dl,
2325                        MVT::Other, &MemOps[0], MemOps.size());
2326
2327  return Chain;
2328}
2329
2330/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
2331/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
2332static unsigned
2333CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2334                                     bool isPPC64,
2335                                     bool isVarArg,
2336                                     unsigned CC,
2337                                     const SmallVectorImpl<ISD::OutputArg>
2338                                       &Outs,
2339                                     const SmallVectorImpl<SDValue> &OutVals,
2340                                     unsigned &nAltivecParamsAtEnd) {
2341  // Count how many bytes are to be pushed on the stack, including the linkage
2342  // area, and parameter passing area.  We start with 24/48 bytes, which is
2343  // prereserved space for [SP][CR][LR][3 x unused].
2344  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2345  unsigned NumOps = Outs.size();
2346  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2347
2348  // Add up all the space actually used.
2349  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2350  // they all go in registers, but we must reserve stack space for them for
2351  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2352  // assigned stack space in order, with padding so Altivec parameters are
2353  // 16-byte aligned.
2354  nAltivecParamsAtEnd = 0;
2355  for (unsigned i = 0; i != NumOps; ++i) {
2356    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2357    EVT ArgVT = Outs[i].VT;
2358    // Varargs Altivec parameters are padded to a 16 byte boundary.
2359    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2360        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2361      if (!isVarArg && !isPPC64) {
2362        // Non-varargs Altivec parameters go after all the non-Altivec
2363        // parameters; handle those later so we know how much padding we need.
2364        nAltivecParamsAtEnd++;
2365        continue;
2366      }
2367      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2368      NumBytes = ((NumBytes+15)/16)*16;
2369    }
2370    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2371  }
2372
2373   // Allow for Altivec parameters at the end, if needed.
2374  if (nAltivecParamsAtEnd) {
2375    NumBytes = ((NumBytes+15)/16)*16;
2376    NumBytes += 16*nAltivecParamsAtEnd;
2377  }
2378
2379  // The prolog code of the callee may store up to 8 GPR argument registers to
2380  // the stack, allowing va_start to index over them in memory if its varargs.
2381  // Because we cannot tell if this is needed on the caller side, we have to
2382  // conservatively assume that it is needed.  As such, make sure we have at
2383  // least enough stack space for the caller to store the 8 GPRs.
2384  NumBytes = std::max(NumBytes,
2385                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2386
2387  // Tail call needs the stack to be aligned.
2388  if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2389    unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2390      getFrameLowering()->getStackAlignment();
2391    unsigned AlignMask = TargetAlign-1;
2392    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2393  }
2394
2395  return NumBytes;
2396}
2397
2398/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2399/// adjusted to accommodate the arguments for the tailcall.
2400static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2401                                   unsigned ParamSize) {
2402
2403  if (!isTailCall) return 0;
2404
2405  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2406  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2407  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2408  // Remember only if the new adjustement is bigger.
2409  if (SPDiff < FI->getTailCallSPDelta())
2410    FI->setTailCallSPDelta(SPDiff);
2411
2412  return SPDiff;
2413}
2414
2415/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2416/// for tail call optimization. Targets which want to do tail call
2417/// optimization should implement this function.
2418bool
2419PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2420                                                     CallingConv::ID CalleeCC,
2421                                                     bool isVarArg,
2422                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2423                                                     SelectionDAG& DAG) const {
2424  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2425    return false;
2426
2427  // Variable argument functions are not supported.
2428  if (isVarArg)
2429    return false;
2430
2431  MachineFunction &MF = DAG.getMachineFunction();
2432  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2433  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2434    // Functions containing by val parameters are not supported.
2435    for (unsigned i = 0; i != Ins.size(); i++) {
2436       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2437       if (Flags.isByVal()) return false;
2438    }
2439
2440    // Non PIC/GOT  tail calls are supported.
2441    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2442      return true;
2443
2444    // At the moment we can only do local tail calls (in same module, hidden
2445    // or protected) if we are generating PIC.
2446    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2447      return G->getGlobal()->hasHiddenVisibility()
2448          || G->getGlobal()->hasProtectedVisibility();
2449  }
2450
2451  return false;
2452}
2453
2454/// isCallCompatibleAddress - Return the immediate to use if the specified
2455/// 32-bit value is representable in the immediate field of a BxA instruction.
2456static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2457  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2458  if (!C) return 0;
2459
2460  int Addr = C->getZExtValue();
2461  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2462      SignExtend32<26>(Addr) != Addr)
2463    return 0;  // Top 6 bits have to be sext of immediate.
2464
2465  return DAG.getConstant((int)C->getZExtValue() >> 2,
2466                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2467}
2468
2469namespace {
2470
2471struct TailCallArgumentInfo {
2472  SDValue Arg;
2473  SDValue FrameIdxOp;
2474  int       FrameIdx;
2475
2476  TailCallArgumentInfo() : FrameIdx(0) {}
2477};
2478
2479}
2480
2481/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2482static void
2483StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2484                                           SDValue Chain,
2485                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2486                   SmallVector<SDValue, 8> &MemOpChains,
2487                   DebugLoc dl) {
2488  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2489    SDValue Arg = TailCallArgs[i].Arg;
2490    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2491    int FI = TailCallArgs[i].FrameIdx;
2492    // Store relative to framepointer.
2493    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2494                                       MachinePointerInfo::getFixedStack(FI),
2495                                       false, false, 0));
2496  }
2497}
2498
2499/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2500/// the appropriate stack slot for the tail call optimized function call.
2501static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2502                                               MachineFunction &MF,
2503                                               SDValue Chain,
2504                                               SDValue OldRetAddr,
2505                                               SDValue OldFP,
2506                                               int SPDiff,
2507                                               bool isPPC64,
2508                                               bool isDarwinABI,
2509                                               DebugLoc dl) {
2510  if (SPDiff) {
2511    // Calculate the new stack slot for the return address.
2512    int SlotSize = isPPC64 ? 8 : 4;
2513    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2514                                                                   isDarwinABI);
2515    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2516                                                          NewRetAddrLoc, true);
2517    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2518    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2519    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2520                         MachinePointerInfo::getFixedStack(NewRetAddr),
2521                         false, false, 0);
2522
2523    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2524    // slot as the FP is never overwritten.
2525    if (isDarwinABI) {
2526      int NewFPLoc =
2527        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2528      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2529                                                          true);
2530      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2531      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2532                           MachinePointerInfo::getFixedStack(NewFPIdx),
2533                           false, false, 0);
2534    }
2535  }
2536  return Chain;
2537}
2538
2539/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2540/// the position of the argument.
2541static void
2542CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2543                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2544                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2545  int Offset = ArgOffset + SPDiff;
2546  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2547  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2548  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2549  SDValue FIN = DAG.getFrameIndex(FI, VT);
2550  TailCallArgumentInfo Info;
2551  Info.Arg = Arg;
2552  Info.FrameIdxOp = FIN;
2553  Info.FrameIdx = FI;
2554  TailCallArguments.push_back(Info);
2555}
2556
2557/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2558/// stack slot. Returns the chain as result and the loaded frame pointers in
2559/// LROpOut/FPOpout. Used when tail calling.
2560SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2561                                                        int SPDiff,
2562                                                        SDValue Chain,
2563                                                        SDValue &LROpOut,
2564                                                        SDValue &FPOpOut,
2565                                                        bool isDarwinABI,
2566                                                        DebugLoc dl) const {
2567  if (SPDiff) {
2568    // Load the LR and FP stack slot for later adjusting.
2569    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2570    LROpOut = getReturnAddrFrameIndex(DAG);
2571    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2572                          false, false, false, 0);
2573    Chain = SDValue(LROpOut.getNode(), 1);
2574
2575    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2576    // slot as the FP is never overwritten.
2577    if (isDarwinABI) {
2578      FPOpOut = getFramePointerFrameIndex(DAG);
2579      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2580                            false, false, false, 0);
2581      Chain = SDValue(FPOpOut.getNode(), 1);
2582    }
2583  }
2584  return Chain;
2585}
2586
2587/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2588/// by "Src" to address "Dst" of size "Size".  Alignment information is
2589/// specified by the specific parameter attribute. The copy will be passed as
2590/// a byval function parameter.
2591/// Sometimes what we are copying is the end of a larger object, the part that
2592/// does not fit in registers.
2593static SDValue
2594CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2595                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2596                          DebugLoc dl) {
2597  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2598  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2599                       false, false, MachinePointerInfo(0),
2600                       MachinePointerInfo(0));
2601}
2602
2603/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2604/// tail calls.
2605static void
2606LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2607                 SDValue Arg, SDValue PtrOff, int SPDiff,
2608                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2609                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2610                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2611                 DebugLoc dl) {
2612  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2613  if (!isTailCall) {
2614    if (isVector) {
2615      SDValue StackPtr;
2616      if (isPPC64)
2617        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2618      else
2619        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2620      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2621                           DAG.getConstant(ArgOffset, PtrVT));
2622    }
2623    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2624                                       MachinePointerInfo(), false, false, 0));
2625  // Calculate and remember argument location.
2626  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2627                                  TailCallArguments);
2628}
2629
2630static
2631void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2632                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2633                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2634                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2635  MachineFunction &MF = DAG.getMachineFunction();
2636
2637  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2638  // might overwrite each other in case of tail call optimization.
2639  SmallVector<SDValue, 8> MemOpChains2;
2640  // Do not flag preceding copytoreg stuff together with the following stuff.
2641  InFlag = SDValue();
2642  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2643                                    MemOpChains2, dl);
2644  if (!MemOpChains2.empty())
2645    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2646                        &MemOpChains2[0], MemOpChains2.size());
2647
2648  // Store the return address to the appropriate stack slot.
2649  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2650                                        isPPC64, isDarwinABI, dl);
2651
2652  // Emit callseq_end just before tailcall node.
2653  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2654                             DAG.getIntPtrConstant(0, true), InFlag);
2655  InFlag = Chain.getValue(1);
2656}
2657
2658static
2659unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2660                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2661                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2662                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2663                     const PPCSubtarget &PPCSubTarget) {
2664
2665  bool isPPC64 = PPCSubTarget.isPPC64();
2666  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
2667
2668  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2669  NodeTys.push_back(MVT::Other);   // Returns a chain
2670  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
2671
2672  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2673
2674  bool needIndirectCall = true;
2675  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2676    // If this is an absolute destination address, use the munged value.
2677    Callee = SDValue(Dest, 0);
2678    needIndirectCall = false;
2679  }
2680
2681  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2682    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2683    // Use indirect calls for ALL functions calls in JIT mode, since the
2684    // far-call stubs may be outside relocation limits for a BL instruction.
2685    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2686      unsigned OpFlags = 0;
2687      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2688          (PPCSubTarget.getTargetTriple().isMacOSX() &&
2689           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
2690          (G->getGlobal()->isDeclaration() ||
2691           G->getGlobal()->isWeakForLinker())) {
2692        // PC-relative references to external symbols should go through $stub,
2693        // unless we're building with the leopard linker or later, which
2694        // automatically synthesizes these stubs.
2695        OpFlags = PPCII::MO_DARWIN_STUB;
2696      }
2697
2698      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
2699      // every direct call is) turn it into a TargetGlobalAddress /
2700      // TargetExternalSymbol node so that legalize doesn't hack it.
2701      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2702                                          Callee.getValueType(),
2703                                          0, OpFlags);
2704      needIndirectCall = false;
2705    }
2706  }
2707
2708  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2709    unsigned char OpFlags = 0;
2710
2711    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2712        (PPCSubTarget.getTargetTriple().isMacOSX() &&
2713         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
2714      // PC-relative references to external symbols should go through $stub,
2715      // unless we're building with the leopard linker or later, which
2716      // automatically synthesizes these stubs.
2717      OpFlags = PPCII::MO_DARWIN_STUB;
2718    }
2719
2720    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
2721                                         OpFlags);
2722    needIndirectCall = false;
2723  }
2724
2725  if (needIndirectCall) {
2726    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2727    // to do the call, we can't use PPCISD::CALL.
2728    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2729
2730    if (isSVR4ABI && isPPC64) {
2731      // Function pointers in the 64-bit SVR4 ABI do not point to the function
2732      // entry point, but to the function descriptor (the function entry point
2733      // address is part of the function descriptor though).
2734      // The function descriptor is a three doubleword structure with the
2735      // following fields: function entry point, TOC base address and
2736      // environment pointer.
2737      // Thus for a call through a function pointer, the following actions need
2738      // to be performed:
2739      //   1. Save the TOC of the caller in the TOC save area of its stack
2740      //      frame (this is done in LowerCall_Darwin_Or_64SVR4()).
2741      //   2. Load the address of the function entry point from the function
2742      //      descriptor.
2743      //   3. Load the TOC of the callee from the function descriptor into r2.
2744      //   4. Load the environment pointer from the function descriptor into
2745      //      r11.
2746      //   5. Branch to the function entry point address.
2747      //   6. On return of the callee, the TOC of the caller needs to be
2748      //      restored (this is done in FinishCall()).
2749      //
2750      // All those operations are flagged together to ensure that no other
2751      // operations can be scheduled in between. E.g. without flagging the
2752      // operations together, a TOC access in the caller could be scheduled
2753      // between the load of the callee TOC and the branch to the callee, which
2754      // results in the TOC access going through the TOC of the callee instead
2755      // of going through the TOC of the caller, which leads to incorrect code.
2756
2757      // Load the address of the function entry point from the function
2758      // descriptor.
2759      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
2760      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2761                                        InFlag.getNode() ? 3 : 2);
2762      Chain = LoadFuncPtr.getValue(1);
2763      InFlag = LoadFuncPtr.getValue(2);
2764
2765      // Load environment pointer into r11.
2766      // Offset of the environment pointer within the function descriptor.
2767      SDValue PtrOff = DAG.getIntPtrConstant(16);
2768
2769      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2770      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2771                                       InFlag);
2772      Chain = LoadEnvPtr.getValue(1);
2773      InFlag = LoadEnvPtr.getValue(2);
2774
2775      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2776                                        InFlag);
2777      Chain = EnvVal.getValue(0);
2778      InFlag = EnvVal.getValue(1);
2779
2780      // Load TOC of the callee into r2. We are using a target-specific load
2781      // with r2 hard coded, because the result of a target-independent load
2782      // would never go directly into r2, since r2 is a reserved register (which
2783      // prevents the register allocator from allocating it), resulting in an
2784      // additional register being allocated and an unnecessary move instruction
2785      // being generated.
2786      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2787      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2788                                       Callee, InFlag);
2789      Chain = LoadTOCPtr.getValue(0);
2790      InFlag = LoadTOCPtr.getValue(1);
2791
2792      MTCTROps[0] = Chain;
2793      MTCTROps[1] = LoadFuncPtr;
2794      MTCTROps[2] = InFlag;
2795    }
2796
2797    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2798                        2 + (InFlag.getNode() != 0));
2799    InFlag = Chain.getValue(1);
2800
2801    NodeTys.clear();
2802    NodeTys.push_back(MVT::Other);
2803    NodeTys.push_back(MVT::Glue);
2804    Ops.push_back(Chain);
2805    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2806    Callee.setNode(0);
2807    // Add CTR register as callee so a bctr can be emitted later.
2808    if (isTailCall)
2809      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
2810  }
2811
2812  // If this is a direct call, pass the chain and the callee.
2813  if (Callee.getNode()) {
2814    Ops.push_back(Chain);
2815    Ops.push_back(Callee);
2816  }
2817  // If this is a tail call add stack pointer delta.
2818  if (isTailCall)
2819    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2820
2821  // Add argument registers to the end of the list so that they are known live
2822  // into the call.
2823  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2824    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2825                                  RegsToPass[i].second.getValueType()));
2826
2827  return CallOpc;
2828}
2829
2830static
2831bool isLocalCall(const SDValue &Callee)
2832{
2833  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2834    return !G->getGlobal()->isDeclaration() &&
2835           !G->getGlobal()->isWeakForLinker();
2836  return false;
2837}
2838
2839SDValue
2840PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2841                                   CallingConv::ID CallConv, bool isVarArg,
2842                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2843                                   DebugLoc dl, SelectionDAG &DAG,
2844                                   SmallVectorImpl<SDValue> &InVals) const {
2845
2846  SmallVector<CCValAssign, 16> RVLocs;
2847  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2848                    getTargetMachine(), RVLocs, *DAG.getContext());
2849  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2850
2851  // Copy all of the result registers out of their specified physreg.
2852  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2853    CCValAssign &VA = RVLocs[i];
2854    EVT VT = VA.getValVT();
2855    assert(VA.isRegLoc() && "Can only return in registers!");
2856    Chain = DAG.getCopyFromReg(Chain, dl,
2857                               VA.getLocReg(), VT, InFlag).getValue(1);
2858    InVals.push_back(Chain.getValue(0));
2859    InFlag = Chain.getValue(2);
2860  }
2861
2862  return Chain;
2863}
2864
2865SDValue
2866PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2867                              bool isTailCall, bool isVarArg,
2868                              SelectionDAG &DAG,
2869                              SmallVector<std::pair<unsigned, SDValue>, 8>
2870                                &RegsToPass,
2871                              SDValue InFlag, SDValue Chain,
2872                              SDValue &Callee,
2873                              int SPDiff, unsigned NumBytes,
2874                              const SmallVectorImpl<ISD::InputArg> &Ins,
2875                              SmallVectorImpl<SDValue> &InVals) const {
2876  std::vector<EVT> NodeTys;
2877  SmallVector<SDValue, 8> Ops;
2878  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2879                                 isTailCall, RegsToPass, Ops, NodeTys,
2880                                 PPCSubTarget);
2881
2882  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
2883  if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
2884    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
2885
2886  // When performing tail call optimization the callee pops its arguments off
2887  // the stack. Account for this here so these bytes can be pushed back on in
2888  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2889  int BytesCalleePops =
2890    (CallConv == CallingConv::Fast &&
2891     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
2892
2893  // Add a register mask operand representing the call-preserved registers.
2894  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2895  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2896  assert(Mask && "Missing call preserved mask for calling convention");
2897  Ops.push_back(DAG.getRegisterMask(Mask));
2898
2899  if (InFlag.getNode())
2900    Ops.push_back(InFlag);
2901
2902  // Emit tail call.
2903  if (isTailCall) {
2904    // If this is the first return lowered for this function, add the regs
2905    // to the liveout set for the function.
2906    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2907      SmallVector<CCValAssign, 16> RVLocs;
2908      CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2909                     getTargetMachine(), RVLocs, *DAG.getContext());
2910      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2911      for (unsigned i = 0; i != RVLocs.size(); ++i)
2912        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2913    }
2914
2915    assert(((Callee.getOpcode() == ISD::Register &&
2916             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2917            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2918            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2919            isa<ConstantSDNode>(Callee)) &&
2920    "Expecting an global address, external symbol, absolute value or register");
2921
2922    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2923  }
2924
2925  // Add a NOP immediately after the branch instruction when using the 64-bit
2926  // SVR4 ABI. At link time, if caller and callee are in a different module and
2927  // thus have a different TOC, the call will be replaced with a call to a stub
2928  // function which saves the current TOC, loads the TOC of the callee and
2929  // branches to the callee. The NOP will be replaced with a load instruction
2930  // which restores the TOC of the caller from the TOC save slot of the current
2931  // stack frame. If caller and callee belong to the same module (and have the
2932  // same TOC), the NOP will remain unchanged.
2933
2934  bool needsTOCRestore = false;
2935  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2936    if (CallOpc == PPCISD::BCTRL_SVR4) {
2937      // This is a call through a function pointer.
2938      // Restore the caller TOC from the save area into R2.
2939      // See PrepareCall() for more information about calls through function
2940      // pointers in the 64-bit SVR4 ABI.
2941      // We are using a target-specific load with r2 hard coded, because the
2942      // result of a target-independent load would never go directly into r2,
2943      // since r2 is a reserved register (which prevents the register allocator
2944      // from allocating it), resulting in an additional register being
2945      // allocated and an unnecessary move instruction being generated.
2946      needsTOCRestore = true;
2947    } else if ((CallOpc == PPCISD::CALL_SVR4) && !isLocalCall(Callee)) {
2948      // Otherwise insert NOP for non-local calls.
2949      CallOpc = PPCISD::CALL_NOP_SVR4;
2950    }
2951  }
2952
2953  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2954  InFlag = Chain.getValue(1);
2955
2956  if (needsTOCRestore) {
2957    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2958    Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2959    InFlag = Chain.getValue(1);
2960  }
2961
2962  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2963                             DAG.getIntPtrConstant(BytesCalleePops, true),
2964                             InFlag);
2965  if (!Ins.empty())
2966    InFlag = Chain.getValue(1);
2967
2968  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2969                         Ins, dl, DAG, InVals);
2970}
2971
2972SDValue
2973PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2974                             SmallVectorImpl<SDValue> &InVals) const {
2975  SelectionDAG &DAG                     = CLI.DAG;
2976  DebugLoc &dl                          = CLI.DL;
2977  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2978  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2979  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2980  SDValue Chain                         = CLI.Chain;
2981  SDValue Callee                        = CLI.Callee;
2982  bool &isTailCall                      = CLI.IsTailCall;
2983  CallingConv::ID CallConv              = CLI.CallConv;
2984  bool isVarArg                         = CLI.IsVarArg;
2985
2986  if (isTailCall)
2987    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2988                                                   Ins, DAG);
2989
2990  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
2991    return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
2992                            isTailCall, Outs, OutVals, Ins,
2993                            dl, DAG, InVals);
2994
2995  return LowerCall_Darwin_Or_64SVR4(Chain, Callee, CallConv, isVarArg,
2996                                    isTailCall, Outs, OutVals, Ins,
2997                                    dl, DAG, InVals);
2998}
2999
3000SDValue
3001PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3002                                    CallingConv::ID CallConv, bool isVarArg,
3003                                    bool isTailCall,
3004                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3005                                    const SmallVectorImpl<SDValue> &OutVals,
3006                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3007                                    DebugLoc dl, SelectionDAG &DAG,
3008                                    SmallVectorImpl<SDValue> &InVals) const {
3009  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3010  // of the 32-bit SVR4 ABI stack frame layout.
3011
3012  assert((CallConv == CallingConv::C ||
3013          CallConv == CallingConv::Fast) && "Unknown calling convention!");
3014
3015  unsigned PtrByteSize = 4;
3016
3017  MachineFunction &MF = DAG.getMachineFunction();
3018
3019  // Mark this function as potentially containing a function that contains a
3020  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3021  // and restoring the callers stack pointer in this functions epilog. This is
3022  // done because by tail calling the called function might overwrite the value
3023  // in this function's (MF) stack pointer stack slot 0(SP).
3024  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3025      CallConv == CallingConv::Fast)
3026    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3027
3028  // Count how many bytes are to be pushed on the stack, including the linkage
3029  // area, parameter list area and the part of the local variable space which
3030  // contains copies of aggregates which are passed by value.
3031
3032  // Assign locations to all of the outgoing arguments.
3033  SmallVector<CCValAssign, 16> ArgLocs;
3034  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3035                 getTargetMachine(), ArgLocs, *DAG.getContext());
3036
3037  // Reserve space for the linkage area on the stack.
3038  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3039
3040  if (isVarArg) {
3041    // Handle fixed and variable vector arguments differently.
3042    // Fixed vector arguments go into registers as long as registers are
3043    // available. Variable vector arguments always go into memory.
3044    unsigned NumArgs = Outs.size();
3045
3046    for (unsigned i = 0; i != NumArgs; ++i) {
3047      MVT ArgVT = Outs[i].VT;
3048      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3049      bool Result;
3050
3051      if (Outs[i].IsFixed) {
3052        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3053                             CCInfo);
3054      } else {
3055        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3056                                    ArgFlags, CCInfo);
3057      }
3058
3059      if (Result) {
3060#ifndef NDEBUG
3061        errs() << "Call operand #" << i << " has unhandled type "
3062             << EVT(ArgVT).getEVTString() << "\n";
3063#endif
3064        llvm_unreachable(0);
3065      }
3066    }
3067  } else {
3068    // All arguments are treated the same.
3069    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
3070  }
3071
3072  // Assign locations to all of the outgoing aggregate by value arguments.
3073  SmallVector<CCValAssign, 16> ByValArgLocs;
3074  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3075                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
3076
3077  // Reserve stack space for the allocations in CCInfo.
3078  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3079
3080  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
3081
3082  // Size of the linkage area, parameter list area and the part of the local
3083  // space variable where copies of aggregates which are passed by value are
3084  // stored.
3085  unsigned NumBytes = CCByValInfo.getNextStackOffset();
3086
3087  // Calculate by how many bytes the stack has to be adjusted in case of tail
3088  // call optimization.
3089  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3090
3091  // Adjust the stack pointer for the new arguments...
3092  // These operations are automatically eliminated by the prolog/epilog pass
3093  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3094  SDValue CallSeqStart = Chain;
3095
3096  // Load the return address and frame pointer so it can be moved somewhere else
3097  // later.
3098  SDValue LROp, FPOp;
3099  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3100                                       dl);
3101
3102  // Set up a copy of the stack pointer for use loading and storing any
3103  // arguments that may not fit in the registers available for argument
3104  // passing.
3105  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3106
3107  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3108  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3109  SmallVector<SDValue, 8> MemOpChains;
3110
3111  bool seenFloatArg = false;
3112  // Walk the register/memloc assignments, inserting copies/loads.
3113  for (unsigned i = 0, j = 0, e = ArgLocs.size();
3114       i != e;
3115       ++i) {
3116    CCValAssign &VA = ArgLocs[i];
3117    SDValue Arg = OutVals[i];
3118    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3119
3120    if (Flags.isByVal()) {
3121      // Argument is an aggregate which is passed by value, thus we need to
3122      // create a copy of it in the local variable space of the current stack
3123      // frame (which is the stack frame of the caller) and pass the address of
3124      // this copy to the callee.
3125      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3126      CCValAssign &ByValVA = ByValArgLocs[j++];
3127      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3128
3129      // Memory reserved in the local variable space of the callers stack frame.
3130      unsigned LocMemOffset = ByValVA.getLocMemOffset();
3131
3132      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3133      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3134
3135      // Create a copy of the argument in the local area of the current
3136      // stack frame.
3137      SDValue MemcpyCall =
3138        CreateCopyOfByValArgument(Arg, PtrOff,
3139                                  CallSeqStart.getNode()->getOperand(0),
3140                                  Flags, DAG, dl);
3141
3142      // This must go outside the CALLSEQ_START..END.
3143      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3144                           CallSeqStart.getNode()->getOperand(1));
3145      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3146                             NewCallSeqStart.getNode());
3147      Chain = CallSeqStart = NewCallSeqStart;
3148
3149      // Pass the address of the aggregate copy on the stack either in a
3150      // physical register or in the parameter list area of the current stack
3151      // frame to the callee.
3152      Arg = PtrOff;
3153    }
3154
3155    if (VA.isRegLoc()) {
3156      seenFloatArg |= VA.getLocVT().isFloatingPoint();
3157      // Put argument in a physical register.
3158      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3159    } else {
3160      // Put argument in the parameter list area of the current stack frame.
3161      assert(VA.isMemLoc());
3162      unsigned LocMemOffset = VA.getLocMemOffset();
3163
3164      if (!isTailCall) {
3165        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3166        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3167
3168        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3169                                           MachinePointerInfo(),
3170                                           false, false, 0));
3171      } else {
3172        // Calculate and remember argument location.
3173        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3174                                 TailCallArguments);
3175      }
3176    }
3177  }
3178
3179  if (!MemOpChains.empty())
3180    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3181                        &MemOpChains[0], MemOpChains.size());
3182
3183  // Build a sequence of copy-to-reg nodes chained together with token chain
3184  // and flag operands which copy the outgoing args into the appropriate regs.
3185  SDValue InFlag;
3186  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3187    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3188                             RegsToPass[i].second, InFlag);
3189    InFlag = Chain.getValue(1);
3190  }
3191
3192  // Set CR bit 6 to true if this is a vararg call with floating args passed in
3193  // registers.
3194  if (isVarArg) {
3195    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3196    SDValue Ops[] = { Chain, InFlag };
3197
3198    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3199                        dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
3200
3201    InFlag = Chain.getValue(1);
3202  }
3203
3204  if (isTailCall)
3205    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3206                    false, TailCallArguments);
3207
3208  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3209                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3210                    Ins, InVals);
3211}
3212
3213SDValue
3214PPCTargetLowering::LowerCall_Darwin_Or_64SVR4(SDValue Chain, SDValue Callee,
3215                                    CallingConv::ID CallConv, bool isVarArg,
3216                                    bool isTailCall,
3217                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3218                                    const SmallVectorImpl<SDValue> &OutVals,
3219                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3220                                    DebugLoc dl, SelectionDAG &DAG,
3221                                    SmallVectorImpl<SDValue> &InVals) const {
3222
3223  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
3224
3225  unsigned NumOps  = Outs.size();
3226
3227  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3228  bool isPPC64 = PtrVT == MVT::i64;
3229  unsigned PtrByteSize = isPPC64 ? 8 : 4;
3230
3231  MachineFunction &MF = DAG.getMachineFunction();
3232
3233  // Mark this function as potentially containing a function that contains a
3234  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3235  // and restoring the callers stack pointer in this functions epilog. This is
3236  // done because by tail calling the called function might overwrite the value
3237  // in this function's (MF) stack pointer stack slot 0(SP).
3238  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3239      CallConv == CallingConv::Fast)
3240    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3241
3242  unsigned nAltivecParamsAtEnd = 0;
3243
3244  // Count how many bytes are to be pushed on the stack, including the linkage
3245  // area, and parameter passing area.  We start with 24/48 bytes, which is
3246  // prereserved space for [SP][CR][LR][3 x unused].
3247  unsigned NumBytes =
3248    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
3249                                         Outs, OutVals,
3250                                         nAltivecParamsAtEnd);
3251
3252  // Calculate by how many bytes the stack has to be adjusted in case of tail
3253  // call optimization.
3254  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3255
3256  // To protect arguments on the stack from being clobbered in a tail call,
3257  // force all the loads to happen before doing any other lowering.
3258  if (isTailCall)
3259    Chain = DAG.getStackArgumentTokenFactor(Chain);
3260
3261  // Adjust the stack pointer for the new arguments...
3262  // These operations are automatically eliminated by the prolog/epilog pass
3263  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3264  SDValue CallSeqStart = Chain;
3265
3266  // Load the return address and frame pointer so it can be move somewhere else
3267  // later.
3268  SDValue LROp, FPOp;
3269  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3270                                       dl);
3271
3272  // Set up a copy of the stack pointer for use loading and storing any
3273  // arguments that may not fit in the registers available for argument
3274  // passing.
3275  SDValue StackPtr;
3276  if (isPPC64)
3277    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3278  else
3279    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3280
3281  // Figure out which arguments are going to go in registers, and which in
3282  // memory.  Also, if this is a vararg function, floating point operations
3283  // must be stored to our stack, and loaded into integer regs as well, if
3284  // any integer regs are available for argument passing.
3285  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
3286  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3287
3288  static const uint16_t GPR_32[] = {           // 32-bit registers.
3289    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3290    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3291  };
3292  static const uint16_t GPR_64[] = {           // 64-bit registers.
3293    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3294    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3295  };
3296  static const uint16_t *FPR = GetFPR();
3297
3298  static const uint16_t VR[] = {
3299    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3300    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3301  };
3302  const unsigned NumGPRs = array_lengthof(GPR_32);
3303  const unsigned NumFPRs = 13;
3304  const unsigned NumVRs  = array_lengthof(VR);
3305
3306  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
3307
3308  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3309  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3310
3311  SmallVector<SDValue, 8> MemOpChains;
3312  for (unsigned i = 0; i != NumOps; ++i) {
3313    SDValue Arg = OutVals[i];
3314    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3315
3316    // PtrOff will be used to store the current argument to the stack if a
3317    // register cannot be found for it.
3318    SDValue PtrOff;
3319
3320    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3321
3322    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3323
3324    // On PPC64, promote integers to 64-bit values.
3325    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3326      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3327      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3328      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3329    }
3330
3331    // FIXME memcpy is used way more than necessary.  Correctness first.
3332    // Note: "by value" is code for passing a structure by value, not
3333    // basic types.
3334    if (Flags.isByVal()) {
3335      // Note: Size includes alignment padding, so
3336      //   struct x { short a; char b; }
3337      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
3338      // These are the proper values we need for right-justifying the
3339      // aggregate in a parameter register for 64-bit SVR4.
3340      unsigned Size = Flags.getByValSize();
3341      // FOR DARWIN ONLY:  Very small objects are passed right-justified.
3342      // Everything else is passed left-justified.
3343      // FOR 64-BIT SVR4:  All aggregates smaller than 8 bytes must
3344      // be passed right-justified.
3345      if (Size==1 || Size==2 ||
3346          (Size==4 && isSVR4ABI)) {
3347        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
3348        if (GPR_idx != NumGPRs) {
3349          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3350                                        MachinePointerInfo(), VT,
3351                                        false, false, 0);
3352          MemOpChains.push_back(Load.getValue(1));
3353          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3354
3355          ArgOffset += PtrByteSize;
3356        } else {
3357          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3358          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3359          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3360                                CallSeqStart.getNode()->getOperand(0),
3361                                Flags, DAG, dl);
3362          // This must go outside the CALLSEQ_START..END.
3363          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3364                               CallSeqStart.getNode()->getOperand(1));
3365          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3366                                 NewCallSeqStart.getNode());
3367          Chain = CallSeqStart = NewCallSeqStart;
3368          ArgOffset += PtrByteSize;
3369        }
3370        continue;
3371      }
3372      // Copy entire object into memory.  There are cases where gcc-generated
3373      // code assumes it is there, even if it could be put entirely into
3374      // registers.  (This is not what the doc says.)
3375
3376      // FIXME: The above statement is likely due to a misunderstanding of the
3377      // documents.  At least for 64-bit SVR4, all arguments must be copied
3378      // into the parameter area BY THE CALLEE in the event that the callee
3379      // takes the address of any formal argument.  That has not yet been
3380      // implemented.  However, it is reasonable to use the stack area as a
3381      // staging area for the register load.
3382
3383      // Skip this for small aggregates under 64-bit SVR4, as we will use
3384      // the same slot for a right-justified copy, below.
3385      if (Size >= 8 || !isSVR4ABI) {
3386        SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3387                              CallSeqStart.getNode()->getOperand(0),
3388                              Flags, DAG, dl);
3389        // This must go outside the CALLSEQ_START..END.
3390        SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3391                                   CallSeqStart.getNode()->getOperand(1));
3392        DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3393                               NewCallSeqStart.getNode());
3394        Chain = CallSeqStart = NewCallSeqStart;
3395      }
3396
3397      // FOR 64-BIT SVR4:  When a register is available, pass the
3398      // aggregate right-justified.
3399      if (isSVR4ABI && Size < 8 && GPR_idx != NumGPRs) {
3400        // The easiest way to get this right-justified in a register
3401        // is to copy the structure into the rightmost portion of a
3402        // local variable slot, then load the whole slot into the
3403        // register.
3404        // FIXME: The memcpy seems to produce pretty awful code for
3405        // small aggregates, particularly for packed ones.
3406        // FIXME: It would be preferable to use the slot in the
3407        // parameter save area instead of a new local variable.
3408        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
3409        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3410        SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3411                              CallSeqStart.getNode()->getOperand(0),
3412                              Flags, DAG, dl);
3413
3414        // Place the memcpy outside the CALLSEQ_START..END.
3415        SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3416                                   CallSeqStart.getNode()->getOperand(1));
3417        DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3418                               NewCallSeqStart.getNode());
3419        Chain = CallSeqStart = NewCallSeqStart;
3420
3421        // Load the slot into the register.
3422        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
3423                                   MachinePointerInfo(),
3424                                   false, false, false, 0);
3425        MemOpChains.push_back(Load.getValue(1));
3426        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3427
3428        // Done with this argument.
3429        ArgOffset += PtrByteSize;
3430        continue;
3431      }
3432
3433      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
3434      // copy the pieces of the object that fit into registers from the
3435      // parameter save area.
3436      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3437        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3438        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3439        if (GPR_idx != NumGPRs) {
3440          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3441                                     MachinePointerInfo(),
3442                                     false, false, false, 0);
3443          MemOpChains.push_back(Load.getValue(1));
3444          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3445          ArgOffset += PtrByteSize;
3446        } else {
3447          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3448          break;
3449        }
3450      }
3451      continue;
3452    }
3453
3454    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3455    default: llvm_unreachable("Unexpected ValueType for argument!");
3456    case MVT::i32:
3457    case MVT::i64:
3458      if (GPR_idx != NumGPRs) {
3459        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3460      } else {
3461        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3462                         isPPC64, isTailCall, false, MemOpChains,
3463                         TailCallArguments, dl);
3464      }
3465      ArgOffset += PtrByteSize;
3466      break;
3467    case MVT::f32:
3468    case MVT::f64:
3469      if (FPR_idx != NumFPRs) {
3470        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3471
3472        if (isVarArg) {
3473          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3474                                       MachinePointerInfo(), false, false, 0);
3475          MemOpChains.push_back(Store);
3476
3477          // Float varargs are always shadowed in available integer registers
3478          if (GPR_idx != NumGPRs) {
3479            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3480                                       MachinePointerInfo(), false, false,
3481                                       false, 0);
3482            MemOpChains.push_back(Load.getValue(1));
3483            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3484          }
3485          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3486            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3487            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3488            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3489                                       MachinePointerInfo(),
3490                                       false, false, false, 0);
3491            MemOpChains.push_back(Load.getValue(1));
3492            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3493          }
3494        } else {
3495          // If we have any FPRs remaining, we may also have GPRs remaining.
3496          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3497          // GPRs.
3498          if (GPR_idx != NumGPRs)
3499            ++GPR_idx;
3500          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3501              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3502            ++GPR_idx;
3503        }
3504      } else {
3505        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3506                         isPPC64, isTailCall, false, MemOpChains,
3507                         TailCallArguments, dl);
3508      }
3509      if (isPPC64)
3510        ArgOffset += 8;
3511      else
3512        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3513      break;
3514    case MVT::v4f32:
3515    case MVT::v4i32:
3516    case MVT::v8i16:
3517    case MVT::v16i8:
3518      if (isVarArg) {
3519        // These go aligned on the stack, or in the corresponding R registers
3520        // when within range.  The Darwin PPC ABI doc claims they also go in
3521        // V registers; in fact gcc does this only for arguments that are
3522        // prototyped, not for those that match the ...  We do it for all
3523        // arguments, seems to work.
3524        while (ArgOffset % 16 !=0) {
3525          ArgOffset += PtrByteSize;
3526          if (GPR_idx != NumGPRs)
3527            GPR_idx++;
3528        }
3529        // We could elide this store in the case where the object fits
3530        // entirely in R registers.  Maybe later.
3531        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3532                            DAG.getConstant(ArgOffset, PtrVT));
3533        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3534                                     MachinePointerInfo(), false, false, 0);
3535        MemOpChains.push_back(Store);
3536        if (VR_idx != NumVRs) {
3537          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3538                                     MachinePointerInfo(),
3539                                     false, false, false, 0);
3540          MemOpChains.push_back(Load.getValue(1));
3541          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3542        }
3543        ArgOffset += 16;
3544        for (unsigned i=0; i<16; i+=PtrByteSize) {
3545          if (GPR_idx == NumGPRs)
3546            break;
3547          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3548                                  DAG.getConstant(i, PtrVT));
3549          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3550                                     false, false, false, 0);
3551          MemOpChains.push_back(Load.getValue(1));
3552          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3553        }
3554        break;
3555      }
3556
3557      // Non-varargs Altivec params generally go in registers, but have
3558      // stack space allocated at the end.
3559      if (VR_idx != NumVRs) {
3560        // Doesn't have GPR space allocated.
3561        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3562      } else if (nAltivecParamsAtEnd==0) {
3563        // We are emitting Altivec params in order.
3564        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3565                         isPPC64, isTailCall, true, MemOpChains,
3566                         TailCallArguments, dl);
3567        ArgOffset += 16;
3568      }
3569      break;
3570    }
3571  }
3572  // If all Altivec parameters fit in registers, as they usually do,
3573  // they get stack space following the non-Altivec parameters.  We
3574  // don't track this here because nobody below needs it.
3575  // If there are more Altivec parameters than fit in registers emit
3576  // the stores here.
3577  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3578    unsigned j = 0;
3579    // Offset is aligned; skip 1st 12 params which go in V registers.
3580    ArgOffset = ((ArgOffset+15)/16)*16;
3581    ArgOffset += 12*16;
3582    for (unsigned i = 0; i != NumOps; ++i) {
3583      SDValue Arg = OutVals[i];
3584      EVT ArgType = Outs[i].VT;
3585      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3586          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3587        if (++j > NumVRs) {
3588          SDValue PtrOff;
3589          // We are emitting Altivec params in order.
3590          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3591                           isPPC64, isTailCall, true, MemOpChains,
3592                           TailCallArguments, dl);
3593          ArgOffset += 16;
3594        }
3595      }
3596    }
3597  }
3598
3599  if (!MemOpChains.empty())
3600    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3601                        &MemOpChains[0], MemOpChains.size());
3602
3603  // Check if this is an indirect call (MTCTR/BCTRL).
3604  // See PrepareCall() for more information about calls through function
3605  // pointers in the 64-bit SVR4 ABI.
3606  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3607      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3608      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3609      !isBLACompatibleAddress(Callee, DAG)) {
3610    // Load r2 into a virtual register and store it to the TOC save area.
3611    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3612    // TOC save area offset.
3613    SDValue PtrOff = DAG.getIntPtrConstant(40);
3614    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3615    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3616                         false, false, 0);
3617  }
3618
3619  // On Darwin, R12 must contain the address of an indirect callee.  This does
3620  // not mean the MTCTR instruction must use R12; it's easier to model this as
3621  // an extra parameter, so do that.
3622  if (!isTailCall &&
3623      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3624      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3625      !isBLACompatibleAddress(Callee, DAG))
3626    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3627                                                   PPC::R12), Callee));
3628
3629  // Build a sequence of copy-to-reg nodes chained together with token chain
3630  // and flag operands which copy the outgoing args into the appropriate regs.
3631  SDValue InFlag;
3632  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3633    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3634                             RegsToPass[i].second, InFlag);
3635    InFlag = Chain.getValue(1);
3636  }
3637
3638  if (isTailCall)
3639    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3640                    FPOp, true, TailCallArguments);
3641
3642  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3643                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3644                    Ins, InVals);
3645}
3646
3647bool
3648PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3649                                  MachineFunction &MF, bool isVarArg,
3650                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
3651                                  LLVMContext &Context) const {
3652  SmallVector<CCValAssign, 16> RVLocs;
3653  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
3654                 RVLocs, Context);
3655  return CCInfo.CheckReturn(Outs, RetCC_PPC);
3656}
3657
3658SDValue
3659PPCTargetLowering::LowerReturn(SDValue Chain,
3660                               CallingConv::ID CallConv, bool isVarArg,
3661                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3662                               const SmallVectorImpl<SDValue> &OutVals,
3663                               DebugLoc dl, SelectionDAG &DAG) const {
3664
3665  SmallVector<CCValAssign, 16> RVLocs;
3666  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3667                 getTargetMachine(), RVLocs, *DAG.getContext());
3668  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3669
3670  // If this is the first return lowered for this function, add the regs to the
3671  // liveout set for the function.
3672  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3673    for (unsigned i = 0; i != RVLocs.size(); ++i)
3674      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3675  }
3676
3677  SDValue Flag;
3678
3679  // Copy the result values into the output registers.
3680  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3681    CCValAssign &VA = RVLocs[i];
3682    assert(VA.isRegLoc() && "Can only return in registers!");
3683    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3684                             OutVals[i], Flag);
3685    Flag = Chain.getValue(1);
3686  }
3687
3688  if (Flag.getNode())
3689    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3690  else
3691    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3692}
3693
3694SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3695                                   const PPCSubtarget &Subtarget) const {
3696  // When we pop the dynamic allocation we need to restore the SP link.
3697  DebugLoc dl = Op.getDebugLoc();
3698
3699  // Get the corect type for pointers.
3700  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3701
3702  // Construct the stack pointer operand.
3703  bool isPPC64 = Subtarget.isPPC64();
3704  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3705  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3706
3707  // Get the operands for the STACKRESTORE.
3708  SDValue Chain = Op.getOperand(0);
3709  SDValue SaveSP = Op.getOperand(1);
3710
3711  // Load the old link SP.
3712  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3713                                   MachinePointerInfo(),
3714                                   false, false, false, 0);
3715
3716  // Restore the stack pointer.
3717  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3718
3719  // Store the old link SP.
3720  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3721                      false, false, 0);
3722}
3723
3724
3725
3726SDValue
3727PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3728  MachineFunction &MF = DAG.getMachineFunction();
3729  bool isPPC64 = PPCSubTarget.isPPC64();
3730  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3731  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3732
3733  // Get current frame pointer save index.  The users of this index will be
3734  // primarily DYNALLOC instructions.
3735  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3736  int RASI = FI->getReturnAddrSaveIndex();
3737
3738  // If the frame pointer save index hasn't been defined yet.
3739  if (!RASI) {
3740    // Find out what the fix offset of the frame pointer save area.
3741    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
3742    // Allocate the frame index for frame pointer save area.
3743    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3744    // Save the result.
3745    FI->setReturnAddrSaveIndex(RASI);
3746  }
3747  return DAG.getFrameIndex(RASI, PtrVT);
3748}
3749
3750SDValue
3751PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3752  MachineFunction &MF = DAG.getMachineFunction();
3753  bool isPPC64 = PPCSubTarget.isPPC64();
3754  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3755  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3756
3757  // Get current frame pointer save index.  The users of this index will be
3758  // primarily DYNALLOC instructions.
3759  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3760  int FPSI = FI->getFramePointerSaveIndex();
3761
3762  // If the frame pointer save index hasn't been defined yet.
3763  if (!FPSI) {
3764    // Find out what the fix offset of the frame pointer save area.
3765    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
3766                                                           isDarwinABI);
3767
3768    // Allocate the frame index for frame pointer save area.
3769    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3770    // Save the result.
3771    FI->setFramePointerSaveIndex(FPSI);
3772  }
3773  return DAG.getFrameIndex(FPSI, PtrVT);
3774}
3775
3776SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3777                                         SelectionDAG &DAG,
3778                                         const PPCSubtarget &Subtarget) const {
3779  // Get the inputs.
3780  SDValue Chain = Op.getOperand(0);
3781  SDValue Size  = Op.getOperand(1);
3782  DebugLoc dl = Op.getDebugLoc();
3783
3784  // Get the corect type for pointers.
3785  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3786  // Negate the size.
3787  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3788                                  DAG.getConstant(0, PtrVT), Size);
3789  // Construct a node for the frame pointer save index.
3790  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3791  // Build a DYNALLOC node.
3792  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3793  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3794  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3795}
3796
3797/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3798/// possible.
3799SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3800  // Not FP? Not a fsel.
3801  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3802      !Op.getOperand(2).getValueType().isFloatingPoint())
3803    return Op;
3804
3805  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3806
3807  // Cannot handle SETEQ/SETNE.
3808  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3809
3810  EVT ResVT = Op.getValueType();
3811  EVT CmpVT = Op.getOperand(0).getValueType();
3812  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3813  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3814  DebugLoc dl = Op.getDebugLoc();
3815
3816  // If the RHS of the comparison is a 0.0, we don't need to do the
3817  // subtraction at all.
3818  if (isFloatingPointZero(RHS))
3819    switch (CC) {
3820    default: break;       // SETUO etc aren't handled by fsel.
3821    case ISD::SETULT:
3822    case ISD::SETLT:
3823      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3824    case ISD::SETOGE:
3825    case ISD::SETGE:
3826      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3827        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3828      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3829    case ISD::SETUGT:
3830    case ISD::SETGT:
3831      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3832    case ISD::SETOLE:
3833    case ISD::SETLE:
3834      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3835        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3836      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3837                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3838    }
3839
3840  SDValue Cmp;
3841  switch (CC) {
3842  default: break;       // SETUO etc aren't handled by fsel.
3843  case ISD::SETULT:
3844  case ISD::SETLT:
3845    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3846    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3847      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3848      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3849  case ISD::SETOGE:
3850  case ISD::SETGE:
3851    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3852    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3853      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3854      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3855  case ISD::SETUGT:
3856  case ISD::SETGT:
3857    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3858    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3859      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3860      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3861  case ISD::SETOLE:
3862  case ISD::SETLE:
3863    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3864    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3865      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3866      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3867  }
3868  return Op;
3869}
3870
3871// FIXME: Split this code up when LegalizeDAGTypes lands.
3872SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3873                                           DebugLoc dl) const {
3874  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3875  SDValue Src = Op.getOperand(0);
3876  if (Src.getValueType() == MVT::f32)
3877    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3878
3879  SDValue Tmp;
3880  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3881  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3882  case MVT::i32:
3883    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3884                                                         PPCISD::FCTIDZ,
3885                      dl, MVT::f64, Src);
3886    break;
3887  case MVT::i64:
3888    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3889    break;
3890  }
3891
3892  // Convert the FP value to an int value through memory.
3893  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3894
3895  // Emit a store to the stack slot.
3896  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3897                               MachinePointerInfo(), false, false, 0);
3898
3899  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3900  // add in a bias.
3901  if (Op.getValueType() == MVT::i32)
3902    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3903                        DAG.getConstant(4, FIPtr.getValueType()));
3904  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3905                     false, false, false, 0);
3906}
3907
3908SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3909                                           SelectionDAG &DAG) const {
3910  DebugLoc dl = Op.getDebugLoc();
3911  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3912  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3913    return SDValue();
3914
3915  if (Op.getOperand(0).getValueType() == MVT::i64) {
3916    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
3917    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3918    if (Op.getValueType() == MVT::f32)
3919      FP = DAG.getNode(ISD::FP_ROUND, dl,
3920                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3921    return FP;
3922  }
3923
3924  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3925         "Unhandled SINT_TO_FP type in custom expander!");
3926  // Since we only generate this in 64-bit mode, we can take advantage of
3927  // 64-bit registers.  In particular, sign extend the input value into the
3928  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3929  // then lfd it and fcfid it.
3930  MachineFunction &MF = DAG.getMachineFunction();
3931  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3932  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3933  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3934  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3935
3936  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3937                                Op.getOperand(0));
3938
3939  // STD the extended value into the stack slot.
3940  MachineMemOperand *MMO =
3941    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3942                            MachineMemOperand::MOStore, 8, 8);
3943  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3944  SDValue Store =
3945    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3946                            Ops, 4, MVT::i64, MMO);
3947  // Load the value as a double.
3948  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3949                           false, false, false, 0);
3950
3951  // FCFID it and return it.
3952  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3953  if (Op.getValueType() == MVT::f32)
3954    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3955  return FP;
3956}
3957
3958SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3959                                            SelectionDAG &DAG) const {
3960  DebugLoc dl = Op.getDebugLoc();
3961  /*
3962   The rounding mode is in bits 30:31 of FPSR, and has the following
3963   settings:
3964     00 Round to nearest
3965     01 Round to 0
3966     10 Round to +inf
3967     11 Round to -inf
3968
3969  FLT_ROUNDS, on the other hand, expects the following:
3970    -1 Undefined
3971     0 Round to 0
3972     1 Round to nearest
3973     2 Round to +inf
3974     3 Round to -inf
3975
3976  To perform the conversion, we do:
3977    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3978  */
3979
3980  MachineFunction &MF = DAG.getMachineFunction();
3981  EVT VT = Op.getValueType();
3982  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3983  std::vector<EVT> NodeTys;
3984  SDValue MFFSreg, InFlag;
3985
3986  // Save FP Control Word to register
3987  NodeTys.push_back(MVT::f64);    // return register
3988  NodeTys.push_back(MVT::Glue);   // unused in this context
3989  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3990
3991  // Save FP register to stack slot
3992  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3993  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3994  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3995                               StackSlot, MachinePointerInfo(), false, false,0);
3996
3997  // Load FP Control Word from low 32 bits of stack slot.
3998  SDValue Four = DAG.getConstant(4, PtrVT);
3999  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
4000  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
4001                            false, false, false, 0);
4002
4003  // Transform as necessary
4004  SDValue CWD1 =
4005    DAG.getNode(ISD::AND, dl, MVT::i32,
4006                CWD, DAG.getConstant(3, MVT::i32));
4007  SDValue CWD2 =
4008    DAG.getNode(ISD::SRL, dl, MVT::i32,
4009                DAG.getNode(ISD::AND, dl, MVT::i32,
4010                            DAG.getNode(ISD::XOR, dl, MVT::i32,
4011                                        CWD, DAG.getConstant(3, MVT::i32)),
4012                            DAG.getConstant(3, MVT::i32)),
4013                DAG.getConstant(1, MVT::i32));
4014
4015  SDValue RetVal =
4016    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
4017
4018  return DAG.getNode((VT.getSizeInBits() < 16 ?
4019                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
4020}
4021
4022SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4023  EVT VT = Op.getValueType();
4024  unsigned BitWidth = VT.getSizeInBits();
4025  DebugLoc dl = Op.getDebugLoc();
4026  assert(Op.getNumOperands() == 3 &&
4027         VT == Op.getOperand(1).getValueType() &&
4028         "Unexpected SHL!");
4029
4030  // Expand into a bunch of logical ops.  Note that these ops
4031  // depend on the PPC behavior for oversized shift amounts.
4032  SDValue Lo = Op.getOperand(0);
4033  SDValue Hi = Op.getOperand(1);
4034  SDValue Amt = Op.getOperand(2);
4035  EVT AmtVT = Amt.getValueType();
4036
4037  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4038                             DAG.getConstant(BitWidth, AmtVT), Amt);
4039  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
4040  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
4041  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
4042  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4043                             DAG.getConstant(-BitWidth, AmtVT));
4044  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
4045  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4046  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
4047  SDValue OutOps[] = { OutLo, OutHi };
4048  return DAG.getMergeValues(OutOps, 2, dl);
4049}
4050
4051SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4052  EVT VT = Op.getValueType();
4053  DebugLoc dl = Op.getDebugLoc();
4054  unsigned BitWidth = VT.getSizeInBits();
4055  assert(Op.getNumOperands() == 3 &&
4056         VT == Op.getOperand(1).getValueType() &&
4057         "Unexpected SRL!");
4058
4059  // Expand into a bunch of logical ops.  Note that these ops
4060  // depend on the PPC behavior for oversized shift amounts.
4061  SDValue Lo = Op.getOperand(0);
4062  SDValue Hi = Op.getOperand(1);
4063  SDValue Amt = Op.getOperand(2);
4064  EVT AmtVT = Amt.getValueType();
4065
4066  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4067                             DAG.getConstant(BitWidth, AmtVT), Amt);
4068  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4069  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4070  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4071  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4072                             DAG.getConstant(-BitWidth, AmtVT));
4073  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
4074  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4075  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
4076  SDValue OutOps[] = { OutLo, OutHi };
4077  return DAG.getMergeValues(OutOps, 2, dl);
4078}
4079
4080SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
4081  DebugLoc dl = Op.getDebugLoc();
4082  EVT VT = Op.getValueType();
4083  unsigned BitWidth = VT.getSizeInBits();
4084  assert(Op.getNumOperands() == 3 &&
4085         VT == Op.getOperand(1).getValueType() &&
4086         "Unexpected SRA!");
4087
4088  // Expand into a bunch of logical ops, followed by a select_cc.
4089  SDValue Lo = Op.getOperand(0);
4090  SDValue Hi = Op.getOperand(1);
4091  SDValue Amt = Op.getOperand(2);
4092  EVT AmtVT = Amt.getValueType();
4093
4094  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4095                             DAG.getConstant(BitWidth, AmtVT), Amt);
4096  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4097  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4098  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4099  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4100                             DAG.getConstant(-BitWidth, AmtVT));
4101  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
4102  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
4103  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
4104                                  Tmp4, Tmp6, ISD::SETLE);
4105  SDValue OutOps[] = { OutLo, OutHi };
4106  return DAG.getMergeValues(OutOps, 2, dl);
4107}
4108
4109//===----------------------------------------------------------------------===//
4110// Vector related lowering.
4111//
4112
4113/// BuildSplatI - Build a canonical splati of Val with an element size of
4114/// SplatSize.  Cast the result to VT.
4115static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
4116                             SelectionDAG &DAG, DebugLoc dl) {
4117  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
4118
4119  static const EVT VTys[] = { // canonical VT to use for each size.
4120    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
4121  };
4122
4123  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
4124
4125  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
4126  if (Val == -1)
4127    SplatSize = 1;
4128
4129  EVT CanonicalVT = VTys[SplatSize-1];
4130
4131  // Build a canonical splat for this value.
4132  SDValue Elt = DAG.getConstant(Val, MVT::i32);
4133  SmallVector<SDValue, 8> Ops;
4134  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
4135  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
4136                              &Ops[0], Ops.size());
4137  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
4138}
4139
4140/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
4141/// specified intrinsic ID.
4142static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
4143                                SelectionDAG &DAG, DebugLoc dl,
4144                                EVT DestVT = MVT::Other) {
4145  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
4146  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4147                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
4148}
4149
4150/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
4151/// specified intrinsic ID.
4152static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
4153                                SDValue Op2, SelectionDAG &DAG,
4154                                DebugLoc dl, EVT DestVT = MVT::Other) {
4155  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
4156  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4157                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
4158}
4159
4160
4161/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
4162/// amount.  The result has the specified value type.
4163static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
4164                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4165  // Force LHS/RHS to be the right type.
4166  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
4167  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
4168
4169  int Ops[16];
4170  for (unsigned i = 0; i != 16; ++i)
4171    Ops[i] = i + Amt;
4172  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
4173  return DAG.getNode(ISD::BITCAST, dl, VT, T);
4174}
4175
4176// If this is a case we can't handle, return null and let the default
4177// expansion code take care of it.  If we CAN select this case, and if it
4178// selects to a single instruction, return Op.  Otherwise, if we can codegen
4179// this case more efficiently than a constant pool load, lower it to the
4180// sequence of ops that should be used.
4181SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
4182                                             SelectionDAG &DAG) const {
4183  DebugLoc dl = Op.getDebugLoc();
4184  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
4185  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
4186
4187  // Check if this is a splat of a constant value.
4188  APInt APSplatBits, APSplatUndef;
4189  unsigned SplatBitSize;
4190  bool HasAnyUndefs;
4191  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
4192                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
4193    return SDValue();
4194
4195  unsigned SplatBits = APSplatBits.getZExtValue();
4196  unsigned SplatUndef = APSplatUndef.getZExtValue();
4197  unsigned SplatSize = SplatBitSize / 8;
4198
4199  // First, handle single instruction cases.
4200
4201  // All zeros?
4202  if (SplatBits == 0) {
4203    // Canonicalize all zero vectors to be v4i32.
4204    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
4205      SDValue Z = DAG.getConstant(0, MVT::i32);
4206      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
4207      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
4208    }
4209    return Op;
4210  }
4211
4212  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
4213  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
4214                    (32-SplatBitSize));
4215  if (SextVal >= -16 && SextVal <= 15)
4216    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
4217
4218
4219  // Two instruction sequences.
4220
4221  // If this value is in the range [-32,30] and is even, use:
4222  //    tmp = VSPLTI[bhw], result = add tmp, tmp
4223  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
4224    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
4225    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
4226    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4227  }
4228
4229  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
4230  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
4231  // for fneg/fabs.
4232  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
4233    // Make -1 and vspltisw -1:
4234    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
4235
4236    // Make the VSLW intrinsic, computing 0x8000_0000.
4237    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
4238                                   OnesV, DAG, dl);
4239
4240    // xor by OnesV to invert it.
4241    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
4242    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4243  }
4244
4245  // Check to see if this is a wide variety of vsplti*, binop self cases.
4246  static const signed char SplatCsts[] = {
4247    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
4248    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
4249  };
4250
4251  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
4252    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
4253    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
4254    int i = SplatCsts[idx];
4255
4256    // Figure out what shift amount will be used by altivec if shifted by i in
4257    // this splat size.
4258    unsigned TypeShiftAmt = i & (SplatBitSize-1);
4259
4260    // vsplti + shl self.
4261    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
4262      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4263      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4264        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
4265        Intrinsic::ppc_altivec_vslw
4266      };
4267      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4268      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4269    }
4270
4271    // vsplti + srl self.
4272    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4273      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4274      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4275        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
4276        Intrinsic::ppc_altivec_vsrw
4277      };
4278      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4279      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4280    }
4281
4282    // vsplti + sra self.
4283    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4284      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4285      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4286        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
4287        Intrinsic::ppc_altivec_vsraw
4288      };
4289      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4290      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4291    }
4292
4293    // vsplti + rol self.
4294    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
4295                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
4296      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4297      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4298        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
4299        Intrinsic::ppc_altivec_vrlw
4300      };
4301      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4302      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4303    }
4304
4305    // t = vsplti c, result = vsldoi t, t, 1
4306    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
4307      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4308      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
4309    }
4310    // t = vsplti c, result = vsldoi t, t, 2
4311    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
4312      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4313      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
4314    }
4315    // t = vsplti c, result = vsldoi t, t, 3
4316    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
4317      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4318      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
4319    }
4320  }
4321
4322  // Three instruction sequences.
4323
4324  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
4325  if (SextVal >= 0 && SextVal <= 31) {
4326    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
4327    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4328    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
4329    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4330  }
4331  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
4332  if (SextVal >= -31 && SextVal <= 0) {
4333    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
4334    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4335    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
4336    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4337  }
4338
4339  return SDValue();
4340}
4341
4342/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4343/// the specified operations to build the shuffle.
4344static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4345                                      SDValue RHS, SelectionDAG &DAG,
4346                                      DebugLoc dl) {
4347  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4348  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4349  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4350
4351  enum {
4352    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4353    OP_VMRGHW,
4354    OP_VMRGLW,
4355    OP_VSPLTISW0,
4356    OP_VSPLTISW1,
4357    OP_VSPLTISW2,
4358    OP_VSPLTISW3,
4359    OP_VSLDOI4,
4360    OP_VSLDOI8,
4361    OP_VSLDOI12
4362  };
4363
4364  if (OpNum == OP_COPY) {
4365    if (LHSID == (1*9+2)*9+3) return LHS;
4366    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4367    return RHS;
4368  }
4369
4370  SDValue OpLHS, OpRHS;
4371  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4372  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4373
4374  int ShufIdxs[16];
4375  switch (OpNum) {
4376  default: llvm_unreachable("Unknown i32 permute!");
4377  case OP_VMRGHW:
4378    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4379    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4380    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4381    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4382    break;
4383  case OP_VMRGLW:
4384    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4385    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4386    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4387    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4388    break;
4389  case OP_VSPLTISW0:
4390    for (unsigned i = 0; i != 16; ++i)
4391      ShufIdxs[i] = (i&3)+0;
4392    break;
4393  case OP_VSPLTISW1:
4394    for (unsigned i = 0; i != 16; ++i)
4395      ShufIdxs[i] = (i&3)+4;
4396    break;
4397  case OP_VSPLTISW2:
4398    for (unsigned i = 0; i != 16; ++i)
4399      ShufIdxs[i] = (i&3)+8;
4400    break;
4401  case OP_VSPLTISW3:
4402    for (unsigned i = 0; i != 16; ++i)
4403      ShufIdxs[i] = (i&3)+12;
4404    break;
4405  case OP_VSLDOI4:
4406    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4407  case OP_VSLDOI8:
4408    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4409  case OP_VSLDOI12:
4410    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4411  }
4412  EVT VT = OpLHS.getValueType();
4413  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
4414  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
4415  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4416  return DAG.getNode(ISD::BITCAST, dl, VT, T);
4417}
4418
4419/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4420/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4421/// return the code it can be lowered into.  Worst case, it can always be
4422/// lowered into a vperm.
4423SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4424                                               SelectionDAG &DAG) const {
4425  DebugLoc dl = Op.getDebugLoc();
4426  SDValue V1 = Op.getOperand(0);
4427  SDValue V2 = Op.getOperand(1);
4428  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4429  EVT VT = Op.getValueType();
4430
4431  // Cases that are handled by instructions that take permute immediates
4432  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4433  // selected by the instruction selector.
4434  if (V2.getOpcode() == ISD::UNDEF) {
4435    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4436        PPC::isSplatShuffleMask(SVOp, 2) ||
4437        PPC::isSplatShuffleMask(SVOp, 4) ||
4438        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4439        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4440        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4441        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4442        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4443        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4444        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4445        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4446        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4447      return Op;
4448    }
4449  }
4450
4451  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4452  // and produce a fixed permutation.  If any of these match, do not lower to
4453  // VPERM.
4454  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4455      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4456      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4457      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4458      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4459      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4460      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4461      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4462      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4463    return Op;
4464
4465  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4466  // perfect shuffle table to emit an optimal matching sequence.
4467  ArrayRef<int> PermMask = SVOp->getMask();
4468
4469  unsigned PFIndexes[4];
4470  bool isFourElementShuffle = true;
4471  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4472    unsigned EltNo = 8;   // Start out undef.
4473    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4474      if (PermMask[i*4+j] < 0)
4475        continue;   // Undef, ignore it.
4476
4477      unsigned ByteSource = PermMask[i*4+j];
4478      if ((ByteSource & 3) != j) {
4479        isFourElementShuffle = false;
4480        break;
4481      }
4482
4483      if (EltNo == 8) {
4484        EltNo = ByteSource/4;
4485      } else if (EltNo != ByteSource/4) {
4486        isFourElementShuffle = false;
4487        break;
4488      }
4489    }
4490    PFIndexes[i] = EltNo;
4491  }
4492
4493  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4494  // perfect shuffle vector to determine if it is cost effective to do this as
4495  // discrete instructions, or whether we should use a vperm.
4496  if (isFourElementShuffle) {
4497    // Compute the index in the perfect shuffle table.
4498    unsigned PFTableIndex =
4499      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4500
4501    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4502    unsigned Cost  = (PFEntry >> 30);
4503
4504    // Determining when to avoid vperm is tricky.  Many things affect the cost
4505    // of vperm, particularly how many times the perm mask needs to be computed.
4506    // For example, if the perm mask can be hoisted out of a loop or is already
4507    // used (perhaps because there are multiple permutes with the same shuffle
4508    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4509    // the loop requires an extra register.
4510    //
4511    // As a compromise, we only emit discrete instructions if the shuffle can be
4512    // generated in 3 or fewer operations.  When we have loop information
4513    // available, if this block is within a loop, we should avoid using vperm
4514    // for 3-operation perms and use a constant pool load instead.
4515    if (Cost < 3)
4516      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4517  }
4518
4519  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4520  // vector that will get spilled to the constant pool.
4521  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4522
4523  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4524  // that it is in input element units, not in bytes.  Convert now.
4525  EVT EltVT = V1.getValueType().getVectorElementType();
4526  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4527
4528  SmallVector<SDValue, 16> ResultMask;
4529  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4530    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4531
4532    for (unsigned j = 0; j != BytesPerElement; ++j)
4533      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4534                                           MVT::i32));
4535  }
4536
4537  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4538                                    &ResultMask[0], ResultMask.size());
4539  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4540}
4541
4542/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4543/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4544/// information about the intrinsic.
4545static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4546                                  bool &isDot) {
4547  unsigned IntrinsicID =
4548    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4549  CompareOpc = -1;
4550  isDot = false;
4551  switch (IntrinsicID) {
4552  default: return false;
4553    // Comparison predicates.
4554  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4555  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4556  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4557  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4558  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4559  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4560  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4561  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4562  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4563  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4564  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4565  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4566  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4567
4568    // Normal Comparisons.
4569  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4570  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4571  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4572  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4573  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4574  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4575  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4576  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4577  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4578  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4579  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4580  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4581  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4582  }
4583  return true;
4584}
4585
4586/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4587/// lower, do it, otherwise return null.
4588SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4589                                                   SelectionDAG &DAG) const {
4590  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4591  // opcode number of the comparison.
4592  DebugLoc dl = Op.getDebugLoc();
4593  int CompareOpc;
4594  bool isDot;
4595  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4596    return SDValue();    // Don't custom lower most intrinsics.
4597
4598  // If this is a non-dot comparison, make the VCMP node and we are done.
4599  if (!isDot) {
4600    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4601                              Op.getOperand(1), Op.getOperand(2),
4602                              DAG.getConstant(CompareOpc, MVT::i32));
4603    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
4604  }
4605
4606  // Create the PPCISD altivec 'dot' comparison node.
4607  SDValue Ops[] = {
4608    Op.getOperand(2),  // LHS
4609    Op.getOperand(3),  // RHS
4610    DAG.getConstant(CompareOpc, MVT::i32)
4611  };
4612  std::vector<EVT> VTs;
4613  VTs.push_back(Op.getOperand(2).getValueType());
4614  VTs.push_back(MVT::Glue);
4615  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4616
4617  // Now that we have the comparison, emit a copy from the CR to a GPR.
4618  // This is flagged to the above dot comparison.
4619  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4620                                DAG.getRegister(PPC::CR6, MVT::i32),
4621                                CompNode.getValue(1));
4622
4623  // Unpack the result based on how the target uses it.
4624  unsigned BitNo;   // Bit # of CR6.
4625  bool InvertBit;   // Invert result?
4626  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4627  default:  // Can't happen, don't crash on invalid number though.
4628  case 0:   // Return the value of the EQ bit of CR6.
4629    BitNo = 0; InvertBit = false;
4630    break;
4631  case 1:   // Return the inverted value of the EQ bit of CR6.
4632    BitNo = 0; InvertBit = true;
4633    break;
4634  case 2:   // Return the value of the LT bit of CR6.
4635    BitNo = 2; InvertBit = false;
4636    break;
4637  case 3:   // Return the inverted value of the LT bit of CR6.
4638    BitNo = 2; InvertBit = true;
4639    break;
4640  }
4641
4642  // Shift the bit into the low position.
4643  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4644                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4645  // Isolate the bit.
4646  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4647                      DAG.getConstant(1, MVT::i32));
4648
4649  // If we are supposed to, toggle the bit.
4650  if (InvertBit)
4651    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4652                        DAG.getConstant(1, MVT::i32));
4653  return Flags;
4654}
4655
4656SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4657                                                   SelectionDAG &DAG) const {
4658  DebugLoc dl = Op.getDebugLoc();
4659  // Create a stack slot that is 16-byte aligned.
4660  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4661  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4662  EVT PtrVT = getPointerTy();
4663  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4664
4665  // Store the input value into Value#0 of the stack slot.
4666  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4667                               Op.getOperand(0), FIdx, MachinePointerInfo(),
4668                               false, false, 0);
4669  // Load it out.
4670  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4671                     false, false, false, 0);
4672}
4673
4674SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4675  DebugLoc dl = Op.getDebugLoc();
4676  if (Op.getValueType() == MVT::v4i32) {
4677    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4678
4679    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4680    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4681
4682    SDValue RHSSwap =   // = vrlw RHS, 16
4683      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4684
4685    // Shrinkify inputs to v8i16.
4686    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
4687    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
4688    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
4689
4690    // Low parts multiplied together, generating 32-bit results (we ignore the
4691    // top parts).
4692    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4693                                        LHS, RHS, DAG, dl, MVT::v4i32);
4694
4695    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4696                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4697    // Shift the high parts up 16 bits.
4698    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4699                              Neg16, DAG, dl);
4700    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4701  } else if (Op.getValueType() == MVT::v8i16) {
4702    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4703
4704    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4705
4706    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4707                            LHS, RHS, Zero, DAG, dl);
4708  } else if (Op.getValueType() == MVT::v16i8) {
4709    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4710
4711    // Multiply the even 8-bit parts, producing 16-bit sums.
4712    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4713                                           LHS, RHS, DAG, dl, MVT::v8i16);
4714    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
4715
4716    // Multiply the odd 8-bit parts, producing 16-bit sums.
4717    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4718                                          LHS, RHS, DAG, dl, MVT::v8i16);
4719    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
4720
4721    // Merge the results together.
4722    int Ops[16];
4723    for (unsigned i = 0; i != 8; ++i) {
4724      Ops[i*2  ] = 2*i+1;
4725      Ops[i*2+1] = 2*i+1+16;
4726    }
4727    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4728  } else {
4729    llvm_unreachable("Unknown mul to lower!");
4730  }
4731}
4732
4733/// LowerOperation - Provide custom lowering hooks for some operations.
4734///
4735SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4736  switch (Op.getOpcode()) {
4737  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4738  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4739  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4740  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4741  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4742  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4743  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4744  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
4745  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
4746  case ISD::VASTART:
4747    return LowerVASTART(Op, DAG, PPCSubTarget);
4748
4749  case ISD::VAARG:
4750    return LowerVAARG(Op, DAG, PPCSubTarget);
4751
4752  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4753  case ISD::DYNAMIC_STACKALLOC:
4754    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4755
4756  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4757  case ISD::FP_TO_UINT:
4758  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4759                                                       Op.getDebugLoc());
4760  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4761  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4762
4763  // Lower 64-bit shifts.
4764  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4765  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4766  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4767
4768  // Vector-related lowering.
4769  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4770  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4771  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4772  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4773  case ISD::MUL:                return LowerMUL(Op, DAG);
4774
4775  // Frame & Return address.
4776  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4777  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4778  }
4779}
4780
4781void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4782                                           SmallVectorImpl<SDValue>&Results,
4783                                           SelectionDAG &DAG) const {
4784  const TargetMachine &TM = getTargetMachine();
4785  DebugLoc dl = N->getDebugLoc();
4786  switch (N->getOpcode()) {
4787  default:
4788    llvm_unreachable("Do not know how to custom type legalize this operation!");
4789  case ISD::VAARG: {
4790    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
4791        || TM.getSubtarget<PPCSubtarget>().isPPC64())
4792      return;
4793
4794    EVT VT = N->getValueType(0);
4795
4796    if (VT == MVT::i64) {
4797      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
4798
4799      Results.push_back(NewNode);
4800      Results.push_back(NewNode.getValue(1));
4801    }
4802    return;
4803  }
4804  case ISD::FP_ROUND_INREG: {
4805    assert(N->getValueType(0) == MVT::ppcf128);
4806    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4807    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4808                             MVT::f64, N->getOperand(0),
4809                             DAG.getIntPtrConstant(0));
4810    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4811                             MVT::f64, N->getOperand(0),
4812                             DAG.getIntPtrConstant(1));
4813
4814    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4815    // of the long double, and puts FPSCR back the way it was.  We do not
4816    // actually model FPSCR.
4817    std::vector<EVT> NodeTys;
4818    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4819
4820    NodeTys.push_back(MVT::f64);   // Return register
4821    NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
4822    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4823    MFFSreg = Result.getValue(0);
4824    InFlag = Result.getValue(1);
4825
4826    NodeTys.clear();
4827    NodeTys.push_back(MVT::Glue);   // Returns a flag
4828    Ops[0] = DAG.getConstant(31, MVT::i32);
4829    Ops[1] = InFlag;
4830    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4831    InFlag = Result.getValue(0);
4832
4833    NodeTys.clear();
4834    NodeTys.push_back(MVT::Glue);   // Returns a flag
4835    Ops[0] = DAG.getConstant(30, MVT::i32);
4836    Ops[1] = InFlag;
4837    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4838    InFlag = Result.getValue(0);
4839
4840    NodeTys.clear();
4841    NodeTys.push_back(MVT::f64);    // result of add
4842    NodeTys.push_back(MVT::Glue);   // Returns a flag
4843    Ops[0] = Lo;
4844    Ops[1] = Hi;
4845    Ops[2] = InFlag;
4846    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4847    FPreg = Result.getValue(0);
4848    InFlag = Result.getValue(1);
4849
4850    NodeTys.clear();
4851    NodeTys.push_back(MVT::f64);
4852    Ops[0] = DAG.getConstant(1, MVT::i32);
4853    Ops[1] = MFFSreg;
4854    Ops[2] = FPreg;
4855    Ops[3] = InFlag;
4856    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4857    FPreg = Result.getValue(0);
4858
4859    // We know the low half is about to be thrown away, so just use something
4860    // convenient.
4861    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4862                                FPreg, FPreg));
4863    return;
4864  }
4865  case ISD::FP_TO_SINT:
4866    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4867    return;
4868  }
4869}
4870
4871
4872//===----------------------------------------------------------------------===//
4873//  Other Lowering Code
4874//===----------------------------------------------------------------------===//
4875
4876MachineBasicBlock *
4877PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4878                                    bool is64bit, unsigned BinOpcode) const {
4879  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4880  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4881
4882  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4883  MachineFunction *F = BB->getParent();
4884  MachineFunction::iterator It = BB;
4885  ++It;
4886
4887  unsigned dest = MI->getOperand(0).getReg();
4888  unsigned ptrA = MI->getOperand(1).getReg();
4889  unsigned ptrB = MI->getOperand(2).getReg();
4890  unsigned incr = MI->getOperand(3).getReg();
4891  DebugLoc dl = MI->getDebugLoc();
4892
4893  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4894  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4895  F->insert(It, loopMBB);
4896  F->insert(It, exitMBB);
4897  exitMBB->splice(exitMBB->begin(), BB,
4898                  llvm::next(MachineBasicBlock::iterator(MI)),
4899                  BB->end());
4900  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4901
4902  MachineRegisterInfo &RegInfo = F->getRegInfo();
4903  unsigned TmpReg = (!BinOpcode) ? incr :
4904    RegInfo.createVirtualRegister(
4905       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4906                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4907
4908  //  thisMBB:
4909  //   ...
4910  //   fallthrough --> loopMBB
4911  BB->addSuccessor(loopMBB);
4912
4913  //  loopMBB:
4914  //   l[wd]arx dest, ptr
4915  //   add r0, dest, incr
4916  //   st[wd]cx. r0, ptr
4917  //   bne- loopMBB
4918  //   fallthrough --> exitMBB
4919  BB = loopMBB;
4920  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4921    .addReg(ptrA).addReg(ptrB);
4922  if (BinOpcode)
4923    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4924  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4925    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4926  BuildMI(BB, dl, TII->get(PPC::BCC))
4927    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4928  BB->addSuccessor(loopMBB);
4929  BB->addSuccessor(exitMBB);
4930
4931  //  exitMBB:
4932  //   ...
4933  BB = exitMBB;
4934  return BB;
4935}
4936
4937MachineBasicBlock *
4938PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4939                                            MachineBasicBlock *BB,
4940                                            bool is8bit,    // operation
4941                                            unsigned BinOpcode) const {
4942  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4943  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4944  // In 64 bit mode we have to use 64 bits for addresses, even though the
4945  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4946  // registers without caring whether they're 32 or 64, but here we're
4947  // doing actual arithmetic on the addresses.
4948  bool is64bit = PPCSubTarget.isPPC64();
4949  unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
4950
4951  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4952  MachineFunction *F = BB->getParent();
4953  MachineFunction::iterator It = BB;
4954  ++It;
4955
4956  unsigned dest = MI->getOperand(0).getReg();
4957  unsigned ptrA = MI->getOperand(1).getReg();
4958  unsigned ptrB = MI->getOperand(2).getReg();
4959  unsigned incr = MI->getOperand(3).getReg();
4960  DebugLoc dl = MI->getDebugLoc();
4961
4962  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4963  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4964  F->insert(It, loopMBB);
4965  F->insert(It, exitMBB);
4966  exitMBB->splice(exitMBB->begin(), BB,
4967                  llvm::next(MachineBasicBlock::iterator(MI)),
4968                  BB->end());
4969  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4970
4971  MachineRegisterInfo &RegInfo = F->getRegInfo();
4972  const TargetRegisterClass *RC =
4973    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4974              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4975  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4976  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4977  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4978  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4979  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4980  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4981  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4982  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4983  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4984  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4985  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4986  unsigned Ptr1Reg;
4987  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4988
4989  //  thisMBB:
4990  //   ...
4991  //   fallthrough --> loopMBB
4992  BB->addSuccessor(loopMBB);
4993
4994  // The 4-byte load must be aligned, while a char or short may be
4995  // anywhere in the word.  Hence all this nasty bookkeeping code.
4996  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4997  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4998  //   xori shift, shift1, 24 [16]
4999  //   rlwinm ptr, ptr1, 0, 0, 29
5000  //   slw incr2, incr, shift
5001  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5002  //   slw mask, mask2, shift
5003  //  loopMBB:
5004  //   lwarx tmpDest, ptr
5005  //   add tmp, tmpDest, incr2
5006  //   andc tmp2, tmpDest, mask
5007  //   and tmp3, tmp, mask
5008  //   or tmp4, tmp3, tmp2
5009  //   stwcx. tmp4, ptr
5010  //   bne- loopMBB
5011  //   fallthrough --> exitMBB
5012  //   srw dest, tmpDest, shift
5013  if (ptrA != ZeroReg) {
5014    Ptr1Reg = RegInfo.createVirtualRegister(RC);
5015    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5016      .addReg(ptrA).addReg(ptrB);
5017  } else {
5018    Ptr1Reg = ptrB;
5019  }
5020  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5021      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5022  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5023      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5024  if (is64bit)
5025    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5026      .addReg(Ptr1Reg).addImm(0).addImm(61);
5027  else
5028    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5029      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5030  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
5031      .addReg(incr).addReg(ShiftReg);
5032  if (is8bit)
5033    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5034  else {
5035    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5036    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
5037  }
5038  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5039      .addReg(Mask2Reg).addReg(ShiftReg);
5040
5041  BB = loopMBB;
5042  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5043    .addReg(ZeroReg).addReg(PtrReg);
5044  if (BinOpcode)
5045    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
5046      .addReg(Incr2Reg).addReg(TmpDestReg);
5047  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
5048    .addReg(TmpDestReg).addReg(MaskReg);
5049  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
5050    .addReg(TmpReg).addReg(MaskReg);
5051  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
5052    .addReg(Tmp3Reg).addReg(Tmp2Reg);
5053  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5054    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
5055  BuildMI(BB, dl, TII->get(PPC::BCC))
5056    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5057  BB->addSuccessor(loopMBB);
5058  BB->addSuccessor(exitMBB);
5059
5060  //  exitMBB:
5061  //   ...
5062  BB = exitMBB;
5063  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
5064    .addReg(ShiftReg);
5065  return BB;
5066}
5067
5068MachineBasicBlock *
5069PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5070                                               MachineBasicBlock *BB) const {
5071  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5072
5073  // To "insert" these instructions we actually have to insert their
5074  // control-flow patterns.
5075  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5076  MachineFunction::iterator It = BB;
5077  ++It;
5078
5079  MachineFunction *F = BB->getParent();
5080
5081  if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
5082                                 MI->getOpcode() == PPC::SELECT_CC_I8)) {
5083    unsigned OpCode = MI->getOpcode() == PPC::SELECT_CC_I8 ?
5084                                         PPC::ISEL8 : PPC::ISEL;
5085    unsigned SelectPred = MI->getOperand(4).getImm();
5086    DebugLoc dl = MI->getDebugLoc();
5087
5088    // The SelectPred is ((BI << 5) | BO) for a BCC
5089    unsigned BO = SelectPred & 0xF;
5090    assert((BO == 12 || BO == 4) && "invalid predicate BO field for isel");
5091
5092    unsigned TrueOpNo, FalseOpNo;
5093    if (BO == 12) {
5094      TrueOpNo = 2;
5095      FalseOpNo = 3;
5096    } else {
5097      TrueOpNo = 3;
5098      FalseOpNo = 2;
5099      SelectPred = PPC::InvertPredicate((PPC::Predicate)SelectPred);
5100    }
5101
5102    BuildMI(*BB, MI, dl, TII->get(OpCode), MI->getOperand(0).getReg())
5103      .addReg(MI->getOperand(TrueOpNo).getReg())
5104      .addReg(MI->getOperand(FalseOpNo).getReg())
5105      .addImm(SelectPred).addReg(MI->getOperand(1).getReg());
5106  } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
5107             MI->getOpcode() == PPC::SELECT_CC_I8 ||
5108             MI->getOpcode() == PPC::SELECT_CC_F4 ||
5109             MI->getOpcode() == PPC::SELECT_CC_F8 ||
5110             MI->getOpcode() == PPC::SELECT_CC_VRRC) {
5111
5112
5113    // The incoming instruction knows the destination vreg to set, the
5114    // condition code register to branch on, the true/false values to
5115    // select between, and a branch opcode to use.
5116
5117    //  thisMBB:
5118    //  ...
5119    //   TrueVal = ...
5120    //   cmpTY ccX, r1, r2
5121    //   bCC copy1MBB
5122    //   fallthrough --> copy0MBB
5123    MachineBasicBlock *thisMBB = BB;
5124    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
5125    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
5126    unsigned SelectPred = MI->getOperand(4).getImm();
5127    DebugLoc dl = MI->getDebugLoc();
5128    F->insert(It, copy0MBB);
5129    F->insert(It, sinkMBB);
5130
5131    // Transfer the remainder of BB and its successor edges to sinkMBB.
5132    sinkMBB->splice(sinkMBB->begin(), BB,
5133                    llvm::next(MachineBasicBlock::iterator(MI)),
5134                    BB->end());
5135    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
5136
5137    // Next, add the true and fallthrough blocks as its successors.
5138    BB->addSuccessor(copy0MBB);
5139    BB->addSuccessor(sinkMBB);
5140
5141    BuildMI(BB, dl, TII->get(PPC::BCC))
5142      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
5143
5144    //  copy0MBB:
5145    //   %FalseValue = ...
5146    //   # fallthrough to sinkMBB
5147    BB = copy0MBB;
5148
5149    // Update machine-CFG edges
5150    BB->addSuccessor(sinkMBB);
5151
5152    //  sinkMBB:
5153    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5154    //  ...
5155    BB = sinkMBB;
5156    BuildMI(*BB, BB->begin(), dl,
5157            TII->get(PPC::PHI), MI->getOperand(0).getReg())
5158      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
5159      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5160  }
5161  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
5162    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
5163  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
5164    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
5165  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
5166    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
5167  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
5168    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
5169
5170  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
5171    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
5172  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
5173    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
5174  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
5175    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
5176  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
5177    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
5178
5179  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
5180    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
5181  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
5182    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
5183  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
5184    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
5185  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
5186    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
5187
5188  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
5189    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
5190  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
5191    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
5192  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
5193    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
5194  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
5195    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
5196
5197  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
5198    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
5199  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
5200    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
5201  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
5202    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
5203  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
5204    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
5205
5206  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
5207    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
5208  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
5209    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
5210  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
5211    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
5212  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
5213    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
5214
5215  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
5216    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
5217  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
5218    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
5219  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
5220    BB = EmitAtomicBinary(MI, BB, false, 0);
5221  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
5222    BB = EmitAtomicBinary(MI, BB, true, 0);
5223
5224  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
5225           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
5226    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
5227
5228    unsigned dest   = MI->getOperand(0).getReg();
5229    unsigned ptrA   = MI->getOperand(1).getReg();
5230    unsigned ptrB   = MI->getOperand(2).getReg();
5231    unsigned oldval = MI->getOperand(3).getReg();
5232    unsigned newval = MI->getOperand(4).getReg();
5233    DebugLoc dl     = MI->getDebugLoc();
5234
5235    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
5236    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
5237    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
5238    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5239    F->insert(It, loop1MBB);
5240    F->insert(It, loop2MBB);
5241    F->insert(It, midMBB);
5242    F->insert(It, exitMBB);
5243    exitMBB->splice(exitMBB->begin(), BB,
5244                    llvm::next(MachineBasicBlock::iterator(MI)),
5245                    BB->end());
5246    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5247
5248    //  thisMBB:
5249    //   ...
5250    //   fallthrough --> loopMBB
5251    BB->addSuccessor(loop1MBB);
5252
5253    // loop1MBB:
5254    //   l[wd]arx dest, ptr
5255    //   cmp[wd] dest, oldval
5256    //   bne- midMBB
5257    // loop2MBB:
5258    //   st[wd]cx. newval, ptr
5259    //   bne- loopMBB
5260    //   b exitBB
5261    // midMBB:
5262    //   st[wd]cx. dest, ptr
5263    // exitBB:
5264    BB = loop1MBB;
5265    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5266      .addReg(ptrA).addReg(ptrB);
5267    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
5268      .addReg(oldval).addReg(dest);
5269    BuildMI(BB, dl, TII->get(PPC::BCC))
5270      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5271    BB->addSuccessor(loop2MBB);
5272    BB->addSuccessor(midMBB);
5273
5274    BB = loop2MBB;
5275    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5276      .addReg(newval).addReg(ptrA).addReg(ptrB);
5277    BuildMI(BB, dl, TII->get(PPC::BCC))
5278      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5279    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5280    BB->addSuccessor(loop1MBB);
5281    BB->addSuccessor(exitMBB);
5282
5283    BB = midMBB;
5284    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5285      .addReg(dest).addReg(ptrA).addReg(ptrB);
5286    BB->addSuccessor(exitMBB);
5287
5288    //  exitMBB:
5289    //   ...
5290    BB = exitMBB;
5291  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
5292             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
5293    // We must use 64-bit registers for addresses when targeting 64-bit,
5294    // since we're actually doing arithmetic on them.  Other registers
5295    // can be 32-bit.
5296    bool is64bit = PPCSubTarget.isPPC64();
5297    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
5298
5299    unsigned dest   = MI->getOperand(0).getReg();
5300    unsigned ptrA   = MI->getOperand(1).getReg();
5301    unsigned ptrB   = MI->getOperand(2).getReg();
5302    unsigned oldval = MI->getOperand(3).getReg();
5303    unsigned newval = MI->getOperand(4).getReg();
5304    DebugLoc dl     = MI->getDebugLoc();
5305
5306    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
5307    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
5308    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
5309    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5310    F->insert(It, loop1MBB);
5311    F->insert(It, loop2MBB);
5312    F->insert(It, midMBB);
5313    F->insert(It, exitMBB);
5314    exitMBB->splice(exitMBB->begin(), BB,
5315                    llvm::next(MachineBasicBlock::iterator(MI)),
5316                    BB->end());
5317    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5318
5319    MachineRegisterInfo &RegInfo = F->getRegInfo();
5320    const TargetRegisterClass *RC =
5321      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5322                (const TargetRegisterClass *) &PPC::GPRCRegClass;
5323    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5324    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5325    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5326    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
5327    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
5328    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
5329    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
5330    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5331    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5332    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5333    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5334    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5335    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5336    unsigned Ptr1Reg;
5337    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
5338    unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
5339    //  thisMBB:
5340    //   ...
5341    //   fallthrough --> loopMBB
5342    BB->addSuccessor(loop1MBB);
5343
5344    // The 4-byte load must be aligned, while a char or short may be
5345    // anywhere in the word.  Hence all this nasty bookkeeping code.
5346    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5347    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5348    //   xori shift, shift1, 24 [16]
5349    //   rlwinm ptr, ptr1, 0, 0, 29
5350    //   slw newval2, newval, shift
5351    //   slw oldval2, oldval,shift
5352    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5353    //   slw mask, mask2, shift
5354    //   and newval3, newval2, mask
5355    //   and oldval3, oldval2, mask
5356    // loop1MBB:
5357    //   lwarx tmpDest, ptr
5358    //   and tmp, tmpDest, mask
5359    //   cmpw tmp, oldval3
5360    //   bne- midMBB
5361    // loop2MBB:
5362    //   andc tmp2, tmpDest, mask
5363    //   or tmp4, tmp2, newval3
5364    //   stwcx. tmp4, ptr
5365    //   bne- loop1MBB
5366    //   b exitBB
5367    // midMBB:
5368    //   stwcx. tmpDest, ptr
5369    // exitBB:
5370    //   srw dest, tmpDest, shift
5371    if (ptrA != ZeroReg) {
5372      Ptr1Reg = RegInfo.createVirtualRegister(RC);
5373      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5374        .addReg(ptrA).addReg(ptrB);
5375    } else {
5376      Ptr1Reg = ptrB;
5377    }
5378    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5379        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5380    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5381        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5382    if (is64bit)
5383      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5384        .addReg(Ptr1Reg).addImm(0).addImm(61);
5385    else
5386      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5387        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5388    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
5389        .addReg(newval).addReg(ShiftReg);
5390    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
5391        .addReg(oldval).addReg(ShiftReg);
5392    if (is8bit)
5393      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5394    else {
5395      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5396      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
5397        .addReg(Mask3Reg).addImm(65535);
5398    }
5399    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5400        .addReg(Mask2Reg).addReg(ShiftReg);
5401    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5402        .addReg(NewVal2Reg).addReg(MaskReg);
5403    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5404        .addReg(OldVal2Reg).addReg(MaskReg);
5405
5406    BB = loop1MBB;
5407    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5408        .addReg(ZeroReg).addReg(PtrReg);
5409    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5410        .addReg(TmpDestReg).addReg(MaskReg);
5411    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5412        .addReg(TmpReg).addReg(OldVal3Reg);
5413    BuildMI(BB, dl, TII->get(PPC::BCC))
5414        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5415    BB->addSuccessor(loop2MBB);
5416    BB->addSuccessor(midMBB);
5417
5418    BB = loop2MBB;
5419    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5420        .addReg(TmpDestReg).addReg(MaskReg);
5421    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5422        .addReg(Tmp2Reg).addReg(NewVal3Reg);
5423    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5424        .addReg(ZeroReg).addReg(PtrReg);
5425    BuildMI(BB, dl, TII->get(PPC::BCC))
5426      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5427    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5428    BB->addSuccessor(loop1MBB);
5429    BB->addSuccessor(exitMBB);
5430
5431    BB = midMBB;
5432    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5433      .addReg(ZeroReg).addReg(PtrReg);
5434    BB->addSuccessor(exitMBB);
5435
5436    //  exitMBB:
5437    //   ...
5438    BB = exitMBB;
5439    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
5440      .addReg(ShiftReg);
5441  } else {
5442    llvm_unreachable("Unexpected instr type to insert");
5443  }
5444
5445  MI->eraseFromParent();   // The pseudo instruction is gone now.
5446  return BB;
5447}
5448
5449//===----------------------------------------------------------------------===//
5450// Target Optimization Hooks
5451//===----------------------------------------------------------------------===//
5452
5453SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5454                                             DAGCombinerInfo &DCI) const {
5455  const TargetMachine &TM = getTargetMachine();
5456  SelectionDAG &DAG = DCI.DAG;
5457  DebugLoc dl = N->getDebugLoc();
5458  switch (N->getOpcode()) {
5459  default: break;
5460  case PPCISD::SHL:
5461    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5462      if (C->isNullValue())   // 0 << V -> 0.
5463        return N->getOperand(0);
5464    }
5465    break;
5466  case PPCISD::SRL:
5467    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5468      if (C->isNullValue())   // 0 >>u V -> 0.
5469        return N->getOperand(0);
5470    }
5471    break;
5472  case PPCISD::SRA:
5473    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5474      if (C->isNullValue() ||   //  0 >>s V -> 0.
5475          C->isAllOnesValue())    // -1 >>s V -> -1.
5476        return N->getOperand(0);
5477    }
5478    break;
5479
5480  case ISD::SINT_TO_FP:
5481    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5482      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5483        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5484        // We allow the src/dst to be either f32/f64, but the intermediate
5485        // type must be i64.
5486        if (N->getOperand(0).getValueType() == MVT::i64 &&
5487            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5488          SDValue Val = N->getOperand(0).getOperand(0);
5489          if (Val.getValueType() == MVT::f32) {
5490            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5491            DCI.AddToWorklist(Val.getNode());
5492          }
5493
5494          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5495          DCI.AddToWorklist(Val.getNode());
5496          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5497          DCI.AddToWorklist(Val.getNode());
5498          if (N->getValueType(0) == MVT::f32) {
5499            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5500                              DAG.getIntPtrConstant(0));
5501            DCI.AddToWorklist(Val.getNode());
5502          }
5503          return Val;
5504        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5505          // If the intermediate type is i32, we can avoid the load/store here
5506          // too.
5507        }
5508      }
5509    }
5510    break;
5511  case ISD::STORE:
5512    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5513    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5514        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5515        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5516        N->getOperand(1).getValueType() == MVT::i32 &&
5517        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5518      SDValue Val = N->getOperand(1).getOperand(0);
5519      if (Val.getValueType() == MVT::f32) {
5520        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5521        DCI.AddToWorklist(Val.getNode());
5522      }
5523      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5524      DCI.AddToWorklist(Val.getNode());
5525
5526      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5527                        N->getOperand(2), N->getOperand(3));
5528      DCI.AddToWorklist(Val.getNode());
5529      return Val;
5530    }
5531
5532    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5533    if (cast<StoreSDNode>(N)->isUnindexed() &&
5534        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5535        N->getOperand(1).getNode()->hasOneUse() &&
5536        (N->getOperand(1).getValueType() == MVT::i32 ||
5537         N->getOperand(1).getValueType() == MVT::i16)) {
5538      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5539      // Do an any-extend to 32-bits if this is a half-word input.
5540      if (BSwapOp.getValueType() == MVT::i16)
5541        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5542
5543      SDValue Ops[] = {
5544        N->getOperand(0), BSwapOp, N->getOperand(2),
5545        DAG.getValueType(N->getOperand(1).getValueType())
5546      };
5547      return
5548        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5549                                Ops, array_lengthof(Ops),
5550                                cast<StoreSDNode>(N)->getMemoryVT(),
5551                                cast<StoreSDNode>(N)->getMemOperand());
5552    }
5553    break;
5554  case ISD::BSWAP:
5555    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5556    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5557        N->getOperand(0).hasOneUse() &&
5558        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5559      SDValue Load = N->getOperand(0);
5560      LoadSDNode *LD = cast<LoadSDNode>(Load);
5561      // Create the byte-swapping load.
5562      SDValue Ops[] = {
5563        LD->getChain(),    // Chain
5564        LD->getBasePtr(),  // Ptr
5565        DAG.getValueType(N->getValueType(0)) // VT
5566      };
5567      SDValue BSLoad =
5568        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5569                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5570                                LD->getMemoryVT(), LD->getMemOperand());
5571
5572      // If this is an i16 load, insert the truncate.
5573      SDValue ResVal = BSLoad;
5574      if (N->getValueType(0) == MVT::i16)
5575        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5576
5577      // First, combine the bswap away.  This makes the value produced by the
5578      // load dead.
5579      DCI.CombineTo(N, ResVal);
5580
5581      // Next, combine the load away, we give it a bogus result value but a real
5582      // chain result.  The result value is dead because the bswap is dead.
5583      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5584
5585      // Return N so it doesn't get rechecked!
5586      return SDValue(N, 0);
5587    }
5588
5589    break;
5590  case PPCISD::VCMP: {
5591    // If a VCMPo node already exists with exactly the same operands as this
5592    // node, use its result instead of this node (VCMPo computes both a CR6 and
5593    // a normal output).
5594    //
5595    if (!N->getOperand(0).hasOneUse() &&
5596        !N->getOperand(1).hasOneUse() &&
5597        !N->getOperand(2).hasOneUse()) {
5598
5599      // Scan all of the users of the LHS, looking for VCMPo's that match.
5600      SDNode *VCMPoNode = 0;
5601
5602      SDNode *LHSN = N->getOperand(0).getNode();
5603      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5604           UI != E; ++UI)
5605        if (UI->getOpcode() == PPCISD::VCMPo &&
5606            UI->getOperand(1) == N->getOperand(1) &&
5607            UI->getOperand(2) == N->getOperand(2) &&
5608            UI->getOperand(0) == N->getOperand(0)) {
5609          VCMPoNode = *UI;
5610          break;
5611        }
5612
5613      // If there is no VCMPo node, or if the flag value has a single use, don't
5614      // transform this.
5615      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5616        break;
5617
5618      // Look at the (necessarily single) use of the flag value.  If it has a
5619      // chain, this transformation is more complex.  Note that multiple things
5620      // could use the value result, which we should ignore.
5621      SDNode *FlagUser = 0;
5622      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5623           FlagUser == 0; ++UI) {
5624        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5625        SDNode *User = *UI;
5626        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5627          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5628            FlagUser = User;
5629            break;
5630          }
5631        }
5632      }
5633
5634      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5635      // give up for right now.
5636      if (FlagUser->getOpcode() == PPCISD::MFCR)
5637        return SDValue(VCMPoNode, 0);
5638    }
5639    break;
5640  }
5641  case ISD::BR_CC: {
5642    // If this is a branch on an altivec predicate comparison, lower this so
5643    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5644    // lowering is done pre-legalize, because the legalizer lowers the predicate
5645    // compare down to code that is difficult to reassemble.
5646    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5647    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5648    int CompareOpc;
5649    bool isDot;
5650
5651    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5652        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5653        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5654      assert(isDot && "Can't compare against a vector result!");
5655
5656      // If this is a comparison against something other than 0/1, then we know
5657      // that the condition is never/always true.
5658      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5659      if (Val != 0 && Val != 1) {
5660        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5661          return N->getOperand(0);
5662        // Always !=, turn it into an unconditional branch.
5663        return DAG.getNode(ISD::BR, dl, MVT::Other,
5664                           N->getOperand(0), N->getOperand(4));
5665      }
5666
5667      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5668
5669      // Create the PPCISD altivec 'dot' comparison node.
5670      std::vector<EVT> VTs;
5671      SDValue Ops[] = {
5672        LHS.getOperand(2),  // LHS of compare
5673        LHS.getOperand(3),  // RHS of compare
5674        DAG.getConstant(CompareOpc, MVT::i32)
5675      };
5676      VTs.push_back(LHS.getOperand(2).getValueType());
5677      VTs.push_back(MVT::Glue);
5678      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5679
5680      // Unpack the result based on how the target uses it.
5681      PPC::Predicate CompOpc;
5682      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5683      default:  // Can't happen, don't crash on invalid number though.
5684      case 0:   // Branch on the value of the EQ bit of CR6.
5685        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5686        break;
5687      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5688        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5689        break;
5690      case 2:   // Branch on the value of the LT bit of CR6.
5691        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5692        break;
5693      case 3:   // Branch on the inverted value of the LT bit of CR6.
5694        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5695        break;
5696      }
5697
5698      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5699                         DAG.getConstant(CompOpc, MVT::i32),
5700                         DAG.getRegister(PPC::CR6, MVT::i32),
5701                         N->getOperand(4), CompNode.getValue(1));
5702    }
5703    break;
5704  }
5705  }
5706
5707  return SDValue();
5708}
5709
5710//===----------------------------------------------------------------------===//
5711// Inline Assembly Support
5712//===----------------------------------------------------------------------===//
5713
5714void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5715                                                       APInt &KnownZero,
5716                                                       APInt &KnownOne,
5717                                                       const SelectionDAG &DAG,
5718                                                       unsigned Depth) const {
5719  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
5720  switch (Op.getOpcode()) {
5721  default: break;
5722  case PPCISD::LBRX: {
5723    // lhbrx is known to have the top bits cleared out.
5724    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5725      KnownZero = 0xFFFF0000;
5726    break;
5727  }
5728  case ISD::INTRINSIC_WO_CHAIN: {
5729    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5730    default: break;
5731    case Intrinsic::ppc_altivec_vcmpbfp_p:
5732    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5733    case Intrinsic::ppc_altivec_vcmpequb_p:
5734    case Intrinsic::ppc_altivec_vcmpequh_p:
5735    case Intrinsic::ppc_altivec_vcmpequw_p:
5736    case Intrinsic::ppc_altivec_vcmpgefp_p:
5737    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5738    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5739    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5740    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5741    case Intrinsic::ppc_altivec_vcmpgtub_p:
5742    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5743    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5744      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5745      break;
5746    }
5747  }
5748  }
5749}
5750
5751
5752/// getConstraintType - Given a constraint, return the type of
5753/// constraint it is for this target.
5754PPCTargetLowering::ConstraintType
5755PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5756  if (Constraint.size() == 1) {
5757    switch (Constraint[0]) {
5758    default: break;
5759    case 'b':
5760    case 'r':
5761    case 'f':
5762    case 'v':
5763    case 'y':
5764      return C_RegisterClass;
5765    }
5766  }
5767  return TargetLowering::getConstraintType(Constraint);
5768}
5769
5770/// Examine constraint type and operand type and determine a weight value.
5771/// This object must already have been set up with the operand type
5772/// and the current alternative constraint selected.
5773TargetLowering::ConstraintWeight
5774PPCTargetLowering::getSingleConstraintMatchWeight(
5775    AsmOperandInfo &info, const char *constraint) const {
5776  ConstraintWeight weight = CW_Invalid;
5777  Value *CallOperandVal = info.CallOperandVal;
5778    // If we don't have a value, we can't do a match,
5779    // but allow it at the lowest weight.
5780  if (CallOperandVal == NULL)
5781    return CW_Default;
5782  Type *type = CallOperandVal->getType();
5783  // Look at the constraint type.
5784  switch (*constraint) {
5785  default:
5786    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5787    break;
5788  case 'b':
5789    if (type->isIntegerTy())
5790      weight = CW_Register;
5791    break;
5792  case 'f':
5793    if (type->isFloatTy())
5794      weight = CW_Register;
5795    break;
5796  case 'd':
5797    if (type->isDoubleTy())
5798      weight = CW_Register;
5799    break;
5800  case 'v':
5801    if (type->isVectorTy())
5802      weight = CW_Register;
5803    break;
5804  case 'y':
5805    weight = CW_Register;
5806    break;
5807  }
5808  return weight;
5809}
5810
5811std::pair<unsigned, const TargetRegisterClass*>
5812PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5813                                                EVT VT) const {
5814  if (Constraint.size() == 1) {
5815    // GCC RS6000 Constraint Letters
5816    switch (Constraint[0]) {
5817    case 'b':   // R1-R31
5818    case 'r':   // R0-R31
5819      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5820        return std::make_pair(0U, &PPC::G8RCRegClass);
5821      return std::make_pair(0U, &PPC::GPRCRegClass);
5822    case 'f':
5823      if (VT == MVT::f32)
5824        return std::make_pair(0U, &PPC::F4RCRegClass);
5825      if (VT == MVT::f64)
5826        return std::make_pair(0U, &PPC::F8RCRegClass);
5827      break;
5828    case 'v':
5829      return std::make_pair(0U, &PPC::VRRCRegClass);
5830    case 'y':   // crrc
5831      return std::make_pair(0U, &PPC::CRRCRegClass);
5832    }
5833  }
5834
5835  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5836}
5837
5838
5839/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5840/// vector.  If it is invalid, don't add anything to Ops.
5841void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5842                                                     std::string &Constraint,
5843                                                     std::vector<SDValue>&Ops,
5844                                                     SelectionDAG &DAG) const {
5845  SDValue Result(0,0);
5846
5847  // Only support length 1 constraints.
5848  if (Constraint.length() > 1) return;
5849
5850  char Letter = Constraint[0];
5851  switch (Letter) {
5852  default: break;
5853  case 'I':
5854  case 'J':
5855  case 'K':
5856  case 'L':
5857  case 'M':
5858  case 'N':
5859  case 'O':
5860  case 'P': {
5861    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5862    if (!CST) return; // Must be an immediate to match.
5863    unsigned Value = CST->getZExtValue();
5864    switch (Letter) {
5865    default: llvm_unreachable("Unknown constraint letter!");
5866    case 'I':  // "I" is a signed 16-bit constant.
5867      if ((short)Value == (int)Value)
5868        Result = DAG.getTargetConstant(Value, Op.getValueType());
5869      break;
5870    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5871    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5872      if ((short)Value == 0)
5873        Result = DAG.getTargetConstant(Value, Op.getValueType());
5874      break;
5875    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5876      if ((Value >> 16) == 0)
5877        Result = DAG.getTargetConstant(Value, Op.getValueType());
5878      break;
5879    case 'M':  // "M" is a constant that is greater than 31.
5880      if (Value > 31)
5881        Result = DAG.getTargetConstant(Value, Op.getValueType());
5882      break;
5883    case 'N':  // "N" is a positive constant that is an exact power of two.
5884      if ((int)Value > 0 && isPowerOf2_32(Value))
5885        Result = DAG.getTargetConstant(Value, Op.getValueType());
5886      break;
5887    case 'O':  // "O" is the constant zero.
5888      if (Value == 0)
5889        Result = DAG.getTargetConstant(Value, Op.getValueType());
5890      break;
5891    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5892      if ((short)-Value == (int)-Value)
5893        Result = DAG.getTargetConstant(Value, Op.getValueType());
5894      break;
5895    }
5896    break;
5897  }
5898  }
5899
5900  if (Result.getNode()) {
5901    Ops.push_back(Result);
5902    return;
5903  }
5904
5905  // Handle standard constraint letters.
5906  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5907}
5908
5909// isLegalAddressingMode - Return true if the addressing mode represented
5910// by AM is legal for this target, for a load/store of the specified type.
5911bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5912                                              Type *Ty) const {
5913  // FIXME: PPC does not allow r+i addressing modes for vectors!
5914
5915  // PPC allows a sign-extended 16-bit immediate field.
5916  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5917    return false;
5918
5919  // No global is ever allowed as a base.
5920  if (AM.BaseGV)
5921    return false;
5922
5923  // PPC only support r+r,
5924  switch (AM.Scale) {
5925  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5926    break;
5927  case 1:
5928    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5929      return false;
5930    // Otherwise we have r+r or r+i.
5931    break;
5932  case 2:
5933    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5934      return false;
5935    // Allow 2*r as r+r.
5936    break;
5937  default:
5938    // No other scales are supported.
5939    return false;
5940  }
5941
5942  return true;
5943}
5944
5945/// isLegalAddressImmediate - Return true if the integer value can be used
5946/// as the offset of the target addressing mode for load / store of the
5947/// given type.
5948bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
5949  // PPC allows a sign-extended 16-bit immediate field.
5950  return (V > -(1 << 16) && V < (1 << 16)-1);
5951}
5952
5953bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const {
5954  return false;
5955}
5956
5957SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5958                                           SelectionDAG &DAG) const {
5959  MachineFunction &MF = DAG.getMachineFunction();
5960  MachineFrameInfo *MFI = MF.getFrameInfo();
5961  MFI->setReturnAddressIsTaken(true);
5962
5963  DebugLoc dl = Op.getDebugLoc();
5964  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5965
5966  // Make sure the function does not optimize away the store of the RA to
5967  // the stack.
5968  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5969  FuncInfo->setLRStoreRequired();
5970  bool isPPC64 = PPCSubTarget.isPPC64();
5971  bool isDarwinABI = PPCSubTarget.isDarwinABI();
5972
5973  if (Depth > 0) {
5974    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5975    SDValue Offset =
5976
5977      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
5978                      isPPC64? MVT::i64 : MVT::i32);
5979    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5980                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
5981                                   FrameAddr, Offset),
5982                       MachinePointerInfo(), false, false, false, 0);
5983  }
5984
5985  // Just load the return address off the stack.
5986  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5987  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5988                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
5989}
5990
5991SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5992                                          SelectionDAG &DAG) const {
5993  DebugLoc dl = Op.getDebugLoc();
5994  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5995
5996  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5997  bool isPPC64 = PtrVT == MVT::i64;
5998
5999  MachineFunction &MF = DAG.getMachineFunction();
6000  MachineFrameInfo *MFI = MF.getFrameInfo();
6001  MFI->setFrameAddressIsTaken(true);
6002  bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) ||
6003               MFI->hasVarSizedObjects()) &&
6004                  MFI->getStackSize() &&
6005                  !MF.getFunction()->getFnAttributes().hasNakedAttr();
6006  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
6007                                (is31 ? PPC::R31 : PPC::R1);
6008  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
6009                                         PtrVT);
6010  while (Depth--)
6011    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
6012                            FrameAddr, MachinePointerInfo(), false, false,
6013                            false, 0);
6014  return FrameAddr;
6015}
6016
6017bool
6018PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
6019  // The PowerPC target isn't yet aware of offsets.
6020  return false;
6021}
6022
6023/// getOptimalMemOpType - Returns the target specific optimal type for load
6024/// and store operations as a result of memset, memcpy, and memmove
6025/// lowering. If DstAlign is zero that means it's safe to destination
6026/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
6027/// means there isn't a need to check it against alignment requirement,
6028/// probably because the source does not need to be loaded. If
6029/// 'IsZeroVal' is true, that means it's safe to return a
6030/// non-scalar-integer type, e.g. empty string source, constant, or loaded
6031/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
6032/// constant so it does not need to be loaded.
6033/// It returns EVT::Other if the type should be determined using generic
6034/// target-independent logic.
6035EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
6036                                           unsigned DstAlign, unsigned SrcAlign,
6037                                           bool IsZeroVal,
6038                                           bool MemcpyStrSrc,
6039                                           MachineFunction &MF) const {
6040  if (this->PPCSubTarget.isPPC64()) {
6041    return MVT::i64;
6042  } else {
6043    return MVT::i32;
6044  }
6045}
6046
6047/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
6048/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
6049/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
6050/// is expanded to mul + add.
6051bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const {
6052  if (!VT.isSimple())
6053    return false;
6054
6055  switch (VT.getSimpleVT().SimpleTy) {
6056  case MVT::f32:
6057  case MVT::f64:
6058  case MVT::v4f32:
6059    return true;
6060  default:
6061    break;
6062  }
6063
6064  return false;
6065}
6066
6067Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
6068  if (DisableILPPref)
6069    return TargetLowering::getSchedulingPreference(N);
6070
6071  return Sched::ILP;
6072}
6073
6074