1//===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the ARM addressing mode implementation stuff.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
15#define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
16
17#include "llvm/ADT/APFloat.h"
18#include "llvm/ADT/APInt.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22
23namespace llvm {
24
25/// ARM_AM - ARM Addressing Mode Stuff
26namespace ARM_AM {
27  enum ShiftOpc {
28    no_shift = 0,
29    asr,
30    lsl,
31    lsr,
32    ror,
33    rrx
34  };
35
36  enum AddrOpc {
37    sub = 0,
38    add
39  };
40
41  static inline const char *getAddrOpcStr(AddrOpc Op) {
42    return Op == sub ? "-" : "";
43  }
44
45  static inline const char *getShiftOpcStr(ShiftOpc Op) {
46    switch (Op) {
47    default: llvm_unreachable("Unknown shift opc!");
48    case ARM_AM::asr: return "asr";
49    case ARM_AM::lsl: return "lsl";
50    case ARM_AM::lsr: return "lsr";
51    case ARM_AM::ror: return "ror";
52    case ARM_AM::rrx: return "rrx";
53    }
54  }
55
56  static inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
57    switch (Op) {
58    default: llvm_unreachable("Unknown shift opc!");
59    case ARM_AM::asr: return 2;
60    case ARM_AM::lsl: return 0;
61    case ARM_AM::lsr: return 1;
62    case ARM_AM::ror: return 3;
63    }
64  }
65
66  enum AMSubMode {
67    bad_am_submode = 0,
68    ia,
69    ib,
70    da,
71    db
72  };
73
74  static inline const char *getAMSubModeStr(AMSubMode Mode) {
75    switch (Mode) {
76    default: llvm_unreachable("Unknown addressing sub-mode!");
77    case ARM_AM::ia: return "ia";
78    case ARM_AM::ib: return "ib";
79    case ARM_AM::da: return "da";
80    case ARM_AM::db: return "db";
81    }
82  }
83
84  /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
85  ///
86  static inline unsigned rotr32(unsigned Val, unsigned Amt) {
87    assert(Amt < 32 && "Invalid rotate amount");
88    return (Val >> Amt) | (Val << ((32-Amt)&31));
89  }
90
91  /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
92  ///
93  static inline unsigned rotl32(unsigned Val, unsigned Amt) {
94    assert(Amt < 32 && "Invalid rotate amount");
95    return (Val << Amt) | (Val >> ((32-Amt)&31));
96  }
97
98  //===--------------------------------------------------------------------===//
99  // Addressing Mode #1: shift_operand with registers
100  //===--------------------------------------------------------------------===//
101  //
102  // This 'addressing mode' is used for arithmetic instructions.  It can
103  // represent things like:
104  //   reg
105  //   reg [asr|lsl|lsr|ror|rrx] reg
106  //   reg [asr|lsl|lsr|ror|rrx] imm
107  //
108  // This is stored three operands [rega, regb, opc].  The first is the base
109  // reg, the second is the shift amount (or reg0 if not present or imm).  The
110  // third operand encodes the shift opcode and the imm if a reg isn't present.
111  //
112  static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
113    return ShOp | (Imm << 3);
114  }
115  static inline unsigned getSORegOffset(unsigned Op) {
116    return Op >> 3;
117  }
118  static inline ShiftOpc getSORegShOp(unsigned Op) {
119    return (ShiftOpc)(Op & 7);
120  }
121
122  /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
123  /// the 8-bit imm value.
124  static inline unsigned getSOImmValImm(unsigned Imm) {
125    return Imm & 0xFF;
126  }
127  /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
128  /// the rotate amount.
129  static inline unsigned getSOImmValRot(unsigned Imm) {
130    return (Imm >> 8) * 2;
131  }
132
133  /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
134  /// computing the rotate amount to use.  If this immediate value cannot be
135  /// handled with a single shifter-op, determine a good rotate amount that will
136  /// take a maximal chunk of bits out of the immediate.
137  static inline unsigned getSOImmValRotate(unsigned Imm) {
138    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
139    // of zero.
140    if ((Imm & ~255U) == 0) return 0;
141
142    // Use CTZ to compute the rotate amount.
143    unsigned TZ = CountTrailingZeros_32(Imm);
144
145    // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
146    // not 9.
147    unsigned RotAmt = TZ & ~1;
148
149    // If we can handle this spread, return it.
150    if ((rotr32(Imm, RotAmt) & ~255U) == 0)
151      return (32-RotAmt)&31;  // HW rotates right, not left.
152
153    // For values like 0xF000000F, we should ignore the low 6 bits, then
154    // retry the hunt.
155    if (Imm & 63U) {
156      unsigned TZ2 = CountTrailingZeros_32(Imm & ~63U);
157      unsigned RotAmt2 = TZ2 & ~1;
158      if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
159        return (32-RotAmt2)&31;  // HW rotates right, not left.
160    }
161
162    // Otherwise, we have no way to cover this span of bits with a single
163    // shifter_op immediate.  Return a chunk of bits that will be useful to
164    // handle.
165    return (32-RotAmt)&31;  // HW rotates right, not left.
166  }
167
168  /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
169  /// into an shifter_operand immediate operand, return the 12-bit encoding for
170  /// it.  If not, return -1.
171  static inline int getSOImmVal(unsigned Arg) {
172    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
173    // of zero.
174    if ((Arg & ~255U) == 0) return Arg;
175
176    unsigned RotAmt = getSOImmValRotate(Arg);
177
178    // If this cannot be handled with a single shifter_op, bail out.
179    if (rotr32(~255U, RotAmt) & Arg)
180      return -1;
181
182    // Encode this correctly.
183    return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
184  }
185
186  /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
187  /// or'ing together two SOImmVal's.
188  static inline bool isSOImmTwoPartVal(unsigned V) {
189    // If this can be handled with a single shifter_op, bail out.
190    V = rotr32(~255U, getSOImmValRotate(V)) & V;
191    if (V == 0)
192      return false;
193
194    // If this can be handled with two shifter_op's, accept.
195    V = rotr32(~255U, getSOImmValRotate(V)) & V;
196    return V == 0;
197  }
198
199  /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
200  /// return the first chunk of it.
201  static inline unsigned getSOImmTwoPartFirst(unsigned V) {
202    return rotr32(255U, getSOImmValRotate(V)) & V;
203  }
204
205  /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
206  /// return the second chunk of it.
207  static inline unsigned getSOImmTwoPartSecond(unsigned V) {
208    // Mask out the first hunk.
209    V = rotr32(~255U, getSOImmValRotate(V)) & V;
210
211    // Take what's left.
212    assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
213    return V;
214  }
215
216  /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
217  /// by a left shift. Returns the shift amount to use.
218  static inline unsigned getThumbImmValShift(unsigned Imm) {
219    // 8-bit (or less) immediates are trivially immediate operand with a shift
220    // of zero.
221    if ((Imm & ~255U) == 0) return 0;
222
223    // Use CTZ to compute the shift amount.
224    return CountTrailingZeros_32(Imm);
225  }
226
227  /// isThumbImmShiftedVal - Return true if the specified value can be obtained
228  /// by left shifting a 8-bit immediate.
229  static inline bool isThumbImmShiftedVal(unsigned V) {
230    // If this can be handled with
231    V = (~255U << getThumbImmValShift(V)) & V;
232    return V == 0;
233  }
234
235  /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
236  /// by a left shift. Returns the shift amount to use.
237  static inline unsigned getThumbImm16ValShift(unsigned Imm) {
238    // 16-bit (or less) immediates are trivially immediate operand with a shift
239    // of zero.
240    if ((Imm & ~65535U) == 0) return 0;
241
242    // Use CTZ to compute the shift amount.
243    return CountTrailingZeros_32(Imm);
244  }
245
246  /// isThumbImm16ShiftedVal - Return true if the specified value can be
247  /// obtained by left shifting a 16-bit immediate.
248  static inline bool isThumbImm16ShiftedVal(unsigned V) {
249    // If this can be handled with
250    V = (~65535U << getThumbImm16ValShift(V)) & V;
251    return V == 0;
252  }
253
254  /// getThumbImmNonShiftedVal - If V is a value that satisfies
255  /// isThumbImmShiftedVal, return the non-shiftd value.
256  static inline unsigned getThumbImmNonShiftedVal(unsigned V) {
257    return V >> getThumbImmValShift(V);
258  }
259
260
261  /// getT2SOImmValSplat - Return the 12-bit encoded representation
262  /// if the specified value can be obtained by splatting the low 8 bits
263  /// into every other byte or every byte of a 32-bit value. i.e.,
264  ///     00000000 00000000 00000000 abcdefgh    control = 0
265  ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
266  ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
267  ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
268  /// Return -1 if none of the above apply.
269  /// See ARM Reference Manual A6.3.2.
270  static inline int getT2SOImmValSplatVal(unsigned V) {
271    unsigned u, Vs, Imm;
272    // control = 0
273    if ((V & 0xffffff00) == 0)
274      return V;
275
276    // If the value is zeroes in the first byte, just shift those off
277    Vs = ((V & 0xff) == 0) ? V >> 8 : V;
278    // Any passing value only has 8 bits of payload, splatted across the word
279    Imm = Vs & 0xff;
280    // Likewise, any passing values have the payload splatted into the 3rd byte
281    u = Imm | (Imm << 16);
282
283    // control = 1 or 2
284    if (Vs == u)
285      return (((Vs == V) ? 1 : 2) << 8) | Imm;
286
287    // control = 3
288    if (Vs == (u | (u << 8)))
289      return (3 << 8) | Imm;
290
291    return -1;
292  }
293
294  /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
295  /// specified value is a rotated 8-bit value. Return -1 if no rotation
296  /// encoding is possible.
297  /// See ARM Reference Manual A6.3.2.
298  static inline int getT2SOImmValRotateVal(unsigned V) {
299    unsigned RotAmt = CountLeadingZeros_32(V);
300    if (RotAmt >= 24)
301      return -1;
302
303    // If 'Arg' can be handled with a single shifter_op return the value.
304    if ((rotr32(0xff000000U, RotAmt) & V) == V)
305      return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
306
307    return -1;
308  }
309
310  /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
311  /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
312  /// encoding for it.  If not, return -1.
313  /// See ARM Reference Manual A6.3.2.
314  static inline int getT2SOImmVal(unsigned Arg) {
315    // If 'Arg' is an 8-bit splat, then get the encoded value.
316    int Splat = getT2SOImmValSplatVal(Arg);
317    if (Splat != -1)
318      return Splat;
319
320    // If 'Arg' can be handled with a single shifter_op return the value.
321    int Rot = getT2SOImmValRotateVal(Arg);
322    if (Rot != -1)
323      return Rot;
324
325    return -1;
326  }
327
328  static inline unsigned getT2SOImmValRotate(unsigned V) {
329    if ((V & ~255U) == 0) return 0;
330    // Use CTZ to compute the rotate amount.
331    unsigned RotAmt = CountTrailingZeros_32(V);
332    return (32 - RotAmt) & 31;
333  }
334
335  static inline bool isT2SOImmTwoPartVal (unsigned Imm) {
336    unsigned V = Imm;
337    // Passing values can be any combination of splat values and shifter
338    // values. If this can be handled with a single shifter or splat, bail
339    // out. Those should be handled directly, not with a two-part val.
340    if (getT2SOImmValSplatVal(V) != -1)
341      return false;
342    V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
343    if (V == 0)
344      return false;
345
346    // If this can be handled as an immediate, accept.
347    if (getT2SOImmVal(V) != -1) return true;
348
349    // Likewise, try masking out a splat value first.
350    V = Imm;
351    if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
352      V &= ~0xff00ff00U;
353    else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
354      V &= ~0x00ff00ffU;
355    // If what's left can be handled as an immediate, accept.
356    if (getT2SOImmVal(V) != -1) return true;
357
358    // Otherwise, do not accept.
359    return false;
360  }
361
362  static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
363    assert (isT2SOImmTwoPartVal(Imm) &&
364            "Immedate cannot be encoded as two part immediate!");
365    // Try a shifter operand as one part
366    unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
367    // If the rest is encodable as an immediate, then return it.
368    if (getT2SOImmVal(V) != -1) return V;
369
370    // Try masking out a splat value first.
371    if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
372      return Imm & 0xff00ff00U;
373
374    // The other splat is all that's left as an option.
375    assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
376    return Imm & 0x00ff00ffU;
377  }
378
379  static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
380    // Mask out the first hunk
381    Imm ^= getT2SOImmTwoPartFirst(Imm);
382    // Return what's left
383    assert (getT2SOImmVal(Imm) != -1 &&
384            "Unable to encode second part of T2 two part SO immediate");
385    return Imm;
386  }
387
388
389  //===--------------------------------------------------------------------===//
390  // Addressing Mode #2
391  //===--------------------------------------------------------------------===//
392  //
393  // This is used for most simple load/store instructions.
394  //
395  // addrmode2 := reg +/- reg shop imm
396  // addrmode2 := reg +/- imm12
397  //
398  // The first operand is always a Reg.  The second operand is a reg if in
399  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
400  // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
401  // fourth operand 16-17 encodes the index mode.
402  //
403  // If this addressing mode is a frame index (before prolog/epilog insertion
404  // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
405  // with no shift amount for the frame offset.
406  //
407  static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
408                                   unsigned IdxMode = 0) {
409    assert(Imm12 < (1 << 12) && "Imm too large!");
410    bool isSub = Opc == sub;
411    return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
412  }
413  static inline unsigned getAM2Offset(unsigned AM2Opc) {
414    return AM2Opc & ((1 << 12)-1);
415  }
416  static inline AddrOpc getAM2Op(unsigned AM2Opc) {
417    return ((AM2Opc >> 12) & 1) ? sub : add;
418  }
419  static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
420    return (ShiftOpc)((AM2Opc >> 13) & 7);
421  }
422  static inline unsigned getAM2IdxMode(unsigned AM2Opc) {
423    return (AM2Opc >> 16);
424  }
425
426
427  //===--------------------------------------------------------------------===//
428  // Addressing Mode #3
429  //===--------------------------------------------------------------------===//
430  //
431  // This is used for sign-extending loads, and load/store-pair instructions.
432  //
433  // addrmode3 := reg +/- reg
434  // addrmode3 := reg +/- imm8
435  //
436  // The first operand is always a Reg.  The second operand is a reg if in
437  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
438  // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
439  // index mode.
440
441  /// getAM3Opc - This function encodes the addrmode3 opc field.
442  static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
443                                   unsigned IdxMode = 0) {
444    bool isSub = Opc == sub;
445    return ((int)isSub << 8) | Offset | (IdxMode << 9);
446  }
447  static inline unsigned char getAM3Offset(unsigned AM3Opc) {
448    return AM3Opc & 0xFF;
449  }
450  static inline AddrOpc getAM3Op(unsigned AM3Opc) {
451    return ((AM3Opc >> 8) & 1) ? sub : add;
452  }
453  static inline unsigned getAM3IdxMode(unsigned AM3Opc) {
454    return (AM3Opc >> 9);
455  }
456
457  //===--------------------------------------------------------------------===//
458  // Addressing Mode #4
459  //===--------------------------------------------------------------------===//
460  //
461  // This is used for load / store multiple instructions.
462  //
463  // addrmode4 := reg, <mode>
464  //
465  // The four modes are:
466  //    IA - Increment after
467  //    IB - Increment before
468  //    DA - Decrement after
469  //    DB - Decrement before
470  // For VFP instructions, only the IA and DB modes are valid.
471
472  static inline AMSubMode getAM4SubMode(unsigned Mode) {
473    return (AMSubMode)(Mode & 0x7);
474  }
475
476  static inline unsigned getAM4ModeImm(AMSubMode SubMode) {
477    return (int)SubMode;
478  }
479
480  //===--------------------------------------------------------------------===//
481  // Addressing Mode #5
482  //===--------------------------------------------------------------------===//
483  //
484  // This is used for coprocessor instructions, such as FP load/stores.
485  //
486  // addrmode5 := reg +/- imm8*4
487  //
488  // The first operand is always a Reg.  The second operand encodes the
489  // operation in bit 8 and the immediate in bits 0-7.
490
491  /// getAM5Opc - This function encodes the addrmode5 opc field.
492  static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
493    bool isSub = Opc == sub;
494    return ((int)isSub << 8) | Offset;
495  }
496  static inline unsigned char getAM5Offset(unsigned AM5Opc) {
497    return AM5Opc & 0xFF;
498  }
499  static inline AddrOpc getAM5Op(unsigned AM5Opc) {
500    return ((AM5Opc >> 8) & 1) ? sub : add;
501  }
502
503  //===--------------------------------------------------------------------===//
504  // Addressing Mode #6
505  //===--------------------------------------------------------------------===//
506  //
507  // This is used for NEON load / store instructions.
508  //
509  // addrmode6 := reg with optional alignment
510  //
511  // This is stored in two operands [regaddr, align].  The first is the
512  // address register.  The second operand is the value of the alignment
513  // specifier in bytes or zero if no explicit alignment.
514  // Valid alignments depend on the specific instruction.
515
516  //===--------------------------------------------------------------------===//
517  // NEON Modified Immediates
518  //===--------------------------------------------------------------------===//
519  //
520  // Several NEON instructions (e.g., VMOV) take a "modified immediate"
521  // vector operand, where a small immediate encoded in the instruction
522  // specifies a full NEON vector value.  These modified immediates are
523  // represented here as encoded integers.  The low 8 bits hold the immediate
524  // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
525  // the "Cmode" field of the instruction.  The interfaces below treat the
526  // Op and Cmode values as a single 5-bit value.
527
528  static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) {
529    return (OpCmode << 8) | Val;
530  }
531  static inline unsigned getNEONModImmOpCmode(unsigned ModImm) {
532    return (ModImm >> 8) & 0x1f;
533  }
534  static inline unsigned getNEONModImmVal(unsigned ModImm) {
535    return ModImm & 0xff;
536  }
537
538  /// decodeNEONModImm - Decode a NEON modified immediate value into the
539  /// element value and the element size in bits.  (If the element size is
540  /// smaller than the vector, it is splatted into all the elements.)
541  static inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) {
542    unsigned OpCmode = getNEONModImmOpCmode(ModImm);
543    unsigned Imm8 = getNEONModImmVal(ModImm);
544    uint64_t Val = 0;
545
546    if (OpCmode == 0xe) {
547      // 8-bit vector elements
548      Val = Imm8;
549      EltBits = 8;
550    } else if ((OpCmode & 0xc) == 0x8) {
551      // 16-bit vector elements
552      unsigned ByteNum = (OpCmode & 0x6) >> 1;
553      Val = Imm8 << (8 * ByteNum);
554      EltBits = 16;
555    } else if ((OpCmode & 0x8) == 0) {
556      // 32-bit vector elements, zero with one byte set
557      unsigned ByteNum = (OpCmode & 0x6) >> 1;
558      Val = Imm8 << (8 * ByteNum);
559      EltBits = 32;
560    } else if ((OpCmode & 0xe) == 0xc) {
561      // 32-bit vector elements, one byte with low bits set
562      unsigned ByteNum = 1 + (OpCmode & 0x1);
563      Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
564      EltBits = 32;
565    } else if (OpCmode == 0x1e) {
566      // 64-bit vector elements
567      for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
568        if ((ModImm >> ByteNum) & 1)
569          Val |= (uint64_t)0xff << (8 * ByteNum);
570      }
571      EltBits = 64;
572    } else {
573      llvm_unreachable("Unsupported NEON immediate");
574    }
575    return Val;
576  }
577
578  AMSubMode getLoadStoreMultipleSubMode(int Opcode);
579
580  //===--------------------------------------------------------------------===//
581  // Floating-point Immediates
582  //
583  static inline float getFPImmFloat(unsigned Imm) {
584    // We expect an 8-bit binary encoding of a floating-point number here.
585    union {
586      uint32_t I;
587      float F;
588    } FPUnion;
589
590    uint8_t Sign = (Imm >> 7) & 0x1;
591    uint8_t Exp = (Imm >> 4) & 0x7;
592    uint8_t Mantissa = Imm & 0xf;
593
594    //   8-bit FP    iEEEE Float Encoding
595    //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
596    //
597    // where B = NOT(b);
598
599    FPUnion.I = 0;
600    FPUnion.I |= Sign << 31;
601    FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
602    FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
603    FPUnion.I |= (Exp & 0x3) << 23;
604    FPUnion.I |= Mantissa << 19;
605    return FPUnion.F;
606  }
607
608  /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
609  /// floating-point value. If the value cannot be represented as an 8-bit
610  /// floating-point value, then return -1.
611  static inline int getFP32Imm(const APInt &Imm) {
612    uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
613    int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
614    int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
615
616    // We can handle 4 bits of mantissa.
617    // mantissa = (16+UInt(e:f:g:h))/16.
618    if (Mantissa & 0x7ffff)
619      return -1;
620    Mantissa >>= 19;
621    if ((Mantissa & 0xf) != Mantissa)
622      return -1;
623
624    // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
625    if (Exp < -3 || Exp > 4)
626      return -1;
627    Exp = ((Exp+3) & 0x7) ^ 4;
628
629    return ((int)Sign << 7) | (Exp << 4) | Mantissa;
630  }
631
632  static inline int getFP32Imm(const APFloat &FPImm) {
633    return getFP32Imm(FPImm.bitcastToAPInt());
634  }
635
636  /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
637  /// floating-point value. If the value cannot be represented as an 8-bit
638  /// floating-point value, then return -1.
639  static inline int getFP64Imm(const APInt &Imm) {
640    uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
641    int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
642    uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
643
644    // We can handle 4 bits of mantissa.
645    // mantissa = (16+UInt(e:f:g:h))/16.
646    if (Mantissa & 0xffffffffffffULL)
647      return -1;
648    Mantissa >>= 48;
649    if ((Mantissa & 0xf) != Mantissa)
650      return -1;
651
652    // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
653    if (Exp < -3 || Exp > 4)
654      return -1;
655    Exp = ((Exp+3) & 0x7) ^ 4;
656
657    return ((int)Sign << 7) | (Exp << 4) | Mantissa;
658  }
659
660  static inline int getFP64Imm(const APFloat &FPImm) {
661    return getFP64Imm(FPImm.bitcastToAPInt());
662  }
663
664} // end namespace ARM_AM
665} // end namespace llvm
666
667#endif
668
669