1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARMISelLowering.h"
17#include "ARM.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMSubtarget.h"
23#include "ARMTargetMachine.h"
24#include "ARMTargetObjectFile.h"
25#include "MCTargetDesc/ARMAddressingModes.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/Function.h"
29#include "llvm/GlobalValue.h"
30#include "llvm/Instruction.h"
31#include "llvm/Instructions.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Type.h"
34#include "llvm/CodeGen/CallingConvLower.h"
35#include "llvm/CodeGen/IntrinsicLowering.h"
36#include "llvm/CodeGen/MachineBasicBlock.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineModuleInfo.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/MC/MCSectionMachO.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51using namespace llvm;
52
53STATISTIC(NumTailCalls, "Number of tail calls");
54STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
55STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
56
57// This option should go away when tail calls fully work.
58static cl::opt<bool>
59EnableARMTailCalls("arm-tail-calls", cl::Hidden,
60  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
61  cl::init(false));
62
63cl::opt<bool>
64EnableARMLongCalls("arm-long-calls", cl::Hidden,
65  cl::desc("Generate calls via indirect call instructions"),
66  cl::init(false));
67
68static cl::opt<bool>
69ARMInterworking("arm-interworking", cl::Hidden,
70  cl::desc("Enable / disable ARM interworking (for debugging only)"),
71  cl::init(true));
72
73namespace {
74  class ARMCCState : public CCState {
75  public:
76    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
77               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
78               LLVMContext &C, ParmContext PC)
79        : CCState(CC, isVarArg, MF, TM, locs, C) {
80      assert(((PC == Call) || (PC == Prologue)) &&
81             "ARMCCState users must specify whether their context is call"
82             "or prologue generation.");
83      CallOrPrologue = PC;
84    }
85  };
86}
87
88// The APCS parameter registers.
89static const uint16_t GPRArgRegs[] = {
90  ARM::R0, ARM::R1, ARM::R2, ARM::R3
91};
92
93void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
94                                       MVT PromotedBitwiseVT) {
95  if (VT != PromotedLdStVT) {
96    setOperationAction(ISD::LOAD, VT, Promote);
97    AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
98
99    setOperationAction(ISD::STORE, VT, Promote);
100    AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
101  }
102
103  MVT ElemTy = VT.getVectorElementType();
104  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
105    setOperationAction(ISD::SETCC, VT, Custom);
106  setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
107  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
108  if (ElemTy == MVT::i32) {
109    setOperationAction(ISD::SINT_TO_FP, VT, Custom);
110    setOperationAction(ISD::UINT_TO_FP, VT, Custom);
111    setOperationAction(ISD::FP_TO_SINT, VT, Custom);
112    setOperationAction(ISD::FP_TO_UINT, VT, Custom);
113  } else {
114    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
115    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
116    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
117    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
118  }
119  setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
120  setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
121  setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
122  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
123  setOperationAction(ISD::SELECT,            VT, Expand);
124  setOperationAction(ISD::SELECT_CC,         VT, Expand);
125  setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
126  if (VT.isInteger()) {
127    setOperationAction(ISD::SHL, VT, Custom);
128    setOperationAction(ISD::SRA, VT, Custom);
129    setOperationAction(ISD::SRL, VT, Custom);
130  }
131
132  // Promote all bit-wise operations.
133  if (VT.isInteger() && VT != PromotedBitwiseVT) {
134    setOperationAction(ISD::AND, VT, Promote);
135    AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
136    setOperationAction(ISD::OR,  VT, Promote);
137    AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
138    setOperationAction(ISD::XOR, VT, Promote);
139    AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
140  }
141
142  // Neon does not support vector divide/remainder operations.
143  setOperationAction(ISD::SDIV, VT, Expand);
144  setOperationAction(ISD::UDIV, VT, Expand);
145  setOperationAction(ISD::FDIV, VT, Expand);
146  setOperationAction(ISD::SREM, VT, Expand);
147  setOperationAction(ISD::UREM, VT, Expand);
148  setOperationAction(ISD::FREM, VT, Expand);
149}
150
151void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
152  addRegisterClass(VT, &ARM::DPRRegClass);
153  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
154}
155
156void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
157  addRegisterClass(VT, &ARM::QPRRegClass);
158  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
159}
160
161static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
162  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
163    return new TargetLoweringObjectFileMachO();
164
165  return new ARMElfTargetObjectFile();
166}
167
168ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
169    : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<ARMSubtarget>();
171  RegInfo = TM.getRegisterInfo();
172  Itins = TM.getInstrItineraryData();
173
174  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
175
176  if (Subtarget->isTargetDarwin()) {
177    // Uses VFP for Thumb libfuncs if available.
178    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
179      // Single-precision floating-point arithmetic.
180      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
181      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
182      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
183      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
184
185      // Double-precision floating-point arithmetic.
186      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
187      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
188      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
189      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
190
191      // Single-precision comparisons.
192      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
193      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
194      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
195      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
196      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
197      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
198      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
199      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
200
201      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
202      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
203      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
204      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
205      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
206      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
207      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
208      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
209
210      // Double-precision comparisons.
211      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
212      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
213      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
214      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
215      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
216      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
217      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
218      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
219
220      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
221      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
222      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
223      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
224      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
225      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
226      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
227      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
228
229      // Floating-point to integer conversions.
230      // i64 conversions are done via library routines even when generating VFP
231      // instructions, so use the same ones.
232      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
233      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
234      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
235      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
236
237      // Conversions between floating types.
238      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
239      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
240
241      // Integer to floating-point conversions.
242      // i64 conversions are done via library routines even when generating VFP
243      // instructions, so use the same ones.
244      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
245      // e.g., __floatunsidf vs. __floatunssidfvfp.
246      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
247      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
248      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
249      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
250    }
251  }
252
253  // These libcalls are not available in 32-bit.
254  setLibcallName(RTLIB::SHL_I128, 0);
255  setLibcallName(RTLIB::SRL_I128, 0);
256  setLibcallName(RTLIB::SRA_I128, 0);
257
258  if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
259    // Double-precision floating-point arithmetic helper functions
260    // RTABI chapter 4.1.2, Table 2
261    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
262    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
263    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
264    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
265    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
266    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
267    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
268    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
269
270    // Double-precision floating-point comparison helper functions
271    // RTABI chapter 4.1.2, Table 3
272    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
273    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
274    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
275    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
276    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
277    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
278    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
279    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
280    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
281    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
282    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
283    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
284    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
285    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
286    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
287    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
288    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
289    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
290    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
291    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
292    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
293    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
294    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
295    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
296
297    // Single-precision floating-point arithmetic helper functions
298    // RTABI chapter 4.1.2, Table 4
299    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
300    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
301    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
302    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
303    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
304    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
305    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
306    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
307
308    // Single-precision floating-point comparison helper functions
309    // RTABI chapter 4.1.2, Table 5
310    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
311    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
312    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
313    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
314    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
315    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
316    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
317    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
318    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
319    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
320    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
321    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
322    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
323    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
324    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
325    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
326    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
327    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
328    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
329    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
330    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
332    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
334
335    // Floating-point to integer conversions.
336    // RTABI chapter 4.1.2, Table 6
337    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
338    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
339    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
340    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
341    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
342    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
343    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
344    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
345    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
346    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
347    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
348    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
349    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
350    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
351    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
352    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
353
354    // Conversions between floating types.
355    // RTABI chapter 4.1.2, Table 7
356    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
357    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
358    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
359    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
360
361    // Integer to floating-point conversions.
362    // RTABI chapter 4.1.2, Table 8
363    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
364    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
365    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
366    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
367    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
368    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
369    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
370    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
371    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
372    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
373    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
374    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
375    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
376    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
377    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
378    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
379
380    // Long long helper functions
381    // RTABI chapter 4.2, Table 9
382    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
383    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
384    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
385    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
386    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
387    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
388    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
389    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
390    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
391    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
392
393    // Integer division functions
394    // RTABI chapter 4.3.1
395    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
396    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
397    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
398    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
399    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
400    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
401    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
402    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
403    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
404    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
405    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
406    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
407    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
408    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
409    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
410    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
411
412    // Memory operations
413    // RTABI chapter 4.3.4
414    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
415    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
416    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
417    setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
418    setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
419    setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
420  }
421
422  // Use divmod compiler-rt calls for iOS 5.0 and later.
423  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
424      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
425    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
426    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
427  }
428
429  if (Subtarget->isThumb1Only())
430    addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
431  else
432    addRegisterClass(MVT::i32, &ARM::GPRRegClass);
433  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
434      !Subtarget->isThumb1Only()) {
435    addRegisterClass(MVT::f32, &ARM::SPRRegClass);
436    if (!Subtarget->isFPOnlySP())
437      addRegisterClass(MVT::f64, &ARM::DPRRegClass);
438
439    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
440  }
441
442  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
443       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
444    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
445         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
446      setTruncStoreAction((MVT::SimpleValueType)VT,
447                          (MVT::SimpleValueType)InnerVT, Expand);
448    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
449    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
450    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
451  }
452
453  setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
454
455  if (Subtarget->hasNEON()) {
456    addDRTypeForNEON(MVT::v2f32);
457    addDRTypeForNEON(MVT::v8i8);
458    addDRTypeForNEON(MVT::v4i16);
459    addDRTypeForNEON(MVT::v2i32);
460    addDRTypeForNEON(MVT::v1i64);
461
462    addQRTypeForNEON(MVT::v4f32);
463    addQRTypeForNEON(MVT::v2f64);
464    addQRTypeForNEON(MVT::v16i8);
465    addQRTypeForNEON(MVT::v8i16);
466    addQRTypeForNEON(MVT::v4i32);
467    addQRTypeForNEON(MVT::v2i64);
468
469    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
470    // neither Neon nor VFP support any arithmetic operations on it.
471    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
472    // supported for v4f32.
473    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
474    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
475    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
476    // FIXME: Code duplication: FDIV and FREM are expanded always, see
477    // ARMTargetLowering::addTypeForNEON method for details.
478    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
479    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
480    // FIXME: Create unittest.
481    // In another words, find a way when "copysign" appears in DAG with vector
482    // operands.
483    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
484    // FIXME: Code duplication: SETCC has custom operation action, see
485    // ARMTargetLowering::addTypeForNEON method for details.
486    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
487    // FIXME: Create unittest for FNEG and for FABS.
488    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
489    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
490    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
491    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
492    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
493    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
494    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
495    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
496    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
497    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
498    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
499    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
500    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
501    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
502    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
503    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
504    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
505    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
506
507    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
508    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
509    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
510    setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
511    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
512    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
513    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
514    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
515    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
516    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
517    setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
518
519    // Neon does not support some operations on v1i64 and v2i64 types.
520    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
521    // Custom handling for some quad-vector types to detect VMULL.
522    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
523    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
524    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
525    // Custom handling for some vector types to avoid expensive expansions
526    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
527    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
528    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
529    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
530    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
531    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
532    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
533    // a destination type that is wider than the source, and nor does
534    // it have a FP_TO_[SU]INT instruction with a narrower destination than
535    // source.
536    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
537    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
538    setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
539    setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
540
541    setTargetDAGCombine(ISD::INTRINSIC_VOID);
542    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
543    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
544    setTargetDAGCombine(ISD::SHL);
545    setTargetDAGCombine(ISD::SRL);
546    setTargetDAGCombine(ISD::SRA);
547    setTargetDAGCombine(ISD::SIGN_EXTEND);
548    setTargetDAGCombine(ISD::ZERO_EXTEND);
549    setTargetDAGCombine(ISD::ANY_EXTEND);
550    setTargetDAGCombine(ISD::SELECT_CC);
551    setTargetDAGCombine(ISD::BUILD_VECTOR);
552    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
553    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
554    setTargetDAGCombine(ISD::STORE);
555    setTargetDAGCombine(ISD::FP_TO_SINT);
556    setTargetDAGCombine(ISD::FP_TO_UINT);
557    setTargetDAGCombine(ISD::FDIV);
558
559    // It is legal to extload from v4i8 to v4i16 or v4i32.
560    MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
561                  MVT::v4i16, MVT::v2i16,
562                  MVT::v2i32};
563    for (unsigned i = 0; i < 6; ++i) {
564      setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
565      setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
566      setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
567    }
568  }
569
570  // ARM and Thumb2 support UMLAL/SMLAL.
571  if (!Subtarget->isThumb1Only())
572    setTargetDAGCombine(ISD::ADDC);
573
574
575  computeRegisterProperties();
576
577  // ARM does not have f32 extending load.
578  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
579
580  // ARM does not have i1 sign extending load.
581  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
582
583  // ARM supports all 4 flavors of integer indexed load / store.
584  if (!Subtarget->isThumb1Only()) {
585    for (unsigned im = (unsigned)ISD::PRE_INC;
586         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
587      setIndexedLoadAction(im,  MVT::i1,  Legal);
588      setIndexedLoadAction(im,  MVT::i8,  Legal);
589      setIndexedLoadAction(im,  MVT::i16, Legal);
590      setIndexedLoadAction(im,  MVT::i32, Legal);
591      setIndexedStoreAction(im, MVT::i1,  Legal);
592      setIndexedStoreAction(im, MVT::i8,  Legal);
593      setIndexedStoreAction(im, MVT::i16, Legal);
594      setIndexedStoreAction(im, MVT::i32, Legal);
595    }
596  }
597
598  // i64 operation support.
599  setOperationAction(ISD::MUL,     MVT::i64, Expand);
600  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
601  if (Subtarget->isThumb1Only()) {
602    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
603    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
604  }
605  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
606      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
607    setOperationAction(ISD::MULHS, MVT::i32, Expand);
608
609  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
610  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
611  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
612  setOperationAction(ISD::SRL,       MVT::i64, Custom);
613  setOperationAction(ISD::SRA,       MVT::i64, Custom);
614
615  if (!Subtarget->isThumb1Only()) {
616    // FIXME: We should do this for Thumb1 as well.
617    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
618    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
619    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
620    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
621  }
622
623  // ARM does not have ROTL.
624  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
625  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
626  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
627  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
628    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
629
630  // These just redirect to CTTZ and CTLZ on ARM.
631  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
632  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
633
634  // Only ARMv6 has BSWAP.
635  if (!Subtarget->hasV6Ops())
636    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
637
638  if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
639      !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
640    // These are expanded into libcalls if the cpu doesn't have HW divider.
641    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
642    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
643  }
644  setOperationAction(ISD::SREM,  MVT::i32, Expand);
645  setOperationAction(ISD::UREM,  MVT::i32, Expand);
646  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
647  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
648
649  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
650  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
651  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
652  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
653  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
654
655  setOperationAction(ISD::TRAP, MVT::Other, Legal);
656
657  // Use the default implementation.
658  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
659  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
660  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
661  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
662  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
663  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
664
665  if (!Subtarget->isTargetDarwin()) {
666    // Non-Darwin platforms may return values in these registers via the
667    // personality function.
668    setOperationAction(ISD::EHSELECTION,      MVT::i32,   Expand);
669    setOperationAction(ISD::EXCEPTIONADDR,    MVT::i32,   Expand);
670    setExceptionPointerRegister(ARM::R0);
671    setExceptionSelectorRegister(ARM::R1);
672  }
673
674  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
675  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
676  // the default expansion.
677  // FIXME: This should be checking for v6k, not just v6.
678  if (Subtarget->hasDataBarrier() ||
679      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
680    // membarrier needs custom lowering; the rest are legal and handled
681    // normally.
682    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
683    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
684    // Custom lowering for 64-bit ops
685    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
686    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
687    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
688    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
689    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
690    setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
691    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
692    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
693    setInsertFencesForAtomic(true);
694  } else {
695    // Set them all for expansion, which will force libcalls.
696    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
697    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
698    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
699    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
700    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
701    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
702    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
703    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
704    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
705    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
706    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
707    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
708    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
709    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
710    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
711    // Unordered/Monotonic case.
712    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
713    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
714    // Since the libcalls include locking, fold in the fences
715    setShouldFoldAtomicFences(true);
716  }
717
718  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
719
720  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
721  if (!Subtarget->hasV6Ops()) {
722    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
723    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
724  }
725  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
726
727  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
728      !Subtarget->isThumb1Only()) {
729    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
730    // iff target supports vfp2.
731    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
732    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
733  }
734
735  // We want to custom lower some of our intrinsics.
736  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
737  if (Subtarget->isTargetDarwin()) {
738    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
739    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
740    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
741  }
742
743  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
744  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
745  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
746  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
747  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
748  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
749  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
750  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
751  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
752
753  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
754  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
755  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
756  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
757  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
758
759  // We don't support sin/cos/fmod/copysign/pow
760  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
761  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
762  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
763  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
764  setOperationAction(ISD::FREM,      MVT::f64, Expand);
765  setOperationAction(ISD::FREM,      MVT::f32, Expand);
766  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
767      !Subtarget->isThumb1Only()) {
768    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
769    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
770  }
771  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
772  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
773
774  if (!Subtarget->hasVFP4()) {
775    setOperationAction(ISD::FMA, MVT::f64, Expand);
776    setOperationAction(ISD::FMA, MVT::f32, Expand);
777  }
778
779  // Various VFP goodness
780  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
781    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
782    if (Subtarget->hasVFP2()) {
783      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
784      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
785      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
786      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
787    }
788    // Special handling for half-precision FP.
789    if (!Subtarget->hasFP16()) {
790      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
791      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
792    }
793  }
794
795  // We have target-specific dag combine patterns for the following nodes:
796  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
797  setTargetDAGCombine(ISD::ADD);
798  setTargetDAGCombine(ISD::SUB);
799  setTargetDAGCombine(ISD::MUL);
800  setTargetDAGCombine(ISD::AND);
801  setTargetDAGCombine(ISD::OR);
802  setTargetDAGCombine(ISD::XOR);
803
804  if (Subtarget->hasV6Ops())
805    setTargetDAGCombine(ISD::SRL);
806
807  setStackPointerRegisterToSaveRestore(ARM::SP);
808
809  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
810      !Subtarget->hasVFP2())
811    setSchedulingPreference(Sched::RegPressure);
812  else
813    setSchedulingPreference(Sched::Hybrid);
814
815  //// temporary - rewrite interface to use type
816  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
817  maxStoresPerMemset = 16;
818  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
819
820  // On ARM arguments smaller than 4 bytes are extended, so all arguments
821  // are at least 4 bytes aligned.
822  setMinStackArgumentAlignment(4);
823
824  benefitFromCodePlacementOpt = true;
825
826  // Prefer likely predicted branches to selects on out-of-order cores.
827  predictableSelectIsExpensive = Subtarget->isLikeA9();
828
829  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
830}
831
832// FIXME: It might make sense to define the representative register class as the
833// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
834// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
835// SPR's representative would be DPR_VFP2. This should work well if register
836// pressure tracking were modified such that a register use would increment the
837// pressure of the register class's representative and all of it's super
838// classes' representatives transitively. We have not implemented this because
839// of the difficulty prior to coalescing of modeling operand register classes
840// due to the common occurrence of cross class copies and subregister insertions
841// and extractions.
842std::pair<const TargetRegisterClass*, uint8_t>
843ARMTargetLowering::findRepresentativeClass(EVT VT) const{
844  const TargetRegisterClass *RRC = 0;
845  uint8_t Cost = 1;
846  switch (VT.getSimpleVT().SimpleTy) {
847  default:
848    return TargetLowering::findRepresentativeClass(VT);
849  // Use DPR as representative register class for all floating point
850  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
851  // the cost is 1 for both f32 and f64.
852  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
853  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
854    RRC = &ARM::DPRRegClass;
855    // When NEON is used for SP, only half of the register file is available
856    // because operations that define both SP and DP results will be constrained
857    // to the VFP2 class (D0-D15). We currently model this constraint prior to
858    // coalescing by double-counting the SP regs. See the FIXME above.
859    if (Subtarget->useNEONForSinglePrecisionFP())
860      Cost = 2;
861    break;
862  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
863  case MVT::v4f32: case MVT::v2f64:
864    RRC = &ARM::DPRRegClass;
865    Cost = 2;
866    break;
867  case MVT::v4i64:
868    RRC = &ARM::DPRRegClass;
869    Cost = 4;
870    break;
871  case MVT::v8i64:
872    RRC = &ARM::DPRRegClass;
873    Cost = 8;
874    break;
875  }
876  return std::make_pair(RRC, Cost);
877}
878
879const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
880  switch (Opcode) {
881  default: return 0;
882  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
883  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
884  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
885  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
886  case ARMISD::CALL:          return "ARMISD::CALL";
887  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
888  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
889  case ARMISD::tCALL:         return "ARMISD::tCALL";
890  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
891  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
892  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
893  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
894  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
895  case ARMISD::CMP:           return "ARMISD::CMP";
896  case ARMISD::CMN:           return "ARMISD::CMN";
897  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
898  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
899  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
900  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
901  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
902
903  case ARMISD::CMOV:          return "ARMISD::CMOV";
904
905  case ARMISD::RBIT:          return "ARMISD::RBIT";
906
907  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
908  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
909  case ARMISD::SITOF:         return "ARMISD::SITOF";
910  case ARMISD::UITOF:         return "ARMISD::UITOF";
911
912  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
913  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
914  case ARMISD::RRX:           return "ARMISD::RRX";
915
916  case ARMISD::ADDC:          return "ARMISD::ADDC";
917  case ARMISD::ADDE:          return "ARMISD::ADDE";
918  case ARMISD::SUBC:          return "ARMISD::SUBC";
919  case ARMISD::SUBE:          return "ARMISD::SUBE";
920
921  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
922  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
923
924  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
925  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
926
927  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
928
929  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
930
931  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
932
933  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
934  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
935
936  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
937
938  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
939  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
940  case ARMISD::VCGE:          return "ARMISD::VCGE";
941  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
942  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
943  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
944  case ARMISD::VCGT:          return "ARMISD::VCGT";
945  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
946  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
947  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
948  case ARMISD::VTST:          return "ARMISD::VTST";
949
950  case ARMISD::VSHL:          return "ARMISD::VSHL";
951  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
952  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
953  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
954  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
955  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
956  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
957  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
958  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
959  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
960  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
961  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
962  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
963  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
964  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
965  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
966  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
967  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
968  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
969  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
970  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
971  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
972  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
973  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
974  case ARMISD::VDUP:          return "ARMISD::VDUP";
975  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
976  case ARMISD::VEXT:          return "ARMISD::VEXT";
977  case ARMISD::VREV64:        return "ARMISD::VREV64";
978  case ARMISD::VREV32:        return "ARMISD::VREV32";
979  case ARMISD::VREV16:        return "ARMISD::VREV16";
980  case ARMISD::VZIP:          return "ARMISD::VZIP";
981  case ARMISD::VUZP:          return "ARMISD::VUZP";
982  case ARMISD::VTRN:          return "ARMISD::VTRN";
983  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
984  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
985  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
986  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
987  case ARMISD::UMLAL:         return "ARMISD::UMLAL";
988  case ARMISD::SMLAL:         return "ARMISD::SMLAL";
989  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
990  case ARMISD::FMAX:          return "ARMISD::FMAX";
991  case ARMISD::FMIN:          return "ARMISD::FMIN";
992  case ARMISD::BFI:           return "ARMISD::BFI";
993  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
994  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
995  case ARMISD::VBSL:          return "ARMISD::VBSL";
996  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
997  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
998  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
999  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1000  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1001  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1002  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1003  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1004  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1005  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1006  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1007  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1008  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1009  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1010  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1011  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1012  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1013  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1014  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1015  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1016  }
1017}
1018
1019EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
1020  if (!VT.isVector()) return getPointerTy();
1021  return VT.changeVectorElementTypeToInteger();
1022}
1023
1024/// getRegClassFor - Return the register class that should be used for the
1025/// specified value type.
1026const TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
1027  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1028  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1029  // load / store 4 to 8 consecutive D registers.
1030  if (Subtarget->hasNEON()) {
1031    if (VT == MVT::v4i64)
1032      return &ARM::QQPRRegClass;
1033    if (VT == MVT::v8i64)
1034      return &ARM::QQQQPRRegClass;
1035  }
1036  return TargetLowering::getRegClassFor(VT);
1037}
1038
1039// Create a fast isel object.
1040FastISel *
1041ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1042                                  const TargetLibraryInfo *libInfo) const {
1043  return ARM::createFastISel(funcInfo, libInfo);
1044}
1045
1046/// getMaximalGlobalOffset - Returns the maximal possible offset which can
1047/// be used for loads / stores from the global.
1048unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1049  return (Subtarget->isThumb1Only() ? 127 : 4095);
1050}
1051
1052Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1053  unsigned NumVals = N->getNumValues();
1054  if (!NumVals)
1055    return Sched::RegPressure;
1056
1057  for (unsigned i = 0; i != NumVals; ++i) {
1058    EVT VT = N->getValueType(i);
1059    if (VT == MVT::Glue || VT == MVT::Other)
1060      continue;
1061    if (VT.isFloatingPoint() || VT.isVector())
1062      return Sched::ILP;
1063  }
1064
1065  if (!N->isMachineOpcode())
1066    return Sched::RegPressure;
1067
1068  // Load are scheduled for latency even if there instruction itinerary
1069  // is not available.
1070  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1071  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1072
1073  if (MCID.getNumDefs() == 0)
1074    return Sched::RegPressure;
1075  if (!Itins->isEmpty() &&
1076      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1077    return Sched::ILP;
1078
1079  return Sched::RegPressure;
1080}
1081
1082//===----------------------------------------------------------------------===//
1083// Lowering Code
1084//===----------------------------------------------------------------------===//
1085
1086/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1087static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1088  switch (CC) {
1089  default: llvm_unreachable("Unknown condition code!");
1090  case ISD::SETNE:  return ARMCC::NE;
1091  case ISD::SETEQ:  return ARMCC::EQ;
1092  case ISD::SETGT:  return ARMCC::GT;
1093  case ISD::SETGE:  return ARMCC::GE;
1094  case ISD::SETLT:  return ARMCC::LT;
1095  case ISD::SETLE:  return ARMCC::LE;
1096  case ISD::SETUGT: return ARMCC::HI;
1097  case ISD::SETUGE: return ARMCC::HS;
1098  case ISD::SETULT: return ARMCC::LO;
1099  case ISD::SETULE: return ARMCC::LS;
1100  }
1101}
1102
1103/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1104static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1105                        ARMCC::CondCodes &CondCode2) {
1106  CondCode2 = ARMCC::AL;
1107  switch (CC) {
1108  default: llvm_unreachable("Unknown FP condition!");
1109  case ISD::SETEQ:
1110  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1111  case ISD::SETGT:
1112  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1113  case ISD::SETGE:
1114  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1115  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1116  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1117  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1118  case ISD::SETO:   CondCode = ARMCC::VC; break;
1119  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1120  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1121  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1122  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1123  case ISD::SETLT:
1124  case ISD::SETULT: CondCode = ARMCC::LT; break;
1125  case ISD::SETLE:
1126  case ISD::SETULE: CondCode = ARMCC::LE; break;
1127  case ISD::SETNE:
1128  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1129  }
1130}
1131
1132//===----------------------------------------------------------------------===//
1133//                      Calling Convention Implementation
1134//===----------------------------------------------------------------------===//
1135
1136#include "ARMGenCallingConv.inc"
1137
1138/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1139/// given CallingConvention value.
1140CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1141                                                 bool Return,
1142                                                 bool isVarArg) const {
1143  switch (CC) {
1144  default:
1145    llvm_unreachable("Unsupported calling convention");
1146  case CallingConv::Fast:
1147    if (Subtarget->hasVFP2() && !isVarArg) {
1148      if (!Subtarget->isAAPCS_ABI())
1149        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1150      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1151      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1152    }
1153    // Fallthrough
1154  case CallingConv::C: {
1155    // Use target triple & subtarget features to do actual dispatch.
1156    if (!Subtarget->isAAPCS_ABI())
1157      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1158    else if (Subtarget->hasVFP2() &&
1159             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1160             !isVarArg)
1161      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1162    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1163  }
1164  case CallingConv::ARM_AAPCS_VFP:
1165    if (!isVarArg)
1166      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1167    // Fallthrough
1168  case CallingConv::ARM_AAPCS:
1169    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1170  case CallingConv::ARM_APCS:
1171    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1172  case CallingConv::GHC:
1173    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1174  }
1175}
1176
1177/// LowerCallResult - Lower the result values of a call into the
1178/// appropriate copies out of appropriate physical registers.
1179SDValue
1180ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1181                                   CallingConv::ID CallConv, bool isVarArg,
1182                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1183                                   DebugLoc dl, SelectionDAG &DAG,
1184                                   SmallVectorImpl<SDValue> &InVals) const {
1185
1186  // Assign locations to each value returned by this call.
1187  SmallVector<CCValAssign, 16> RVLocs;
1188  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1189                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1190  CCInfo.AnalyzeCallResult(Ins,
1191                           CCAssignFnForNode(CallConv, /* Return*/ true,
1192                                             isVarArg));
1193
1194  // Copy all of the result registers out of their specified physreg.
1195  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1196    CCValAssign VA = RVLocs[i];
1197
1198    SDValue Val;
1199    if (VA.needsCustom()) {
1200      // Handle f64 or half of a v2f64.
1201      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1202                                      InFlag);
1203      Chain = Lo.getValue(1);
1204      InFlag = Lo.getValue(2);
1205      VA = RVLocs[++i]; // skip ahead to next loc
1206      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1207                                      InFlag);
1208      Chain = Hi.getValue(1);
1209      InFlag = Hi.getValue(2);
1210      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1211
1212      if (VA.getLocVT() == MVT::v2f64) {
1213        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1214        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1215                          DAG.getConstant(0, MVT::i32));
1216
1217        VA = RVLocs[++i]; // skip ahead to next loc
1218        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1219        Chain = Lo.getValue(1);
1220        InFlag = Lo.getValue(2);
1221        VA = RVLocs[++i]; // skip ahead to next loc
1222        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1223        Chain = Hi.getValue(1);
1224        InFlag = Hi.getValue(2);
1225        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1226        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1227                          DAG.getConstant(1, MVT::i32));
1228      }
1229    } else {
1230      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1231                               InFlag);
1232      Chain = Val.getValue(1);
1233      InFlag = Val.getValue(2);
1234    }
1235
1236    switch (VA.getLocInfo()) {
1237    default: llvm_unreachable("Unknown loc info!");
1238    case CCValAssign::Full: break;
1239    case CCValAssign::BCvt:
1240      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1241      break;
1242    }
1243
1244    InVals.push_back(Val);
1245  }
1246
1247  return Chain;
1248}
1249
1250/// LowerMemOpCallTo - Store the argument to the stack.
1251SDValue
1252ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1253                                    SDValue StackPtr, SDValue Arg,
1254                                    DebugLoc dl, SelectionDAG &DAG,
1255                                    const CCValAssign &VA,
1256                                    ISD::ArgFlagsTy Flags) const {
1257  unsigned LocMemOffset = VA.getLocMemOffset();
1258  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1259  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1260  return DAG.getStore(Chain, dl, Arg, PtrOff,
1261                      MachinePointerInfo::getStack(LocMemOffset),
1262                      false, false, 0);
1263}
1264
1265void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1266                                         SDValue Chain, SDValue &Arg,
1267                                         RegsToPassVector &RegsToPass,
1268                                         CCValAssign &VA, CCValAssign &NextVA,
1269                                         SDValue &StackPtr,
1270                                         SmallVector<SDValue, 8> &MemOpChains,
1271                                         ISD::ArgFlagsTy Flags) const {
1272
1273  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1274                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1275  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1276
1277  if (NextVA.isRegLoc())
1278    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1279  else {
1280    assert(NextVA.isMemLoc());
1281    if (StackPtr.getNode() == 0)
1282      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1283
1284    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1285                                           dl, DAG, NextVA,
1286                                           Flags));
1287  }
1288}
1289
1290/// LowerCall - Lowering a call into a callseq_start <-
1291/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1292/// nodes.
1293SDValue
1294ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1295                             SmallVectorImpl<SDValue> &InVals) const {
1296  SelectionDAG &DAG                     = CLI.DAG;
1297  DebugLoc &dl                          = CLI.DL;
1298  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
1299  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
1300  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
1301  SDValue Chain                         = CLI.Chain;
1302  SDValue Callee                        = CLI.Callee;
1303  bool &isTailCall                      = CLI.IsTailCall;
1304  CallingConv::ID CallConv              = CLI.CallConv;
1305  bool doesNotRet                       = CLI.DoesNotReturn;
1306  bool isVarArg                         = CLI.IsVarArg;
1307
1308  MachineFunction &MF = DAG.getMachineFunction();
1309  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1310  bool IsSibCall = false;
1311  // Disable tail calls if they're not supported.
1312  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1313    isTailCall = false;
1314  if (isTailCall) {
1315    // Check if it's really possible to do a tail call.
1316    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1317                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1318                                                   Outs, OutVals, Ins, DAG);
1319    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1320    // detected sibcalls.
1321    if (isTailCall) {
1322      ++NumTailCalls;
1323      IsSibCall = true;
1324    }
1325  }
1326
1327  // Analyze operands of the call, assigning locations to each operand.
1328  SmallVector<CCValAssign, 16> ArgLocs;
1329  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1330                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1331  CCInfo.AnalyzeCallOperands(Outs,
1332                             CCAssignFnForNode(CallConv, /* Return*/ false,
1333                                               isVarArg));
1334
1335  // Get a count of how many bytes are to be pushed on the stack.
1336  unsigned NumBytes = CCInfo.getNextStackOffset();
1337
1338  // For tail calls, memory operands are available in our caller's stack.
1339  if (IsSibCall)
1340    NumBytes = 0;
1341
1342  // Adjust the stack pointer for the new arguments...
1343  // These operations are automatically eliminated by the prolog/epilog pass
1344  if (!IsSibCall)
1345    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1346
1347  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1348
1349  RegsToPassVector RegsToPass;
1350  SmallVector<SDValue, 8> MemOpChains;
1351
1352  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1353  // of tail call optimization, arguments are handled later.
1354  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1355       i != e;
1356       ++i, ++realArgIdx) {
1357    CCValAssign &VA = ArgLocs[i];
1358    SDValue Arg = OutVals[realArgIdx];
1359    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1360    bool isByVal = Flags.isByVal();
1361
1362    // Promote the value if needed.
1363    switch (VA.getLocInfo()) {
1364    default: llvm_unreachable("Unknown loc info!");
1365    case CCValAssign::Full: break;
1366    case CCValAssign::SExt:
1367      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1368      break;
1369    case CCValAssign::ZExt:
1370      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1371      break;
1372    case CCValAssign::AExt:
1373      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1374      break;
1375    case CCValAssign::BCvt:
1376      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1377      break;
1378    }
1379
1380    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1381    if (VA.needsCustom()) {
1382      if (VA.getLocVT() == MVT::v2f64) {
1383        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1384                                  DAG.getConstant(0, MVT::i32));
1385        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1386                                  DAG.getConstant(1, MVT::i32));
1387
1388        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1389                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1390
1391        VA = ArgLocs[++i]; // skip ahead to next loc
1392        if (VA.isRegLoc()) {
1393          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1394                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1395        } else {
1396          assert(VA.isMemLoc());
1397
1398          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1399                                                 dl, DAG, VA, Flags));
1400        }
1401      } else {
1402        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1403                         StackPtr, MemOpChains, Flags);
1404      }
1405    } else if (VA.isRegLoc()) {
1406      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1407    } else if (isByVal) {
1408      assert(VA.isMemLoc());
1409      unsigned offset = 0;
1410
1411      // True if this byval aggregate will be split between registers
1412      // and memory.
1413      if (CCInfo.isFirstByValRegValid()) {
1414        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1415        unsigned int i, j;
1416        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1417          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1418          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1419          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1420                                     MachinePointerInfo(),
1421                                     false, false, false, 0);
1422          MemOpChains.push_back(Load.getValue(1));
1423          RegsToPass.push_back(std::make_pair(j, Load));
1424        }
1425        offset = ARM::R4 - CCInfo.getFirstByValReg();
1426        CCInfo.clearFirstByValReg();
1427      }
1428
1429      if (Flags.getByValSize() - 4*offset > 0) {
1430        unsigned LocMemOffset = VA.getLocMemOffset();
1431        SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1432        SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1433                                  StkPtrOff);
1434        SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1435        SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1436        SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1437                                           MVT::i32);
1438        SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
1439
1440        SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1441        SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1442        MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1443                                          Ops, array_lengthof(Ops)));
1444      }
1445    } else if (!IsSibCall) {
1446      assert(VA.isMemLoc());
1447
1448      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1449                                             dl, DAG, VA, Flags));
1450    }
1451  }
1452
1453  if (!MemOpChains.empty())
1454    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1455                        &MemOpChains[0], MemOpChains.size());
1456
1457  // Build a sequence of copy-to-reg nodes chained together with token chain
1458  // and flag operands which copy the outgoing args into the appropriate regs.
1459  SDValue InFlag;
1460  // Tail call byval lowering might overwrite argument registers so in case of
1461  // tail call optimization the copies to registers are lowered later.
1462  if (!isTailCall)
1463    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1464      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1465                               RegsToPass[i].second, InFlag);
1466      InFlag = Chain.getValue(1);
1467    }
1468
1469  // For tail calls lower the arguments to the 'real' stack slot.
1470  if (isTailCall) {
1471    // Force all the incoming stack arguments to be loaded from the stack
1472    // before any new outgoing arguments are stored to the stack, because the
1473    // outgoing stack slots may alias the incoming argument stack slots, and
1474    // the alias isn't otherwise explicit. This is slightly more conservative
1475    // than necessary, because it means that each store effectively depends
1476    // on every argument instead of just those arguments it would clobber.
1477
1478    // Do not flag preceding copytoreg stuff together with the following stuff.
1479    InFlag = SDValue();
1480    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1481      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1482                               RegsToPass[i].second, InFlag);
1483      InFlag = Chain.getValue(1);
1484    }
1485    InFlag =SDValue();
1486  }
1487
1488  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1489  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1490  // node so that legalize doesn't hack it.
1491  bool isDirect = false;
1492  bool isARMFunc = false;
1493  bool isLocalARMFunc = false;
1494  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1495
1496  if (EnableARMLongCalls) {
1497    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1498            && "long-calls with non-static relocation model!");
1499    // Handle a global address or an external symbol. If it's not one of
1500    // those, the target's already in a register, so we don't need to do
1501    // anything extra.
1502    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1503      const GlobalValue *GV = G->getGlobal();
1504      // Create a constant pool entry for the callee address
1505      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1506      ARMConstantPoolValue *CPV =
1507        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1508
1509      // Get the address of the callee into a register
1510      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1511      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1512      Callee = DAG.getLoad(getPointerTy(), dl,
1513                           DAG.getEntryNode(), CPAddr,
1514                           MachinePointerInfo::getConstantPool(),
1515                           false, false, false, 0);
1516    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1517      const char *Sym = S->getSymbol();
1518
1519      // Create a constant pool entry for the callee address
1520      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1521      ARMConstantPoolValue *CPV =
1522        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1523                                      ARMPCLabelIndex, 0);
1524      // Get the address of the callee into a register
1525      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1526      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1527      Callee = DAG.getLoad(getPointerTy(), dl,
1528                           DAG.getEntryNode(), CPAddr,
1529                           MachinePointerInfo::getConstantPool(),
1530                           false, false, false, 0);
1531    }
1532  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1533    const GlobalValue *GV = G->getGlobal();
1534    isDirect = true;
1535    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1536    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1537                   getTargetMachine().getRelocationModel() != Reloc::Static;
1538    isARMFunc = !Subtarget->isThumb() || isStub;
1539    // ARM call to a local ARM function is predicable.
1540    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1541    // tBX takes a register source operand.
1542    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1543      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1544      ARMConstantPoolValue *CPV =
1545        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1546      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1547      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1548      Callee = DAG.getLoad(getPointerTy(), dl,
1549                           DAG.getEntryNode(), CPAddr,
1550                           MachinePointerInfo::getConstantPool(),
1551                           false, false, false, 0);
1552      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1553      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1554                           getPointerTy(), Callee, PICLabel);
1555    } else {
1556      // On ELF targets for PIC code, direct calls should go through the PLT
1557      unsigned OpFlags = 0;
1558      if (Subtarget->isTargetELF() &&
1559                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1560        OpFlags = ARMII::MO_PLT;
1561      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1562    }
1563  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1564    isDirect = true;
1565    bool isStub = Subtarget->isTargetDarwin() &&
1566                  getTargetMachine().getRelocationModel() != Reloc::Static;
1567    isARMFunc = !Subtarget->isThumb() || isStub;
1568    // tBX takes a register source operand.
1569    const char *Sym = S->getSymbol();
1570    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1571      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1572      ARMConstantPoolValue *CPV =
1573        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1574                                      ARMPCLabelIndex, 4);
1575      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1576      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1577      Callee = DAG.getLoad(getPointerTy(), dl,
1578                           DAG.getEntryNode(), CPAddr,
1579                           MachinePointerInfo::getConstantPool(),
1580                           false, false, false, 0);
1581      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1582      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1583                           getPointerTy(), Callee, PICLabel);
1584    } else {
1585      unsigned OpFlags = 0;
1586      // On ELF targets for PIC code, direct calls should go through the PLT
1587      if (Subtarget->isTargetELF() &&
1588                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1589        OpFlags = ARMII::MO_PLT;
1590      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1591    }
1592  }
1593
1594  // FIXME: handle tail calls differently.
1595  unsigned CallOpc;
1596  if (Subtarget->isThumb()) {
1597    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1598      CallOpc = ARMISD::CALL_NOLINK;
1599    else
1600      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1601  } else {
1602    if (!isDirect && !Subtarget->hasV5TOps())
1603      CallOpc = ARMISD::CALL_NOLINK;
1604    else if (doesNotRet && isDirect && Subtarget->hasRAS())
1605      // "mov lr, pc; b _foo" to avoid confusing the RSP
1606      CallOpc = ARMISD::CALL_NOLINK;
1607    else
1608      CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1609  }
1610
1611  std::vector<SDValue> Ops;
1612  Ops.push_back(Chain);
1613  Ops.push_back(Callee);
1614
1615  // Add argument registers to the end of the list so that they are known live
1616  // into the call.
1617  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1618    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1619                                  RegsToPass[i].second.getValueType()));
1620
1621  // Add a register mask operand representing the call-preserved registers.
1622  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1623  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1624  assert(Mask && "Missing call preserved mask for calling convention");
1625  Ops.push_back(DAG.getRegisterMask(Mask));
1626
1627  if (InFlag.getNode())
1628    Ops.push_back(InFlag);
1629
1630  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1631  if (isTailCall)
1632    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1633
1634  // Returns a chain and a flag for retval copy to use.
1635  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1636  InFlag = Chain.getValue(1);
1637
1638  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1639                             DAG.getIntPtrConstant(0, true), InFlag);
1640  if (!Ins.empty())
1641    InFlag = Chain.getValue(1);
1642
1643  // Handle result values, copying them out of physregs into vregs that we
1644  // return.
1645  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1646                         dl, DAG, InVals);
1647}
1648
1649/// HandleByVal - Every parameter *after* a byval parameter is passed
1650/// on the stack.  Remember the next parameter register to allocate,
1651/// and then confiscate the rest of the parameter registers to insure
1652/// this.
1653void
1654ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1655  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1656  assert((State->getCallOrPrologue() == Prologue ||
1657          State->getCallOrPrologue() == Call) &&
1658         "unhandled ParmContext");
1659  if ((!State->isFirstByValRegValid()) &&
1660      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1661    State->setFirstByValReg(reg);
1662    // At a call site, a byval parameter that is split between
1663    // registers and memory needs its size truncated here.  In a
1664    // function prologue, such byval parameters are reassembled in
1665    // memory, and are not truncated.
1666    if (State->getCallOrPrologue() == Call) {
1667      unsigned excess = 4 * (ARM::R4 - reg);
1668      assert(size >= excess && "expected larger existing stack allocation");
1669      size -= excess;
1670    }
1671  }
1672  // Confiscate any remaining parameter registers to preclude their
1673  // assignment to subsequent parameters.
1674  while (State->AllocateReg(GPRArgRegs, 4))
1675    ;
1676}
1677
1678/// MatchingStackOffset - Return true if the given stack call argument is
1679/// already available in the same position (relatively) of the caller's
1680/// incoming argument stack.
1681static
1682bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1683                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1684                         const TargetInstrInfo *TII) {
1685  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1686  int FI = INT_MAX;
1687  if (Arg.getOpcode() == ISD::CopyFromReg) {
1688    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1689    if (!TargetRegisterInfo::isVirtualRegister(VR))
1690      return false;
1691    MachineInstr *Def = MRI->getVRegDef(VR);
1692    if (!Def)
1693      return false;
1694    if (!Flags.isByVal()) {
1695      if (!TII->isLoadFromStackSlot(Def, FI))
1696        return false;
1697    } else {
1698      return false;
1699    }
1700  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1701    if (Flags.isByVal())
1702      // ByVal argument is passed in as a pointer but it's now being
1703      // dereferenced. e.g.
1704      // define @foo(%struct.X* %A) {
1705      //   tail call @bar(%struct.X* byval %A)
1706      // }
1707      return false;
1708    SDValue Ptr = Ld->getBasePtr();
1709    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1710    if (!FINode)
1711      return false;
1712    FI = FINode->getIndex();
1713  } else
1714    return false;
1715
1716  assert(FI != INT_MAX);
1717  if (!MFI->isFixedObjectIndex(FI))
1718    return false;
1719  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1720}
1721
1722/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1723/// for tail call optimization. Targets which want to do tail call
1724/// optimization should implement this function.
1725bool
1726ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1727                                                     CallingConv::ID CalleeCC,
1728                                                     bool isVarArg,
1729                                                     bool isCalleeStructRet,
1730                                                     bool isCallerStructRet,
1731                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1732                                    const SmallVectorImpl<SDValue> &OutVals,
1733                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1734                                                     SelectionDAG& DAG) const {
1735  const Function *CallerF = DAG.getMachineFunction().getFunction();
1736  CallingConv::ID CallerCC = CallerF->getCallingConv();
1737  bool CCMatch = CallerCC == CalleeCC;
1738
1739  // Look for obvious safe cases to perform tail call optimization that do not
1740  // require ABI changes. This is what gcc calls sibcall.
1741
1742  // Do not sibcall optimize vararg calls unless the call site is not passing
1743  // any arguments.
1744  if (isVarArg && !Outs.empty())
1745    return false;
1746
1747  // Also avoid sibcall optimization if either caller or callee uses struct
1748  // return semantics.
1749  if (isCalleeStructRet || isCallerStructRet)
1750    return false;
1751
1752  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1753  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1754  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1755  // support in the assembler and linker to be used. This would need to be
1756  // fixed to fully support tail calls in Thumb1.
1757  //
1758  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1759  // LR.  This means if we need to reload LR, it takes an extra instructions,
1760  // which outweighs the value of the tail call; but here we don't know yet
1761  // whether LR is going to be used.  Probably the right approach is to
1762  // generate the tail call here and turn it back into CALL/RET in
1763  // emitEpilogue if LR is used.
1764
1765  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1766  // but we need to make sure there are enough registers; the only valid
1767  // registers are the 4 used for parameters.  We don't currently do this
1768  // case.
1769  if (Subtarget->isThumb1Only())
1770    return false;
1771
1772  // If the calling conventions do not match, then we'd better make sure the
1773  // results are returned in the same way as what the caller expects.
1774  if (!CCMatch) {
1775    SmallVector<CCValAssign, 16> RVLocs1;
1776    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1777                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1778    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1779
1780    SmallVector<CCValAssign, 16> RVLocs2;
1781    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1782                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1783    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1784
1785    if (RVLocs1.size() != RVLocs2.size())
1786      return false;
1787    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1788      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1789        return false;
1790      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1791        return false;
1792      if (RVLocs1[i].isRegLoc()) {
1793        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1794          return false;
1795      } else {
1796        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1797          return false;
1798      }
1799    }
1800  }
1801
1802  // If Caller's vararg or byval argument has been split between registers and
1803  // stack, do not perform tail call, since part of the argument is in caller's
1804  // local frame.
1805  const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
1806                                      getInfo<ARMFunctionInfo>();
1807  if (AFI_Caller->getVarArgsRegSaveSize())
1808    return false;
1809
1810  // If the callee takes no arguments then go on to check the results of the
1811  // call.
1812  if (!Outs.empty()) {
1813    // Check if stack adjustment is needed. For now, do not do this if any
1814    // argument is passed on the stack.
1815    SmallVector<CCValAssign, 16> ArgLocs;
1816    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1817                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1818    CCInfo.AnalyzeCallOperands(Outs,
1819                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1820    if (CCInfo.getNextStackOffset()) {
1821      MachineFunction &MF = DAG.getMachineFunction();
1822
1823      // Check if the arguments are already laid out in the right way as
1824      // the caller's fixed stack objects.
1825      MachineFrameInfo *MFI = MF.getFrameInfo();
1826      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1827      const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1828      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1829           i != e;
1830           ++i, ++realArgIdx) {
1831        CCValAssign &VA = ArgLocs[i];
1832        EVT RegVT = VA.getLocVT();
1833        SDValue Arg = OutVals[realArgIdx];
1834        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1835        if (VA.getLocInfo() == CCValAssign::Indirect)
1836          return false;
1837        if (VA.needsCustom()) {
1838          // f64 and vector types are split into multiple registers or
1839          // register/stack-slot combinations.  The types will not match
1840          // the registers; give up on memory f64 refs until we figure
1841          // out what to do about this.
1842          if (!VA.isRegLoc())
1843            return false;
1844          if (!ArgLocs[++i].isRegLoc())
1845            return false;
1846          if (RegVT == MVT::v2f64) {
1847            if (!ArgLocs[++i].isRegLoc())
1848              return false;
1849            if (!ArgLocs[++i].isRegLoc())
1850              return false;
1851          }
1852        } else if (!VA.isRegLoc()) {
1853          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1854                                   MFI, MRI, TII))
1855            return false;
1856        }
1857      }
1858    }
1859  }
1860
1861  return true;
1862}
1863
1864SDValue
1865ARMTargetLowering::LowerReturn(SDValue Chain,
1866                               CallingConv::ID CallConv, bool isVarArg,
1867                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1868                               const SmallVectorImpl<SDValue> &OutVals,
1869                               DebugLoc dl, SelectionDAG &DAG) const {
1870
1871  // CCValAssign - represent the assignment of the return value to a location.
1872  SmallVector<CCValAssign, 16> RVLocs;
1873
1874  // CCState - Info about the registers and stack slots.
1875  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1876                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1877
1878  // Analyze outgoing return values.
1879  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1880                                               isVarArg));
1881
1882  // If this is the first return lowered for this function, add
1883  // the regs to the liveout set for the function.
1884  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1885    for (unsigned i = 0; i != RVLocs.size(); ++i)
1886      if (RVLocs[i].isRegLoc())
1887        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1888  }
1889
1890  SDValue Flag;
1891
1892  // Copy the result values into the output registers.
1893  for (unsigned i = 0, realRVLocIdx = 0;
1894       i != RVLocs.size();
1895       ++i, ++realRVLocIdx) {
1896    CCValAssign &VA = RVLocs[i];
1897    assert(VA.isRegLoc() && "Can only return in registers!");
1898
1899    SDValue Arg = OutVals[realRVLocIdx];
1900
1901    switch (VA.getLocInfo()) {
1902    default: llvm_unreachable("Unknown loc info!");
1903    case CCValAssign::Full: break;
1904    case CCValAssign::BCvt:
1905      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1906      break;
1907    }
1908
1909    if (VA.needsCustom()) {
1910      if (VA.getLocVT() == MVT::v2f64) {
1911        // Extract the first half and return it in two registers.
1912        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1913                                   DAG.getConstant(0, MVT::i32));
1914        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1915                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1916
1917        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1918        Flag = Chain.getValue(1);
1919        VA = RVLocs[++i]; // skip ahead to next loc
1920        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1921                                 HalfGPRs.getValue(1), Flag);
1922        Flag = Chain.getValue(1);
1923        VA = RVLocs[++i]; // skip ahead to next loc
1924
1925        // Extract the 2nd half and fall through to handle it as an f64 value.
1926        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1927                          DAG.getConstant(1, MVT::i32));
1928      }
1929      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1930      // available.
1931      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1932                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1933      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1934      Flag = Chain.getValue(1);
1935      VA = RVLocs[++i]; // skip ahead to next loc
1936      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1937                               Flag);
1938    } else
1939      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1940
1941    // Guarantee that all emitted copies are
1942    // stuck together, avoiding something bad.
1943    Flag = Chain.getValue(1);
1944  }
1945
1946  SDValue result;
1947  if (Flag.getNode())
1948    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1949  else // Return Void
1950    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1951
1952  return result;
1953}
1954
1955bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1956  if (N->getNumValues() != 1)
1957    return false;
1958  if (!N->hasNUsesOfValue(1, 0))
1959    return false;
1960
1961  SDValue TCChain = Chain;
1962  SDNode *Copy = *N->use_begin();
1963  if (Copy->getOpcode() == ISD::CopyToReg) {
1964    // If the copy has a glue operand, we conservatively assume it isn't safe to
1965    // perform a tail call.
1966    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1967      return false;
1968    TCChain = Copy->getOperand(0);
1969  } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
1970    SDNode *VMov = Copy;
1971    // f64 returned in a pair of GPRs.
1972    SmallPtrSet<SDNode*, 2> Copies;
1973    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
1974         UI != UE; ++UI) {
1975      if (UI->getOpcode() != ISD::CopyToReg)
1976        return false;
1977      Copies.insert(*UI);
1978    }
1979    if (Copies.size() > 2)
1980      return false;
1981
1982    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
1983         UI != UE; ++UI) {
1984      SDValue UseChain = UI->getOperand(0);
1985      if (Copies.count(UseChain.getNode()))
1986        // Second CopyToReg
1987        Copy = *UI;
1988      else
1989        // First CopyToReg
1990        TCChain = UseChain;
1991    }
1992  } else if (Copy->getOpcode() == ISD::BITCAST) {
1993    // f32 returned in a single GPR.
1994    if (!Copy->hasOneUse())
1995      return false;
1996    Copy = *Copy->use_begin();
1997    if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
1998      return false;
1999    Chain = Copy->getOperand(0);
2000  } else {
2001    return false;
2002  }
2003
2004  bool HasRet = false;
2005  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2006       UI != UE; ++UI) {
2007    if (UI->getOpcode() != ARMISD::RET_FLAG)
2008      return false;
2009    HasRet = true;
2010  }
2011
2012  if (!HasRet)
2013    return false;
2014
2015  Chain = TCChain;
2016  return true;
2017}
2018
2019bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2020  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
2021    return false;
2022
2023  if (!CI->isTailCall())
2024    return false;
2025
2026  return !Subtarget->isThumb1Only();
2027}
2028
2029// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2030// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2031// one of the above mentioned nodes. It has to be wrapped because otherwise
2032// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2033// be used to form addressing mode. These wrapped nodes will be selected
2034// into MOVi.
2035static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2036  EVT PtrVT = Op.getValueType();
2037  // FIXME there is no actual debug info here
2038  DebugLoc dl = Op.getDebugLoc();
2039  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2040  SDValue Res;
2041  if (CP->isMachineConstantPoolEntry())
2042    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2043                                    CP->getAlignment());
2044  else
2045    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2046                                    CP->getAlignment());
2047  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2048}
2049
2050unsigned ARMTargetLowering::getJumpTableEncoding() const {
2051  return MachineJumpTableInfo::EK_Inline;
2052}
2053
2054SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2055                                             SelectionDAG &DAG) const {
2056  MachineFunction &MF = DAG.getMachineFunction();
2057  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2058  unsigned ARMPCLabelIndex = 0;
2059  DebugLoc DL = Op.getDebugLoc();
2060  EVT PtrVT = getPointerTy();
2061  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2062  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2063  SDValue CPAddr;
2064  if (RelocM == Reloc::Static) {
2065    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2066  } else {
2067    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2068    ARMPCLabelIndex = AFI->createPICLabelUId();
2069    ARMConstantPoolValue *CPV =
2070      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2071                                      ARMCP::CPBlockAddress, PCAdj);
2072    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2073  }
2074  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2075  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2076                               MachinePointerInfo::getConstantPool(),
2077                               false, false, false, 0);
2078  if (RelocM == Reloc::Static)
2079    return Result;
2080  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2081  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2082}
2083
2084// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2085SDValue
2086ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2087                                                 SelectionDAG &DAG) const {
2088  DebugLoc dl = GA->getDebugLoc();
2089  EVT PtrVT = getPointerTy();
2090  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2091  MachineFunction &MF = DAG.getMachineFunction();
2092  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2093  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2094  ARMConstantPoolValue *CPV =
2095    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2096                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2097  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2098  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2099  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2100                         MachinePointerInfo::getConstantPool(),
2101                         false, false, false, 0);
2102  SDValue Chain = Argument.getValue(1);
2103
2104  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2105  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2106
2107  // call __tls_get_addr.
2108  ArgListTy Args;
2109  ArgListEntry Entry;
2110  Entry.Node = Argument;
2111  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2112  Args.push_back(Entry);
2113  // FIXME: is there useful debug info available here?
2114  TargetLowering::CallLoweringInfo CLI(Chain,
2115                (Type *) Type::getInt32Ty(*DAG.getContext()),
2116                false, false, false, false,
2117                0, CallingConv::C, /*isTailCall=*/false,
2118                /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
2119                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2120  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2121  return CallResult.first;
2122}
2123
2124// Lower ISD::GlobalTLSAddress using the "initial exec" or
2125// "local exec" model.
2126SDValue
2127ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2128                                        SelectionDAG &DAG,
2129                                        TLSModel::Model model) const {
2130  const GlobalValue *GV = GA->getGlobal();
2131  DebugLoc dl = GA->getDebugLoc();
2132  SDValue Offset;
2133  SDValue Chain = DAG.getEntryNode();
2134  EVT PtrVT = getPointerTy();
2135  // Get the Thread Pointer
2136  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2137
2138  if (model == TLSModel::InitialExec) {
2139    MachineFunction &MF = DAG.getMachineFunction();
2140    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2141    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2142    // Initial exec model.
2143    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2144    ARMConstantPoolValue *CPV =
2145      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2146                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2147                                      true);
2148    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2149    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2150    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2151                         MachinePointerInfo::getConstantPool(),
2152                         false, false, false, 0);
2153    Chain = Offset.getValue(1);
2154
2155    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2156    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2157
2158    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2159                         MachinePointerInfo::getConstantPool(),
2160                         false, false, false, 0);
2161  } else {
2162    // local exec model
2163    assert(model == TLSModel::LocalExec);
2164    ARMConstantPoolValue *CPV =
2165      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2166    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2167    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2168    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2169                         MachinePointerInfo::getConstantPool(),
2170                         false, false, false, 0);
2171  }
2172
2173  // The address of the thread local variable is the add of the thread
2174  // pointer with the offset of the variable.
2175  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2176}
2177
2178SDValue
2179ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2180  // TODO: implement the "local dynamic" model
2181  assert(Subtarget->isTargetELF() &&
2182         "TLS not implemented for non-ELF targets");
2183  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2184
2185  TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2186
2187  switch (model) {
2188    case TLSModel::GeneralDynamic:
2189    case TLSModel::LocalDynamic:
2190      return LowerToTLSGeneralDynamicModel(GA, DAG);
2191    case TLSModel::InitialExec:
2192    case TLSModel::LocalExec:
2193      return LowerToTLSExecModels(GA, DAG, model);
2194  }
2195  llvm_unreachable("bogus TLS model");
2196}
2197
2198SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2199                                                 SelectionDAG &DAG) const {
2200  EVT PtrVT = getPointerTy();
2201  DebugLoc dl = Op.getDebugLoc();
2202  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2203  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2204  if (RelocM == Reloc::PIC_) {
2205    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2206    ARMConstantPoolValue *CPV =
2207      ARMConstantPoolConstant::Create(GV,
2208                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2209    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2210    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2211    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2212                                 CPAddr,
2213                                 MachinePointerInfo::getConstantPool(),
2214                                 false, false, false, 0);
2215    SDValue Chain = Result.getValue(1);
2216    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2217    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2218    if (!UseGOTOFF)
2219      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2220                           MachinePointerInfo::getGOT(),
2221                           false, false, false, 0);
2222    return Result;
2223  }
2224
2225  // If we have T2 ops, we can materialize the address directly via movt/movw
2226  // pair. This is always cheaper.
2227  if (Subtarget->useMovt()) {
2228    ++NumMovwMovt;
2229    // FIXME: Once remat is capable of dealing with instructions with register
2230    // operands, expand this into two nodes.
2231    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2232                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2233  } else {
2234    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2235    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2236    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2237                       MachinePointerInfo::getConstantPool(),
2238                       false, false, false, 0);
2239  }
2240}
2241
2242SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2243                                                    SelectionDAG &DAG) const {
2244  EVT PtrVT = getPointerTy();
2245  DebugLoc dl = Op.getDebugLoc();
2246  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2247  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2248  MachineFunction &MF = DAG.getMachineFunction();
2249  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2250
2251  // FIXME: Enable this for static codegen when tool issues are fixed.  Also
2252  // update ARMFastISel::ARMMaterializeGV.
2253  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2254    ++NumMovwMovt;
2255    // FIXME: Once remat is capable of dealing with instructions with register
2256    // operands, expand this into two nodes.
2257    if (RelocM == Reloc::Static)
2258      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2259                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2260
2261    unsigned Wrapper = (RelocM == Reloc::PIC_)
2262      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2263    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2264                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2265    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2266      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2267                           MachinePointerInfo::getGOT(),
2268                           false, false, false, 0);
2269    return Result;
2270  }
2271
2272  unsigned ARMPCLabelIndex = 0;
2273  SDValue CPAddr;
2274  if (RelocM == Reloc::Static) {
2275    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2276  } else {
2277    ARMPCLabelIndex = AFI->createPICLabelUId();
2278    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2279    ARMConstantPoolValue *CPV =
2280      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2281                                      PCAdj);
2282    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2283  }
2284  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2285
2286  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2287                               MachinePointerInfo::getConstantPool(),
2288                               false, false, false, 0);
2289  SDValue Chain = Result.getValue(1);
2290
2291  if (RelocM == Reloc::PIC_) {
2292    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2293    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2294  }
2295
2296  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2297    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2298                         false, false, false, 0);
2299
2300  return Result;
2301}
2302
2303SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2304                                                    SelectionDAG &DAG) const {
2305  assert(Subtarget->isTargetELF() &&
2306         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2307  MachineFunction &MF = DAG.getMachineFunction();
2308  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2309  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2310  EVT PtrVT = getPointerTy();
2311  DebugLoc dl = Op.getDebugLoc();
2312  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2313  ARMConstantPoolValue *CPV =
2314    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2315                                  ARMPCLabelIndex, PCAdj);
2316  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2317  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2318  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2319                               MachinePointerInfo::getConstantPool(),
2320                               false, false, false, 0);
2321  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2322  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2323}
2324
2325SDValue
2326ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2327  DebugLoc dl = Op.getDebugLoc();
2328  SDValue Val = DAG.getConstant(0, MVT::i32);
2329  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2330                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2331                     Op.getOperand(1), Val);
2332}
2333
2334SDValue
2335ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2336  DebugLoc dl = Op.getDebugLoc();
2337  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2338                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2339}
2340
2341SDValue
2342ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2343                                          const ARMSubtarget *Subtarget) const {
2344  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2345  DebugLoc dl = Op.getDebugLoc();
2346  switch (IntNo) {
2347  default: return SDValue();    // Don't custom lower most intrinsics.
2348  case Intrinsic::arm_thread_pointer: {
2349    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2350    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2351  }
2352  case Intrinsic::eh_sjlj_lsda: {
2353    MachineFunction &MF = DAG.getMachineFunction();
2354    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2355    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2356    EVT PtrVT = getPointerTy();
2357    DebugLoc dl = Op.getDebugLoc();
2358    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2359    SDValue CPAddr;
2360    unsigned PCAdj = (RelocM != Reloc::PIC_)
2361      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2362    ARMConstantPoolValue *CPV =
2363      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2364                                      ARMCP::CPLSDA, PCAdj);
2365    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2366    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2367    SDValue Result =
2368      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2369                  MachinePointerInfo::getConstantPool(),
2370                  false, false, false, 0);
2371
2372    if (RelocM == Reloc::PIC_) {
2373      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2374      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2375    }
2376    return Result;
2377  }
2378  case Intrinsic::arm_neon_vmulls:
2379  case Intrinsic::arm_neon_vmullu: {
2380    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2381      ? ARMISD::VMULLs : ARMISD::VMULLu;
2382    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2383                       Op.getOperand(1), Op.getOperand(2));
2384  }
2385  }
2386}
2387
2388static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2389                               const ARMSubtarget *Subtarget) {
2390  DebugLoc dl = Op.getDebugLoc();
2391  if (!Subtarget->hasDataBarrier()) {
2392    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2393    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2394    // here.
2395    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2396           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2397    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2398                       DAG.getConstant(0, MVT::i32));
2399  }
2400
2401  SDValue Op5 = Op.getOperand(5);
2402  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2403  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2404  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2405  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2406
2407  ARM_MB::MemBOpt DMBOpt;
2408  if (isDeviceBarrier)
2409    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2410  else
2411    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2412  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2413                     DAG.getConstant(DMBOpt, MVT::i32));
2414}
2415
2416
2417static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2418                                 const ARMSubtarget *Subtarget) {
2419  // FIXME: handle "fence singlethread" more efficiently.
2420  DebugLoc dl = Op.getDebugLoc();
2421  if (!Subtarget->hasDataBarrier()) {
2422    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2423    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2424    // here.
2425    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2426           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2427    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2428                       DAG.getConstant(0, MVT::i32));
2429  }
2430
2431  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2432                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2433}
2434
2435static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2436                             const ARMSubtarget *Subtarget) {
2437  // ARM pre v5TE and Thumb1 does not have preload instructions.
2438  if (!(Subtarget->isThumb2() ||
2439        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2440    // Just preserve the chain.
2441    return Op.getOperand(0);
2442
2443  DebugLoc dl = Op.getDebugLoc();
2444  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2445  if (!isRead &&
2446      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2447    // ARMv7 with MP extension has PLDW.
2448    return Op.getOperand(0);
2449
2450  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2451  if (Subtarget->isThumb()) {
2452    // Invert the bits.
2453    isRead = ~isRead & 1;
2454    isData = ~isData & 1;
2455  }
2456
2457  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2458                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2459                     DAG.getConstant(isData, MVT::i32));
2460}
2461
2462static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2463  MachineFunction &MF = DAG.getMachineFunction();
2464  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2465
2466  // vastart just stores the address of the VarArgsFrameIndex slot into the
2467  // memory location argument.
2468  DebugLoc dl = Op.getDebugLoc();
2469  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2470  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2471  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2472  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2473                      MachinePointerInfo(SV), false, false, 0);
2474}
2475
2476SDValue
2477ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2478                                        SDValue &Root, SelectionDAG &DAG,
2479                                        DebugLoc dl) const {
2480  MachineFunction &MF = DAG.getMachineFunction();
2481  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2482
2483  const TargetRegisterClass *RC;
2484  if (AFI->isThumb1OnlyFunction())
2485    RC = &ARM::tGPRRegClass;
2486  else
2487    RC = &ARM::GPRRegClass;
2488
2489  // Transform the arguments stored in physical registers into virtual ones.
2490  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2491  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2492
2493  SDValue ArgValue2;
2494  if (NextVA.isMemLoc()) {
2495    MachineFrameInfo *MFI = MF.getFrameInfo();
2496    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2497
2498    // Create load node to retrieve arguments from the stack.
2499    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2500    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2501                            MachinePointerInfo::getFixedStack(FI),
2502                            false, false, false, 0);
2503  } else {
2504    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2505    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2506  }
2507
2508  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2509}
2510
2511void
2512ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2513                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2514  const {
2515  unsigned NumGPRs;
2516  if (CCInfo.isFirstByValRegValid())
2517    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2518  else {
2519    unsigned int firstUnalloced;
2520    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2521                                                sizeof(GPRArgRegs) /
2522                                                sizeof(GPRArgRegs[0]));
2523    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2524  }
2525
2526  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2527  VARegSize = NumGPRs * 4;
2528  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2529}
2530
2531// The remaining GPRs hold either the beginning of variable-argument
2532// data, or the beginning of an aggregate passed by value (usuall
2533// byval).  Either way, we allocate stack slots adjacent to the data
2534// provided by our caller, and store the unallocated registers there.
2535// If this is a variadic function, the va_list pointer will begin with
2536// these values; otherwise, this reassembles a (byval) structure that
2537// was split between registers and memory.
2538void
2539ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2540                                        DebugLoc dl, SDValue &Chain,
2541                                        const Value *OrigArg,
2542                                        unsigned OffsetFromOrigArg,
2543                                        unsigned ArgOffset,
2544                                        bool ForceMutable) const {
2545  MachineFunction &MF = DAG.getMachineFunction();
2546  MachineFrameInfo *MFI = MF.getFrameInfo();
2547  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2548  unsigned firstRegToSaveIndex;
2549  if (CCInfo.isFirstByValRegValid())
2550    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2551  else {
2552    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2553      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2554  }
2555
2556  unsigned VARegSize, VARegSaveSize;
2557  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2558  if (VARegSaveSize) {
2559    // If this function is vararg, store any remaining integer argument regs
2560    // to their spots on the stack so that they may be loaded by deferencing
2561    // the result of va_next.
2562    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2563    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2564                                                     ArgOffset + VARegSaveSize
2565                                                     - VARegSize,
2566                                                     false));
2567    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2568                                    getPointerTy());
2569
2570    SmallVector<SDValue, 4> MemOps;
2571    for (unsigned i = 0; firstRegToSaveIndex < 4; ++firstRegToSaveIndex, ++i) {
2572      const TargetRegisterClass *RC;
2573      if (AFI->isThumb1OnlyFunction())
2574        RC = &ARM::tGPRRegClass;
2575      else
2576        RC = &ARM::GPRRegClass;
2577
2578      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2579      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2580      SDValue Store =
2581        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2582                     MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i),
2583                     false, false, 0);
2584      MemOps.push_back(Store);
2585      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2586                        DAG.getConstant(4, getPointerTy()));
2587    }
2588    if (!MemOps.empty())
2589      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2590                          &MemOps[0], MemOps.size());
2591  } else
2592    // This will point to the next argument passed via stack.
2593    AFI->setVarArgsFrameIndex(
2594        MFI->CreateFixedObject(4, ArgOffset, !ForceMutable));
2595}
2596
2597SDValue
2598ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2599                                        CallingConv::ID CallConv, bool isVarArg,
2600                                        const SmallVectorImpl<ISD::InputArg>
2601                                          &Ins,
2602                                        DebugLoc dl, SelectionDAG &DAG,
2603                                        SmallVectorImpl<SDValue> &InVals)
2604                                          const {
2605  MachineFunction &MF = DAG.getMachineFunction();
2606  MachineFrameInfo *MFI = MF.getFrameInfo();
2607
2608  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2609
2610  // Assign locations to all of the incoming arguments.
2611  SmallVector<CCValAssign, 16> ArgLocs;
2612  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2613                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2614  CCInfo.AnalyzeFormalArguments(Ins,
2615                                CCAssignFnForNode(CallConv, /* Return*/ false,
2616                                                  isVarArg));
2617
2618  SmallVector<SDValue, 16> ArgValues;
2619  int lastInsIndex = -1;
2620  SDValue ArgValue;
2621  Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2622  unsigned CurArgIdx = 0;
2623  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2624    CCValAssign &VA = ArgLocs[i];
2625    std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx);
2626    CurArgIdx = Ins[VA.getValNo()].OrigArgIndex;
2627    // Arguments stored in registers.
2628    if (VA.isRegLoc()) {
2629      EVT RegVT = VA.getLocVT();
2630
2631      if (VA.needsCustom()) {
2632        // f64 and vector types are split up into multiple registers or
2633        // combinations of registers and stack slots.
2634        if (VA.getLocVT() == MVT::v2f64) {
2635          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2636                                                   Chain, DAG, dl);
2637          VA = ArgLocs[++i]; // skip ahead to next loc
2638          SDValue ArgValue2;
2639          if (VA.isMemLoc()) {
2640            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2641            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2642            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2643                                    MachinePointerInfo::getFixedStack(FI),
2644                                    false, false, false, 0);
2645          } else {
2646            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2647                                             Chain, DAG, dl);
2648          }
2649          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2650          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2651                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2652          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2653                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2654        } else
2655          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2656
2657      } else {
2658        const TargetRegisterClass *RC;
2659
2660        if (RegVT == MVT::f32)
2661          RC = &ARM::SPRRegClass;
2662        else if (RegVT == MVT::f64)
2663          RC = &ARM::DPRRegClass;
2664        else if (RegVT == MVT::v2f64)
2665          RC = &ARM::QPRRegClass;
2666        else if (RegVT == MVT::i32)
2667          RC = AFI->isThumb1OnlyFunction() ?
2668            (const TargetRegisterClass*)&ARM::tGPRRegClass :
2669            (const TargetRegisterClass*)&ARM::GPRRegClass;
2670        else
2671          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2672
2673        // Transform the arguments in physical registers into virtual ones.
2674        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2675        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2676      }
2677
2678      // If this is an 8 or 16-bit value, it is really passed promoted
2679      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2680      // truncate to the right size.
2681      switch (VA.getLocInfo()) {
2682      default: llvm_unreachable("Unknown loc info!");
2683      case CCValAssign::Full: break;
2684      case CCValAssign::BCvt:
2685        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2686        break;
2687      case CCValAssign::SExt:
2688        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2689                               DAG.getValueType(VA.getValVT()));
2690        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2691        break;
2692      case CCValAssign::ZExt:
2693        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2694                               DAG.getValueType(VA.getValVT()));
2695        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2696        break;
2697      }
2698
2699      InVals.push_back(ArgValue);
2700
2701    } else { // VA.isRegLoc()
2702
2703      // sanity check
2704      assert(VA.isMemLoc());
2705      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2706
2707      int index = ArgLocs[i].getValNo();
2708
2709      // Some Ins[] entries become multiple ArgLoc[] entries.
2710      // Process them only once.
2711      if (index != lastInsIndex)
2712        {
2713          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2714          // FIXME: For now, all byval parameter objects are marked mutable.
2715          // This can be changed with more analysis.
2716          // In case of tail call optimization mark all arguments mutable.
2717          // Since they could be overwritten by lowering of arguments in case of
2718          // a tail call.
2719          if (Flags.isByVal()) {
2720            ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2721            if (!AFI->getVarArgsFrameIndex()) {
2722              VarArgStyleRegisters(CCInfo, DAG,
2723                                   dl, Chain, CurOrigArg,
2724                                   Ins[VA.getValNo()].PartOffset,
2725                                   VA.getLocMemOffset(),
2726                                   true /*force mutable frames*/);
2727              int VAFrameIndex = AFI->getVarArgsFrameIndex();
2728              InVals.push_back(DAG.getFrameIndex(VAFrameIndex, getPointerTy()));
2729            } else {
2730              int FI = MFI->CreateFixedObject(Flags.getByValSize(),
2731                                              VA.getLocMemOffset(), false);
2732              InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2733            }
2734          } else {
2735            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2736                                            VA.getLocMemOffset(), true);
2737
2738            // Create load nodes to retrieve arguments from the stack.
2739            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2740            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2741                                         MachinePointerInfo::getFixedStack(FI),
2742                                         false, false, false, 0));
2743          }
2744          lastInsIndex = index;
2745        }
2746    }
2747  }
2748
2749  // varargs
2750  if (isVarArg)
2751    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0, 0,
2752                         CCInfo.getNextStackOffset());
2753
2754  return Chain;
2755}
2756
2757/// isFloatingPointZero - Return true if this is +0.0.
2758static bool isFloatingPointZero(SDValue Op) {
2759  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2760    return CFP->getValueAPF().isPosZero();
2761  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2762    // Maybe this has already been legalized into the constant pool?
2763    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2764      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2765      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2766        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2767          return CFP->getValueAPF().isPosZero();
2768    }
2769  }
2770  return false;
2771}
2772
2773/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2774/// the given operands.
2775SDValue
2776ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2777                             SDValue &ARMcc, SelectionDAG &DAG,
2778                             DebugLoc dl) const {
2779  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2780    unsigned C = RHSC->getZExtValue();
2781    if (!isLegalICmpImmediate(C)) {
2782      // Constant does not fit, try adjusting it by one?
2783      switch (CC) {
2784      default: break;
2785      case ISD::SETLT:
2786      case ISD::SETGE:
2787        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2788          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2789          RHS = DAG.getConstant(C-1, MVT::i32);
2790        }
2791        break;
2792      case ISD::SETULT:
2793      case ISD::SETUGE:
2794        if (C != 0 && isLegalICmpImmediate(C-1)) {
2795          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2796          RHS = DAG.getConstant(C-1, MVT::i32);
2797        }
2798        break;
2799      case ISD::SETLE:
2800      case ISD::SETGT:
2801        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2802          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2803          RHS = DAG.getConstant(C+1, MVT::i32);
2804        }
2805        break;
2806      case ISD::SETULE:
2807      case ISD::SETUGT:
2808        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2809          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2810          RHS = DAG.getConstant(C+1, MVT::i32);
2811        }
2812        break;
2813      }
2814    }
2815  }
2816
2817  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2818  ARMISD::NodeType CompareType;
2819  switch (CondCode) {
2820  default:
2821    CompareType = ARMISD::CMP;
2822    break;
2823  case ARMCC::EQ:
2824  case ARMCC::NE:
2825    // Uses only Z Flag
2826    CompareType = ARMISD::CMPZ;
2827    break;
2828  }
2829  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2830  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2831}
2832
2833/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2834SDValue
2835ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2836                             DebugLoc dl) const {
2837  SDValue Cmp;
2838  if (!isFloatingPointZero(RHS))
2839    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2840  else
2841    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2842  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2843}
2844
2845/// duplicateCmp - Glue values can have only one use, so this function
2846/// duplicates a comparison node.
2847SDValue
2848ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2849  unsigned Opc = Cmp.getOpcode();
2850  DebugLoc DL = Cmp.getDebugLoc();
2851  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2852    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2853
2854  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2855  Cmp = Cmp.getOperand(0);
2856  Opc = Cmp.getOpcode();
2857  if (Opc == ARMISD::CMPFP)
2858    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2859  else {
2860    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2861    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2862  }
2863  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2864}
2865
2866SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2867  SDValue Cond = Op.getOperand(0);
2868  SDValue SelectTrue = Op.getOperand(1);
2869  SDValue SelectFalse = Op.getOperand(2);
2870  DebugLoc dl = Op.getDebugLoc();
2871
2872  // Convert:
2873  //
2874  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2875  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2876  //
2877  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2878    const ConstantSDNode *CMOVTrue =
2879      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2880    const ConstantSDNode *CMOVFalse =
2881      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2882
2883    if (CMOVTrue && CMOVFalse) {
2884      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2885      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2886
2887      SDValue True;
2888      SDValue False;
2889      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2890        True = SelectTrue;
2891        False = SelectFalse;
2892      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2893        True = SelectFalse;
2894        False = SelectTrue;
2895      }
2896
2897      if (True.getNode() && False.getNode()) {
2898        EVT VT = Op.getValueType();
2899        SDValue ARMcc = Cond.getOperand(2);
2900        SDValue CCR = Cond.getOperand(3);
2901        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2902        assert(True.getValueType() == VT);
2903        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2904      }
2905    }
2906  }
2907
2908  // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
2909  // undefined bits before doing a full-word comparison with zero.
2910  Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
2911                     DAG.getConstant(1, Cond.getValueType()));
2912
2913  return DAG.getSelectCC(dl, Cond,
2914                         DAG.getConstant(0, Cond.getValueType()),
2915                         SelectTrue, SelectFalse, ISD::SETNE);
2916}
2917
2918SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2919  EVT VT = Op.getValueType();
2920  SDValue LHS = Op.getOperand(0);
2921  SDValue RHS = Op.getOperand(1);
2922  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2923  SDValue TrueVal = Op.getOperand(2);
2924  SDValue FalseVal = Op.getOperand(3);
2925  DebugLoc dl = Op.getDebugLoc();
2926
2927  if (LHS.getValueType() == MVT::i32) {
2928    SDValue ARMcc;
2929    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2930    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2931    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2932  }
2933
2934  ARMCC::CondCodes CondCode, CondCode2;
2935  FPCCToARMCC(CC, CondCode, CondCode2);
2936
2937  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2938  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2939  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2940  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2941                               ARMcc, CCR, Cmp);
2942  if (CondCode2 != ARMCC::AL) {
2943    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2944    // FIXME: Needs another CMP because flag can have but one use.
2945    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2946    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2947                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2948  }
2949  return Result;
2950}
2951
2952/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2953/// to morph to an integer compare sequence.
2954static bool canChangeToInt(SDValue Op, bool &SeenZero,
2955                           const ARMSubtarget *Subtarget) {
2956  SDNode *N = Op.getNode();
2957  if (!N->hasOneUse())
2958    // Otherwise it requires moving the value from fp to integer registers.
2959    return false;
2960  if (!N->getNumValues())
2961    return false;
2962  EVT VT = Op.getValueType();
2963  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2964    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2965    // vmrs are very slow, e.g. cortex-a8.
2966    return false;
2967
2968  if (isFloatingPointZero(Op)) {
2969    SeenZero = true;
2970    return true;
2971  }
2972  return ISD::isNormalLoad(N);
2973}
2974
2975static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2976  if (isFloatingPointZero(Op))
2977    return DAG.getConstant(0, MVT::i32);
2978
2979  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2980    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2981                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2982                       Ld->isVolatile(), Ld->isNonTemporal(),
2983                       Ld->isInvariant(), Ld->getAlignment());
2984
2985  llvm_unreachable("Unknown VFP cmp argument!");
2986}
2987
2988static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2989                           SDValue &RetVal1, SDValue &RetVal2) {
2990  if (isFloatingPointZero(Op)) {
2991    RetVal1 = DAG.getConstant(0, MVT::i32);
2992    RetVal2 = DAG.getConstant(0, MVT::i32);
2993    return;
2994  }
2995
2996  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2997    SDValue Ptr = Ld->getBasePtr();
2998    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2999                          Ld->getChain(), Ptr,
3000                          Ld->getPointerInfo(),
3001                          Ld->isVolatile(), Ld->isNonTemporal(),
3002                          Ld->isInvariant(), Ld->getAlignment());
3003
3004    EVT PtrType = Ptr.getValueType();
3005    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
3006    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
3007                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
3008    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
3009                          Ld->getChain(), NewPtr,
3010                          Ld->getPointerInfo().getWithOffset(4),
3011                          Ld->isVolatile(), Ld->isNonTemporal(),
3012                          Ld->isInvariant(), NewAlign);
3013    return;
3014  }
3015
3016  llvm_unreachable("Unknown VFP cmp argument!");
3017}
3018
3019/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
3020/// f32 and even f64 comparisons to integer ones.
3021SDValue
3022ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
3023  SDValue Chain = Op.getOperand(0);
3024  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3025  SDValue LHS = Op.getOperand(2);
3026  SDValue RHS = Op.getOperand(3);
3027  SDValue Dest = Op.getOperand(4);
3028  DebugLoc dl = Op.getDebugLoc();
3029
3030  bool LHSSeenZero = false;
3031  bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3032  bool RHSSeenZero = false;
3033  bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3034  if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3035    // If unsafe fp math optimization is enabled and there are no other uses of
3036    // the CMP operands, and the condition code is EQ or NE, we can optimize it
3037    // to an integer comparison.
3038    if (CC == ISD::SETOEQ)
3039      CC = ISD::SETEQ;
3040    else if (CC == ISD::SETUNE)
3041      CC = ISD::SETNE;
3042
3043    SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
3044    SDValue ARMcc;
3045    if (LHS.getValueType() == MVT::f32) {
3046      LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3047                        bitcastf32Toi32(LHS, DAG), Mask);
3048      RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3049                        bitcastf32Toi32(RHS, DAG), Mask);
3050      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3051      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3052      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3053                         Chain, Dest, ARMcc, CCR, Cmp);
3054    }
3055
3056    SDValue LHS1, LHS2;
3057    SDValue RHS1, RHS2;
3058    expandf64Toi32(LHS, DAG, LHS1, LHS2);
3059    expandf64Toi32(RHS, DAG, RHS1, RHS2);
3060    LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3061    RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3062    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3063    ARMcc = DAG.getConstant(CondCode, MVT::i32);
3064    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3065    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3066    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
3067  }
3068
3069  return SDValue();
3070}
3071
3072SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3073  SDValue Chain = Op.getOperand(0);
3074  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3075  SDValue LHS = Op.getOperand(2);
3076  SDValue RHS = Op.getOperand(3);
3077  SDValue Dest = Op.getOperand(4);
3078  DebugLoc dl = Op.getDebugLoc();
3079
3080  if (LHS.getValueType() == MVT::i32) {
3081    SDValue ARMcc;
3082    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3083    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3084    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3085                       Chain, Dest, ARMcc, CCR, Cmp);
3086  }
3087
3088  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3089
3090  if (getTargetMachine().Options.UnsafeFPMath &&
3091      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3092       CC == ISD::SETNE || CC == ISD::SETUNE)) {
3093    SDValue Result = OptimizeVFPBrcond(Op, DAG);
3094    if (Result.getNode())
3095      return Result;
3096  }
3097
3098  ARMCC::CondCodes CondCode, CondCode2;
3099  FPCCToARMCC(CC, CondCode, CondCode2);
3100
3101  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3102  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3103  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3104  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3105  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3106  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3107  if (CondCode2 != ARMCC::AL) {
3108    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3109    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3110    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3111  }
3112  return Res;
3113}
3114
3115SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3116  SDValue Chain = Op.getOperand(0);
3117  SDValue Table = Op.getOperand(1);
3118  SDValue Index = Op.getOperand(2);
3119  DebugLoc dl = Op.getDebugLoc();
3120
3121  EVT PTy = getPointerTy();
3122  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3123  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3124  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3125  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3126  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3127  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3128  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3129  if (Subtarget->isThumb2()) {
3130    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3131    // which does another jump to the destination. This also makes it easier
3132    // to translate it to TBB / TBH later.
3133    // FIXME: This might not work if the function is extremely large.
3134    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3135                       Addr, Op.getOperand(2), JTI, UId);
3136  }
3137  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3138    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3139                       MachinePointerInfo::getJumpTable(),
3140                       false, false, false, 0);
3141    Chain = Addr.getValue(1);
3142    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3143    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3144  } else {
3145    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3146                       MachinePointerInfo::getJumpTable(),
3147                       false, false, false, 0);
3148    Chain = Addr.getValue(1);
3149    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3150  }
3151}
3152
3153static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3154  EVT VT = Op.getValueType();
3155  DebugLoc dl = Op.getDebugLoc();
3156
3157  if (Op.getValueType().getVectorElementType() == MVT::i32) {
3158    if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3159      return Op;
3160    return DAG.UnrollVectorOp(Op.getNode());
3161  }
3162
3163  assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
3164         "Invalid type for custom lowering!");
3165  if (VT != MVT::v4i16)
3166    return DAG.UnrollVectorOp(Op.getNode());
3167
3168  Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3169  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3170}
3171
3172static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3173  EVT VT = Op.getValueType();
3174  if (VT.isVector())
3175    return LowerVectorFP_TO_INT(Op, DAG);
3176
3177  DebugLoc dl = Op.getDebugLoc();
3178  unsigned Opc;
3179
3180  switch (Op.getOpcode()) {
3181  default: llvm_unreachable("Invalid opcode!");
3182  case ISD::FP_TO_SINT:
3183    Opc = ARMISD::FTOSI;
3184    break;
3185  case ISD::FP_TO_UINT:
3186    Opc = ARMISD::FTOUI;
3187    break;
3188  }
3189  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3190  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3191}
3192
3193static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3194  EVT VT = Op.getValueType();
3195  DebugLoc dl = Op.getDebugLoc();
3196
3197  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3198    if (VT.getVectorElementType() == MVT::f32)
3199      return Op;
3200    return DAG.UnrollVectorOp(Op.getNode());
3201  }
3202
3203  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3204         "Invalid type for custom lowering!");
3205  if (VT != MVT::v4f32)
3206    return DAG.UnrollVectorOp(Op.getNode());
3207
3208  unsigned CastOpc;
3209  unsigned Opc;
3210  switch (Op.getOpcode()) {
3211  default: llvm_unreachable("Invalid opcode!");
3212  case ISD::SINT_TO_FP:
3213    CastOpc = ISD::SIGN_EXTEND;
3214    Opc = ISD::SINT_TO_FP;
3215    break;
3216  case ISD::UINT_TO_FP:
3217    CastOpc = ISD::ZERO_EXTEND;
3218    Opc = ISD::UINT_TO_FP;
3219    break;
3220  }
3221
3222  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3223  return DAG.getNode(Opc, dl, VT, Op);
3224}
3225
3226static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3227  EVT VT = Op.getValueType();
3228  if (VT.isVector())
3229    return LowerVectorINT_TO_FP(Op, DAG);
3230
3231  DebugLoc dl = Op.getDebugLoc();
3232  unsigned Opc;
3233
3234  switch (Op.getOpcode()) {
3235  default: llvm_unreachable("Invalid opcode!");
3236  case ISD::SINT_TO_FP:
3237    Opc = ARMISD::SITOF;
3238    break;
3239  case ISD::UINT_TO_FP:
3240    Opc = ARMISD::UITOF;
3241    break;
3242  }
3243
3244  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3245  return DAG.getNode(Opc, dl, VT, Op);
3246}
3247
3248SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3249  // Implement fcopysign with a fabs and a conditional fneg.
3250  SDValue Tmp0 = Op.getOperand(0);
3251  SDValue Tmp1 = Op.getOperand(1);
3252  DebugLoc dl = Op.getDebugLoc();
3253  EVT VT = Op.getValueType();
3254  EVT SrcVT = Tmp1.getValueType();
3255  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3256    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3257  bool UseNEON = !InGPR && Subtarget->hasNEON();
3258
3259  if (UseNEON) {
3260    // Use VBSL to copy the sign bit.
3261    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3262    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3263                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3264    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3265    if (VT == MVT::f64)
3266      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3267                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3268                         DAG.getConstant(32, MVT::i32));
3269    else /*if (VT == MVT::f32)*/
3270      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3271    if (SrcVT == MVT::f32) {
3272      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3273      if (VT == MVT::f64)
3274        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3275                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3276                           DAG.getConstant(32, MVT::i32));
3277    } else if (VT == MVT::f32)
3278      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3279                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3280                         DAG.getConstant(32, MVT::i32));
3281    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3282    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3283
3284    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3285                                            MVT::i32);
3286    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3287    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3288                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3289
3290    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3291                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3292                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3293    if (VT == MVT::f32) {
3294      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3295      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3296                        DAG.getConstant(0, MVT::i32));
3297    } else {
3298      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3299    }
3300
3301    return Res;
3302  }
3303
3304  // Bitcast operand 1 to i32.
3305  if (SrcVT == MVT::f64)
3306    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3307                       &Tmp1, 1).getValue(1);
3308  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3309
3310  // Or in the signbit with integer operations.
3311  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3312  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3313  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3314  if (VT == MVT::f32) {
3315    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3316                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3317    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3318                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3319  }
3320
3321  // f64: Or the high part with signbit and then combine two parts.
3322  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3323                     &Tmp0, 1);
3324  SDValue Lo = Tmp0.getValue(0);
3325  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3326  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3327  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3328}
3329
3330SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3331  MachineFunction &MF = DAG.getMachineFunction();
3332  MachineFrameInfo *MFI = MF.getFrameInfo();
3333  MFI->setReturnAddressIsTaken(true);
3334
3335  EVT VT = Op.getValueType();
3336  DebugLoc dl = Op.getDebugLoc();
3337  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3338  if (Depth) {
3339    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3340    SDValue Offset = DAG.getConstant(4, MVT::i32);
3341    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3342                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3343                       MachinePointerInfo(), false, false, false, 0);
3344  }
3345
3346  // Return LR, which contains the return address. Mark it an implicit live-in.
3347  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3348  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3349}
3350
3351SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3352  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3353  MFI->setFrameAddressIsTaken(true);
3354
3355  EVT VT = Op.getValueType();
3356  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3357  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3358  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3359    ? ARM::R7 : ARM::R11;
3360  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3361  while (Depth--)
3362    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3363                            MachinePointerInfo(),
3364                            false, false, false, 0);
3365  return FrameAddr;
3366}
3367
3368/// ExpandBITCAST - If the target supports VFP, this function is called to
3369/// expand a bit convert where either the source or destination type is i64 to
3370/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3371/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3372/// vectors), since the legalizer won't know what to do with that.
3373static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3374  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3375  DebugLoc dl = N->getDebugLoc();
3376  SDValue Op = N->getOperand(0);
3377
3378  // This function is only supposed to be called for i64 types, either as the
3379  // source or destination of the bit convert.
3380  EVT SrcVT = Op.getValueType();
3381  EVT DstVT = N->getValueType(0);
3382  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3383         "ExpandBITCAST called for non-i64 type");
3384
3385  // Turn i64->f64 into VMOVDRR.
3386  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3387    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3388                             DAG.getConstant(0, MVT::i32));
3389    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3390                             DAG.getConstant(1, MVT::i32));
3391    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3392                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3393  }
3394
3395  // Turn f64->i64 into VMOVRRD.
3396  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3397    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3398                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3399    // Merge the pieces into a single i64 value.
3400    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3401  }
3402
3403  return SDValue();
3404}
3405
3406/// getZeroVector - Returns a vector of specified type with all zero elements.
3407/// Zero vectors are used to represent vector negation and in those cases
3408/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3409/// not support i64 elements, so sometimes the zero vectors will need to be
3410/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3411/// zero vector.
3412static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3413  assert(VT.isVector() && "Expected a vector type");
3414  // The canonical modified immediate encoding of a zero vector is....0!
3415  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3416  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3417  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3418  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3419}
3420
3421/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3422/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3423SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3424                                                SelectionDAG &DAG) const {
3425  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3426  EVT VT = Op.getValueType();
3427  unsigned VTBits = VT.getSizeInBits();
3428  DebugLoc dl = Op.getDebugLoc();
3429  SDValue ShOpLo = Op.getOperand(0);
3430  SDValue ShOpHi = Op.getOperand(1);
3431  SDValue ShAmt  = Op.getOperand(2);
3432  SDValue ARMcc;
3433  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3434
3435  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3436
3437  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3438                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3439  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3440  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3441                                   DAG.getConstant(VTBits, MVT::i32));
3442  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3443  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3444  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3445
3446  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3447  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3448                          ARMcc, DAG, dl);
3449  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3450  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3451                           CCR, Cmp);
3452
3453  SDValue Ops[2] = { Lo, Hi };
3454  return DAG.getMergeValues(Ops, 2, dl);
3455}
3456
3457/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3458/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3459SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3460                                               SelectionDAG &DAG) const {
3461  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3462  EVT VT = Op.getValueType();
3463  unsigned VTBits = VT.getSizeInBits();
3464  DebugLoc dl = Op.getDebugLoc();
3465  SDValue ShOpLo = Op.getOperand(0);
3466  SDValue ShOpHi = Op.getOperand(1);
3467  SDValue ShAmt  = Op.getOperand(2);
3468  SDValue ARMcc;
3469
3470  assert(Op.getOpcode() == ISD::SHL_PARTS);
3471  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3472                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3473  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3474  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3475                                   DAG.getConstant(VTBits, MVT::i32));
3476  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3477  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3478
3479  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3480  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3481  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3482                          ARMcc, DAG, dl);
3483  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3484  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3485                           CCR, Cmp);
3486
3487  SDValue Ops[2] = { Lo, Hi };
3488  return DAG.getMergeValues(Ops, 2, dl);
3489}
3490
3491SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3492                                            SelectionDAG &DAG) const {
3493  // The rounding mode is in bits 23:22 of the FPSCR.
3494  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3495  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3496  // so that the shift + and get folded into a bitfield extract.
3497  DebugLoc dl = Op.getDebugLoc();
3498  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3499                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3500                                              MVT::i32));
3501  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3502                                  DAG.getConstant(1U << 22, MVT::i32));
3503  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3504                              DAG.getConstant(22, MVT::i32));
3505  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3506                     DAG.getConstant(3, MVT::i32));
3507}
3508
3509static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3510                         const ARMSubtarget *ST) {
3511  EVT VT = N->getValueType(0);
3512  DebugLoc dl = N->getDebugLoc();
3513
3514  if (!ST->hasV6T2Ops())
3515    return SDValue();
3516
3517  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3518  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3519}
3520
3521static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3522                          const ARMSubtarget *ST) {
3523  EVT VT = N->getValueType(0);
3524  DebugLoc dl = N->getDebugLoc();
3525
3526  if (!VT.isVector())
3527    return SDValue();
3528
3529  // Lower vector shifts on NEON to use VSHL.
3530  assert(ST->hasNEON() && "unexpected vector shift");
3531
3532  // Left shifts translate directly to the vshiftu intrinsic.
3533  if (N->getOpcode() == ISD::SHL)
3534    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3535                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3536                       N->getOperand(0), N->getOperand(1));
3537
3538  assert((N->getOpcode() == ISD::SRA ||
3539          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3540
3541  // NEON uses the same intrinsics for both left and right shifts.  For
3542  // right shifts, the shift amounts are negative, so negate the vector of
3543  // shift amounts.
3544  EVT ShiftVT = N->getOperand(1).getValueType();
3545  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3546                                     getZeroVector(ShiftVT, DAG, dl),
3547                                     N->getOperand(1));
3548  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3549                             Intrinsic::arm_neon_vshifts :
3550                             Intrinsic::arm_neon_vshiftu);
3551  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3552                     DAG.getConstant(vshiftInt, MVT::i32),
3553                     N->getOperand(0), NegatedCount);
3554}
3555
3556static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3557                                const ARMSubtarget *ST) {
3558  EVT VT = N->getValueType(0);
3559  DebugLoc dl = N->getDebugLoc();
3560
3561  // We can get here for a node like i32 = ISD::SHL i32, i64
3562  if (VT != MVT::i64)
3563    return SDValue();
3564
3565  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3566         "Unknown shift to lower!");
3567
3568  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3569  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3570      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3571    return SDValue();
3572
3573  // If we are in thumb mode, we don't have RRX.
3574  if (ST->isThumb1Only()) return SDValue();
3575
3576  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3577  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3578                           DAG.getConstant(0, MVT::i32));
3579  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3580                           DAG.getConstant(1, MVT::i32));
3581
3582  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3583  // captures the result into a carry flag.
3584  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3585  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3586
3587  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3588  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3589
3590  // Merge the pieces into a single i64 value.
3591 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3592}
3593
3594static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3595  SDValue TmpOp0, TmpOp1;
3596  bool Invert = false;
3597  bool Swap = false;
3598  unsigned Opc = 0;
3599
3600  SDValue Op0 = Op.getOperand(0);
3601  SDValue Op1 = Op.getOperand(1);
3602  SDValue CC = Op.getOperand(2);
3603  EVT VT = Op.getValueType();
3604  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3605  DebugLoc dl = Op.getDebugLoc();
3606
3607  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3608    switch (SetCCOpcode) {
3609    default: llvm_unreachable("Illegal FP comparison");
3610    case ISD::SETUNE:
3611    case ISD::SETNE:  Invert = true; // Fallthrough
3612    case ISD::SETOEQ:
3613    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3614    case ISD::SETOLT:
3615    case ISD::SETLT: Swap = true; // Fallthrough
3616    case ISD::SETOGT:
3617    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3618    case ISD::SETOLE:
3619    case ISD::SETLE:  Swap = true; // Fallthrough
3620    case ISD::SETOGE:
3621    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3622    case ISD::SETUGE: Swap = true; // Fallthrough
3623    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3624    case ISD::SETUGT: Swap = true; // Fallthrough
3625    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3626    case ISD::SETUEQ: Invert = true; // Fallthrough
3627    case ISD::SETONE:
3628      // Expand this to (OLT | OGT).
3629      TmpOp0 = Op0;
3630      TmpOp1 = Op1;
3631      Opc = ISD::OR;
3632      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3633      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3634      break;
3635    case ISD::SETUO: Invert = true; // Fallthrough
3636    case ISD::SETO:
3637      // Expand this to (OLT | OGE).
3638      TmpOp0 = Op0;
3639      TmpOp1 = Op1;
3640      Opc = ISD::OR;
3641      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3642      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3643      break;
3644    }
3645  } else {
3646    // Integer comparisons.
3647    switch (SetCCOpcode) {
3648    default: llvm_unreachable("Illegal integer comparison");
3649    case ISD::SETNE:  Invert = true;
3650    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3651    case ISD::SETLT:  Swap = true;
3652    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3653    case ISD::SETLE:  Swap = true;
3654    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3655    case ISD::SETULT: Swap = true;
3656    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3657    case ISD::SETULE: Swap = true;
3658    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3659    }
3660
3661    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3662    if (Opc == ARMISD::VCEQ) {
3663
3664      SDValue AndOp;
3665      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3666        AndOp = Op0;
3667      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3668        AndOp = Op1;
3669
3670      // Ignore bitconvert.
3671      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3672        AndOp = AndOp.getOperand(0);
3673
3674      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3675        Opc = ARMISD::VTST;
3676        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3677        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3678        Invert = !Invert;
3679      }
3680    }
3681  }
3682
3683  if (Swap)
3684    std::swap(Op0, Op1);
3685
3686  // If one of the operands is a constant vector zero, attempt to fold the
3687  // comparison to a specialized compare-against-zero form.
3688  SDValue SingleOp;
3689  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3690    SingleOp = Op0;
3691  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3692    if (Opc == ARMISD::VCGE)
3693      Opc = ARMISD::VCLEZ;
3694    else if (Opc == ARMISD::VCGT)
3695      Opc = ARMISD::VCLTZ;
3696    SingleOp = Op1;
3697  }
3698
3699  SDValue Result;
3700  if (SingleOp.getNode()) {
3701    switch (Opc) {
3702    case ARMISD::VCEQ:
3703      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3704    case ARMISD::VCGE:
3705      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3706    case ARMISD::VCLEZ:
3707      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3708    case ARMISD::VCGT:
3709      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3710    case ARMISD::VCLTZ:
3711      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3712    default:
3713      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3714    }
3715  } else {
3716     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3717  }
3718
3719  if (Invert)
3720    Result = DAG.getNOT(dl, Result, VT);
3721
3722  return Result;
3723}
3724
3725/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3726/// valid vector constant for a NEON instruction with a "modified immediate"
3727/// operand (e.g., VMOV).  If so, return the encoded value.
3728static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3729                                 unsigned SplatBitSize, SelectionDAG &DAG,
3730                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3731  unsigned OpCmode, Imm;
3732
3733  // SplatBitSize is set to the smallest size that splats the vector, so a
3734  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3735  // immediate instructions others than VMOV do not support the 8-bit encoding
3736  // of a zero vector, and the default encoding of zero is supposed to be the
3737  // 32-bit version.
3738  if (SplatBits == 0)
3739    SplatBitSize = 32;
3740
3741  switch (SplatBitSize) {
3742  case 8:
3743    if (type != VMOVModImm)
3744      return SDValue();
3745    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3746    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3747    OpCmode = 0xe;
3748    Imm = SplatBits;
3749    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3750    break;
3751
3752  case 16:
3753    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3754    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3755    if ((SplatBits & ~0xff) == 0) {
3756      // Value = 0x00nn: Op=x, Cmode=100x.
3757      OpCmode = 0x8;
3758      Imm = SplatBits;
3759      break;
3760    }
3761    if ((SplatBits & ~0xff00) == 0) {
3762      // Value = 0xnn00: Op=x, Cmode=101x.
3763      OpCmode = 0xa;
3764      Imm = SplatBits >> 8;
3765      break;
3766    }
3767    return SDValue();
3768
3769  case 32:
3770    // NEON's 32-bit VMOV supports splat values where:
3771    // * only one byte is nonzero, or
3772    // * the least significant byte is 0xff and the second byte is nonzero, or
3773    // * the least significant 2 bytes are 0xff and the third is nonzero.
3774    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3775    if ((SplatBits & ~0xff) == 0) {
3776      // Value = 0x000000nn: Op=x, Cmode=000x.
3777      OpCmode = 0;
3778      Imm = SplatBits;
3779      break;
3780    }
3781    if ((SplatBits & ~0xff00) == 0) {
3782      // Value = 0x0000nn00: Op=x, Cmode=001x.
3783      OpCmode = 0x2;
3784      Imm = SplatBits >> 8;
3785      break;
3786    }
3787    if ((SplatBits & ~0xff0000) == 0) {
3788      // Value = 0x00nn0000: Op=x, Cmode=010x.
3789      OpCmode = 0x4;
3790      Imm = SplatBits >> 16;
3791      break;
3792    }
3793    if ((SplatBits & ~0xff000000) == 0) {
3794      // Value = 0xnn000000: Op=x, Cmode=011x.
3795      OpCmode = 0x6;
3796      Imm = SplatBits >> 24;
3797      break;
3798    }
3799
3800    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3801    if (type == OtherModImm) return SDValue();
3802
3803    if ((SplatBits & ~0xffff) == 0 &&
3804        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3805      // Value = 0x0000nnff: Op=x, Cmode=1100.
3806      OpCmode = 0xc;
3807      Imm = SplatBits >> 8;
3808      SplatBits |= 0xff;
3809      break;
3810    }
3811
3812    if ((SplatBits & ~0xffffff) == 0 &&
3813        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3814      // Value = 0x00nnffff: Op=x, Cmode=1101.
3815      OpCmode = 0xd;
3816      Imm = SplatBits >> 16;
3817      SplatBits |= 0xffff;
3818      break;
3819    }
3820
3821    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3822    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3823    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3824    // and fall through here to test for a valid 64-bit splat.  But, then the
3825    // caller would also need to check and handle the change in size.
3826    return SDValue();
3827
3828  case 64: {
3829    if (type != VMOVModImm)
3830      return SDValue();
3831    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3832    uint64_t BitMask = 0xff;
3833    uint64_t Val = 0;
3834    unsigned ImmMask = 1;
3835    Imm = 0;
3836    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3837      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3838        Val |= BitMask;
3839        Imm |= ImmMask;
3840      } else if ((SplatBits & BitMask) != 0) {
3841        return SDValue();
3842      }
3843      BitMask <<= 8;
3844      ImmMask <<= 1;
3845    }
3846    // Op=1, Cmode=1110.
3847    OpCmode = 0x1e;
3848    SplatBits = Val;
3849    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3850    break;
3851  }
3852
3853  default:
3854    llvm_unreachable("unexpected size for isNEONModifiedImm");
3855  }
3856
3857  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3858  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3859}
3860
3861SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
3862                                           const ARMSubtarget *ST) const {
3863  if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16())
3864    return SDValue();
3865
3866  ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
3867  assert(Op.getValueType() == MVT::f32 &&
3868         "ConstantFP custom lowering should only occur for f32.");
3869
3870  // Try splatting with a VMOV.f32...
3871  APFloat FPVal = CFP->getValueAPF();
3872  int ImmVal = ARM_AM::getFP32Imm(FPVal);
3873  if (ImmVal != -1) {
3874    DebugLoc DL = Op.getDebugLoc();
3875    SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
3876    SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
3877                                      NewVal);
3878    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
3879                       DAG.getConstant(0, MVT::i32));
3880  }
3881
3882  // If that fails, try a VMOV.i32
3883  EVT VMovVT;
3884  unsigned iVal = FPVal.bitcastToAPInt().getZExtValue();
3885  SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false,
3886                                     VMOVModImm);
3887  if (NewVal != SDValue()) {
3888    DebugLoc DL = Op.getDebugLoc();
3889    SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
3890                                      NewVal);
3891    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
3892                                       VecConstant);
3893    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
3894                       DAG.getConstant(0, MVT::i32));
3895  }
3896
3897  // Finally, try a VMVN.i32
3898  NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false,
3899                             VMVNModImm);
3900  if (NewVal != SDValue()) {
3901    DebugLoc DL = Op.getDebugLoc();
3902    SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
3903    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
3904                                       VecConstant);
3905    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
3906                       DAG.getConstant(0, MVT::i32));
3907  }
3908
3909  return SDValue();
3910}
3911
3912
3913static bool isVEXTMask(ArrayRef<int> M, EVT VT,
3914                       bool &ReverseVEXT, unsigned &Imm) {
3915  unsigned NumElts = VT.getVectorNumElements();
3916  ReverseVEXT = false;
3917
3918  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3919  if (M[0] < 0)
3920    return false;
3921
3922  Imm = M[0];
3923
3924  // If this is a VEXT shuffle, the immediate value is the index of the first
3925  // element.  The other shuffle indices must be the successive elements after
3926  // the first one.
3927  unsigned ExpectedElt = Imm;
3928  for (unsigned i = 1; i < NumElts; ++i) {
3929    // Increment the expected index.  If it wraps around, it may still be
3930    // a VEXT but the source vectors must be swapped.
3931    ExpectedElt += 1;
3932    if (ExpectedElt == NumElts * 2) {
3933      ExpectedElt = 0;
3934      ReverseVEXT = true;
3935    }
3936
3937    if (M[i] < 0) continue; // ignore UNDEF indices
3938    if (ExpectedElt != static_cast<unsigned>(M[i]))
3939      return false;
3940  }
3941
3942  // Adjust the index value if the source operands will be swapped.
3943  if (ReverseVEXT)
3944    Imm -= NumElts;
3945
3946  return true;
3947}
3948
3949/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3950/// instruction with the specified blocksize.  (The order of the elements
3951/// within each block of the vector is reversed.)
3952static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
3953  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3954         "Only possible block sizes for VREV are: 16, 32, 64");
3955
3956  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3957  if (EltSz == 64)
3958    return false;
3959
3960  unsigned NumElts = VT.getVectorNumElements();
3961  unsigned BlockElts = M[0] + 1;
3962  // If the first shuffle index is UNDEF, be optimistic.
3963  if (M[0] < 0)
3964    BlockElts = BlockSize / EltSz;
3965
3966  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3967    return false;
3968
3969  for (unsigned i = 0; i < NumElts; ++i) {
3970    if (M[i] < 0) continue; // ignore UNDEF indices
3971    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3972      return false;
3973  }
3974
3975  return true;
3976}
3977
3978static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
3979  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3980  // range, then 0 is placed into the resulting vector. So pretty much any mask
3981  // of 8 elements can work here.
3982  return VT == MVT::v8i8 && M.size() == 8;
3983}
3984
3985static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3986  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3987  if (EltSz == 64)
3988    return false;
3989
3990  unsigned NumElts = VT.getVectorNumElements();
3991  WhichResult = (M[0] == 0 ? 0 : 1);
3992  for (unsigned i = 0; i < NumElts; i += 2) {
3993    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3994        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3995      return false;
3996  }
3997  return true;
3998}
3999
4000/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
4001/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4002/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4003static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4004  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4005  if (EltSz == 64)
4006    return false;
4007
4008  unsigned NumElts = VT.getVectorNumElements();
4009  WhichResult = (M[0] == 0 ? 0 : 1);
4010  for (unsigned i = 0; i < NumElts; i += 2) {
4011    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4012        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
4013      return false;
4014  }
4015  return true;
4016}
4017
4018static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4019  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4020  if (EltSz == 64)
4021    return false;
4022
4023  unsigned NumElts = VT.getVectorNumElements();
4024  WhichResult = (M[0] == 0 ? 0 : 1);
4025  for (unsigned i = 0; i != NumElts; ++i) {
4026    if (M[i] < 0) continue; // ignore UNDEF indices
4027    if ((unsigned) M[i] != 2 * i + WhichResult)
4028      return false;
4029  }
4030
4031  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4032  if (VT.is64BitVector() && EltSz == 32)
4033    return false;
4034
4035  return true;
4036}
4037
4038/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
4039/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4040/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4041static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4042  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4043  if (EltSz == 64)
4044    return false;
4045
4046  unsigned Half = VT.getVectorNumElements() / 2;
4047  WhichResult = (M[0] == 0 ? 0 : 1);
4048  for (unsigned j = 0; j != 2; ++j) {
4049    unsigned Idx = WhichResult;
4050    for (unsigned i = 0; i != Half; ++i) {
4051      int MIdx = M[i + j * Half];
4052      if (MIdx >= 0 && (unsigned) MIdx != Idx)
4053        return false;
4054      Idx += 2;
4055    }
4056  }
4057
4058  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4059  if (VT.is64BitVector() && EltSz == 32)
4060    return false;
4061
4062  return true;
4063}
4064
4065static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4066  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4067  if (EltSz == 64)
4068    return false;
4069
4070  unsigned NumElts = VT.getVectorNumElements();
4071  WhichResult = (M[0] == 0 ? 0 : 1);
4072  unsigned Idx = WhichResult * NumElts / 2;
4073  for (unsigned i = 0; i != NumElts; i += 2) {
4074    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4075        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
4076      return false;
4077    Idx += 1;
4078  }
4079
4080  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4081  if (VT.is64BitVector() && EltSz == 32)
4082    return false;
4083
4084  return true;
4085}
4086
4087/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
4088/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4089/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4090static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4091  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4092  if (EltSz == 64)
4093    return false;
4094
4095  unsigned NumElts = VT.getVectorNumElements();
4096  WhichResult = (M[0] == 0 ? 0 : 1);
4097  unsigned Idx = WhichResult * NumElts / 2;
4098  for (unsigned i = 0; i != NumElts; i += 2) {
4099    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4100        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
4101      return false;
4102    Idx += 1;
4103  }
4104
4105  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4106  if (VT.is64BitVector() && EltSz == 32)
4107    return false;
4108
4109  return true;
4110}
4111
4112// If N is an integer constant that can be moved into a register in one
4113// instruction, return an SDValue of such a constant (will become a MOV
4114// instruction).  Otherwise return null.
4115static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
4116                                     const ARMSubtarget *ST, DebugLoc dl) {
4117  uint64_t Val;
4118  if (!isa<ConstantSDNode>(N))
4119    return SDValue();
4120  Val = cast<ConstantSDNode>(N)->getZExtValue();
4121
4122  if (ST->isThumb1Only()) {
4123    if (Val <= 255 || ~Val <= 255)
4124      return DAG.getConstant(Val, MVT::i32);
4125  } else {
4126    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
4127      return DAG.getConstant(Val, MVT::i32);
4128  }
4129  return SDValue();
4130}
4131
4132// If this is a case we can't handle, return null and let the default
4133// expansion code take care of it.
4134SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4135                                             const ARMSubtarget *ST) const {
4136  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
4137  DebugLoc dl = Op.getDebugLoc();
4138  EVT VT = Op.getValueType();
4139
4140  APInt SplatBits, SplatUndef;
4141  unsigned SplatBitSize;
4142  bool HasAnyUndefs;
4143  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4144    if (SplatBitSize <= 64) {
4145      // Check if an immediate VMOV works.
4146      EVT VmovVT;
4147      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4148                                      SplatUndef.getZExtValue(), SplatBitSize,
4149                                      DAG, VmovVT, VT.is128BitVector(),
4150                                      VMOVModImm);
4151      if (Val.getNode()) {
4152        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
4153        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4154      }
4155
4156      // Try an immediate VMVN.
4157      uint64_t NegatedImm = (~SplatBits).getZExtValue();
4158      Val = isNEONModifiedImm(NegatedImm,
4159                                      SplatUndef.getZExtValue(), SplatBitSize,
4160                                      DAG, VmovVT, VT.is128BitVector(),
4161                                      VMVNModImm);
4162      if (Val.getNode()) {
4163        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4164        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4165      }
4166
4167      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4168      if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4169        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4170        if (ImmVal != -1) {
4171          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4172          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4173        }
4174      }
4175    }
4176  }
4177
4178  // Scan through the operands to see if only one value is used.
4179  //
4180  // As an optimisation, even if more than one value is used it may be more
4181  // profitable to splat with one value then change some lanes.
4182  //
4183  // Heuristically we decide to do this if the vector has a "dominant" value,
4184  // defined as splatted to more than half of the lanes.
4185  unsigned NumElts = VT.getVectorNumElements();
4186  bool isOnlyLowElement = true;
4187  bool usesOnlyOneValue = true;
4188  bool hasDominantValue = false;
4189  bool isConstant = true;
4190
4191  // Map of the number of times a particular SDValue appears in the
4192  // element list.
4193  DenseMap<SDValue, unsigned> ValueCounts;
4194  SDValue Value;
4195  for (unsigned i = 0; i < NumElts; ++i) {
4196    SDValue V = Op.getOperand(i);
4197    if (V.getOpcode() == ISD::UNDEF)
4198      continue;
4199    if (i > 0)
4200      isOnlyLowElement = false;
4201    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4202      isConstant = false;
4203
4204    ValueCounts.insert(std::make_pair(V, 0));
4205    unsigned &Count = ValueCounts[V];
4206
4207    // Is this value dominant? (takes up more than half of the lanes)
4208    if (++Count > (NumElts / 2)) {
4209      hasDominantValue = true;
4210      Value = V;
4211    }
4212  }
4213  if (ValueCounts.size() != 1)
4214    usesOnlyOneValue = false;
4215  if (!Value.getNode() && ValueCounts.size() > 0)
4216    Value = ValueCounts.begin()->first;
4217
4218  if (ValueCounts.size() == 0)
4219    return DAG.getUNDEF(VT);
4220
4221  if (isOnlyLowElement)
4222    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4223
4224  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4225
4226  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
4227  // i32 and try again.
4228  if (hasDominantValue && EltSize <= 32) {
4229    if (!isConstant) {
4230      SDValue N;
4231
4232      // If we are VDUPing a value that comes directly from a vector, that will
4233      // cause an unnecessary move to and from a GPR, where instead we could
4234      // just use VDUPLANE.
4235      if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
4236        // We need to create a new undef vector to use for the VDUPLANE if the
4237        // size of the vector from which we get the value is different than the
4238        // size of the vector that we need to create. We will insert the element
4239        // such that the register coalescer will remove unnecessary copies.
4240        if (VT != Value->getOperand(0).getValueType()) {
4241          ConstantSDNode *constIndex;
4242          constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
4243          assert(constIndex && "The index is not a constant!");
4244          unsigned index = constIndex->getAPIntValue().getLimitedValue() %
4245                             VT.getVectorNumElements();
4246          N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4247                 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
4248                        Value, DAG.getConstant(index, MVT::i32)),
4249                           DAG.getConstant(index, MVT::i32));
4250        } else {
4251          N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4252                        Value->getOperand(0), Value->getOperand(1));
4253        }
4254      }
4255      else
4256        N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4257
4258      if (!usesOnlyOneValue) {
4259        // The dominant value was splatted as 'N', but we now have to insert
4260        // all differing elements.
4261        for (unsigned I = 0; I < NumElts; ++I) {
4262          if (Op.getOperand(I) == Value)
4263            continue;
4264          SmallVector<SDValue, 3> Ops;
4265          Ops.push_back(N);
4266          Ops.push_back(Op.getOperand(I));
4267          Ops.push_back(DAG.getConstant(I, MVT::i32));
4268          N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3);
4269        }
4270      }
4271      return N;
4272    }
4273    if (VT.getVectorElementType().isFloatingPoint()) {
4274      SmallVector<SDValue, 8> Ops;
4275      for (unsigned i = 0; i < NumElts; ++i)
4276        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4277                                  Op.getOperand(i)));
4278      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4279      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4280      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4281      if (Val.getNode())
4282        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4283    }
4284    if (usesOnlyOneValue) {
4285      SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4286      if (isConstant && Val.getNode())
4287        return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4288    }
4289  }
4290
4291  // If all elements are constants and the case above didn't get hit, fall back
4292  // to the default expansion, which will generate a load from the constant
4293  // pool.
4294  if (isConstant)
4295    return SDValue();
4296
4297  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4298  if (NumElts >= 4) {
4299    SDValue shuffle = ReconstructShuffle(Op, DAG);
4300    if (shuffle != SDValue())
4301      return shuffle;
4302  }
4303
4304  // Vectors with 32- or 64-bit elements can be built by directly assigning
4305  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4306  // will be legalized.
4307  if (EltSize >= 32) {
4308    // Do the expansion with floating-point types, since that is what the VFP
4309    // registers are defined to use, and since i64 is not legal.
4310    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4311    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4312    SmallVector<SDValue, 8> Ops;
4313    for (unsigned i = 0; i < NumElts; ++i)
4314      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4315    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4316    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4317  }
4318
4319  return SDValue();
4320}
4321
4322// Gather data to see if the operation can be modelled as a
4323// shuffle in combination with VEXTs.
4324SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4325                                              SelectionDAG &DAG) const {
4326  DebugLoc dl = Op.getDebugLoc();
4327  EVT VT = Op.getValueType();
4328  unsigned NumElts = VT.getVectorNumElements();
4329
4330  SmallVector<SDValue, 2> SourceVecs;
4331  SmallVector<unsigned, 2> MinElts;
4332  SmallVector<unsigned, 2> MaxElts;
4333
4334  for (unsigned i = 0; i < NumElts; ++i) {
4335    SDValue V = Op.getOperand(i);
4336    if (V.getOpcode() == ISD::UNDEF)
4337      continue;
4338    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4339      // A shuffle can only come from building a vector from various
4340      // elements of other vectors.
4341      return SDValue();
4342    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4343               VT.getVectorElementType()) {
4344      // This code doesn't know how to handle shuffles where the vector
4345      // element types do not match (this happens because type legalization
4346      // promotes the return type of EXTRACT_VECTOR_ELT).
4347      // FIXME: It might be appropriate to extend this code to handle
4348      // mismatched types.
4349      return SDValue();
4350    }
4351
4352    // Record this extraction against the appropriate vector if possible...
4353    SDValue SourceVec = V.getOperand(0);
4354    // If the element number isn't a constant, we can't effectively
4355    // analyze what's going on.
4356    if (!isa<ConstantSDNode>(V.getOperand(1)))
4357      return SDValue();
4358    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4359    bool FoundSource = false;
4360    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4361      if (SourceVecs[j] == SourceVec) {
4362        if (MinElts[j] > EltNo)
4363          MinElts[j] = EltNo;
4364        if (MaxElts[j] < EltNo)
4365          MaxElts[j] = EltNo;
4366        FoundSource = true;
4367        break;
4368      }
4369    }
4370
4371    // Or record a new source if not...
4372    if (!FoundSource) {
4373      SourceVecs.push_back(SourceVec);
4374      MinElts.push_back(EltNo);
4375      MaxElts.push_back(EltNo);
4376    }
4377  }
4378
4379  // Currently only do something sane when at most two source vectors
4380  // involved.
4381  if (SourceVecs.size() > 2)
4382    return SDValue();
4383
4384  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4385  int VEXTOffsets[2] = {0, 0};
4386
4387  // This loop extracts the usage patterns of the source vectors
4388  // and prepares appropriate SDValues for a shuffle if possible.
4389  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4390    if (SourceVecs[i].getValueType() == VT) {
4391      // No VEXT necessary
4392      ShuffleSrcs[i] = SourceVecs[i];
4393      VEXTOffsets[i] = 0;
4394      continue;
4395    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4396      // It probably isn't worth padding out a smaller vector just to
4397      // break it down again in a shuffle.
4398      return SDValue();
4399    }
4400
4401    // Since only 64-bit and 128-bit vectors are legal on ARM and
4402    // we've eliminated the other cases...
4403    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4404           "unexpected vector sizes in ReconstructShuffle");
4405
4406    if (MaxElts[i] - MinElts[i] >= NumElts) {
4407      // Span too large for a VEXT to cope
4408      return SDValue();
4409    }
4410
4411    if (MinElts[i] >= NumElts) {
4412      // The extraction can just take the second half
4413      VEXTOffsets[i] = NumElts;
4414      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4415                                   SourceVecs[i],
4416                                   DAG.getIntPtrConstant(NumElts));
4417    } else if (MaxElts[i] < NumElts) {
4418      // The extraction can just take the first half
4419      VEXTOffsets[i] = 0;
4420      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4421                                   SourceVecs[i],
4422                                   DAG.getIntPtrConstant(0));
4423    } else {
4424      // An actual VEXT is needed
4425      VEXTOffsets[i] = MinElts[i];
4426      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4427                                     SourceVecs[i],
4428                                     DAG.getIntPtrConstant(0));
4429      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4430                                     SourceVecs[i],
4431                                     DAG.getIntPtrConstant(NumElts));
4432      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4433                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4434    }
4435  }
4436
4437  SmallVector<int, 8> Mask;
4438
4439  for (unsigned i = 0; i < NumElts; ++i) {
4440    SDValue Entry = Op.getOperand(i);
4441    if (Entry.getOpcode() == ISD::UNDEF) {
4442      Mask.push_back(-1);
4443      continue;
4444    }
4445
4446    SDValue ExtractVec = Entry.getOperand(0);
4447    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4448                                          .getOperand(1))->getSExtValue();
4449    if (ExtractVec == SourceVecs[0]) {
4450      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4451    } else {
4452      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4453    }
4454  }
4455
4456  // Final check before we try to produce nonsense...
4457  if (isShuffleMaskLegal(Mask, VT))
4458    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4459                                &Mask[0]);
4460
4461  return SDValue();
4462}
4463
4464/// isShuffleMaskLegal - Targets can use this to indicate that they only
4465/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4466/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4467/// are assumed to be legal.
4468bool
4469ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4470                                      EVT VT) const {
4471  if (VT.getVectorNumElements() == 4 &&
4472      (VT.is128BitVector() || VT.is64BitVector())) {
4473    unsigned PFIndexes[4];
4474    for (unsigned i = 0; i != 4; ++i) {
4475      if (M[i] < 0)
4476        PFIndexes[i] = 8;
4477      else
4478        PFIndexes[i] = M[i];
4479    }
4480
4481    // Compute the index in the perfect shuffle table.
4482    unsigned PFTableIndex =
4483      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4484    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4485    unsigned Cost = (PFEntry >> 30);
4486
4487    if (Cost <= 4)
4488      return true;
4489  }
4490
4491  bool ReverseVEXT;
4492  unsigned Imm, WhichResult;
4493
4494  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4495  return (EltSize >= 32 ||
4496          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4497          isVREVMask(M, VT, 64) ||
4498          isVREVMask(M, VT, 32) ||
4499          isVREVMask(M, VT, 16) ||
4500          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4501          isVTBLMask(M, VT) ||
4502          isVTRNMask(M, VT, WhichResult) ||
4503          isVUZPMask(M, VT, WhichResult) ||
4504          isVZIPMask(M, VT, WhichResult) ||
4505          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4506          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4507          isVZIP_v_undef_Mask(M, VT, WhichResult));
4508}
4509
4510/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4511/// the specified operations to build the shuffle.
4512static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4513                                      SDValue RHS, SelectionDAG &DAG,
4514                                      DebugLoc dl) {
4515  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4516  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4517  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4518
4519  enum {
4520    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4521    OP_VREV,
4522    OP_VDUP0,
4523    OP_VDUP1,
4524    OP_VDUP2,
4525    OP_VDUP3,
4526    OP_VEXT1,
4527    OP_VEXT2,
4528    OP_VEXT3,
4529    OP_VUZPL, // VUZP, left result
4530    OP_VUZPR, // VUZP, right result
4531    OP_VZIPL, // VZIP, left result
4532    OP_VZIPR, // VZIP, right result
4533    OP_VTRNL, // VTRN, left result
4534    OP_VTRNR  // VTRN, right result
4535  };
4536
4537  if (OpNum == OP_COPY) {
4538    if (LHSID == (1*9+2)*9+3) return LHS;
4539    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4540    return RHS;
4541  }
4542
4543  SDValue OpLHS, OpRHS;
4544  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4545  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4546  EVT VT = OpLHS.getValueType();
4547
4548  switch (OpNum) {
4549  default: llvm_unreachable("Unknown shuffle opcode!");
4550  case OP_VREV:
4551    // VREV divides the vector in half and swaps within the half.
4552    if (VT.getVectorElementType() == MVT::i32 ||
4553        VT.getVectorElementType() == MVT::f32)
4554      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4555    // vrev <4 x i16> -> VREV32
4556    if (VT.getVectorElementType() == MVT::i16)
4557      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4558    // vrev <4 x i8> -> VREV16
4559    assert(VT.getVectorElementType() == MVT::i8);
4560    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4561  case OP_VDUP0:
4562  case OP_VDUP1:
4563  case OP_VDUP2:
4564  case OP_VDUP3:
4565    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4566                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4567  case OP_VEXT1:
4568  case OP_VEXT2:
4569  case OP_VEXT3:
4570    return DAG.getNode(ARMISD::VEXT, dl, VT,
4571                       OpLHS, OpRHS,
4572                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4573  case OP_VUZPL:
4574  case OP_VUZPR:
4575    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4576                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4577  case OP_VZIPL:
4578  case OP_VZIPR:
4579    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4580                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4581  case OP_VTRNL:
4582  case OP_VTRNR:
4583    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4584                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4585  }
4586}
4587
4588static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4589                                       ArrayRef<int> ShuffleMask,
4590                                       SelectionDAG &DAG) {
4591  // Check to see if we can use the VTBL instruction.
4592  SDValue V1 = Op.getOperand(0);
4593  SDValue V2 = Op.getOperand(1);
4594  DebugLoc DL = Op.getDebugLoc();
4595
4596  SmallVector<SDValue, 8> VTBLMask;
4597  for (ArrayRef<int>::iterator
4598         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4599    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4600
4601  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4602    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4603                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4604                                   &VTBLMask[0], 8));
4605
4606  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4607                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4608                                 &VTBLMask[0], 8));
4609}
4610
4611static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4612  SDValue V1 = Op.getOperand(0);
4613  SDValue V2 = Op.getOperand(1);
4614  DebugLoc dl = Op.getDebugLoc();
4615  EVT VT = Op.getValueType();
4616  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4617
4618  // Convert shuffles that are directly supported on NEON to target-specific
4619  // DAG nodes, instead of keeping them as shuffles and matching them again
4620  // during code selection.  This is more efficient and avoids the possibility
4621  // of inconsistencies between legalization and selection.
4622  // FIXME: floating-point vectors should be canonicalized to integer vectors
4623  // of the same time so that they get CSEd properly.
4624  ArrayRef<int> ShuffleMask = SVN->getMask();
4625
4626  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4627  if (EltSize <= 32) {
4628    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4629      int Lane = SVN->getSplatIndex();
4630      // If this is undef splat, generate it via "just" vdup, if possible.
4631      if (Lane == -1) Lane = 0;
4632
4633      // Test if V1 is a SCALAR_TO_VECTOR.
4634      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4635        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4636      }
4637      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
4638      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
4639      // reaches it).
4640      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
4641          !isa<ConstantSDNode>(V1.getOperand(0))) {
4642        bool IsScalarToVector = true;
4643        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
4644          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
4645            IsScalarToVector = false;
4646            break;
4647          }
4648        if (IsScalarToVector)
4649          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4650      }
4651      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4652                         DAG.getConstant(Lane, MVT::i32));
4653    }
4654
4655    bool ReverseVEXT;
4656    unsigned Imm;
4657    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4658      if (ReverseVEXT)
4659        std::swap(V1, V2);
4660      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4661                         DAG.getConstant(Imm, MVT::i32));
4662    }
4663
4664    if (isVREVMask(ShuffleMask, VT, 64))
4665      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4666    if (isVREVMask(ShuffleMask, VT, 32))
4667      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4668    if (isVREVMask(ShuffleMask, VT, 16))
4669      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4670
4671    // Check for Neon shuffles that modify both input vectors in place.
4672    // If both results are used, i.e., if there are two shuffles with the same
4673    // source operands and with masks corresponding to both results of one of
4674    // these operations, DAG memoization will ensure that a single node is
4675    // used for both shuffles.
4676    unsigned WhichResult;
4677    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4678      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4679                         V1, V2).getValue(WhichResult);
4680    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4681      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4682                         V1, V2).getValue(WhichResult);
4683    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4684      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4685                         V1, V2).getValue(WhichResult);
4686
4687    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4688      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4689                         V1, V1).getValue(WhichResult);
4690    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4691      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4692                         V1, V1).getValue(WhichResult);
4693    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4694      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4695                         V1, V1).getValue(WhichResult);
4696  }
4697
4698  // If the shuffle is not directly supported and it has 4 elements, use
4699  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4700  unsigned NumElts = VT.getVectorNumElements();
4701  if (NumElts == 4) {
4702    unsigned PFIndexes[4];
4703    for (unsigned i = 0; i != 4; ++i) {
4704      if (ShuffleMask[i] < 0)
4705        PFIndexes[i] = 8;
4706      else
4707        PFIndexes[i] = ShuffleMask[i];
4708    }
4709
4710    // Compute the index in the perfect shuffle table.
4711    unsigned PFTableIndex =
4712      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4713    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4714    unsigned Cost = (PFEntry >> 30);
4715
4716    if (Cost <= 4)
4717      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4718  }
4719
4720  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4721  if (EltSize >= 32) {
4722    // Do the expansion with floating-point types, since that is what the VFP
4723    // registers are defined to use, and since i64 is not legal.
4724    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4725    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4726    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4727    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4728    SmallVector<SDValue, 8> Ops;
4729    for (unsigned i = 0; i < NumElts; ++i) {
4730      if (ShuffleMask[i] < 0)
4731        Ops.push_back(DAG.getUNDEF(EltVT));
4732      else
4733        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4734                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4735                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4736                                                  MVT::i32)));
4737    }
4738    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4739    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4740  }
4741
4742  if (VT == MVT::v8i8) {
4743    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4744    if (NewOp.getNode())
4745      return NewOp;
4746  }
4747
4748  return SDValue();
4749}
4750
4751static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4752  // INSERT_VECTOR_ELT is legal only for immediate indexes.
4753  SDValue Lane = Op.getOperand(2);
4754  if (!isa<ConstantSDNode>(Lane))
4755    return SDValue();
4756
4757  return Op;
4758}
4759
4760static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4761  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4762  SDValue Lane = Op.getOperand(1);
4763  if (!isa<ConstantSDNode>(Lane))
4764    return SDValue();
4765
4766  SDValue Vec = Op.getOperand(0);
4767  if (Op.getValueType() == MVT::i32 &&
4768      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4769    DebugLoc dl = Op.getDebugLoc();
4770    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4771  }
4772
4773  return Op;
4774}
4775
4776static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4777  // The only time a CONCAT_VECTORS operation can have legal types is when
4778  // two 64-bit vectors are concatenated to a 128-bit vector.
4779  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4780         "unexpected CONCAT_VECTORS");
4781  DebugLoc dl = Op.getDebugLoc();
4782  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4783  SDValue Op0 = Op.getOperand(0);
4784  SDValue Op1 = Op.getOperand(1);
4785  if (Op0.getOpcode() != ISD::UNDEF)
4786    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4787                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4788                      DAG.getIntPtrConstant(0));
4789  if (Op1.getOpcode() != ISD::UNDEF)
4790    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4791                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4792                      DAG.getIntPtrConstant(1));
4793  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4794}
4795
4796/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4797/// element has been zero/sign-extended, depending on the isSigned parameter,
4798/// from an integer type half its size.
4799static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4800                                   bool isSigned) {
4801  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4802  EVT VT = N->getValueType(0);
4803  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4804    SDNode *BVN = N->getOperand(0).getNode();
4805    if (BVN->getValueType(0) != MVT::v4i32 ||
4806        BVN->getOpcode() != ISD::BUILD_VECTOR)
4807      return false;
4808    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4809    unsigned HiElt = 1 - LoElt;
4810    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4811    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4812    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4813    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4814    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4815      return false;
4816    if (isSigned) {
4817      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4818          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4819        return true;
4820    } else {
4821      if (Hi0->isNullValue() && Hi1->isNullValue())
4822        return true;
4823    }
4824    return false;
4825  }
4826
4827  if (N->getOpcode() != ISD::BUILD_VECTOR)
4828    return false;
4829
4830  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4831    SDNode *Elt = N->getOperand(i).getNode();
4832    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4833      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4834      unsigned HalfSize = EltSize / 2;
4835      if (isSigned) {
4836        if (!isIntN(HalfSize, C->getSExtValue()))
4837          return false;
4838      } else {
4839        if (!isUIntN(HalfSize, C->getZExtValue()))
4840          return false;
4841      }
4842      continue;
4843    }
4844    return false;
4845  }
4846
4847  return true;
4848}
4849
4850/// isSignExtended - Check if a node is a vector value that is sign-extended
4851/// or a constant BUILD_VECTOR with sign-extended elements.
4852static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4853  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4854    return true;
4855  if (isExtendedBUILD_VECTOR(N, DAG, true))
4856    return true;
4857  return false;
4858}
4859
4860/// isZeroExtended - Check if a node is a vector value that is zero-extended
4861/// or a constant BUILD_VECTOR with zero-extended elements.
4862static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4863  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4864    return true;
4865  if (isExtendedBUILD_VECTOR(N, DAG, false))
4866    return true;
4867  return false;
4868}
4869
4870/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4871/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4872static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4873  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4874    return N->getOperand(0);
4875  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4876    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4877                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4878                       LD->isNonTemporal(), LD->isInvariant(),
4879                       LD->getAlignment());
4880  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4881  // have been legalized as a BITCAST from v4i32.
4882  if (N->getOpcode() == ISD::BITCAST) {
4883    SDNode *BVN = N->getOperand(0).getNode();
4884    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4885           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4886    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4887    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4888                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4889  }
4890  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4891  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4892  EVT VT = N->getValueType(0);
4893  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4894  unsigned NumElts = VT.getVectorNumElements();
4895  MVT TruncVT = MVT::getIntegerVT(EltSize);
4896  SmallVector<SDValue, 8> Ops;
4897  for (unsigned i = 0; i != NumElts; ++i) {
4898    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4899    const APInt &CInt = C->getAPIntValue();
4900    // Element types smaller than 32 bits are not legal, so use i32 elements.
4901    // The values are implicitly truncated so sext vs. zext doesn't matter.
4902    Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
4903  }
4904  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4905                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4906}
4907
4908static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4909  unsigned Opcode = N->getOpcode();
4910  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4911    SDNode *N0 = N->getOperand(0).getNode();
4912    SDNode *N1 = N->getOperand(1).getNode();
4913    return N0->hasOneUse() && N1->hasOneUse() &&
4914      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4915  }
4916  return false;
4917}
4918
4919static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4920  unsigned Opcode = N->getOpcode();
4921  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4922    SDNode *N0 = N->getOperand(0).getNode();
4923    SDNode *N1 = N->getOperand(1).getNode();
4924    return N0->hasOneUse() && N1->hasOneUse() &&
4925      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4926  }
4927  return false;
4928}
4929
4930static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4931  // Multiplications are only custom-lowered for 128-bit vectors so that
4932  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4933  EVT VT = Op.getValueType();
4934  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4935  SDNode *N0 = Op.getOperand(0).getNode();
4936  SDNode *N1 = Op.getOperand(1).getNode();
4937  unsigned NewOpc = 0;
4938  bool isMLA = false;
4939  bool isN0SExt = isSignExtended(N0, DAG);
4940  bool isN1SExt = isSignExtended(N1, DAG);
4941  if (isN0SExt && isN1SExt)
4942    NewOpc = ARMISD::VMULLs;
4943  else {
4944    bool isN0ZExt = isZeroExtended(N0, DAG);
4945    bool isN1ZExt = isZeroExtended(N1, DAG);
4946    if (isN0ZExt && isN1ZExt)
4947      NewOpc = ARMISD::VMULLu;
4948    else if (isN1SExt || isN1ZExt) {
4949      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4950      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4951      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4952        NewOpc = ARMISD::VMULLs;
4953        isMLA = true;
4954      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4955        NewOpc = ARMISD::VMULLu;
4956        isMLA = true;
4957      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4958        std::swap(N0, N1);
4959        NewOpc = ARMISD::VMULLu;
4960        isMLA = true;
4961      }
4962    }
4963
4964    if (!NewOpc) {
4965      if (VT == MVT::v2i64)
4966        // Fall through to expand this.  It is not legal.
4967        return SDValue();
4968      else
4969        // Other vector multiplications are legal.
4970        return Op;
4971    }
4972  }
4973
4974  // Legalize to a VMULL instruction.
4975  DebugLoc DL = Op.getDebugLoc();
4976  SDValue Op0;
4977  SDValue Op1 = SkipExtension(N1, DAG);
4978  if (!isMLA) {
4979    Op0 = SkipExtension(N0, DAG);
4980    assert(Op0.getValueType().is64BitVector() &&
4981           Op1.getValueType().is64BitVector() &&
4982           "unexpected types for extended operands to VMULL");
4983    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4984  }
4985
4986  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4987  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4988  //   vmull q0, d4, d6
4989  //   vmlal q0, d5, d6
4990  // is faster than
4991  //   vaddl q0, d4, d5
4992  //   vmovl q1, d6
4993  //   vmul  q0, q0, q1
4994  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4995  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4996  EVT Op1VT = Op1.getValueType();
4997  return DAG.getNode(N0->getOpcode(), DL, VT,
4998                     DAG.getNode(NewOpc, DL, VT,
4999                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
5000                     DAG.getNode(NewOpc, DL, VT,
5001                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
5002}
5003
5004static SDValue
5005LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
5006  // Convert to float
5007  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
5008  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
5009  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
5010  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
5011  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
5012  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
5013  // Get reciprocal estimate.
5014  // float4 recip = vrecpeq_f32(yf);
5015  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5016                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
5017  // Because char has a smaller range than uchar, we can actually get away
5018  // without any newton steps.  This requires that we use a weird bias
5019  // of 0xb000, however (again, this has been exhaustively tested).
5020  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
5021  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
5022  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
5023  Y = DAG.getConstant(0xb000, MVT::i32);
5024  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
5025  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
5026  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
5027  // Convert back to short.
5028  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
5029  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
5030  return X;
5031}
5032
5033static SDValue
5034LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
5035  SDValue N2;
5036  // Convert to float.
5037  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
5038  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
5039  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
5040  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
5041  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5042  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5043
5044  // Use reciprocal estimate and one refinement step.
5045  // float4 recip = vrecpeq_f32(yf);
5046  // recip *= vrecpsq_f32(yf, recip);
5047  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5048                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
5049  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5050                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5051                   N1, N2);
5052  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5053  // Because short has a smaller range than ushort, we can actually get away
5054  // with only a single newton step.  This requires that we use a weird bias
5055  // of 89, however (again, this has been exhaustively tested).
5056  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
5057  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5058  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5059  N1 = DAG.getConstant(0x89, MVT::i32);
5060  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5061  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5062  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5063  // Convert back to integer and return.
5064  // return vmovn_s32(vcvt_s32_f32(result));
5065  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5066  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5067  return N0;
5068}
5069
5070static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
5071  EVT VT = Op.getValueType();
5072  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5073         "unexpected type for custom-lowering ISD::SDIV");
5074
5075  DebugLoc dl = Op.getDebugLoc();
5076  SDValue N0 = Op.getOperand(0);
5077  SDValue N1 = Op.getOperand(1);
5078  SDValue N2, N3;
5079
5080  if (VT == MVT::v8i8) {
5081    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
5082    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
5083
5084    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5085                     DAG.getIntPtrConstant(4));
5086    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5087                     DAG.getIntPtrConstant(4));
5088    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5089                     DAG.getIntPtrConstant(0));
5090    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5091                     DAG.getIntPtrConstant(0));
5092
5093    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
5094    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
5095
5096    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5097    N0 = LowerCONCAT_VECTORS(N0, DAG);
5098
5099    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
5100    return N0;
5101  }
5102  return LowerSDIV_v4i16(N0, N1, dl, DAG);
5103}
5104
5105static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
5106  EVT VT = Op.getValueType();
5107  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5108         "unexpected type for custom-lowering ISD::UDIV");
5109
5110  DebugLoc dl = Op.getDebugLoc();
5111  SDValue N0 = Op.getOperand(0);
5112  SDValue N1 = Op.getOperand(1);
5113  SDValue N2, N3;
5114
5115  if (VT == MVT::v8i8) {
5116    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
5117    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
5118
5119    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5120                     DAG.getIntPtrConstant(4));
5121    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5122                     DAG.getIntPtrConstant(4));
5123    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5124                     DAG.getIntPtrConstant(0));
5125    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5126                     DAG.getIntPtrConstant(0));
5127
5128    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
5129    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
5130
5131    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5132    N0 = LowerCONCAT_VECTORS(N0, DAG);
5133
5134    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
5135                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
5136                     N0);
5137    return N0;
5138  }
5139
5140  // v4i16 sdiv ... Convert to float.
5141  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
5142  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
5143  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
5144  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
5145  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5146  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5147
5148  // Use reciprocal estimate and two refinement steps.
5149  // float4 recip = vrecpeq_f32(yf);
5150  // recip *= vrecpsq_f32(yf, recip);
5151  // recip *= vrecpsq_f32(yf, recip);
5152  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5153                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
5154  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5155                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5156                   BN1, N2);
5157  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5158  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5159                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5160                   BN1, N2);
5161  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5162  // Simply multiplying by the reciprocal estimate can leave us a few ulps
5163  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
5164  // and that it will never cause us to return an answer too large).
5165  // float4 result = as_float4(as_int4(xf*recip) + 2);
5166  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5167  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5168  N1 = DAG.getConstant(2, MVT::i32);
5169  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5170  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5171  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5172  // Convert back to integer and return.
5173  // return vmovn_u32(vcvt_s32_f32(result));
5174  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5175  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5176  return N0;
5177}
5178
5179static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
5180  EVT VT = Op.getNode()->getValueType(0);
5181  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5182
5183  unsigned Opc;
5184  bool ExtraOp = false;
5185  switch (Op.getOpcode()) {
5186  default: llvm_unreachable("Invalid code");
5187  case ISD::ADDC: Opc = ARMISD::ADDC; break;
5188  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
5189  case ISD::SUBC: Opc = ARMISD::SUBC; break;
5190  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
5191  }
5192
5193  if (!ExtraOp)
5194    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5195                       Op.getOperand(1));
5196  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5197                     Op.getOperand(1), Op.getOperand(2));
5198}
5199
5200static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
5201  // Monotonic load/store is legal for all targets
5202  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
5203    return Op;
5204
5205  // Aquire/Release load/store is not legal for targets without a
5206  // dmb or equivalent available.
5207  return SDValue();
5208}
5209
5210
5211static void
5212ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
5213                    SelectionDAG &DAG, unsigned NewOp) {
5214  DebugLoc dl = Node->getDebugLoc();
5215  assert (Node->getValueType(0) == MVT::i64 &&
5216          "Only know how to expand i64 atomics");
5217
5218  SmallVector<SDValue, 6> Ops;
5219  Ops.push_back(Node->getOperand(0)); // Chain
5220  Ops.push_back(Node->getOperand(1)); // Ptr
5221  // Low part of Val1
5222  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5223                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
5224  // High part of Val1
5225  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5226                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
5227  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
5228    // High part of Val1
5229    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5230                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
5231    // High part of Val2
5232    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5233                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
5234  }
5235  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5236  SDValue Result =
5237    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5238                            cast<MemSDNode>(Node)->getMemOperand());
5239  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5240  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5241  Results.push_back(Result.getValue(2));
5242}
5243
5244SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5245  switch (Op.getOpcode()) {
5246  default: llvm_unreachable("Don't know how to custom lower this!");
5247  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
5248  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
5249  case ISD::GlobalAddress:
5250    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5251      LowerGlobalAddressELF(Op, DAG);
5252  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5253  case ISD::SELECT:        return LowerSELECT(Op, DAG);
5254  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
5255  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
5256  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
5257  case ISD::VASTART:       return LowerVASTART(Op, DAG);
5258  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
5259  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5260  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
5261  case ISD::SINT_TO_FP:
5262  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
5263  case ISD::FP_TO_SINT:
5264  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
5265  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
5266  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
5267  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
5268  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5269  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5270  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5271  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5272                                                               Subtarget);
5273  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
5274  case ISD::SHL:
5275  case ISD::SRL:
5276  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
5277  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
5278  case ISD::SRL_PARTS:
5279  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
5280  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5281  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
5282  case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
5283  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5284  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5285  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5286  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5287  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5288  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
5289  case ISD::MUL:           return LowerMUL(Op, DAG);
5290  case ISD::SDIV:          return LowerSDIV(Op, DAG);
5291  case ISD::UDIV:          return LowerUDIV(Op, DAG);
5292  case ISD::ADDC:
5293  case ISD::ADDE:
5294  case ISD::SUBC:
5295  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5296  case ISD::ATOMIC_LOAD:
5297  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
5298  }
5299}
5300
5301/// ReplaceNodeResults - Replace the results of node with an illegal result
5302/// type with new values built out of custom code.
5303void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5304                                           SmallVectorImpl<SDValue>&Results,
5305                                           SelectionDAG &DAG) const {
5306  SDValue Res;
5307  switch (N->getOpcode()) {
5308  default:
5309    llvm_unreachable("Don't know how to custom expand this!");
5310  case ISD::BITCAST:
5311    Res = ExpandBITCAST(N, DAG);
5312    break;
5313  case ISD::SRL:
5314  case ISD::SRA:
5315    Res = Expand64BitShift(N, DAG, Subtarget);
5316    break;
5317  case ISD::ATOMIC_LOAD_ADD:
5318    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5319    return;
5320  case ISD::ATOMIC_LOAD_AND:
5321    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5322    return;
5323  case ISD::ATOMIC_LOAD_NAND:
5324    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5325    return;
5326  case ISD::ATOMIC_LOAD_OR:
5327    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5328    return;
5329  case ISD::ATOMIC_LOAD_SUB:
5330    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5331    return;
5332  case ISD::ATOMIC_LOAD_XOR:
5333    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5334    return;
5335  case ISD::ATOMIC_SWAP:
5336    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5337    return;
5338  case ISD::ATOMIC_CMP_SWAP:
5339    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5340    return;
5341  }
5342  if (Res.getNode())
5343    Results.push_back(Res);
5344}
5345
5346//===----------------------------------------------------------------------===//
5347//                           ARM Scheduler Hooks
5348//===----------------------------------------------------------------------===//
5349
5350MachineBasicBlock *
5351ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5352                                     MachineBasicBlock *BB,
5353                                     unsigned Size) const {
5354  unsigned dest    = MI->getOperand(0).getReg();
5355  unsigned ptr     = MI->getOperand(1).getReg();
5356  unsigned oldval  = MI->getOperand(2).getReg();
5357  unsigned newval  = MI->getOperand(3).getReg();
5358  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5359  DebugLoc dl = MI->getDebugLoc();
5360  bool isThumb2 = Subtarget->isThumb2();
5361
5362  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5363  unsigned scratch = MRI.createVirtualRegister(isThumb2 ?
5364    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5365    (const TargetRegisterClass*)&ARM::GPRRegClass);
5366
5367  if (isThumb2) {
5368    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5369    MRI.constrainRegClass(oldval, &ARM::rGPRRegClass);
5370    MRI.constrainRegClass(newval, &ARM::rGPRRegClass);
5371  }
5372
5373  unsigned ldrOpc, strOpc;
5374  switch (Size) {
5375  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5376  case 1:
5377    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5378    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5379    break;
5380  case 2:
5381    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5382    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5383    break;
5384  case 4:
5385    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5386    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5387    break;
5388  }
5389
5390  MachineFunction *MF = BB->getParent();
5391  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5392  MachineFunction::iterator It = BB;
5393  ++It; // insert the new blocks after the current block
5394
5395  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5396  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5397  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5398  MF->insert(It, loop1MBB);
5399  MF->insert(It, loop2MBB);
5400  MF->insert(It, exitMBB);
5401
5402  // Transfer the remainder of BB and its successor edges to exitMBB.
5403  exitMBB->splice(exitMBB->begin(), BB,
5404                  llvm::next(MachineBasicBlock::iterator(MI)),
5405                  BB->end());
5406  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5407
5408  //  thisMBB:
5409  //   ...
5410  //   fallthrough --> loop1MBB
5411  BB->addSuccessor(loop1MBB);
5412
5413  // loop1MBB:
5414  //   ldrex dest, [ptr]
5415  //   cmp dest, oldval
5416  //   bne exitMBB
5417  BB = loop1MBB;
5418  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5419  if (ldrOpc == ARM::t2LDREX)
5420    MIB.addImm(0);
5421  AddDefaultPred(MIB);
5422  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5423                 .addReg(dest).addReg(oldval));
5424  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5425    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5426  BB->addSuccessor(loop2MBB);
5427  BB->addSuccessor(exitMBB);
5428
5429  // loop2MBB:
5430  //   strex scratch, newval, [ptr]
5431  //   cmp scratch, #0
5432  //   bne loop1MBB
5433  BB = loop2MBB;
5434  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5435  if (strOpc == ARM::t2STREX)
5436    MIB.addImm(0);
5437  AddDefaultPred(MIB);
5438  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5439                 .addReg(scratch).addImm(0));
5440  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5441    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5442  BB->addSuccessor(loop1MBB);
5443  BB->addSuccessor(exitMBB);
5444
5445  //  exitMBB:
5446  //   ...
5447  BB = exitMBB;
5448
5449  MI->eraseFromParent();   // The instruction is gone now.
5450
5451  return BB;
5452}
5453
5454MachineBasicBlock *
5455ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5456                                    unsigned Size, unsigned BinOpcode) const {
5457  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5458  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5459
5460  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5461  MachineFunction *MF = BB->getParent();
5462  MachineFunction::iterator It = BB;
5463  ++It;
5464
5465  unsigned dest = MI->getOperand(0).getReg();
5466  unsigned ptr = MI->getOperand(1).getReg();
5467  unsigned incr = MI->getOperand(2).getReg();
5468  DebugLoc dl = MI->getDebugLoc();
5469  bool isThumb2 = Subtarget->isThumb2();
5470
5471  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5472  if (isThumb2) {
5473    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5474    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5475  }
5476
5477  unsigned ldrOpc, strOpc;
5478  switch (Size) {
5479  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5480  case 1:
5481    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5482    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5483    break;
5484  case 2:
5485    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5486    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5487    break;
5488  case 4:
5489    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5490    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5491    break;
5492  }
5493
5494  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5495  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5496  MF->insert(It, loopMBB);
5497  MF->insert(It, exitMBB);
5498
5499  // Transfer the remainder of BB and its successor edges to exitMBB.
5500  exitMBB->splice(exitMBB->begin(), BB,
5501                  llvm::next(MachineBasicBlock::iterator(MI)),
5502                  BB->end());
5503  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5504
5505  const TargetRegisterClass *TRC = isThumb2 ?
5506    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5507    (const TargetRegisterClass*)&ARM::GPRRegClass;
5508  unsigned scratch = MRI.createVirtualRegister(TRC);
5509  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5510
5511  //  thisMBB:
5512  //   ...
5513  //   fallthrough --> loopMBB
5514  BB->addSuccessor(loopMBB);
5515
5516  //  loopMBB:
5517  //   ldrex dest, ptr
5518  //   <binop> scratch2, dest, incr
5519  //   strex scratch, scratch2, ptr
5520  //   cmp scratch, #0
5521  //   bne- loopMBB
5522  //   fallthrough --> exitMBB
5523  BB = loopMBB;
5524  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5525  if (ldrOpc == ARM::t2LDREX)
5526    MIB.addImm(0);
5527  AddDefaultPred(MIB);
5528  if (BinOpcode) {
5529    // operand order needs to go the other way for NAND
5530    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5531      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5532                     addReg(incr).addReg(dest)).addReg(0);
5533    else
5534      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5535                     addReg(dest).addReg(incr)).addReg(0);
5536  }
5537
5538  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5539  if (strOpc == ARM::t2STREX)
5540    MIB.addImm(0);
5541  AddDefaultPred(MIB);
5542  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5543                 .addReg(scratch).addImm(0));
5544  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5545    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5546
5547  BB->addSuccessor(loopMBB);
5548  BB->addSuccessor(exitMBB);
5549
5550  //  exitMBB:
5551  //   ...
5552  BB = exitMBB;
5553
5554  MI->eraseFromParent();   // The instruction is gone now.
5555
5556  return BB;
5557}
5558
5559MachineBasicBlock *
5560ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5561                                          MachineBasicBlock *BB,
5562                                          unsigned Size,
5563                                          bool signExtend,
5564                                          ARMCC::CondCodes Cond) const {
5565  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5566
5567  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5568  MachineFunction *MF = BB->getParent();
5569  MachineFunction::iterator It = BB;
5570  ++It;
5571
5572  unsigned dest = MI->getOperand(0).getReg();
5573  unsigned ptr = MI->getOperand(1).getReg();
5574  unsigned incr = MI->getOperand(2).getReg();
5575  unsigned oldval = dest;
5576  DebugLoc dl = MI->getDebugLoc();
5577  bool isThumb2 = Subtarget->isThumb2();
5578
5579  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5580  if (isThumb2) {
5581    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5582    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5583  }
5584
5585  unsigned ldrOpc, strOpc, extendOpc;
5586  switch (Size) {
5587  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5588  case 1:
5589    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5590    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5591    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5592    break;
5593  case 2:
5594    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5595    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5596    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5597    break;
5598  case 4:
5599    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5600    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5601    extendOpc = 0;
5602    break;
5603  }
5604
5605  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5606  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5607  MF->insert(It, loopMBB);
5608  MF->insert(It, exitMBB);
5609
5610  // Transfer the remainder of BB and its successor edges to exitMBB.
5611  exitMBB->splice(exitMBB->begin(), BB,
5612                  llvm::next(MachineBasicBlock::iterator(MI)),
5613                  BB->end());
5614  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5615
5616  const TargetRegisterClass *TRC = isThumb2 ?
5617    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5618    (const TargetRegisterClass*)&ARM::GPRRegClass;
5619  unsigned scratch = MRI.createVirtualRegister(TRC);
5620  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5621
5622  //  thisMBB:
5623  //   ...
5624  //   fallthrough --> loopMBB
5625  BB->addSuccessor(loopMBB);
5626
5627  //  loopMBB:
5628  //   ldrex dest, ptr
5629  //   (sign extend dest, if required)
5630  //   cmp dest, incr
5631  //   cmov.cond scratch2, incr, dest
5632  //   strex scratch, scratch2, ptr
5633  //   cmp scratch, #0
5634  //   bne- loopMBB
5635  //   fallthrough --> exitMBB
5636  BB = loopMBB;
5637  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5638  if (ldrOpc == ARM::t2LDREX)
5639    MIB.addImm(0);
5640  AddDefaultPred(MIB);
5641
5642  // Sign extend the value, if necessary.
5643  if (signExtend && extendOpc) {
5644    oldval = MRI.createVirtualRegister(&ARM::GPRRegClass);
5645    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5646                     .addReg(dest)
5647                     .addImm(0));
5648  }
5649
5650  // Build compare and cmov instructions.
5651  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5652                 .addReg(oldval).addReg(incr));
5653  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5654         .addReg(incr).addReg(oldval).addImm(Cond).addReg(ARM::CPSR);
5655
5656  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5657  if (strOpc == ARM::t2STREX)
5658    MIB.addImm(0);
5659  AddDefaultPred(MIB);
5660  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5661                 .addReg(scratch).addImm(0));
5662  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5663    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5664
5665  BB->addSuccessor(loopMBB);
5666  BB->addSuccessor(exitMBB);
5667
5668  //  exitMBB:
5669  //   ...
5670  BB = exitMBB;
5671
5672  MI->eraseFromParent();   // The instruction is gone now.
5673
5674  return BB;
5675}
5676
5677MachineBasicBlock *
5678ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5679                                      unsigned Op1, unsigned Op2,
5680                                      bool NeedsCarry, bool IsCmpxchg) const {
5681  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5682  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5683
5684  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5685  MachineFunction *MF = BB->getParent();
5686  MachineFunction::iterator It = BB;
5687  ++It;
5688
5689  unsigned destlo = MI->getOperand(0).getReg();
5690  unsigned desthi = MI->getOperand(1).getReg();
5691  unsigned ptr = MI->getOperand(2).getReg();
5692  unsigned vallo = MI->getOperand(3).getReg();
5693  unsigned valhi = MI->getOperand(4).getReg();
5694  DebugLoc dl = MI->getDebugLoc();
5695  bool isThumb2 = Subtarget->isThumb2();
5696
5697  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5698  if (isThumb2) {
5699    MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
5700    MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
5701    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5702  }
5703
5704  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5705  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5706
5707  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5708  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5709  if (IsCmpxchg) {
5710    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5711    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5712  }
5713  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5714  MF->insert(It, loopMBB);
5715  if (IsCmpxchg) {
5716    MF->insert(It, contBB);
5717    MF->insert(It, cont2BB);
5718  }
5719  MF->insert(It, exitMBB);
5720
5721  // Transfer the remainder of BB and its successor edges to exitMBB.
5722  exitMBB->splice(exitMBB->begin(), BB,
5723                  llvm::next(MachineBasicBlock::iterator(MI)),
5724                  BB->end());
5725  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5726
5727  const TargetRegisterClass *TRC = isThumb2 ?
5728    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5729    (const TargetRegisterClass*)&ARM::GPRRegClass;
5730  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5731
5732  //  thisMBB:
5733  //   ...
5734  //   fallthrough --> loopMBB
5735  BB->addSuccessor(loopMBB);
5736
5737  //  loopMBB:
5738  //   ldrexd r2, r3, ptr
5739  //   <binopa> r0, r2, incr
5740  //   <binopb> r1, r3, incr
5741  //   strexd storesuccess, r0, r1, ptr
5742  //   cmp storesuccess, #0
5743  //   bne- loopMBB
5744  //   fallthrough --> exitMBB
5745  //
5746  // Note that the registers are explicitly specified because there is not any
5747  // way to force the register allocator to allocate a register pair.
5748  //
5749  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5750  // need to properly enforce the restriction that the two output registers
5751  // for ldrexd must be different.
5752  BB = loopMBB;
5753  // Load
5754  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5755                 .addReg(ARM::R2, RegState::Define)
5756                 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5757  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
5758  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5759  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5760
5761  if (IsCmpxchg) {
5762    // Add early exit
5763    for (unsigned i = 0; i < 2; i++) {
5764      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5765                                                         ARM::CMPrr))
5766                     .addReg(i == 0 ? destlo : desthi)
5767                     .addReg(i == 0 ? vallo : valhi));
5768      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5769        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5770      BB->addSuccessor(exitMBB);
5771      BB->addSuccessor(i == 0 ? contBB : cont2BB);
5772      BB = (i == 0 ? contBB : cont2BB);
5773    }
5774
5775    // Copy to physregs for strexd
5776    unsigned setlo = MI->getOperand(5).getReg();
5777    unsigned sethi = MI->getOperand(6).getReg();
5778    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5779    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5780  } else if (Op1) {
5781    // Perform binary operation
5782    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5783                   .addReg(destlo).addReg(vallo))
5784        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5785    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5786                   .addReg(desthi).addReg(valhi)).addReg(0);
5787  } else {
5788    // Copy to physregs for strexd
5789    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5790    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5791  }
5792
5793  // Store
5794  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5795                 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5796  // Cmp+jump
5797  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5798                 .addReg(storesuccess).addImm(0));
5799  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5800    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5801
5802  BB->addSuccessor(loopMBB);
5803  BB->addSuccessor(exitMBB);
5804
5805  //  exitMBB:
5806  //   ...
5807  BB = exitMBB;
5808
5809  MI->eraseFromParent();   // The instruction is gone now.
5810
5811  return BB;
5812}
5813
5814/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5815/// registers the function context.
5816void ARMTargetLowering::
5817SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5818                       MachineBasicBlock *DispatchBB, int FI) const {
5819  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5820  DebugLoc dl = MI->getDebugLoc();
5821  MachineFunction *MF = MBB->getParent();
5822  MachineRegisterInfo *MRI = &MF->getRegInfo();
5823  MachineConstantPool *MCP = MF->getConstantPool();
5824  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5825  const Function *F = MF->getFunction();
5826
5827  bool isThumb = Subtarget->isThumb();
5828  bool isThumb2 = Subtarget->isThumb2();
5829
5830  unsigned PCLabelId = AFI->createPICLabelUId();
5831  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5832  ARMConstantPoolValue *CPV =
5833    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5834  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5835
5836  const TargetRegisterClass *TRC = isThumb ?
5837    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5838    (const TargetRegisterClass*)&ARM::GPRRegClass;
5839
5840  // Grab constant pool and fixed stack memory operands.
5841  MachineMemOperand *CPMMO =
5842    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5843                             MachineMemOperand::MOLoad, 4, 4);
5844
5845  MachineMemOperand *FIMMOSt =
5846    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5847                             MachineMemOperand::MOStore, 4, 4);
5848
5849  // Load the address of the dispatch MBB into the jump buffer.
5850  if (isThumb2) {
5851    // Incoming value: jbuf
5852    //   ldr.n  r5, LCPI1_1
5853    //   orr    r5, r5, #1
5854    //   add    r5, pc
5855    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
5856    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5857    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
5858                   .addConstantPoolIndex(CPI)
5859                   .addMemOperand(CPMMO));
5860    // Set the low bit because of thumb mode.
5861    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5862    AddDefaultCC(
5863      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
5864                     .addReg(NewVReg1, RegState::Kill)
5865                     .addImm(0x01)));
5866    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5867    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
5868      .addReg(NewVReg2, RegState::Kill)
5869      .addImm(PCLabelId);
5870    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
5871                   .addReg(NewVReg3, RegState::Kill)
5872                   .addFrameIndex(FI)
5873                   .addImm(36)  // &jbuf[1] :: pc
5874                   .addMemOperand(FIMMOSt));
5875  } else if (isThumb) {
5876    // Incoming value: jbuf
5877    //   ldr.n  r1, LCPI1_4
5878    //   add    r1, pc
5879    //   mov    r2, #1
5880    //   orrs   r1, r2
5881    //   add    r2, $jbuf, #+4 ; &jbuf[1]
5882    //   str    r1, [r2]
5883    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5884    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
5885                   .addConstantPoolIndex(CPI)
5886                   .addMemOperand(CPMMO));
5887    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5888    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
5889      .addReg(NewVReg1, RegState::Kill)
5890      .addImm(PCLabelId);
5891    // Set the low bit because of thumb mode.
5892    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5893    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
5894                   .addReg(ARM::CPSR, RegState::Define)
5895                   .addImm(1));
5896    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5897    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
5898                   .addReg(ARM::CPSR, RegState::Define)
5899                   .addReg(NewVReg2, RegState::Kill)
5900                   .addReg(NewVReg3, RegState::Kill));
5901    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5902    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
5903                   .addFrameIndex(FI)
5904                   .addImm(36)); // &jbuf[1] :: pc
5905    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
5906                   .addReg(NewVReg4, RegState::Kill)
5907                   .addReg(NewVReg5, RegState::Kill)
5908                   .addImm(0)
5909                   .addMemOperand(FIMMOSt));
5910  } else {
5911    // Incoming value: jbuf
5912    //   ldr  r1, LCPI1_1
5913    //   add  r1, pc, r1
5914    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
5915    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5916    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
5917                   .addConstantPoolIndex(CPI)
5918                   .addImm(0)
5919                   .addMemOperand(CPMMO));
5920    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5921    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
5922                   .addReg(NewVReg1, RegState::Kill)
5923                   .addImm(PCLabelId));
5924    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
5925                   .addReg(NewVReg2, RegState::Kill)
5926                   .addFrameIndex(FI)
5927                   .addImm(36)  // &jbuf[1] :: pc
5928                   .addMemOperand(FIMMOSt));
5929  }
5930}
5931
5932MachineBasicBlock *ARMTargetLowering::
5933EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
5934  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5935  DebugLoc dl = MI->getDebugLoc();
5936  MachineFunction *MF = MBB->getParent();
5937  MachineRegisterInfo *MRI = &MF->getRegInfo();
5938  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5939  MachineFrameInfo *MFI = MF->getFrameInfo();
5940  int FI = MFI->getFunctionContextIndex();
5941
5942  const TargetRegisterClass *TRC = Subtarget->isThumb() ?
5943    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5944    (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
5945
5946  // Get a mapping of the call site numbers to all of the landing pads they're
5947  // associated with.
5948  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
5949  unsigned MaxCSNum = 0;
5950  MachineModuleInfo &MMI = MF->getMMI();
5951  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
5952       ++BB) {
5953    if (!BB->isLandingPad()) continue;
5954
5955    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
5956    // pad.
5957    for (MachineBasicBlock::iterator
5958           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
5959      if (!II->isEHLabel()) continue;
5960
5961      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
5962      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
5963
5964      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
5965      for (SmallVectorImpl<unsigned>::iterator
5966             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
5967           CSI != CSE; ++CSI) {
5968        CallSiteNumToLPad[*CSI].push_back(BB);
5969        MaxCSNum = std::max(MaxCSNum, *CSI);
5970      }
5971      break;
5972    }
5973  }
5974
5975  // Get an ordered list of the machine basic blocks for the jump table.
5976  std::vector<MachineBasicBlock*> LPadList;
5977  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
5978  LPadList.reserve(CallSiteNumToLPad.size());
5979  for (unsigned I = 1; I <= MaxCSNum; ++I) {
5980    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
5981    for (SmallVectorImpl<MachineBasicBlock*>::iterator
5982           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
5983      LPadList.push_back(*II);
5984      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
5985    }
5986  }
5987
5988  assert(!LPadList.empty() &&
5989         "No landing pad destinations for the dispatch jump table!");
5990
5991  // Create the jump table and associated information.
5992  MachineJumpTableInfo *JTI =
5993    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
5994  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
5995  unsigned UId = AFI->createJumpTableUId();
5996
5997  // Create the MBBs for the dispatch code.
5998
5999  // Shove the dispatch's address into the return slot in the function context.
6000  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
6001  DispatchBB->setIsLandingPad();
6002
6003  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
6004  BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
6005  DispatchBB->addSuccessor(TrapBB);
6006
6007  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
6008  DispatchBB->addSuccessor(DispContBB);
6009
6010  // Insert and MBBs.
6011  MF->insert(MF->end(), DispatchBB);
6012  MF->insert(MF->end(), DispContBB);
6013  MF->insert(MF->end(), TrapBB);
6014
6015  // Insert code into the entry block that creates and registers the function
6016  // context.
6017  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
6018
6019  MachineMemOperand *FIMMOLd =
6020    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6021                             MachineMemOperand::MOLoad |
6022                             MachineMemOperand::MOVolatile, 4, 4);
6023
6024  if (AFI->isThumb1OnlyFunction())
6025    BuildMI(DispatchBB, dl, TII->get(ARM::tInt_eh_sjlj_dispatchsetup));
6026  else if (!Subtarget->hasVFP2())
6027    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup_nofp));
6028  else
6029    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
6030
6031  unsigned NumLPads = LPadList.size();
6032  if (Subtarget->isThumb2()) {
6033    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6034    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
6035                   .addFrameIndex(FI)
6036                   .addImm(4)
6037                   .addMemOperand(FIMMOLd));
6038
6039    if (NumLPads < 256) {
6040      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
6041                     .addReg(NewVReg1)
6042                     .addImm(LPadList.size()));
6043    } else {
6044      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6045      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
6046                     .addImm(NumLPads & 0xFFFF));
6047
6048      unsigned VReg2 = VReg1;
6049      if ((NumLPads & 0xFFFF0000) != 0) {
6050        VReg2 = MRI->createVirtualRegister(TRC);
6051        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
6052                       .addReg(VReg1)
6053                       .addImm(NumLPads >> 16));
6054      }
6055
6056      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
6057                     .addReg(NewVReg1)
6058                     .addReg(VReg2));
6059    }
6060
6061    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
6062      .addMBB(TrapBB)
6063      .addImm(ARMCC::HI)
6064      .addReg(ARM::CPSR);
6065
6066    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6067    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
6068                   .addJumpTableIndex(MJTI)
6069                   .addImm(UId));
6070
6071    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6072    AddDefaultCC(
6073      AddDefaultPred(
6074        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
6075        .addReg(NewVReg3, RegState::Kill)
6076        .addReg(NewVReg1)
6077        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6078
6079    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
6080      .addReg(NewVReg4, RegState::Kill)
6081      .addReg(NewVReg1)
6082      .addJumpTableIndex(MJTI)
6083      .addImm(UId);
6084  } else if (Subtarget->isThumb()) {
6085    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6086    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
6087                   .addFrameIndex(FI)
6088                   .addImm(1)
6089                   .addMemOperand(FIMMOLd));
6090
6091    if (NumLPads < 256) {
6092      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
6093                     .addReg(NewVReg1)
6094                     .addImm(NumLPads));
6095    } else {
6096      MachineConstantPool *ConstantPool = MF->getConstantPool();
6097      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6098      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6099
6100      // MachineConstantPool wants an explicit alignment.
6101      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
6102      if (Align == 0)
6103        Align = getTargetData()->getTypeAllocSize(C->getType());
6104      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6105
6106      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6107      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
6108                     .addReg(VReg1, RegState::Define)
6109                     .addConstantPoolIndex(Idx));
6110      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
6111                     .addReg(NewVReg1)
6112                     .addReg(VReg1));
6113    }
6114
6115    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
6116      .addMBB(TrapBB)
6117      .addImm(ARMCC::HI)
6118      .addReg(ARM::CPSR);
6119
6120    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6121    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
6122                   .addReg(ARM::CPSR, RegState::Define)
6123                   .addReg(NewVReg1)
6124                   .addImm(2));
6125
6126    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6127    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
6128                   .addJumpTableIndex(MJTI)
6129                   .addImm(UId));
6130
6131    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6132    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
6133                   .addReg(ARM::CPSR, RegState::Define)
6134                   .addReg(NewVReg2, RegState::Kill)
6135                   .addReg(NewVReg3));
6136
6137    MachineMemOperand *JTMMOLd =
6138      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6139                               MachineMemOperand::MOLoad, 4, 4);
6140
6141    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6142    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
6143                   .addReg(NewVReg4, RegState::Kill)
6144                   .addImm(0)
6145                   .addMemOperand(JTMMOLd));
6146
6147    unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
6148    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
6149                   .addReg(ARM::CPSR, RegState::Define)
6150                   .addReg(NewVReg5, RegState::Kill)
6151                   .addReg(NewVReg3));
6152
6153    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
6154      .addReg(NewVReg6, RegState::Kill)
6155      .addJumpTableIndex(MJTI)
6156      .addImm(UId);
6157  } else {
6158    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6159    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
6160                   .addFrameIndex(FI)
6161                   .addImm(4)
6162                   .addMemOperand(FIMMOLd));
6163
6164    if (NumLPads < 256) {
6165      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
6166                     .addReg(NewVReg1)
6167                     .addImm(NumLPads));
6168    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
6169      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6170      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
6171                     .addImm(NumLPads & 0xFFFF));
6172
6173      unsigned VReg2 = VReg1;
6174      if ((NumLPads & 0xFFFF0000) != 0) {
6175        VReg2 = MRI->createVirtualRegister(TRC);
6176        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
6177                       .addReg(VReg1)
6178                       .addImm(NumLPads >> 16));
6179      }
6180
6181      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6182                     .addReg(NewVReg1)
6183                     .addReg(VReg2));
6184    } else {
6185      MachineConstantPool *ConstantPool = MF->getConstantPool();
6186      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6187      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6188
6189      // MachineConstantPool wants an explicit alignment.
6190      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
6191      if (Align == 0)
6192        Align = getTargetData()->getTypeAllocSize(C->getType());
6193      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6194
6195      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6196      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
6197                     .addReg(VReg1, RegState::Define)
6198                     .addConstantPoolIndex(Idx)
6199                     .addImm(0));
6200      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6201                     .addReg(NewVReg1)
6202                     .addReg(VReg1, RegState::Kill));
6203    }
6204
6205    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
6206      .addMBB(TrapBB)
6207      .addImm(ARMCC::HI)
6208      .addReg(ARM::CPSR);
6209
6210    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6211    AddDefaultCC(
6212      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
6213                     .addReg(NewVReg1)
6214                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6215    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6216    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
6217                   .addJumpTableIndex(MJTI)
6218                   .addImm(UId));
6219
6220    MachineMemOperand *JTMMOLd =
6221      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6222                               MachineMemOperand::MOLoad, 4, 4);
6223    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6224    AddDefaultPred(
6225      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
6226      .addReg(NewVReg3, RegState::Kill)
6227      .addReg(NewVReg4)
6228      .addImm(0)
6229      .addMemOperand(JTMMOLd));
6230
6231    BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6232      .addReg(NewVReg5, RegState::Kill)
6233      .addReg(NewVReg4)
6234      .addJumpTableIndex(MJTI)
6235      .addImm(UId);
6236  }
6237
6238  // Add the jump table entries as successors to the MBB.
6239  SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
6240  for (std::vector<MachineBasicBlock*>::iterator
6241         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6242    MachineBasicBlock *CurMBB = *I;
6243    if (SeenMBBs.insert(CurMBB))
6244      DispContBB->addSuccessor(CurMBB);
6245  }
6246
6247  // N.B. the order the invoke BBs are processed in doesn't matter here.
6248  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6249  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6250  const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
6251  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6252  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6253         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6254    MachineBasicBlock *BB = *I;
6255
6256    // Remove the landing pad successor from the invoke block and replace it
6257    // with the new dispatch block.
6258    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6259                                                  BB->succ_end());
6260    while (!Successors.empty()) {
6261      MachineBasicBlock *SMBB = Successors.pop_back_val();
6262      if (SMBB->isLandingPad()) {
6263        BB->removeSuccessor(SMBB);
6264        MBBLPads.push_back(SMBB);
6265      }
6266    }
6267
6268    BB->addSuccessor(DispatchBB);
6269
6270    // Find the invoke call and mark all of the callee-saved registers as
6271    // 'implicit defined' so that they're spilled. This prevents code from
6272    // moving instructions to before the EH block, where they will never be
6273    // executed.
6274    for (MachineBasicBlock::reverse_iterator
6275           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6276      if (!II->isCall()) continue;
6277
6278      DenseMap<unsigned, bool> DefRegs;
6279      for (MachineInstr::mop_iterator
6280             OI = II->operands_begin(), OE = II->operands_end();
6281           OI != OE; ++OI) {
6282        if (!OI->isReg()) continue;
6283        DefRegs[OI->getReg()] = true;
6284      }
6285
6286      MachineInstrBuilder MIB(&*II);
6287
6288      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6289        unsigned Reg = SavedRegs[i];
6290        if (Subtarget->isThumb2() &&
6291            !ARM::tGPRRegClass.contains(Reg) &&
6292            !ARM::hGPRRegClass.contains(Reg))
6293          continue;
6294        if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
6295          continue;
6296        if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
6297          continue;
6298        if (!DefRegs[Reg])
6299          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6300      }
6301
6302      break;
6303    }
6304  }
6305
6306  // Mark all former landing pads as non-landing pads. The dispatch is the only
6307  // landing pad now.
6308  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6309         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6310    (*I)->setIsLandingPad(false);
6311
6312  // The instruction is gone now.
6313  MI->eraseFromParent();
6314
6315  return MBB;
6316}
6317
6318static
6319MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6320  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6321       E = MBB->succ_end(); I != E; ++I)
6322    if (*I != Succ)
6323      return *I;
6324  llvm_unreachable("Expecting a BB with two successors!");
6325}
6326
6327MachineBasicBlock *ARMTargetLowering::
6328EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const {
6329  // This pseudo instruction has 3 operands: dst, src, size
6330  // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
6331  // Otherwise, we will generate unrolled scalar copies.
6332  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6333  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6334  MachineFunction::iterator It = BB;
6335  ++It;
6336
6337  unsigned dest = MI->getOperand(0).getReg();
6338  unsigned src = MI->getOperand(1).getReg();
6339  unsigned SizeVal = MI->getOperand(2).getImm();
6340  unsigned Align = MI->getOperand(3).getImm();
6341  DebugLoc dl = MI->getDebugLoc();
6342
6343  bool isThumb2 = Subtarget->isThumb2();
6344  MachineFunction *MF = BB->getParent();
6345  MachineRegisterInfo &MRI = MF->getRegInfo();
6346  unsigned ldrOpc, strOpc, UnitSize = 0;
6347
6348  const TargetRegisterClass *TRC = isThumb2 ?
6349    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6350    (const TargetRegisterClass*)&ARM::GPRRegClass;
6351  const TargetRegisterClass *TRC_Vec = 0;
6352
6353  if (Align & 1) {
6354    ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6355    strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6356    UnitSize = 1;
6357  } else if (Align & 2) {
6358    ldrOpc = isThumb2 ? ARM::t2LDRH_POST : ARM::LDRH_POST;
6359    strOpc = isThumb2 ? ARM::t2STRH_POST : ARM::STRH_POST;
6360    UnitSize = 2;
6361  } else {
6362    // Check whether we can use NEON instructions.
6363    if (!MF->getFunction()->getFnAttributes().hasNoImplicitFloatAttr() &&
6364        Subtarget->hasNEON()) {
6365      if ((Align % 16 == 0) && SizeVal >= 16) {
6366        ldrOpc = ARM::VLD1q32wb_fixed;
6367        strOpc = ARM::VST1q32wb_fixed;
6368        UnitSize = 16;
6369        TRC_Vec = (const TargetRegisterClass*)&ARM::DPairRegClass;
6370      }
6371      else if ((Align % 8 == 0) && SizeVal >= 8) {
6372        ldrOpc = ARM::VLD1d32wb_fixed;
6373        strOpc = ARM::VST1d32wb_fixed;
6374        UnitSize = 8;
6375        TRC_Vec = (const TargetRegisterClass*)&ARM::DPRRegClass;
6376      }
6377    }
6378    // Can't use NEON instructions.
6379    if (UnitSize == 0) {
6380      ldrOpc = isThumb2 ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6381      strOpc = isThumb2 ? ARM::t2STR_POST : ARM::STR_POST_IMM;
6382      UnitSize = 4;
6383    }
6384  }
6385
6386  unsigned BytesLeft = SizeVal % UnitSize;
6387  unsigned LoopSize = SizeVal - BytesLeft;
6388
6389  if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
6390    // Use LDR and STR to copy.
6391    // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
6392    // [destOut] = STR_POST(scratch, destIn, UnitSize)
6393    unsigned srcIn = src;
6394    unsigned destIn = dest;
6395    for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
6396      unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
6397      unsigned srcOut = MRI.createVirtualRegister(TRC);
6398      unsigned destOut = MRI.createVirtualRegister(TRC);
6399      if (UnitSize >= 8) {
6400        AddDefaultPred(BuildMI(*BB, MI, dl,
6401          TII->get(ldrOpc), scratch)
6402          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(0));
6403
6404        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6405          .addReg(destIn).addImm(0).addReg(scratch));
6406      } else if (isThumb2) {
6407        AddDefaultPred(BuildMI(*BB, MI, dl,
6408          TII->get(ldrOpc), scratch)
6409          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(UnitSize));
6410
6411        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6412          .addReg(scratch).addReg(destIn)
6413          .addImm(UnitSize));
6414      } else {
6415        AddDefaultPred(BuildMI(*BB, MI, dl,
6416          TII->get(ldrOpc), scratch)
6417          .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0)
6418          .addImm(UnitSize));
6419
6420        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6421          .addReg(scratch).addReg(destIn)
6422          .addReg(0).addImm(UnitSize));
6423      }
6424      srcIn = srcOut;
6425      destIn = destOut;
6426    }
6427
6428    // Handle the leftover bytes with LDRB and STRB.
6429    // [scratch, srcOut] = LDRB_POST(srcIn, 1)
6430    // [destOut] = STRB_POST(scratch, destIn, 1)
6431    ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6432    strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6433    for (unsigned i = 0; i < BytesLeft; i++) {
6434      unsigned scratch = MRI.createVirtualRegister(TRC);
6435      unsigned srcOut = MRI.createVirtualRegister(TRC);
6436      unsigned destOut = MRI.createVirtualRegister(TRC);
6437      if (isThumb2) {
6438        AddDefaultPred(BuildMI(*BB, MI, dl,
6439          TII->get(ldrOpc),scratch)
6440          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
6441
6442        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6443          .addReg(scratch).addReg(destIn)
6444          .addReg(0).addImm(1));
6445      } else {
6446        AddDefaultPred(BuildMI(*BB, MI, dl,
6447          TII->get(ldrOpc),scratch)
6448          .addReg(srcOut, RegState::Define).addReg(srcIn)
6449          .addReg(0).addImm(1));
6450
6451        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6452          .addReg(scratch).addReg(destIn)
6453          .addReg(0).addImm(1));
6454      }
6455      srcIn = srcOut;
6456      destIn = destOut;
6457    }
6458    MI->eraseFromParent();   // The instruction is gone now.
6459    return BB;
6460  }
6461
6462  // Expand the pseudo op to a loop.
6463  // thisMBB:
6464  //   ...
6465  //   movw varEnd, # --> with thumb2
6466  //   movt varEnd, #
6467  //   ldrcp varEnd, idx --> without thumb2
6468  //   fallthrough --> loopMBB
6469  // loopMBB:
6470  //   PHI varPhi, varEnd, varLoop
6471  //   PHI srcPhi, src, srcLoop
6472  //   PHI destPhi, dst, destLoop
6473  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
6474  //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
6475  //   subs varLoop, varPhi, #UnitSize
6476  //   bne loopMBB
6477  //   fallthrough --> exitMBB
6478  // exitMBB:
6479  //   epilogue to handle left-over bytes
6480  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
6481  //   [destOut] = STRB_POST(scratch, destLoop, 1)
6482  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6483  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6484  MF->insert(It, loopMBB);
6485  MF->insert(It, exitMBB);
6486
6487  // Transfer the remainder of BB and its successor edges to exitMBB.
6488  exitMBB->splice(exitMBB->begin(), BB,
6489                  llvm::next(MachineBasicBlock::iterator(MI)),
6490                  BB->end());
6491  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6492
6493  // Load an immediate to varEnd.
6494  unsigned varEnd = MRI.createVirtualRegister(TRC);
6495  if (isThumb2) {
6496    unsigned VReg1 = varEnd;
6497    if ((LoopSize & 0xFFFF0000) != 0)
6498      VReg1 = MRI.createVirtualRegister(TRC);
6499    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), VReg1)
6500                   .addImm(LoopSize & 0xFFFF));
6501
6502    if ((LoopSize & 0xFFFF0000) != 0)
6503      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
6504                     .addReg(VReg1)
6505                     .addImm(LoopSize >> 16));
6506  } else {
6507    MachineConstantPool *ConstantPool = MF->getConstantPool();
6508    Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6509    const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
6510
6511    // MachineConstantPool wants an explicit alignment.
6512    unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
6513    if (Align == 0)
6514      Align = getTargetData()->getTypeAllocSize(C->getType());
6515    unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6516
6517    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp))
6518                   .addReg(varEnd, RegState::Define)
6519                   .addConstantPoolIndex(Idx)
6520                   .addImm(0));
6521  }
6522  BB->addSuccessor(loopMBB);
6523
6524  // Generate the loop body:
6525  //   varPhi = PHI(varLoop, varEnd)
6526  //   srcPhi = PHI(srcLoop, src)
6527  //   destPhi = PHI(destLoop, dst)
6528  MachineBasicBlock *entryBB = BB;
6529  BB = loopMBB;
6530  unsigned varLoop = MRI.createVirtualRegister(TRC);
6531  unsigned varPhi = MRI.createVirtualRegister(TRC);
6532  unsigned srcLoop = MRI.createVirtualRegister(TRC);
6533  unsigned srcPhi = MRI.createVirtualRegister(TRC);
6534  unsigned destLoop = MRI.createVirtualRegister(TRC);
6535  unsigned destPhi = MRI.createVirtualRegister(TRC);
6536
6537  BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
6538    .addReg(varLoop).addMBB(loopMBB)
6539    .addReg(varEnd).addMBB(entryBB);
6540  BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
6541    .addReg(srcLoop).addMBB(loopMBB)
6542    .addReg(src).addMBB(entryBB);
6543  BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
6544    .addReg(destLoop).addMBB(loopMBB)
6545    .addReg(dest).addMBB(entryBB);
6546
6547  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
6548  //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
6549  unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
6550  if (UnitSize >= 8) {
6551    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6552      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(0));
6553
6554    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6555      .addReg(destPhi).addImm(0).addReg(scratch));
6556  } else if (isThumb2) {
6557    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6558      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(UnitSize));
6559
6560    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6561      .addReg(scratch).addReg(destPhi)
6562      .addImm(UnitSize));
6563  } else {
6564    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6565      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addReg(0)
6566      .addImm(UnitSize));
6567
6568    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6569      .addReg(scratch).addReg(destPhi)
6570      .addReg(0).addImm(UnitSize));
6571  }
6572
6573  // Decrement loop variable by UnitSize.
6574  MachineInstrBuilder MIB = BuildMI(BB, dl,
6575    TII->get(isThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
6576  AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
6577  MIB->getOperand(5).setReg(ARM::CPSR);
6578  MIB->getOperand(5).setIsDef(true);
6579
6580  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6581    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6582
6583  // loopMBB can loop back to loopMBB or fall through to exitMBB.
6584  BB->addSuccessor(loopMBB);
6585  BB->addSuccessor(exitMBB);
6586
6587  // Add epilogue to handle BytesLeft.
6588  BB = exitMBB;
6589  MachineInstr *StartOfExit = exitMBB->begin();
6590  ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6591  strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6592
6593  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
6594  //   [destOut] = STRB_POST(scratch, destLoop, 1)
6595  unsigned srcIn = srcLoop;
6596  unsigned destIn = destLoop;
6597  for (unsigned i = 0; i < BytesLeft; i++) {
6598    unsigned scratch = MRI.createVirtualRegister(TRC);
6599    unsigned srcOut = MRI.createVirtualRegister(TRC);
6600    unsigned destOut = MRI.createVirtualRegister(TRC);
6601    if (isThumb2) {
6602      AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
6603        TII->get(ldrOpc),scratch)
6604        .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
6605
6606      AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
6607        .addReg(scratch).addReg(destIn)
6608        .addImm(1));
6609    } else {
6610      AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
6611        TII->get(ldrOpc),scratch)
6612        .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0).addImm(1));
6613
6614      AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
6615        .addReg(scratch).addReg(destIn)
6616        .addReg(0).addImm(1));
6617    }
6618    srcIn = srcOut;
6619    destIn = destOut;
6620  }
6621
6622  MI->eraseFromParent();   // The instruction is gone now.
6623  return BB;
6624}
6625
6626MachineBasicBlock *
6627ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6628                                               MachineBasicBlock *BB) const {
6629  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6630  DebugLoc dl = MI->getDebugLoc();
6631  bool isThumb2 = Subtarget->isThumb2();
6632  switch (MI->getOpcode()) {
6633  default: {
6634    MI->dump();
6635    llvm_unreachable("Unexpected instr type to insert");
6636  }
6637  // The Thumb2 pre-indexed stores have the same MI operands, they just
6638  // define them differently in the .td files from the isel patterns, so
6639  // they need pseudos.
6640  case ARM::t2STR_preidx:
6641    MI->setDesc(TII->get(ARM::t2STR_PRE));
6642    return BB;
6643  case ARM::t2STRB_preidx:
6644    MI->setDesc(TII->get(ARM::t2STRB_PRE));
6645    return BB;
6646  case ARM::t2STRH_preidx:
6647    MI->setDesc(TII->get(ARM::t2STRH_PRE));
6648    return BB;
6649
6650  case ARM::STRi_preidx:
6651  case ARM::STRBi_preidx: {
6652    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
6653      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
6654    // Decode the offset.
6655    unsigned Offset = MI->getOperand(4).getImm();
6656    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
6657    Offset = ARM_AM::getAM2Offset(Offset);
6658    if (isSub)
6659      Offset = -Offset;
6660
6661    MachineMemOperand *MMO = *MI->memoperands_begin();
6662    BuildMI(*BB, MI, dl, TII->get(NewOpc))
6663      .addOperand(MI->getOperand(0))  // Rn_wb
6664      .addOperand(MI->getOperand(1))  // Rt
6665      .addOperand(MI->getOperand(2))  // Rn
6666      .addImm(Offset)                 // offset (skip GPR==zero_reg)
6667      .addOperand(MI->getOperand(5))  // pred
6668      .addOperand(MI->getOperand(6))
6669      .addMemOperand(MMO);
6670    MI->eraseFromParent();
6671    return BB;
6672  }
6673  case ARM::STRr_preidx:
6674  case ARM::STRBr_preidx:
6675  case ARM::STRH_preidx: {
6676    unsigned NewOpc;
6677    switch (MI->getOpcode()) {
6678    default: llvm_unreachable("unexpected opcode!");
6679    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
6680    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
6681    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
6682    }
6683    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
6684    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
6685      MIB.addOperand(MI->getOperand(i));
6686    MI->eraseFromParent();
6687    return BB;
6688  }
6689  case ARM::ATOMIC_LOAD_ADD_I8:
6690     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6691  case ARM::ATOMIC_LOAD_ADD_I16:
6692     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6693  case ARM::ATOMIC_LOAD_ADD_I32:
6694     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6695
6696  case ARM::ATOMIC_LOAD_AND_I8:
6697     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6698  case ARM::ATOMIC_LOAD_AND_I16:
6699     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6700  case ARM::ATOMIC_LOAD_AND_I32:
6701     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6702
6703  case ARM::ATOMIC_LOAD_OR_I8:
6704     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6705  case ARM::ATOMIC_LOAD_OR_I16:
6706     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6707  case ARM::ATOMIC_LOAD_OR_I32:
6708     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6709
6710  case ARM::ATOMIC_LOAD_XOR_I8:
6711     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6712  case ARM::ATOMIC_LOAD_XOR_I16:
6713     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6714  case ARM::ATOMIC_LOAD_XOR_I32:
6715     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6716
6717  case ARM::ATOMIC_LOAD_NAND_I8:
6718     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6719  case ARM::ATOMIC_LOAD_NAND_I16:
6720     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6721  case ARM::ATOMIC_LOAD_NAND_I32:
6722     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6723
6724  case ARM::ATOMIC_LOAD_SUB_I8:
6725     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6726  case ARM::ATOMIC_LOAD_SUB_I16:
6727     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6728  case ARM::ATOMIC_LOAD_SUB_I32:
6729     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6730
6731  case ARM::ATOMIC_LOAD_MIN_I8:
6732     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6733  case ARM::ATOMIC_LOAD_MIN_I16:
6734     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6735  case ARM::ATOMIC_LOAD_MIN_I32:
6736     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6737
6738  case ARM::ATOMIC_LOAD_MAX_I8:
6739     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6740  case ARM::ATOMIC_LOAD_MAX_I16:
6741     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6742  case ARM::ATOMIC_LOAD_MAX_I32:
6743     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6744
6745  case ARM::ATOMIC_LOAD_UMIN_I8:
6746     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6747  case ARM::ATOMIC_LOAD_UMIN_I16:
6748     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6749  case ARM::ATOMIC_LOAD_UMIN_I32:
6750     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6751
6752  case ARM::ATOMIC_LOAD_UMAX_I8:
6753     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6754  case ARM::ATOMIC_LOAD_UMAX_I16:
6755     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6756  case ARM::ATOMIC_LOAD_UMAX_I32:
6757     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6758
6759  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
6760  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6761  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6762
6763  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
6764  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6765  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6766
6767
6768  case ARM::ATOMADD6432:
6769    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6770                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6771                              /*NeedsCarry*/ true);
6772  case ARM::ATOMSUB6432:
6773    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6774                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6775                              /*NeedsCarry*/ true);
6776  case ARM::ATOMOR6432:
6777    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6778                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6779  case ARM::ATOMXOR6432:
6780    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6781                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6782  case ARM::ATOMAND6432:
6783    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6784                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6785  case ARM::ATOMSWAP6432:
6786    return EmitAtomicBinary64(MI, BB, 0, 0, false);
6787  case ARM::ATOMCMPXCHG6432:
6788    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6789                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6790                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6791
6792  case ARM::tMOVCCr_pseudo: {
6793    // To "insert" a SELECT_CC instruction, we actually have to insert the
6794    // diamond control-flow pattern.  The incoming instruction knows the
6795    // destination vreg to set, the condition code register to branch on, the
6796    // true/false values to select between, and a branch opcode to use.
6797    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6798    MachineFunction::iterator It = BB;
6799    ++It;
6800
6801    //  thisMBB:
6802    //  ...
6803    //   TrueVal = ...
6804    //   cmpTY ccX, r1, r2
6805    //   bCC copy1MBB
6806    //   fallthrough --> copy0MBB
6807    MachineBasicBlock *thisMBB  = BB;
6808    MachineFunction *F = BB->getParent();
6809    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6810    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
6811    F->insert(It, copy0MBB);
6812    F->insert(It, sinkMBB);
6813
6814    // Transfer the remainder of BB and its successor edges to sinkMBB.
6815    sinkMBB->splice(sinkMBB->begin(), BB,
6816                    llvm::next(MachineBasicBlock::iterator(MI)),
6817                    BB->end());
6818    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6819
6820    BB->addSuccessor(copy0MBB);
6821    BB->addSuccessor(sinkMBB);
6822
6823    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6824      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6825
6826    //  copy0MBB:
6827    //   %FalseValue = ...
6828    //   # fallthrough to sinkMBB
6829    BB = copy0MBB;
6830
6831    // Update machine-CFG edges
6832    BB->addSuccessor(sinkMBB);
6833
6834    //  sinkMBB:
6835    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6836    //  ...
6837    BB = sinkMBB;
6838    BuildMI(*BB, BB->begin(), dl,
6839            TII->get(ARM::PHI), MI->getOperand(0).getReg())
6840      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6841      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6842
6843    MI->eraseFromParent();   // The pseudo instruction is gone now.
6844    return BB;
6845  }
6846
6847  case ARM::BCCi64:
6848  case ARM::BCCZi64: {
6849    // If there is an unconditional branch to the other successor, remove it.
6850    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
6851
6852    // Compare both parts that make up the double comparison separately for
6853    // equality.
6854    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
6855
6856    unsigned LHS1 = MI->getOperand(1).getReg();
6857    unsigned LHS2 = MI->getOperand(2).getReg();
6858    if (RHSisZero) {
6859      AddDefaultPred(BuildMI(BB, dl,
6860                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6861                     .addReg(LHS1).addImm(0));
6862      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6863        .addReg(LHS2).addImm(0)
6864        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6865    } else {
6866      unsigned RHS1 = MI->getOperand(3).getReg();
6867      unsigned RHS2 = MI->getOperand(4).getReg();
6868      AddDefaultPred(BuildMI(BB, dl,
6869                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6870                     .addReg(LHS1).addReg(RHS1));
6871      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6872        .addReg(LHS2).addReg(RHS2)
6873        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6874    }
6875
6876    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
6877    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
6878    if (MI->getOperand(0).getImm() == ARMCC::NE)
6879      std::swap(destMBB, exitMBB);
6880
6881    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6882      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
6883    if (isThumb2)
6884      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
6885    else
6886      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
6887
6888    MI->eraseFromParent();   // The pseudo instruction is gone now.
6889    return BB;
6890  }
6891
6892  case ARM::Int_eh_sjlj_setjmp:
6893  case ARM::Int_eh_sjlj_setjmp_nofp:
6894  case ARM::tInt_eh_sjlj_setjmp:
6895  case ARM::t2Int_eh_sjlj_setjmp:
6896  case ARM::t2Int_eh_sjlj_setjmp_nofp:
6897    EmitSjLjDispatchBlock(MI, BB);
6898    return BB;
6899
6900  case ARM::ABS:
6901  case ARM::t2ABS: {
6902    // To insert an ABS instruction, we have to insert the
6903    // diamond control-flow pattern.  The incoming instruction knows the
6904    // source vreg to test against 0, the destination vreg to set,
6905    // the condition code register to branch on, the
6906    // true/false values to select between, and a branch opcode to use.
6907    // It transforms
6908    //     V1 = ABS V0
6909    // into
6910    //     V2 = MOVS V0
6911    //     BCC                      (branch to SinkBB if V0 >= 0)
6912    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
6913    //     SinkBB: V1 = PHI(V2, V3)
6914    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6915    MachineFunction::iterator BBI = BB;
6916    ++BBI;
6917    MachineFunction *Fn = BB->getParent();
6918    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6919    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
6920    Fn->insert(BBI, RSBBB);
6921    Fn->insert(BBI, SinkBB);
6922
6923    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
6924    unsigned int ABSDstReg = MI->getOperand(0).getReg();
6925    bool isThumb2 = Subtarget->isThumb2();
6926    MachineRegisterInfo &MRI = Fn->getRegInfo();
6927    // In Thumb mode S must not be specified if source register is the SP or
6928    // PC and if destination register is the SP, so restrict register class
6929    unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
6930      (const TargetRegisterClass*)&ARM::rGPRRegClass :
6931      (const TargetRegisterClass*)&ARM::GPRRegClass);
6932
6933    // Transfer the remainder of BB and its successor edges to sinkMBB.
6934    SinkBB->splice(SinkBB->begin(), BB,
6935      llvm::next(MachineBasicBlock::iterator(MI)),
6936      BB->end());
6937    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
6938
6939    BB->addSuccessor(RSBBB);
6940    BB->addSuccessor(SinkBB);
6941
6942    // fall through to SinkMBB
6943    RSBBB->addSuccessor(SinkBB);
6944
6945    // insert a cmp at the end of BB
6946    AddDefaultPred(BuildMI(BB, dl,
6947                           TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6948                   .addReg(ABSSrcReg).addImm(0));
6949
6950    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
6951    BuildMI(BB, dl,
6952      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
6953      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
6954
6955    // insert rsbri in RSBBB
6956    // Note: BCC and rsbri will be converted into predicated rsbmi
6957    // by if-conversion pass
6958    BuildMI(*RSBBB, RSBBB->begin(), dl,
6959      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
6960      .addReg(ABSSrcReg, RegState::Kill)
6961      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
6962
6963    // insert PHI in SinkBB,
6964    // reuse ABSDstReg to not change uses of ABS instruction
6965    BuildMI(*SinkBB, SinkBB->begin(), dl,
6966      TII->get(ARM::PHI), ABSDstReg)
6967      .addReg(NewRsbDstReg).addMBB(RSBBB)
6968      .addReg(ABSSrcReg).addMBB(BB);
6969
6970    // remove ABS instruction
6971    MI->eraseFromParent();
6972
6973    // return last added BB
6974    return SinkBB;
6975  }
6976  case ARM::COPY_STRUCT_BYVAL_I32:
6977    ++NumLoopByVals;
6978    return EmitStructByval(MI, BB);
6979  }
6980}
6981
6982void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
6983                                                      SDNode *Node) const {
6984  if (!MI->hasPostISelHook()) {
6985    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
6986           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
6987    return;
6988  }
6989
6990  const MCInstrDesc *MCID = &MI->getDesc();
6991  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
6992  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
6993  // operand is still set to noreg. If needed, set the optional operand's
6994  // register to CPSR, and remove the redundant implicit def.
6995  //
6996  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
6997
6998  // Rename pseudo opcodes.
6999  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
7000  if (NewOpc) {
7001    const ARMBaseInstrInfo *TII =
7002      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
7003    MCID = &TII->get(NewOpc);
7004
7005    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
7006           "converted opcode should be the same except for cc_out");
7007
7008    MI->setDesc(*MCID);
7009
7010    // Add the optional cc_out operand
7011    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
7012  }
7013  unsigned ccOutIdx = MCID->getNumOperands() - 1;
7014
7015  // Any ARM instruction that sets the 's' bit should specify an optional
7016  // "cc_out" operand in the last operand position.
7017  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
7018    assert(!NewOpc && "Optional cc_out operand required");
7019    return;
7020  }
7021  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
7022  // since we already have an optional CPSR def.
7023  bool definesCPSR = false;
7024  bool deadCPSR = false;
7025  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
7026       i != e; ++i) {
7027    const MachineOperand &MO = MI->getOperand(i);
7028    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
7029      definesCPSR = true;
7030      if (MO.isDead())
7031        deadCPSR = true;
7032      MI->RemoveOperand(i);
7033      break;
7034    }
7035  }
7036  if (!definesCPSR) {
7037    assert(!NewOpc && "Optional cc_out operand required");
7038    return;
7039  }
7040  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
7041  if (deadCPSR) {
7042    assert(!MI->getOperand(ccOutIdx).getReg() &&
7043           "expect uninitialized optional cc_out operand");
7044    return;
7045  }
7046
7047  // If this instruction was defined with an optional CPSR def and its dag node
7048  // had a live implicit CPSR def, then activate the optional CPSR def.
7049  MachineOperand &MO = MI->getOperand(ccOutIdx);
7050  MO.setReg(ARM::CPSR);
7051  MO.setIsDef(true);
7052}
7053
7054//===----------------------------------------------------------------------===//
7055//                           ARM Optimization Hooks
7056//===----------------------------------------------------------------------===//
7057
7058// Helper function that checks if N is a null or all ones constant.
7059static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
7060  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
7061  if (!C)
7062    return false;
7063  return AllOnes ? C->isAllOnesValue() : C->isNullValue();
7064}
7065
7066// Return true if N is conditionally 0 or all ones.
7067// Detects these expressions where cc is an i1 value:
7068//
7069//   (select cc 0, y)   [AllOnes=0]
7070//   (select cc y, 0)   [AllOnes=0]
7071//   (zext cc)          [AllOnes=0]
7072//   (sext cc)          [AllOnes=0/1]
7073//   (select cc -1, y)  [AllOnes=1]
7074//   (select cc y, -1)  [AllOnes=1]
7075//
7076// Invert is set when N is the null/all ones constant when CC is false.
7077// OtherOp is set to the alternative value of N.
7078static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
7079                                       SDValue &CC, bool &Invert,
7080                                       SDValue &OtherOp,
7081                                       SelectionDAG &DAG) {
7082  switch (N->getOpcode()) {
7083  default: return false;
7084  case ISD::SELECT: {
7085    CC = N->getOperand(0);
7086    SDValue N1 = N->getOperand(1);
7087    SDValue N2 = N->getOperand(2);
7088    if (isZeroOrAllOnes(N1, AllOnes)) {
7089      Invert = false;
7090      OtherOp = N2;
7091      return true;
7092    }
7093    if (isZeroOrAllOnes(N2, AllOnes)) {
7094      Invert = true;
7095      OtherOp = N1;
7096      return true;
7097    }
7098    return false;
7099  }
7100  case ISD::ZERO_EXTEND:
7101    // (zext cc) can never be the all ones value.
7102    if (AllOnes)
7103      return false;
7104    // Fall through.
7105  case ISD::SIGN_EXTEND: {
7106    EVT VT = N->getValueType(0);
7107    CC = N->getOperand(0);
7108    if (CC.getValueType() != MVT::i1)
7109      return false;
7110    Invert = !AllOnes;
7111    if (AllOnes)
7112      // When looking for an AllOnes constant, N is an sext, and the 'other'
7113      // value is 0.
7114      OtherOp = DAG.getConstant(0, VT);
7115    else if (N->getOpcode() == ISD::ZERO_EXTEND)
7116      // When looking for a 0 constant, N can be zext or sext.
7117      OtherOp = DAG.getConstant(1, VT);
7118    else
7119      OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
7120    return true;
7121  }
7122  }
7123}
7124
7125// Combine a constant select operand into its use:
7126//
7127//   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
7128//   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
7129//   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
7130//   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
7131//   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
7132//
7133// The transform is rejected if the select doesn't have a constant operand that
7134// is null, or all ones when AllOnes is set.
7135//
7136// Also recognize sext/zext from i1:
7137//
7138//   (add (zext cc), x) -> (select cc (add x, 1), x)
7139//   (add (sext cc), x) -> (select cc (add x, -1), x)
7140//
7141// These transformations eventually create predicated instructions.
7142//
7143// @param N       The node to transform.
7144// @param Slct    The N operand that is a select.
7145// @param OtherOp The other N operand (x above).
7146// @param DCI     Context.
7147// @param AllOnes Require the select constant to be all ones instead of null.
7148// @returns The new node, or SDValue() on failure.
7149static
7150SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7151                            TargetLowering::DAGCombinerInfo &DCI,
7152                            bool AllOnes = false) {
7153  SelectionDAG &DAG = DCI.DAG;
7154  EVT VT = N->getValueType(0);
7155  SDValue NonConstantVal;
7156  SDValue CCOp;
7157  bool SwapSelectOps;
7158  if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
7159                                  NonConstantVal, DAG))
7160    return SDValue();
7161
7162  // Slct is now know to be the desired identity constant when CC is true.
7163  SDValue TrueVal = OtherOp;
7164  SDValue FalseVal = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
7165                                 OtherOp, NonConstantVal);
7166  // Unless SwapSelectOps says CC should be false.
7167  if (SwapSelectOps)
7168    std::swap(TrueVal, FalseVal);
7169
7170  return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
7171                     CCOp, TrueVal, FalseVal);
7172}
7173
7174// Attempt combineSelectAndUse on each operand of a commutative operator N.
7175static
7176SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
7177                                       TargetLowering::DAGCombinerInfo &DCI) {
7178  SDValue N0 = N->getOperand(0);
7179  SDValue N1 = N->getOperand(1);
7180  if (N0.getNode()->hasOneUse()) {
7181    SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
7182    if (Result.getNode())
7183      return Result;
7184  }
7185  if (N1.getNode()->hasOneUse()) {
7186    SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
7187    if (Result.getNode())
7188      return Result;
7189  }
7190  return SDValue();
7191}
7192
7193// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
7194// (only after legalization).
7195static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
7196                                 TargetLowering::DAGCombinerInfo &DCI,
7197                                 const ARMSubtarget *Subtarget) {
7198
7199  // Only perform optimization if after legalize, and if NEON is available. We
7200  // also expected both operands to be BUILD_VECTORs.
7201  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
7202      || N0.getOpcode() != ISD::BUILD_VECTOR
7203      || N1.getOpcode() != ISD::BUILD_VECTOR)
7204    return SDValue();
7205
7206  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
7207  EVT VT = N->getValueType(0);
7208  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
7209    return SDValue();
7210
7211  // Check that the vector operands are of the right form.
7212  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
7213  // operands, where N is the size of the formed vector.
7214  // Each EXTRACT_VECTOR should have the same input vector and odd or even
7215  // index such that we have a pair wise add pattern.
7216
7217  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
7218  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7219    return SDValue();
7220  SDValue Vec = N0->getOperand(0)->getOperand(0);
7221  SDNode *V = Vec.getNode();
7222  unsigned nextIndex = 0;
7223
7224  // For each operands to the ADD which are BUILD_VECTORs,
7225  // check to see if each of their operands are an EXTRACT_VECTOR with
7226  // the same vector and appropriate index.
7227  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
7228    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
7229        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7230
7231      SDValue ExtVec0 = N0->getOperand(i);
7232      SDValue ExtVec1 = N1->getOperand(i);
7233
7234      // First operand is the vector, verify its the same.
7235      if (V != ExtVec0->getOperand(0).getNode() ||
7236          V != ExtVec1->getOperand(0).getNode())
7237        return SDValue();
7238
7239      // Second is the constant, verify its correct.
7240      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
7241      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
7242
7243      // For the constant, we want to see all the even or all the odd.
7244      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
7245          || C1->getZExtValue() != nextIndex+1)
7246        return SDValue();
7247
7248      // Increment index.
7249      nextIndex+=2;
7250    } else
7251      return SDValue();
7252  }
7253
7254  // Create VPADDL node.
7255  SelectionDAG &DAG = DCI.DAG;
7256  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7257
7258  // Build operand list.
7259  SmallVector<SDValue, 8> Ops;
7260  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
7261                                TLI.getPointerTy()));
7262
7263  // Input is the vector.
7264  Ops.push_back(Vec);
7265
7266  // Get widened type and narrowed type.
7267  MVT widenType;
7268  unsigned numElem = VT.getVectorNumElements();
7269  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
7270    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
7271    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
7272    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
7273    default:
7274      llvm_unreachable("Invalid vector element type for padd optimization.");
7275  }
7276
7277  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7278                            widenType, &Ops[0], Ops.size());
7279  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
7280}
7281
7282static SDValue findMUL_LOHI(SDValue V) {
7283  if (V->getOpcode() == ISD::UMUL_LOHI ||
7284      V->getOpcode() == ISD::SMUL_LOHI)
7285    return V;
7286  return SDValue();
7287}
7288
7289static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
7290                                     TargetLowering::DAGCombinerInfo &DCI,
7291                                     const ARMSubtarget *Subtarget) {
7292
7293  if (Subtarget->isThumb1Only()) return SDValue();
7294
7295  // Only perform the checks after legalize when the pattern is available.
7296  if (DCI.isBeforeLegalize()) return SDValue();
7297
7298  // Look for multiply add opportunities.
7299  // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
7300  // each add nodes consumes a value from ISD::UMUL_LOHI and there is
7301  // a glue link from the first add to the second add.
7302  // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
7303  // a S/UMLAL instruction.
7304  //          loAdd   UMUL_LOHI
7305  //            \    / :lo    \ :hi
7306  //             \  /          \          [no multiline comment]
7307  //              ADDC         |  hiAdd
7308  //                 \ :glue  /  /
7309  //                  \      /  /
7310  //                    ADDE
7311  //
7312  assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
7313  SDValue AddcOp0 = AddcNode->getOperand(0);
7314  SDValue AddcOp1 = AddcNode->getOperand(1);
7315
7316  // Check if the two operands are from the same mul_lohi node.
7317  if (AddcOp0.getNode() == AddcOp1.getNode())
7318    return SDValue();
7319
7320  assert(AddcNode->getNumValues() == 2 &&
7321         AddcNode->getValueType(0) == MVT::i32 &&
7322         AddcNode->getValueType(1) == MVT::Glue &&
7323         "Expect ADDC with two result values: i32, glue");
7324
7325  // Check that the ADDC adds the low result of the S/UMUL_LOHI.
7326  if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
7327      AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
7328      AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
7329      AddcOp1->getOpcode() != ISD::SMUL_LOHI)
7330    return SDValue();
7331
7332  // Look for the glued ADDE.
7333  SDNode* AddeNode = AddcNode->getGluedUser();
7334  if (AddeNode == NULL)
7335    return SDValue();
7336
7337  // Make sure it is really an ADDE.
7338  if (AddeNode->getOpcode() != ISD::ADDE)
7339    return SDValue();
7340
7341  assert(AddeNode->getNumOperands() == 3 &&
7342         AddeNode->getOperand(2).getValueType() == MVT::Glue &&
7343         "ADDE node has the wrong inputs");
7344
7345  // Check for the triangle shape.
7346  SDValue AddeOp0 = AddeNode->getOperand(0);
7347  SDValue AddeOp1 = AddeNode->getOperand(1);
7348
7349  // Make sure that the ADDE operands are not coming from the same node.
7350  if (AddeOp0.getNode() == AddeOp1.getNode())
7351    return SDValue();
7352
7353  // Find the MUL_LOHI node walking up ADDE's operands.
7354  bool IsLeftOperandMUL = false;
7355  SDValue MULOp = findMUL_LOHI(AddeOp0);
7356  if (MULOp == SDValue())
7357   MULOp = findMUL_LOHI(AddeOp1);
7358  else
7359    IsLeftOperandMUL = true;
7360  if (MULOp == SDValue())
7361     return SDValue();
7362
7363  // Figure out the right opcode.
7364  unsigned Opc = MULOp->getOpcode();
7365  unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
7366
7367  // Figure out the high and low input values to the MLAL node.
7368  SDValue* HiMul = &MULOp;
7369  SDValue* HiAdd = NULL;
7370  SDValue* LoMul = NULL;
7371  SDValue* LowAdd = NULL;
7372
7373  if (IsLeftOperandMUL)
7374    HiAdd = &AddeOp1;
7375  else
7376    HiAdd = &AddeOp0;
7377
7378
7379  if (AddcOp0->getOpcode() == Opc) {
7380    LoMul = &AddcOp0;
7381    LowAdd = &AddcOp1;
7382  }
7383  if (AddcOp1->getOpcode() == Opc) {
7384    LoMul = &AddcOp1;
7385    LowAdd = &AddcOp0;
7386  }
7387
7388  if (LoMul == NULL)
7389    return SDValue();
7390
7391  if (LoMul->getNode() != HiMul->getNode())
7392    return SDValue();
7393
7394  // Create the merged node.
7395  SelectionDAG &DAG = DCI.DAG;
7396
7397  // Build operand list.
7398  SmallVector<SDValue, 8> Ops;
7399  Ops.push_back(LoMul->getOperand(0));
7400  Ops.push_back(LoMul->getOperand(1));
7401  Ops.push_back(*LowAdd);
7402  Ops.push_back(*HiAdd);
7403
7404  SDValue MLALNode =  DAG.getNode(FinalOpc, AddcNode->getDebugLoc(),
7405                                 DAG.getVTList(MVT::i32, MVT::i32),
7406                                 &Ops[0], Ops.size());
7407
7408  // Replace the ADDs' nodes uses by the MLA node's values.
7409  SDValue HiMLALResult(MLALNode.getNode(), 1);
7410  DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
7411
7412  SDValue LoMLALResult(MLALNode.getNode(), 0);
7413  DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
7414
7415  // Return original node to notify the driver to stop replacing.
7416  SDValue resNode(AddcNode, 0);
7417  return resNode;
7418}
7419
7420/// PerformADDCCombine - Target-specific dag combine transform from
7421/// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
7422static SDValue PerformADDCCombine(SDNode *N,
7423                                 TargetLowering::DAGCombinerInfo &DCI,
7424                                 const ARMSubtarget *Subtarget) {
7425
7426  return AddCombineTo64bitMLAL(N, DCI, Subtarget);
7427
7428}
7429
7430/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
7431/// operands N0 and N1.  This is a helper for PerformADDCombine that is
7432/// called with the default operands, and if that fails, with commuted
7433/// operands.
7434static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
7435                                          TargetLowering::DAGCombinerInfo &DCI,
7436                                          const ARMSubtarget *Subtarget){
7437
7438  // Attempt to create vpaddl for this add.
7439  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
7440  if (Result.getNode())
7441    return Result;
7442
7443  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
7444  if (N0.getNode()->hasOneUse()) {
7445    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
7446    if (Result.getNode()) return Result;
7447  }
7448  return SDValue();
7449}
7450
7451/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
7452///
7453static SDValue PerformADDCombine(SDNode *N,
7454                                 TargetLowering::DAGCombinerInfo &DCI,
7455                                 const ARMSubtarget *Subtarget) {
7456  SDValue N0 = N->getOperand(0);
7457  SDValue N1 = N->getOperand(1);
7458
7459  // First try with the default operand order.
7460  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
7461  if (Result.getNode())
7462    return Result;
7463
7464  // If that didn't work, try again with the operands commuted.
7465  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
7466}
7467
7468/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
7469///
7470static SDValue PerformSUBCombine(SDNode *N,
7471                                 TargetLowering::DAGCombinerInfo &DCI) {
7472  SDValue N0 = N->getOperand(0);
7473  SDValue N1 = N->getOperand(1);
7474
7475  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
7476  if (N1.getNode()->hasOneUse()) {
7477    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
7478    if (Result.getNode()) return Result;
7479  }
7480
7481  return SDValue();
7482}
7483
7484/// PerformVMULCombine
7485/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
7486/// special multiplier accumulator forwarding.
7487///   vmul d3, d0, d2
7488///   vmla d3, d1, d2
7489/// is faster than
7490///   vadd d3, d0, d1
7491///   vmul d3, d3, d2
7492static SDValue PerformVMULCombine(SDNode *N,
7493                                  TargetLowering::DAGCombinerInfo &DCI,
7494                                  const ARMSubtarget *Subtarget) {
7495  if (!Subtarget->hasVMLxForwarding())
7496    return SDValue();
7497
7498  SelectionDAG &DAG = DCI.DAG;
7499  SDValue N0 = N->getOperand(0);
7500  SDValue N1 = N->getOperand(1);
7501  unsigned Opcode = N0.getOpcode();
7502  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
7503      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
7504    Opcode = N1.getOpcode();
7505    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
7506        Opcode != ISD::FADD && Opcode != ISD::FSUB)
7507      return SDValue();
7508    std::swap(N0, N1);
7509  }
7510
7511  EVT VT = N->getValueType(0);
7512  DebugLoc DL = N->getDebugLoc();
7513  SDValue N00 = N0->getOperand(0);
7514  SDValue N01 = N0->getOperand(1);
7515  return DAG.getNode(Opcode, DL, VT,
7516                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
7517                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
7518}
7519
7520static SDValue PerformMULCombine(SDNode *N,
7521                                 TargetLowering::DAGCombinerInfo &DCI,
7522                                 const ARMSubtarget *Subtarget) {
7523  SelectionDAG &DAG = DCI.DAG;
7524
7525  if (Subtarget->isThumb1Only())
7526    return SDValue();
7527
7528  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7529    return SDValue();
7530
7531  EVT VT = N->getValueType(0);
7532  if (VT.is64BitVector() || VT.is128BitVector())
7533    return PerformVMULCombine(N, DCI, Subtarget);
7534  if (VT != MVT::i32)
7535    return SDValue();
7536
7537  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7538  if (!C)
7539    return SDValue();
7540
7541  int64_t MulAmt = C->getSExtValue();
7542  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
7543
7544  ShiftAmt = ShiftAmt & (32 - 1);
7545  SDValue V = N->getOperand(0);
7546  DebugLoc DL = N->getDebugLoc();
7547
7548  SDValue Res;
7549  MulAmt >>= ShiftAmt;
7550
7551  if (MulAmt >= 0) {
7552    if (isPowerOf2_32(MulAmt - 1)) {
7553      // (mul x, 2^N + 1) => (add (shl x, N), x)
7554      Res = DAG.getNode(ISD::ADD, DL, VT,
7555                        V,
7556                        DAG.getNode(ISD::SHL, DL, VT,
7557                                    V,
7558                                    DAG.getConstant(Log2_32(MulAmt - 1),
7559                                                    MVT::i32)));
7560    } else if (isPowerOf2_32(MulAmt + 1)) {
7561      // (mul x, 2^N - 1) => (sub (shl x, N), x)
7562      Res = DAG.getNode(ISD::SUB, DL, VT,
7563                        DAG.getNode(ISD::SHL, DL, VT,
7564                                    V,
7565                                    DAG.getConstant(Log2_32(MulAmt + 1),
7566                                                    MVT::i32)),
7567                        V);
7568    } else
7569      return SDValue();
7570  } else {
7571    uint64_t MulAmtAbs = -MulAmt;
7572    if (isPowerOf2_32(MulAmtAbs + 1)) {
7573      // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
7574      Res = DAG.getNode(ISD::SUB, DL, VT,
7575                        V,
7576                        DAG.getNode(ISD::SHL, DL, VT,
7577                                    V,
7578                                    DAG.getConstant(Log2_32(MulAmtAbs + 1),
7579                                                    MVT::i32)));
7580    } else if (isPowerOf2_32(MulAmtAbs - 1)) {
7581      // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7582      Res = DAG.getNode(ISD::ADD, DL, VT,
7583                        V,
7584                        DAG.getNode(ISD::SHL, DL, VT,
7585                                    V,
7586                                    DAG.getConstant(Log2_32(MulAmtAbs-1),
7587                                                    MVT::i32)));
7588      Res = DAG.getNode(ISD::SUB, DL, VT,
7589                        DAG.getConstant(0, MVT::i32),Res);
7590
7591    } else
7592      return SDValue();
7593  }
7594
7595  if (ShiftAmt != 0)
7596    Res = DAG.getNode(ISD::SHL, DL, VT,
7597                      Res, DAG.getConstant(ShiftAmt, MVT::i32));
7598
7599  // Do not add new nodes to DAG combiner worklist.
7600  DCI.CombineTo(N, Res, false);
7601  return SDValue();
7602}
7603
7604static SDValue PerformANDCombine(SDNode *N,
7605                                 TargetLowering::DAGCombinerInfo &DCI,
7606                                 const ARMSubtarget *Subtarget) {
7607
7608  // Attempt to use immediate-form VBIC
7609  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
7610  DebugLoc dl = N->getDebugLoc();
7611  EVT VT = N->getValueType(0);
7612  SelectionDAG &DAG = DCI.DAG;
7613
7614  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7615    return SDValue();
7616
7617  APInt SplatBits, SplatUndef;
7618  unsigned SplatBitSize;
7619  bool HasAnyUndefs;
7620  if (BVN &&
7621      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7622    if (SplatBitSize <= 64) {
7623      EVT VbicVT;
7624      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
7625                                      SplatUndef.getZExtValue(), SplatBitSize,
7626                                      DAG, VbicVT, VT.is128BitVector(),
7627                                      OtherModImm);
7628      if (Val.getNode()) {
7629        SDValue Input =
7630          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
7631        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
7632        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
7633      }
7634    }
7635  }
7636
7637  if (!Subtarget->isThumb1Only()) {
7638    // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
7639    SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
7640    if (Result.getNode())
7641      return Result;
7642  }
7643
7644  return SDValue();
7645}
7646
7647/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
7648static SDValue PerformORCombine(SDNode *N,
7649                                TargetLowering::DAGCombinerInfo &DCI,
7650                                const ARMSubtarget *Subtarget) {
7651  // Attempt to use immediate-form VORR
7652  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
7653  DebugLoc dl = N->getDebugLoc();
7654  EVT VT = N->getValueType(0);
7655  SelectionDAG &DAG = DCI.DAG;
7656
7657  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7658    return SDValue();
7659
7660  APInt SplatBits, SplatUndef;
7661  unsigned SplatBitSize;
7662  bool HasAnyUndefs;
7663  if (BVN && Subtarget->hasNEON() &&
7664      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7665    if (SplatBitSize <= 64) {
7666      EVT VorrVT;
7667      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
7668                                      SplatUndef.getZExtValue(), SplatBitSize,
7669                                      DAG, VorrVT, VT.is128BitVector(),
7670                                      OtherModImm);
7671      if (Val.getNode()) {
7672        SDValue Input =
7673          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
7674        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
7675        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
7676      }
7677    }
7678  }
7679
7680  if (!Subtarget->isThumb1Only()) {
7681    // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
7682    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
7683    if (Result.getNode())
7684      return Result;
7685  }
7686
7687  // The code below optimizes (or (and X, Y), Z).
7688  // The AND operand needs to have a single user to make these optimizations
7689  // profitable.
7690  SDValue N0 = N->getOperand(0);
7691  if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
7692    return SDValue();
7693  SDValue N1 = N->getOperand(1);
7694
7695  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
7696  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
7697      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
7698    APInt SplatUndef;
7699    unsigned SplatBitSize;
7700    bool HasAnyUndefs;
7701
7702    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
7703    APInt SplatBits0;
7704    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
7705                                  HasAnyUndefs) && !HasAnyUndefs) {
7706      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
7707      APInt SplatBits1;
7708      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
7709                                    HasAnyUndefs) && !HasAnyUndefs &&
7710          SplatBits0 == ~SplatBits1) {
7711        // Canonicalize the vector type to make instruction selection simpler.
7712        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
7713        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
7714                                     N0->getOperand(1), N0->getOperand(0),
7715                                     N1->getOperand(0));
7716        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
7717      }
7718    }
7719  }
7720
7721  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
7722  // reasonable.
7723
7724  // BFI is only available on V6T2+
7725  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
7726    return SDValue();
7727
7728  DebugLoc DL = N->getDebugLoc();
7729  // 1) or (and A, mask), val => ARMbfi A, val, mask
7730  //      iff (val & mask) == val
7731  //
7732  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7733  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
7734  //          && mask == ~mask2
7735  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
7736  //          && ~mask == mask2
7737  //  (i.e., copy a bitfield value into another bitfield of the same width)
7738
7739  if (VT != MVT::i32)
7740    return SDValue();
7741
7742  SDValue N00 = N0.getOperand(0);
7743
7744  // The value and the mask need to be constants so we can verify this is
7745  // actually a bitfield set. If the mask is 0xffff, we can do better
7746  // via a movt instruction, so don't use BFI in that case.
7747  SDValue MaskOp = N0.getOperand(1);
7748  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
7749  if (!MaskC)
7750    return SDValue();
7751  unsigned Mask = MaskC->getZExtValue();
7752  if (Mask == 0xffff)
7753    return SDValue();
7754  SDValue Res;
7755  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
7756  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
7757  if (N1C) {
7758    unsigned Val = N1C->getZExtValue();
7759    if ((Val & ~Mask) != Val)
7760      return SDValue();
7761
7762    if (ARM::isBitFieldInvertedMask(Mask)) {
7763      Val >>= CountTrailingZeros_32(~Mask);
7764
7765      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
7766                        DAG.getConstant(Val, MVT::i32),
7767                        DAG.getConstant(Mask, MVT::i32));
7768
7769      // Do not add new nodes to DAG combiner worklist.
7770      DCI.CombineTo(N, Res, false);
7771      return SDValue();
7772    }
7773  } else if (N1.getOpcode() == ISD::AND) {
7774    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7775    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7776    if (!N11C)
7777      return SDValue();
7778    unsigned Mask2 = N11C->getZExtValue();
7779
7780    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
7781    // as is to match.
7782    if (ARM::isBitFieldInvertedMask(Mask) &&
7783        (Mask == ~Mask2)) {
7784      // The pack halfword instruction works better for masks that fit it,
7785      // so use that when it's available.
7786      if (Subtarget->hasT2ExtractPack() &&
7787          (Mask == 0xffff || Mask == 0xffff0000))
7788        return SDValue();
7789      // 2a
7790      unsigned amt = CountTrailingZeros_32(Mask2);
7791      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
7792                        DAG.getConstant(amt, MVT::i32));
7793      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
7794                        DAG.getConstant(Mask, MVT::i32));
7795      // Do not add new nodes to DAG combiner worklist.
7796      DCI.CombineTo(N, Res, false);
7797      return SDValue();
7798    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
7799               (~Mask == Mask2)) {
7800      // The pack halfword instruction works better for masks that fit it,
7801      // so use that when it's available.
7802      if (Subtarget->hasT2ExtractPack() &&
7803          (Mask2 == 0xffff || Mask2 == 0xffff0000))
7804        return SDValue();
7805      // 2b
7806      unsigned lsb = CountTrailingZeros_32(Mask);
7807      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
7808                        DAG.getConstant(lsb, MVT::i32));
7809      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
7810                        DAG.getConstant(Mask2, MVT::i32));
7811      // Do not add new nodes to DAG combiner worklist.
7812      DCI.CombineTo(N, Res, false);
7813      return SDValue();
7814    }
7815  }
7816
7817  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
7818      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
7819      ARM::isBitFieldInvertedMask(~Mask)) {
7820    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
7821    // where lsb(mask) == #shamt and masked bits of B are known zero.
7822    SDValue ShAmt = N00.getOperand(1);
7823    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
7824    unsigned LSB = CountTrailingZeros_32(Mask);
7825    if (ShAmtC != LSB)
7826      return SDValue();
7827
7828    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
7829                      DAG.getConstant(~Mask, MVT::i32));
7830
7831    // Do not add new nodes to DAG combiner worklist.
7832    DCI.CombineTo(N, Res, false);
7833  }
7834
7835  return SDValue();
7836}
7837
7838static SDValue PerformXORCombine(SDNode *N,
7839                                 TargetLowering::DAGCombinerInfo &DCI,
7840                                 const ARMSubtarget *Subtarget) {
7841  EVT VT = N->getValueType(0);
7842  SelectionDAG &DAG = DCI.DAG;
7843
7844  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7845    return SDValue();
7846
7847  if (!Subtarget->isThumb1Only()) {
7848    // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
7849    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
7850    if (Result.getNode())
7851      return Result;
7852  }
7853
7854  return SDValue();
7855}
7856
7857/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
7858/// the bits being cleared by the AND are not demanded by the BFI.
7859static SDValue PerformBFICombine(SDNode *N,
7860                                 TargetLowering::DAGCombinerInfo &DCI) {
7861  SDValue N1 = N->getOperand(1);
7862  if (N1.getOpcode() == ISD::AND) {
7863    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7864    if (!N11C)
7865      return SDValue();
7866    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
7867    unsigned LSB = CountTrailingZeros_32(~InvMask);
7868    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
7869    unsigned Mask = (1 << Width)-1;
7870    unsigned Mask2 = N11C->getZExtValue();
7871    if ((Mask & (~Mask2)) == 0)
7872      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
7873                             N->getOperand(0), N1.getOperand(0),
7874                             N->getOperand(2));
7875  }
7876  return SDValue();
7877}
7878
7879/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
7880/// ARMISD::VMOVRRD.
7881static SDValue PerformVMOVRRDCombine(SDNode *N,
7882                                     TargetLowering::DAGCombinerInfo &DCI) {
7883  // vmovrrd(vmovdrr x, y) -> x,y
7884  SDValue InDouble = N->getOperand(0);
7885  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
7886    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
7887
7888  // vmovrrd(load f64) -> (load i32), (load i32)
7889  SDNode *InNode = InDouble.getNode();
7890  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
7891      InNode->getValueType(0) == MVT::f64 &&
7892      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
7893      !cast<LoadSDNode>(InNode)->isVolatile()) {
7894    // TODO: Should this be done for non-FrameIndex operands?
7895    LoadSDNode *LD = cast<LoadSDNode>(InNode);
7896
7897    SelectionDAG &DAG = DCI.DAG;
7898    DebugLoc DL = LD->getDebugLoc();
7899    SDValue BasePtr = LD->getBasePtr();
7900    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
7901                                 LD->getPointerInfo(), LD->isVolatile(),
7902                                 LD->isNonTemporal(), LD->isInvariant(),
7903                                 LD->getAlignment());
7904
7905    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7906                                    DAG.getConstant(4, MVT::i32));
7907    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
7908                                 LD->getPointerInfo(), LD->isVolatile(),
7909                                 LD->isNonTemporal(), LD->isInvariant(),
7910                                 std::min(4U, LD->getAlignment() / 2));
7911
7912    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
7913    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
7914    DCI.RemoveFromWorklist(LD);
7915    DAG.DeleteNode(LD);
7916    return Result;
7917  }
7918
7919  return SDValue();
7920}
7921
7922/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
7923/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
7924static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
7925  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
7926  SDValue Op0 = N->getOperand(0);
7927  SDValue Op1 = N->getOperand(1);
7928  if (Op0.getOpcode() == ISD::BITCAST)
7929    Op0 = Op0.getOperand(0);
7930  if (Op1.getOpcode() == ISD::BITCAST)
7931    Op1 = Op1.getOperand(0);
7932  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
7933      Op0.getNode() == Op1.getNode() &&
7934      Op0.getResNo() == 0 && Op1.getResNo() == 1)
7935    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
7936                       N->getValueType(0), Op0.getOperand(0));
7937  return SDValue();
7938}
7939
7940/// PerformSTORECombine - Target-specific dag combine xforms for
7941/// ISD::STORE.
7942static SDValue PerformSTORECombine(SDNode *N,
7943                                   TargetLowering::DAGCombinerInfo &DCI) {
7944  StoreSDNode *St = cast<StoreSDNode>(N);
7945  if (St->isVolatile())
7946    return SDValue();
7947
7948  // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
7949  // pack all of the elements in one place.  Next, store to memory in fewer
7950  // chunks.
7951  SDValue StVal = St->getValue();
7952  EVT VT = StVal.getValueType();
7953  if (St->isTruncatingStore() && VT.isVector()) {
7954    SelectionDAG &DAG = DCI.DAG;
7955    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7956    EVT StVT = St->getMemoryVT();
7957    unsigned NumElems = VT.getVectorNumElements();
7958    assert(StVT != VT && "Cannot truncate to the same type");
7959    unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
7960    unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
7961
7962    // From, To sizes and ElemCount must be pow of two
7963    if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
7964
7965    // We are going to use the original vector elt for storing.
7966    // Accumulated smaller vector elements must be a multiple of the store size.
7967    if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
7968
7969    unsigned SizeRatio  = FromEltSz / ToEltSz;
7970    assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
7971
7972    // Create a type on which we perform the shuffle.
7973    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
7974                                     NumElems*SizeRatio);
7975    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
7976
7977    DebugLoc DL = St->getDebugLoc();
7978    SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
7979    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
7980    for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
7981
7982    // Can't shuffle using an illegal type.
7983    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
7984
7985    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
7986                                DAG.getUNDEF(WideVec.getValueType()),
7987                                ShuffleVec.data());
7988    // At this point all of the data is stored at the bottom of the
7989    // register. We now need to save it to mem.
7990
7991    // Find the largest store unit
7992    MVT StoreType = MVT::i8;
7993    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
7994         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
7995      MVT Tp = (MVT::SimpleValueType)tp;
7996      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
7997        StoreType = Tp;
7998    }
7999    // Didn't find a legal store type.
8000    if (!TLI.isTypeLegal(StoreType))
8001      return SDValue();
8002
8003    // Bitcast the original vector into a vector of store-size units
8004    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
8005            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
8006    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
8007    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
8008    SmallVector<SDValue, 8> Chains;
8009    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
8010                                        TLI.getPointerTy());
8011    SDValue BasePtr = St->getBasePtr();
8012
8013    // Perform one or more big stores into memory.
8014    unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
8015    for (unsigned I = 0; I < E; I++) {
8016      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
8017                                   StoreType, ShuffWide,
8018                                   DAG.getIntPtrConstant(I));
8019      SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
8020                                St->getPointerInfo(), St->isVolatile(),
8021                                St->isNonTemporal(), St->getAlignment());
8022      BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
8023                            Increment);
8024      Chains.push_back(Ch);
8025    }
8026    return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
8027                       Chains.size());
8028  }
8029
8030  if (!ISD::isNormalStore(St))
8031    return SDValue();
8032
8033  // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
8034  // ARM stores of arguments in the same cache line.
8035  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
8036      StVal.getNode()->hasOneUse()) {
8037    SelectionDAG  &DAG = DCI.DAG;
8038    DebugLoc DL = St->getDebugLoc();
8039    SDValue BasePtr = St->getBasePtr();
8040    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
8041                                  StVal.getNode()->getOperand(0), BasePtr,
8042                                  St->getPointerInfo(), St->isVolatile(),
8043                                  St->isNonTemporal(), St->getAlignment());
8044
8045    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8046                                    DAG.getConstant(4, MVT::i32));
8047    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
8048                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
8049                        St->isNonTemporal(),
8050                        std::min(4U, St->getAlignment() / 2));
8051  }
8052
8053  if (StVal.getValueType() != MVT::i64 ||
8054      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8055    return SDValue();
8056
8057  // Bitcast an i64 store extracted from a vector to f64.
8058  // Otherwise, the i64 value will be legalized to a pair of i32 values.
8059  SelectionDAG &DAG = DCI.DAG;
8060  DebugLoc dl = StVal.getDebugLoc();
8061  SDValue IntVec = StVal.getOperand(0);
8062  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8063                                 IntVec.getValueType().getVectorNumElements());
8064  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
8065  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8066                               Vec, StVal.getOperand(1));
8067  dl = N->getDebugLoc();
8068  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
8069  // Make the DAGCombiner fold the bitcasts.
8070  DCI.AddToWorklist(Vec.getNode());
8071  DCI.AddToWorklist(ExtElt.getNode());
8072  DCI.AddToWorklist(V.getNode());
8073  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
8074                      St->getPointerInfo(), St->isVolatile(),
8075                      St->isNonTemporal(), St->getAlignment(),
8076                      St->getTBAAInfo());
8077}
8078
8079/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
8080/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
8081/// i64 vector to have f64 elements, since the value can then be loaded
8082/// directly into a VFP register.
8083static bool hasNormalLoadOperand(SDNode *N) {
8084  unsigned NumElts = N->getValueType(0).getVectorNumElements();
8085  for (unsigned i = 0; i < NumElts; ++i) {
8086    SDNode *Elt = N->getOperand(i).getNode();
8087    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
8088      return true;
8089  }
8090  return false;
8091}
8092
8093/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
8094/// ISD::BUILD_VECTOR.
8095static SDValue PerformBUILD_VECTORCombine(SDNode *N,
8096                                          TargetLowering::DAGCombinerInfo &DCI){
8097  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
8098  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
8099  // into a pair of GPRs, which is fine when the value is used as a scalar,
8100  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
8101  SelectionDAG &DAG = DCI.DAG;
8102  if (N->getNumOperands() == 2) {
8103    SDValue RV = PerformVMOVDRRCombine(N, DAG);
8104    if (RV.getNode())
8105      return RV;
8106  }
8107
8108  // Load i64 elements as f64 values so that type legalization does not split
8109  // them up into i32 values.
8110  EVT VT = N->getValueType(0);
8111  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
8112    return SDValue();
8113  DebugLoc dl = N->getDebugLoc();
8114  SmallVector<SDValue, 8> Ops;
8115  unsigned NumElts = VT.getVectorNumElements();
8116  for (unsigned i = 0; i < NumElts; ++i) {
8117    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
8118    Ops.push_back(V);
8119    // Make the DAGCombiner fold the bitcast.
8120    DCI.AddToWorklist(V.getNode());
8121  }
8122  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
8123  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
8124  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8125}
8126
8127/// PerformInsertEltCombine - Target-specific dag combine xforms for
8128/// ISD::INSERT_VECTOR_ELT.
8129static SDValue PerformInsertEltCombine(SDNode *N,
8130                                       TargetLowering::DAGCombinerInfo &DCI) {
8131  // Bitcast an i64 load inserted into a vector to f64.
8132  // Otherwise, the i64 value will be legalized to a pair of i32 values.
8133  EVT VT = N->getValueType(0);
8134  SDNode *Elt = N->getOperand(1).getNode();
8135  if (VT.getVectorElementType() != MVT::i64 ||
8136      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
8137    return SDValue();
8138
8139  SelectionDAG &DAG = DCI.DAG;
8140  DebugLoc dl = N->getDebugLoc();
8141  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8142                                 VT.getVectorNumElements());
8143  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
8144  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
8145  // Make the DAGCombiner fold the bitcasts.
8146  DCI.AddToWorklist(Vec.getNode());
8147  DCI.AddToWorklist(V.getNode());
8148  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
8149                               Vec, V, N->getOperand(2));
8150  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
8151}
8152
8153/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
8154/// ISD::VECTOR_SHUFFLE.
8155static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
8156  // The LLVM shufflevector instruction does not require the shuffle mask
8157  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
8158  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
8159  // operands do not match the mask length, they are extended by concatenating
8160  // them with undef vectors.  That is probably the right thing for other
8161  // targets, but for NEON it is better to concatenate two double-register
8162  // size vector operands into a single quad-register size vector.  Do that
8163  // transformation here:
8164  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
8165  //   shuffle(concat(v1, v2), undef)
8166  SDValue Op0 = N->getOperand(0);
8167  SDValue Op1 = N->getOperand(1);
8168  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
8169      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
8170      Op0.getNumOperands() != 2 ||
8171      Op1.getNumOperands() != 2)
8172    return SDValue();
8173  SDValue Concat0Op1 = Op0.getOperand(1);
8174  SDValue Concat1Op1 = Op1.getOperand(1);
8175  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
8176      Concat1Op1.getOpcode() != ISD::UNDEF)
8177    return SDValue();
8178  // Skip the transformation if any of the types are illegal.
8179  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8180  EVT VT = N->getValueType(0);
8181  if (!TLI.isTypeLegal(VT) ||
8182      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
8183      !TLI.isTypeLegal(Concat1Op1.getValueType()))
8184    return SDValue();
8185
8186  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
8187                                  Op0.getOperand(0), Op1.getOperand(0));
8188  // Translate the shuffle mask.
8189  SmallVector<int, 16> NewMask;
8190  unsigned NumElts = VT.getVectorNumElements();
8191  unsigned HalfElts = NumElts/2;
8192  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8193  for (unsigned n = 0; n < NumElts; ++n) {
8194    int MaskElt = SVN->getMaskElt(n);
8195    int NewElt = -1;
8196    if (MaskElt < (int)HalfElts)
8197      NewElt = MaskElt;
8198    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
8199      NewElt = HalfElts + MaskElt - NumElts;
8200    NewMask.push_back(NewElt);
8201  }
8202  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
8203                              DAG.getUNDEF(VT), NewMask.data());
8204}
8205
8206/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
8207/// NEON load/store intrinsics to merge base address updates.
8208static SDValue CombineBaseUpdate(SDNode *N,
8209                                 TargetLowering::DAGCombinerInfo &DCI) {
8210  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8211    return SDValue();
8212
8213  SelectionDAG &DAG = DCI.DAG;
8214  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
8215                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
8216  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
8217  SDValue Addr = N->getOperand(AddrOpIdx);
8218
8219  // Search for a use of the address operand that is an increment.
8220  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8221         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8222    SDNode *User = *UI;
8223    if (User->getOpcode() != ISD::ADD ||
8224        UI.getUse().getResNo() != Addr.getResNo())
8225      continue;
8226
8227    // Check that the add is independent of the load/store.  Otherwise, folding
8228    // it would create a cycle.
8229    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8230      continue;
8231
8232    // Find the new opcode for the updating load/store.
8233    bool isLoad = true;
8234    bool isLaneOp = false;
8235    unsigned NewOpc = 0;
8236    unsigned NumVecs = 0;
8237    if (isIntrinsic) {
8238      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8239      switch (IntNo) {
8240      default: llvm_unreachable("unexpected intrinsic for Neon base update");
8241      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
8242        NumVecs = 1; break;
8243      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
8244        NumVecs = 2; break;
8245      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
8246        NumVecs = 3; break;
8247      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
8248        NumVecs = 4; break;
8249      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
8250        NumVecs = 2; isLaneOp = true; break;
8251      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
8252        NumVecs = 3; isLaneOp = true; break;
8253      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
8254        NumVecs = 4; isLaneOp = true; break;
8255      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
8256        NumVecs = 1; isLoad = false; break;
8257      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
8258        NumVecs = 2; isLoad = false; break;
8259      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
8260        NumVecs = 3; isLoad = false; break;
8261      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
8262        NumVecs = 4; isLoad = false; break;
8263      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
8264        NumVecs = 2; isLoad = false; isLaneOp = true; break;
8265      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
8266        NumVecs = 3; isLoad = false; isLaneOp = true; break;
8267      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
8268        NumVecs = 4; isLoad = false; isLaneOp = true; break;
8269      }
8270    } else {
8271      isLaneOp = true;
8272      switch (N->getOpcode()) {
8273      default: llvm_unreachable("unexpected opcode for Neon base update");
8274      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
8275      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
8276      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
8277      }
8278    }
8279
8280    // Find the size of memory referenced by the load/store.
8281    EVT VecTy;
8282    if (isLoad)
8283      VecTy = N->getValueType(0);
8284    else
8285      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
8286    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8287    if (isLaneOp)
8288      NumBytes /= VecTy.getVectorNumElements();
8289
8290    // If the increment is a constant, it must match the memory ref size.
8291    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8292    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8293      uint64_t IncVal = CInc->getZExtValue();
8294      if (IncVal != NumBytes)
8295        continue;
8296    } else if (NumBytes >= 3 * 16) {
8297      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
8298      // separate instructions that make it harder to use a non-constant update.
8299      continue;
8300    }
8301
8302    // Create the new updating load/store node.
8303    EVT Tys[6];
8304    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
8305    unsigned n;
8306    for (n = 0; n < NumResultVecs; ++n)
8307      Tys[n] = VecTy;
8308    Tys[n++] = MVT::i32;
8309    Tys[n] = MVT::Other;
8310    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
8311    SmallVector<SDValue, 8> Ops;
8312    Ops.push_back(N->getOperand(0)); // incoming chain
8313    Ops.push_back(N->getOperand(AddrOpIdx));
8314    Ops.push_back(Inc);
8315    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
8316      Ops.push_back(N->getOperand(i));
8317    }
8318    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8319    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
8320                                           Ops.data(), Ops.size(),
8321                                           MemInt->getMemoryVT(),
8322                                           MemInt->getMemOperand());
8323
8324    // Update the uses.
8325    std::vector<SDValue> NewResults;
8326    for (unsigned i = 0; i < NumResultVecs; ++i) {
8327      NewResults.push_back(SDValue(UpdN.getNode(), i));
8328    }
8329    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
8330    DCI.CombineTo(N, NewResults);
8331    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8332
8333    break;
8334  }
8335  return SDValue();
8336}
8337
8338/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
8339/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
8340/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
8341/// return true.
8342static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
8343  SelectionDAG &DAG = DCI.DAG;
8344  EVT VT = N->getValueType(0);
8345  // vldN-dup instructions only support 64-bit vectors for N > 1.
8346  if (!VT.is64BitVector())
8347    return false;
8348
8349  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
8350  SDNode *VLD = N->getOperand(0).getNode();
8351  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
8352    return false;
8353  unsigned NumVecs = 0;
8354  unsigned NewOpc = 0;
8355  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
8356  if (IntNo == Intrinsic::arm_neon_vld2lane) {
8357    NumVecs = 2;
8358    NewOpc = ARMISD::VLD2DUP;
8359  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
8360    NumVecs = 3;
8361    NewOpc = ARMISD::VLD3DUP;
8362  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
8363    NumVecs = 4;
8364    NewOpc = ARMISD::VLD4DUP;
8365  } else {
8366    return false;
8367  }
8368
8369  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
8370  // numbers match the load.
8371  unsigned VLDLaneNo =
8372    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
8373  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
8374       UI != UE; ++UI) {
8375    // Ignore uses of the chain result.
8376    if (UI.getUse().getResNo() == NumVecs)
8377      continue;
8378    SDNode *User = *UI;
8379    if (User->getOpcode() != ARMISD::VDUPLANE ||
8380        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
8381      return false;
8382  }
8383
8384  // Create the vldN-dup node.
8385  EVT Tys[5];
8386  unsigned n;
8387  for (n = 0; n < NumVecs; ++n)
8388    Tys[n] = VT;
8389  Tys[n] = MVT::Other;
8390  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
8391  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
8392  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
8393  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
8394                                           Ops, 2, VLDMemInt->getMemoryVT(),
8395                                           VLDMemInt->getMemOperand());
8396
8397  // Update the uses.
8398  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
8399       UI != UE; ++UI) {
8400    unsigned ResNo = UI.getUse().getResNo();
8401    // Ignore uses of the chain result.
8402    if (ResNo == NumVecs)
8403      continue;
8404    SDNode *User = *UI;
8405    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
8406  }
8407
8408  // Now the vldN-lane intrinsic is dead except for its chain result.
8409  // Update uses of the chain.
8410  std::vector<SDValue> VLDDupResults;
8411  for (unsigned n = 0; n < NumVecs; ++n)
8412    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
8413  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
8414  DCI.CombineTo(VLD, VLDDupResults);
8415
8416  return true;
8417}
8418
8419/// PerformVDUPLANECombine - Target-specific dag combine xforms for
8420/// ARMISD::VDUPLANE.
8421static SDValue PerformVDUPLANECombine(SDNode *N,
8422                                      TargetLowering::DAGCombinerInfo &DCI) {
8423  SDValue Op = N->getOperand(0);
8424
8425  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
8426  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
8427  if (CombineVLDDUP(N, DCI))
8428    return SDValue(N, 0);
8429
8430  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
8431  // redundant.  Ignore bit_converts for now; element sizes are checked below.
8432  while (Op.getOpcode() == ISD::BITCAST)
8433    Op = Op.getOperand(0);
8434  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
8435    return SDValue();
8436
8437  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
8438  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
8439  // The canonical VMOV for a zero vector uses a 32-bit element size.
8440  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8441  unsigned EltBits;
8442  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
8443    EltSize = 8;
8444  EVT VT = N->getValueType(0);
8445  if (EltSize > VT.getVectorElementType().getSizeInBits())
8446    return SDValue();
8447
8448  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
8449}
8450
8451// isConstVecPow2 - Return true if each vector element is a power of 2, all
8452// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
8453static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
8454{
8455  integerPart cN;
8456  integerPart c0 = 0;
8457  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
8458       I != E; I++) {
8459    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
8460    if (!C)
8461      return false;
8462
8463    bool isExact;
8464    APFloat APF = C->getValueAPF();
8465    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
8466        != APFloat::opOK || !isExact)
8467      return false;
8468
8469    c0 = (I == 0) ? cN : c0;
8470    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
8471      return false;
8472  }
8473  C = c0;
8474  return true;
8475}
8476
8477/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
8478/// can replace combinations of VMUL and VCVT (floating-point to integer)
8479/// when the VMUL has a constant operand that is a power of 2.
8480///
8481/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
8482///  vmul.f32        d16, d17, d16
8483///  vcvt.s32.f32    d16, d16
8484/// becomes:
8485///  vcvt.s32.f32    d16, d16, #3
8486static SDValue PerformVCVTCombine(SDNode *N,
8487                                  TargetLowering::DAGCombinerInfo &DCI,
8488                                  const ARMSubtarget *Subtarget) {
8489  SelectionDAG &DAG = DCI.DAG;
8490  SDValue Op = N->getOperand(0);
8491
8492  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
8493      Op.getOpcode() != ISD::FMUL)
8494    return SDValue();
8495
8496  uint64_t C;
8497  SDValue N0 = Op->getOperand(0);
8498  SDValue ConstVec = Op->getOperand(1);
8499  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
8500
8501  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
8502      !isConstVecPow2(ConstVec, isSigned, C))
8503    return SDValue();
8504
8505  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
8506    Intrinsic::arm_neon_vcvtfp2fxu;
8507  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
8508                     N->getValueType(0),
8509                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
8510                     DAG.getConstant(Log2_64(C), MVT::i32));
8511}
8512
8513/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
8514/// can replace combinations of VCVT (integer to floating-point) and VDIV
8515/// when the VDIV has a constant operand that is a power of 2.
8516///
8517/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
8518///  vcvt.f32.s32    d16, d16
8519///  vdiv.f32        d16, d17, d16
8520/// becomes:
8521///  vcvt.f32.s32    d16, d16, #3
8522static SDValue PerformVDIVCombine(SDNode *N,
8523                                  TargetLowering::DAGCombinerInfo &DCI,
8524                                  const ARMSubtarget *Subtarget) {
8525  SelectionDAG &DAG = DCI.DAG;
8526  SDValue Op = N->getOperand(0);
8527  unsigned OpOpcode = Op.getNode()->getOpcode();
8528
8529  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
8530      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
8531    return SDValue();
8532
8533  uint64_t C;
8534  SDValue ConstVec = N->getOperand(1);
8535  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
8536
8537  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
8538      !isConstVecPow2(ConstVec, isSigned, C))
8539    return SDValue();
8540
8541  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
8542    Intrinsic::arm_neon_vcvtfxu2fp;
8543  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
8544                     Op.getValueType(),
8545                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
8546                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
8547}
8548
8549/// Getvshiftimm - Check if this is a valid build_vector for the immediate
8550/// operand of a vector shift operation, where all the elements of the
8551/// build_vector must have the same constant integer value.
8552static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
8553  // Ignore bit_converts.
8554  while (Op.getOpcode() == ISD::BITCAST)
8555    Op = Op.getOperand(0);
8556  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8557  APInt SplatBits, SplatUndef;
8558  unsigned SplatBitSize;
8559  bool HasAnyUndefs;
8560  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
8561                                      HasAnyUndefs, ElementBits) ||
8562      SplatBitSize > ElementBits)
8563    return false;
8564  Cnt = SplatBits.getSExtValue();
8565  return true;
8566}
8567
8568/// isVShiftLImm - Check if this is a valid build_vector for the immediate
8569/// operand of a vector shift left operation.  That value must be in the range:
8570///   0 <= Value < ElementBits for a left shift; or
8571///   0 <= Value <= ElementBits for a long left shift.
8572static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
8573  assert(VT.isVector() && "vector shift count is not a vector type");
8574  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8575  if (! getVShiftImm(Op, ElementBits, Cnt))
8576    return false;
8577  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
8578}
8579
8580/// isVShiftRImm - Check if this is a valid build_vector for the immediate
8581/// operand of a vector shift right operation.  For a shift opcode, the value
8582/// is positive, but for an intrinsic the value count must be negative. The
8583/// absolute value must be in the range:
8584///   1 <= |Value| <= ElementBits for a right shift; or
8585///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
8586static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
8587                         int64_t &Cnt) {
8588  assert(VT.isVector() && "vector shift count is not a vector type");
8589  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8590  if (! getVShiftImm(Op, ElementBits, Cnt))
8591    return false;
8592  if (isIntrinsic)
8593    Cnt = -Cnt;
8594  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
8595}
8596
8597/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
8598static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
8599  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8600  switch (IntNo) {
8601  default:
8602    // Don't do anything for most intrinsics.
8603    break;
8604
8605  // Vector shifts: check for immediate versions and lower them.
8606  // Note: This is done during DAG combining instead of DAG legalizing because
8607  // the build_vectors for 64-bit vector element shift counts are generally
8608  // not legal, and it is hard to see their values after they get legalized to
8609  // loads from a constant pool.
8610  case Intrinsic::arm_neon_vshifts:
8611  case Intrinsic::arm_neon_vshiftu:
8612  case Intrinsic::arm_neon_vshiftls:
8613  case Intrinsic::arm_neon_vshiftlu:
8614  case Intrinsic::arm_neon_vshiftn:
8615  case Intrinsic::arm_neon_vrshifts:
8616  case Intrinsic::arm_neon_vrshiftu:
8617  case Intrinsic::arm_neon_vrshiftn:
8618  case Intrinsic::arm_neon_vqshifts:
8619  case Intrinsic::arm_neon_vqshiftu:
8620  case Intrinsic::arm_neon_vqshiftsu:
8621  case Intrinsic::arm_neon_vqshiftns:
8622  case Intrinsic::arm_neon_vqshiftnu:
8623  case Intrinsic::arm_neon_vqshiftnsu:
8624  case Intrinsic::arm_neon_vqrshiftns:
8625  case Intrinsic::arm_neon_vqrshiftnu:
8626  case Intrinsic::arm_neon_vqrshiftnsu: {
8627    EVT VT = N->getOperand(1).getValueType();
8628    int64_t Cnt;
8629    unsigned VShiftOpc = 0;
8630
8631    switch (IntNo) {
8632    case Intrinsic::arm_neon_vshifts:
8633    case Intrinsic::arm_neon_vshiftu:
8634      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
8635        VShiftOpc = ARMISD::VSHL;
8636        break;
8637      }
8638      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
8639        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
8640                     ARMISD::VSHRs : ARMISD::VSHRu);
8641        break;
8642      }
8643      return SDValue();
8644
8645    case Intrinsic::arm_neon_vshiftls:
8646    case Intrinsic::arm_neon_vshiftlu:
8647      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
8648        break;
8649      llvm_unreachable("invalid shift count for vshll intrinsic");
8650
8651    case Intrinsic::arm_neon_vrshifts:
8652    case Intrinsic::arm_neon_vrshiftu:
8653      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
8654        break;
8655      return SDValue();
8656
8657    case Intrinsic::arm_neon_vqshifts:
8658    case Intrinsic::arm_neon_vqshiftu:
8659      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
8660        break;
8661      return SDValue();
8662
8663    case Intrinsic::arm_neon_vqshiftsu:
8664      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
8665        break;
8666      llvm_unreachable("invalid shift count for vqshlu intrinsic");
8667
8668    case Intrinsic::arm_neon_vshiftn:
8669    case Intrinsic::arm_neon_vrshiftn:
8670    case Intrinsic::arm_neon_vqshiftns:
8671    case Intrinsic::arm_neon_vqshiftnu:
8672    case Intrinsic::arm_neon_vqshiftnsu:
8673    case Intrinsic::arm_neon_vqrshiftns:
8674    case Intrinsic::arm_neon_vqrshiftnu:
8675    case Intrinsic::arm_neon_vqrshiftnsu:
8676      // Narrowing shifts require an immediate right shift.
8677      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
8678        break;
8679      llvm_unreachable("invalid shift count for narrowing vector shift "
8680                       "intrinsic");
8681
8682    default:
8683      llvm_unreachable("unhandled vector shift");
8684    }
8685
8686    switch (IntNo) {
8687    case Intrinsic::arm_neon_vshifts:
8688    case Intrinsic::arm_neon_vshiftu:
8689      // Opcode already set above.
8690      break;
8691    case Intrinsic::arm_neon_vshiftls:
8692    case Intrinsic::arm_neon_vshiftlu:
8693      if (Cnt == VT.getVectorElementType().getSizeInBits())
8694        VShiftOpc = ARMISD::VSHLLi;
8695      else
8696        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
8697                     ARMISD::VSHLLs : ARMISD::VSHLLu);
8698      break;
8699    case Intrinsic::arm_neon_vshiftn:
8700      VShiftOpc = ARMISD::VSHRN; break;
8701    case Intrinsic::arm_neon_vrshifts:
8702      VShiftOpc = ARMISD::VRSHRs; break;
8703    case Intrinsic::arm_neon_vrshiftu:
8704      VShiftOpc = ARMISD::VRSHRu; break;
8705    case Intrinsic::arm_neon_vrshiftn:
8706      VShiftOpc = ARMISD::VRSHRN; break;
8707    case Intrinsic::arm_neon_vqshifts:
8708      VShiftOpc = ARMISD::VQSHLs; break;
8709    case Intrinsic::arm_neon_vqshiftu:
8710      VShiftOpc = ARMISD::VQSHLu; break;
8711    case Intrinsic::arm_neon_vqshiftsu:
8712      VShiftOpc = ARMISD::VQSHLsu; break;
8713    case Intrinsic::arm_neon_vqshiftns:
8714      VShiftOpc = ARMISD::VQSHRNs; break;
8715    case Intrinsic::arm_neon_vqshiftnu:
8716      VShiftOpc = ARMISD::VQSHRNu; break;
8717    case Intrinsic::arm_neon_vqshiftnsu:
8718      VShiftOpc = ARMISD::VQSHRNsu; break;
8719    case Intrinsic::arm_neon_vqrshiftns:
8720      VShiftOpc = ARMISD::VQRSHRNs; break;
8721    case Intrinsic::arm_neon_vqrshiftnu:
8722      VShiftOpc = ARMISD::VQRSHRNu; break;
8723    case Intrinsic::arm_neon_vqrshiftnsu:
8724      VShiftOpc = ARMISD::VQRSHRNsu; break;
8725    }
8726
8727    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
8728                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
8729  }
8730
8731  case Intrinsic::arm_neon_vshiftins: {
8732    EVT VT = N->getOperand(1).getValueType();
8733    int64_t Cnt;
8734    unsigned VShiftOpc = 0;
8735
8736    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
8737      VShiftOpc = ARMISD::VSLI;
8738    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
8739      VShiftOpc = ARMISD::VSRI;
8740    else {
8741      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
8742    }
8743
8744    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
8745                       N->getOperand(1), N->getOperand(2),
8746                       DAG.getConstant(Cnt, MVT::i32));
8747  }
8748
8749  case Intrinsic::arm_neon_vqrshifts:
8750  case Intrinsic::arm_neon_vqrshiftu:
8751    // No immediate versions of these to check for.
8752    break;
8753  }
8754
8755  return SDValue();
8756}
8757
8758/// PerformShiftCombine - Checks for immediate versions of vector shifts and
8759/// lowers them.  As with the vector shift intrinsics, this is done during DAG
8760/// combining instead of DAG legalizing because the build_vectors for 64-bit
8761/// vector element shift counts are generally not legal, and it is hard to see
8762/// their values after they get legalized to loads from a constant pool.
8763static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
8764                                   const ARMSubtarget *ST) {
8765  EVT VT = N->getValueType(0);
8766  if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
8767    // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
8768    // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
8769    SDValue N1 = N->getOperand(1);
8770    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
8771      SDValue N0 = N->getOperand(0);
8772      if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
8773          DAG.MaskedValueIsZero(N0.getOperand(0),
8774                                APInt::getHighBitsSet(32, 16)))
8775        return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, N0, N1);
8776    }
8777  }
8778
8779  // Nothing to be done for scalar shifts.
8780  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8781  if (!VT.isVector() || !TLI.isTypeLegal(VT))
8782    return SDValue();
8783
8784  assert(ST->hasNEON() && "unexpected vector shift");
8785  int64_t Cnt;
8786
8787  switch (N->getOpcode()) {
8788  default: llvm_unreachable("unexpected shift opcode");
8789
8790  case ISD::SHL:
8791    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
8792      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
8793                         DAG.getConstant(Cnt, MVT::i32));
8794    break;
8795
8796  case ISD::SRA:
8797  case ISD::SRL:
8798    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
8799      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
8800                            ARMISD::VSHRs : ARMISD::VSHRu);
8801      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
8802                         DAG.getConstant(Cnt, MVT::i32));
8803    }
8804  }
8805  return SDValue();
8806}
8807
8808/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
8809/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
8810static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
8811                                    const ARMSubtarget *ST) {
8812  SDValue N0 = N->getOperand(0);
8813
8814  // Check for sign- and zero-extensions of vector extract operations of 8-
8815  // and 16-bit vector elements.  NEON supports these directly.  They are
8816  // handled during DAG combining because type legalization will promote them
8817  // to 32-bit types and it is messy to recognize the operations after that.
8818  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8819    SDValue Vec = N0.getOperand(0);
8820    SDValue Lane = N0.getOperand(1);
8821    EVT VT = N->getValueType(0);
8822    EVT EltVT = N0.getValueType();
8823    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8824
8825    if (VT == MVT::i32 &&
8826        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
8827        TLI.isTypeLegal(Vec.getValueType()) &&
8828        isa<ConstantSDNode>(Lane)) {
8829
8830      unsigned Opc = 0;
8831      switch (N->getOpcode()) {
8832      default: llvm_unreachable("unexpected opcode");
8833      case ISD::SIGN_EXTEND:
8834        Opc = ARMISD::VGETLANEs;
8835        break;
8836      case ISD::ZERO_EXTEND:
8837      case ISD::ANY_EXTEND:
8838        Opc = ARMISD::VGETLANEu;
8839        break;
8840      }
8841      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
8842    }
8843  }
8844
8845  return SDValue();
8846}
8847
8848/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
8849/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
8850static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
8851                                       const ARMSubtarget *ST) {
8852  // If the target supports NEON, try to use vmax/vmin instructions for f32
8853  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
8854  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
8855  // a NaN; only do the transformation when it matches that behavior.
8856
8857  // For now only do this when using NEON for FP operations; if using VFP, it
8858  // is not obvious that the benefit outweighs the cost of switching to the
8859  // NEON pipeline.
8860  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
8861      N->getValueType(0) != MVT::f32)
8862    return SDValue();
8863
8864  SDValue CondLHS = N->getOperand(0);
8865  SDValue CondRHS = N->getOperand(1);
8866  SDValue LHS = N->getOperand(2);
8867  SDValue RHS = N->getOperand(3);
8868  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
8869
8870  unsigned Opcode = 0;
8871  bool IsReversed;
8872  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
8873    IsReversed = false; // x CC y ? x : y
8874  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
8875    IsReversed = true ; // x CC y ? y : x
8876  } else {
8877    return SDValue();
8878  }
8879
8880  bool IsUnordered;
8881  switch (CC) {
8882  default: break;
8883  case ISD::SETOLT:
8884  case ISD::SETOLE:
8885  case ISD::SETLT:
8886  case ISD::SETLE:
8887  case ISD::SETULT:
8888  case ISD::SETULE:
8889    // If LHS is NaN, an ordered comparison will be false and the result will
8890    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
8891    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
8892    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
8893    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8894      break;
8895    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
8896    // will return -0, so vmin can only be used for unsafe math or if one of
8897    // the operands is known to be nonzero.
8898    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
8899        !DAG.getTarget().Options.UnsafeFPMath &&
8900        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8901      break;
8902    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
8903    break;
8904
8905  case ISD::SETOGT:
8906  case ISD::SETOGE:
8907  case ISD::SETGT:
8908  case ISD::SETGE:
8909  case ISD::SETUGT:
8910  case ISD::SETUGE:
8911    // If LHS is NaN, an ordered comparison will be false and the result will
8912    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
8913    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
8914    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
8915    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8916      break;
8917    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
8918    // will return +0, so vmax can only be used for unsafe math or if one of
8919    // the operands is known to be nonzero.
8920    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
8921        !DAG.getTarget().Options.UnsafeFPMath &&
8922        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8923      break;
8924    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
8925    break;
8926  }
8927
8928  if (!Opcode)
8929    return SDValue();
8930  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
8931}
8932
8933/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
8934SDValue
8935ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
8936  SDValue Cmp = N->getOperand(4);
8937  if (Cmp.getOpcode() != ARMISD::CMPZ)
8938    // Only looking at EQ and NE cases.
8939    return SDValue();
8940
8941  EVT VT = N->getValueType(0);
8942  DebugLoc dl = N->getDebugLoc();
8943  SDValue LHS = Cmp.getOperand(0);
8944  SDValue RHS = Cmp.getOperand(1);
8945  SDValue FalseVal = N->getOperand(0);
8946  SDValue TrueVal = N->getOperand(1);
8947  SDValue ARMcc = N->getOperand(2);
8948  ARMCC::CondCodes CC =
8949    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
8950
8951  // Simplify
8952  //   mov     r1, r0
8953  //   cmp     r1, x
8954  //   mov     r0, y
8955  //   moveq   r0, x
8956  // to
8957  //   cmp     r0, x
8958  //   movne   r0, y
8959  //
8960  //   mov     r1, r0
8961  //   cmp     r1, x
8962  //   mov     r0, x
8963  //   movne   r0, y
8964  // to
8965  //   cmp     r0, x
8966  //   movne   r0, y
8967  /// FIXME: Turn this into a target neutral optimization?
8968  SDValue Res;
8969  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
8970    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
8971                      N->getOperand(3), Cmp);
8972  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
8973    SDValue ARMcc;
8974    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
8975    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
8976                      N->getOperand(3), NewCmp);
8977  }
8978
8979  if (Res.getNode()) {
8980    APInt KnownZero, KnownOne;
8981    DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
8982    // Capture demanded bits information that would be otherwise lost.
8983    if (KnownZero == 0xfffffffe)
8984      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8985                        DAG.getValueType(MVT::i1));
8986    else if (KnownZero == 0xffffff00)
8987      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8988                        DAG.getValueType(MVT::i8));
8989    else if (KnownZero == 0xffff0000)
8990      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8991                        DAG.getValueType(MVT::i16));
8992  }
8993
8994  return Res;
8995}
8996
8997SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
8998                                             DAGCombinerInfo &DCI) const {
8999  switch (N->getOpcode()) {
9000  default: break;
9001  case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
9002  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
9003  case ISD::SUB:        return PerformSUBCombine(N, DCI);
9004  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
9005  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
9006  case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
9007  case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
9008  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
9009  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
9010  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
9011  case ISD::STORE:      return PerformSTORECombine(N, DCI);
9012  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
9013  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
9014  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
9015  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
9016  case ISD::FP_TO_SINT:
9017  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
9018  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
9019  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
9020  case ISD::SHL:
9021  case ISD::SRA:
9022  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
9023  case ISD::SIGN_EXTEND:
9024  case ISD::ZERO_EXTEND:
9025  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
9026  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
9027  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
9028  case ARMISD::VLD2DUP:
9029  case ARMISD::VLD3DUP:
9030  case ARMISD::VLD4DUP:
9031    return CombineBaseUpdate(N, DCI);
9032  case ISD::INTRINSIC_VOID:
9033  case ISD::INTRINSIC_W_CHAIN:
9034    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9035    case Intrinsic::arm_neon_vld1:
9036    case Intrinsic::arm_neon_vld2:
9037    case Intrinsic::arm_neon_vld3:
9038    case Intrinsic::arm_neon_vld4:
9039    case Intrinsic::arm_neon_vld2lane:
9040    case Intrinsic::arm_neon_vld3lane:
9041    case Intrinsic::arm_neon_vld4lane:
9042    case Intrinsic::arm_neon_vst1:
9043    case Intrinsic::arm_neon_vst2:
9044    case Intrinsic::arm_neon_vst3:
9045    case Intrinsic::arm_neon_vst4:
9046    case Intrinsic::arm_neon_vst2lane:
9047    case Intrinsic::arm_neon_vst3lane:
9048    case Intrinsic::arm_neon_vst4lane:
9049      return CombineBaseUpdate(N, DCI);
9050    default: break;
9051    }
9052    break;
9053  }
9054  return SDValue();
9055}
9056
9057bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
9058                                                          EVT VT) const {
9059  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
9060}
9061
9062bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
9063  // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
9064  bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
9065
9066  switch (VT.getSimpleVT().SimpleTy) {
9067  default:
9068    return false;
9069  case MVT::i8:
9070  case MVT::i16:
9071  case MVT::i32:
9072    // Unaligned access can use (for example) LRDB, LRDH, LDR
9073    return AllowsUnaligned;
9074  case MVT::f64:
9075  case MVT::v2f64:
9076    // For any little-endian targets with neon, we can support unaligned ld/st
9077    // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
9078    // A big-endian target may also explictly support unaligned accesses
9079    return Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian());
9080  }
9081}
9082
9083static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
9084                       unsigned AlignCheck) {
9085  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
9086          (DstAlign == 0 || DstAlign % AlignCheck == 0));
9087}
9088
9089EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
9090                                           unsigned DstAlign, unsigned SrcAlign,
9091                                           bool IsZeroVal,
9092                                           bool MemcpyStrSrc,
9093                                           MachineFunction &MF) const {
9094  const Function *F = MF.getFunction();
9095
9096  // See if we can use NEON instructions for this...
9097  if (IsZeroVal &&
9098      !F->getFnAttributes().hasNoImplicitFloatAttr() &&
9099      Subtarget->hasNEON()) {
9100    if (memOpAlign(SrcAlign, DstAlign, 16) && Size >= 16) {
9101      return MVT::v4i32;
9102    } else if (memOpAlign(SrcAlign, DstAlign, 8) && Size >= 8) {
9103      return MVT::v2i32;
9104    }
9105  }
9106
9107  // Lowering to i32/i16 if the size permits.
9108  if (Size >= 4) {
9109    return MVT::i32;
9110  } else if (Size >= 2) {
9111    return MVT::i16;
9112  }
9113
9114  // Let the target-independent logic figure it out.
9115  return MVT::Other;
9116}
9117
9118static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
9119  if (V < 0)
9120    return false;
9121
9122  unsigned Scale = 1;
9123  switch (VT.getSimpleVT().SimpleTy) {
9124  default: return false;
9125  case MVT::i1:
9126  case MVT::i8:
9127    // Scale == 1;
9128    break;
9129  case MVT::i16:
9130    // Scale == 2;
9131    Scale = 2;
9132    break;
9133  case MVT::i32:
9134    // Scale == 4;
9135    Scale = 4;
9136    break;
9137  }
9138
9139  if ((V & (Scale - 1)) != 0)
9140    return false;
9141  V /= Scale;
9142  return V == (V & ((1LL << 5) - 1));
9143}
9144
9145static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
9146                                      const ARMSubtarget *Subtarget) {
9147  bool isNeg = false;
9148  if (V < 0) {
9149    isNeg = true;
9150    V = - V;
9151  }
9152
9153  switch (VT.getSimpleVT().SimpleTy) {
9154  default: return false;
9155  case MVT::i1:
9156  case MVT::i8:
9157  case MVT::i16:
9158  case MVT::i32:
9159    // + imm12 or - imm8
9160    if (isNeg)
9161      return V == (V & ((1LL << 8) - 1));
9162    return V == (V & ((1LL << 12) - 1));
9163  case MVT::f32:
9164  case MVT::f64:
9165    // Same as ARM mode. FIXME: NEON?
9166    if (!Subtarget->hasVFP2())
9167      return false;
9168    if ((V & 3) != 0)
9169      return false;
9170    V >>= 2;
9171    return V == (V & ((1LL << 8) - 1));
9172  }
9173}
9174
9175/// isLegalAddressImmediate - Return true if the integer value can be used
9176/// as the offset of the target addressing mode for load / store of the
9177/// given type.
9178static bool isLegalAddressImmediate(int64_t V, EVT VT,
9179                                    const ARMSubtarget *Subtarget) {
9180  if (V == 0)
9181    return true;
9182
9183  if (!VT.isSimple())
9184    return false;
9185
9186  if (Subtarget->isThumb1Only())
9187    return isLegalT1AddressImmediate(V, VT);
9188  else if (Subtarget->isThumb2())
9189    return isLegalT2AddressImmediate(V, VT, Subtarget);
9190
9191  // ARM mode.
9192  if (V < 0)
9193    V = - V;
9194  switch (VT.getSimpleVT().SimpleTy) {
9195  default: return false;
9196  case MVT::i1:
9197  case MVT::i8:
9198  case MVT::i32:
9199    // +- imm12
9200    return V == (V & ((1LL << 12) - 1));
9201  case MVT::i16:
9202    // +- imm8
9203    return V == (V & ((1LL << 8) - 1));
9204  case MVT::f32:
9205  case MVT::f64:
9206    if (!Subtarget->hasVFP2()) // FIXME: NEON?
9207      return false;
9208    if ((V & 3) != 0)
9209      return false;
9210    V >>= 2;
9211    return V == (V & ((1LL << 8) - 1));
9212  }
9213}
9214
9215bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
9216                                                      EVT VT) const {
9217  int Scale = AM.Scale;
9218  if (Scale < 0)
9219    return false;
9220
9221  switch (VT.getSimpleVT().SimpleTy) {
9222  default: return false;
9223  case MVT::i1:
9224  case MVT::i8:
9225  case MVT::i16:
9226  case MVT::i32:
9227    if (Scale == 1)
9228      return true;
9229    // r + r << imm
9230    Scale = Scale & ~1;
9231    return Scale == 2 || Scale == 4 || Scale == 8;
9232  case MVT::i64:
9233    // r + r
9234    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
9235      return true;
9236    return false;
9237  case MVT::isVoid:
9238    // Note, we allow "void" uses (basically, uses that aren't loads or
9239    // stores), because arm allows folding a scale into many arithmetic
9240    // operations.  This should be made more precise and revisited later.
9241
9242    // Allow r << imm, but the imm has to be a multiple of two.
9243    if (Scale & 1) return false;
9244    return isPowerOf2_32(Scale);
9245  }
9246}
9247
9248/// isLegalAddressingMode - Return true if the addressing mode represented
9249/// by AM is legal for this target, for a load/store of the specified type.
9250bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
9251                                              Type *Ty) const {
9252  EVT VT = getValueType(Ty, true);
9253  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
9254    return false;
9255
9256  // Can never fold addr of global into load/store.
9257  if (AM.BaseGV)
9258    return false;
9259
9260  switch (AM.Scale) {
9261  case 0:  // no scale reg, must be "r+i" or "r", or "i".
9262    break;
9263  case 1:
9264    if (Subtarget->isThumb1Only())
9265      return false;
9266    // FALL THROUGH.
9267  default:
9268    // ARM doesn't support any R+R*scale+imm addr modes.
9269    if (AM.BaseOffs)
9270      return false;
9271
9272    if (!VT.isSimple())
9273      return false;
9274
9275    if (Subtarget->isThumb2())
9276      return isLegalT2ScaledAddressingMode(AM, VT);
9277
9278    int Scale = AM.Scale;
9279    switch (VT.getSimpleVT().SimpleTy) {
9280    default: return false;
9281    case MVT::i1:
9282    case MVT::i8:
9283    case MVT::i32:
9284      if (Scale < 0) Scale = -Scale;
9285      if (Scale == 1)
9286        return true;
9287      // r + r << imm
9288      return isPowerOf2_32(Scale & ~1);
9289    case MVT::i16:
9290    case MVT::i64:
9291      // r + r
9292      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
9293        return true;
9294      return false;
9295
9296    case MVT::isVoid:
9297      // Note, we allow "void" uses (basically, uses that aren't loads or
9298      // stores), because arm allows folding a scale into many arithmetic
9299      // operations.  This should be made more precise and revisited later.
9300
9301      // Allow r << imm, but the imm has to be a multiple of two.
9302      if (Scale & 1) return false;
9303      return isPowerOf2_32(Scale);
9304    }
9305  }
9306  return true;
9307}
9308
9309/// isLegalICmpImmediate - Return true if the specified immediate is legal
9310/// icmp immediate, that is the target has icmp instructions which can compare
9311/// a register against the immediate without having to materialize the
9312/// immediate into a register.
9313bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
9314  // Thumb2 and ARM modes can use cmn for negative immediates.
9315  if (!Subtarget->isThumb())
9316    return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
9317  if (Subtarget->isThumb2())
9318    return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
9319  // Thumb1 doesn't have cmn, and only 8-bit immediates.
9320  return Imm >= 0 && Imm <= 255;
9321}
9322
9323/// isLegalAddImmediate - Return true if the specified immediate is a legal add
9324/// *or sub* immediate, that is the target has add or sub instructions which can
9325/// add a register with the immediate without having to materialize the
9326/// immediate into a register.
9327bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
9328  // Same encoding for add/sub, just flip the sign.
9329  int64_t AbsImm = llvm::abs64(Imm);
9330  if (!Subtarget->isThumb())
9331    return ARM_AM::getSOImmVal(AbsImm) != -1;
9332  if (Subtarget->isThumb2())
9333    return ARM_AM::getT2SOImmVal(AbsImm) != -1;
9334  // Thumb1 only has 8-bit unsigned immediate.
9335  return AbsImm >= 0 && AbsImm <= 255;
9336}
9337
9338static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
9339                                      bool isSEXTLoad, SDValue &Base,
9340                                      SDValue &Offset, bool &isInc,
9341                                      SelectionDAG &DAG) {
9342  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
9343    return false;
9344
9345  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
9346    // AddressingMode 3
9347    Base = Ptr->getOperand(0);
9348    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9349      int RHSC = (int)RHS->getZExtValue();
9350      if (RHSC < 0 && RHSC > -256) {
9351        assert(Ptr->getOpcode() == ISD::ADD);
9352        isInc = false;
9353        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9354        return true;
9355      }
9356    }
9357    isInc = (Ptr->getOpcode() == ISD::ADD);
9358    Offset = Ptr->getOperand(1);
9359    return true;
9360  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
9361    // AddressingMode 2
9362    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9363      int RHSC = (int)RHS->getZExtValue();
9364      if (RHSC < 0 && RHSC > -0x1000) {
9365        assert(Ptr->getOpcode() == ISD::ADD);
9366        isInc = false;
9367        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9368        Base = Ptr->getOperand(0);
9369        return true;
9370      }
9371    }
9372
9373    if (Ptr->getOpcode() == ISD::ADD) {
9374      isInc = true;
9375      ARM_AM::ShiftOpc ShOpcVal=
9376        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
9377      if (ShOpcVal != ARM_AM::no_shift) {
9378        Base = Ptr->getOperand(1);
9379        Offset = Ptr->getOperand(0);
9380      } else {
9381        Base = Ptr->getOperand(0);
9382        Offset = Ptr->getOperand(1);
9383      }
9384      return true;
9385    }
9386
9387    isInc = (Ptr->getOpcode() == ISD::ADD);
9388    Base = Ptr->getOperand(0);
9389    Offset = Ptr->getOperand(1);
9390    return true;
9391  }
9392
9393  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
9394  return false;
9395}
9396
9397static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
9398                                     bool isSEXTLoad, SDValue &Base,
9399                                     SDValue &Offset, bool &isInc,
9400                                     SelectionDAG &DAG) {
9401  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
9402    return false;
9403
9404  Base = Ptr->getOperand(0);
9405  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9406    int RHSC = (int)RHS->getZExtValue();
9407    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
9408      assert(Ptr->getOpcode() == ISD::ADD);
9409      isInc = false;
9410      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9411      return true;
9412    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
9413      isInc = Ptr->getOpcode() == ISD::ADD;
9414      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
9415      return true;
9416    }
9417  }
9418
9419  return false;
9420}
9421
9422/// getPreIndexedAddressParts - returns true by value, base pointer and
9423/// offset pointer and addressing mode by reference if the node's address
9424/// can be legally represented as pre-indexed load / store address.
9425bool
9426ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
9427                                             SDValue &Offset,
9428                                             ISD::MemIndexedMode &AM,
9429                                             SelectionDAG &DAG) const {
9430  if (Subtarget->isThumb1Only())
9431    return false;
9432
9433  EVT VT;
9434  SDValue Ptr;
9435  bool isSEXTLoad = false;
9436  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9437    Ptr = LD->getBasePtr();
9438    VT  = LD->getMemoryVT();
9439    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
9440  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9441    Ptr = ST->getBasePtr();
9442    VT  = ST->getMemoryVT();
9443  } else
9444    return false;
9445
9446  bool isInc;
9447  bool isLegal = false;
9448  if (Subtarget->isThumb2())
9449    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
9450                                       Offset, isInc, DAG);
9451  else
9452    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
9453                                        Offset, isInc, DAG);
9454  if (!isLegal)
9455    return false;
9456
9457  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
9458  return true;
9459}
9460
9461/// getPostIndexedAddressParts - returns true by value, base pointer and
9462/// offset pointer and addressing mode by reference if this node can be
9463/// combined with a load / store to form a post-indexed load / store.
9464bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
9465                                                   SDValue &Base,
9466                                                   SDValue &Offset,
9467                                                   ISD::MemIndexedMode &AM,
9468                                                   SelectionDAG &DAG) const {
9469  if (Subtarget->isThumb1Only())
9470    return false;
9471
9472  EVT VT;
9473  SDValue Ptr;
9474  bool isSEXTLoad = false;
9475  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9476    VT  = LD->getMemoryVT();
9477    Ptr = LD->getBasePtr();
9478    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
9479  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9480    VT  = ST->getMemoryVT();
9481    Ptr = ST->getBasePtr();
9482  } else
9483    return false;
9484
9485  bool isInc;
9486  bool isLegal = false;
9487  if (Subtarget->isThumb2())
9488    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
9489                                       isInc, DAG);
9490  else
9491    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
9492                                        isInc, DAG);
9493  if (!isLegal)
9494    return false;
9495
9496  if (Ptr != Base) {
9497    // Swap base ptr and offset to catch more post-index load / store when
9498    // it's legal. In Thumb2 mode, offset must be an immediate.
9499    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
9500        !Subtarget->isThumb2())
9501      std::swap(Base, Offset);
9502
9503    // Post-indexed load / store update the base pointer.
9504    if (Ptr != Base)
9505      return false;
9506  }
9507
9508  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
9509  return true;
9510}
9511
9512void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9513                                                       APInt &KnownZero,
9514                                                       APInt &KnownOne,
9515                                                       const SelectionDAG &DAG,
9516                                                       unsigned Depth) const {
9517  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
9518  switch (Op.getOpcode()) {
9519  default: break;
9520  case ARMISD::CMOV: {
9521    // Bits are known zero/one if known on the LHS and RHS.
9522    DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
9523    if (KnownZero == 0 && KnownOne == 0) return;
9524
9525    APInt KnownZeroRHS, KnownOneRHS;
9526    DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
9527    KnownZero &= KnownZeroRHS;
9528    KnownOne  &= KnownOneRHS;
9529    return;
9530  }
9531  }
9532}
9533
9534//===----------------------------------------------------------------------===//
9535//                           ARM Inline Assembly Support
9536//===----------------------------------------------------------------------===//
9537
9538bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
9539  // Looking for "rev" which is V6+.
9540  if (!Subtarget->hasV6Ops())
9541    return false;
9542
9543  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9544  std::string AsmStr = IA->getAsmString();
9545  SmallVector<StringRef, 4> AsmPieces;
9546  SplitString(AsmStr, AsmPieces, ";\n");
9547
9548  switch (AsmPieces.size()) {
9549  default: return false;
9550  case 1:
9551    AsmStr = AsmPieces[0];
9552    AsmPieces.clear();
9553    SplitString(AsmStr, AsmPieces, " \t,");
9554
9555    // rev $0, $1
9556    if (AsmPieces.size() == 3 &&
9557        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
9558        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
9559      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9560      if (Ty && Ty->getBitWidth() == 32)
9561        return IntrinsicLowering::LowerToByteSwap(CI);
9562    }
9563    break;
9564  }
9565
9566  return false;
9567}
9568
9569/// getConstraintType - Given a constraint letter, return the type of
9570/// constraint it is for this target.
9571ARMTargetLowering::ConstraintType
9572ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
9573  if (Constraint.size() == 1) {
9574    switch (Constraint[0]) {
9575    default:  break;
9576    case 'l': return C_RegisterClass;
9577    case 'w': return C_RegisterClass;
9578    case 'h': return C_RegisterClass;
9579    case 'x': return C_RegisterClass;
9580    case 't': return C_RegisterClass;
9581    case 'j': return C_Other; // Constant for movw.
9582      // An address with a single base register. Due to the way we
9583      // currently handle addresses it is the same as an 'r' memory constraint.
9584    case 'Q': return C_Memory;
9585    }
9586  } else if (Constraint.size() == 2) {
9587    switch (Constraint[0]) {
9588    default: break;
9589    // All 'U+' constraints are addresses.
9590    case 'U': return C_Memory;
9591    }
9592  }
9593  return TargetLowering::getConstraintType(Constraint);
9594}
9595
9596/// Examine constraint type and operand type and determine a weight value.
9597/// This object must already have been set up with the operand type
9598/// and the current alternative constraint selected.
9599TargetLowering::ConstraintWeight
9600ARMTargetLowering::getSingleConstraintMatchWeight(
9601    AsmOperandInfo &info, const char *constraint) const {
9602  ConstraintWeight weight = CW_Invalid;
9603  Value *CallOperandVal = info.CallOperandVal;
9604    // If we don't have a value, we can't do a match,
9605    // but allow it at the lowest weight.
9606  if (CallOperandVal == NULL)
9607    return CW_Default;
9608  Type *type = CallOperandVal->getType();
9609  // Look at the constraint type.
9610  switch (*constraint) {
9611  default:
9612    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
9613    break;
9614  case 'l':
9615    if (type->isIntegerTy()) {
9616      if (Subtarget->isThumb())
9617        weight = CW_SpecificReg;
9618      else
9619        weight = CW_Register;
9620    }
9621    break;
9622  case 'w':
9623    if (type->isFloatingPointTy())
9624      weight = CW_Register;
9625    break;
9626  }
9627  return weight;
9628}
9629
9630typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
9631RCPair
9632ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9633                                                EVT VT) const {
9634  if (Constraint.size() == 1) {
9635    // GCC ARM Constraint Letters
9636    switch (Constraint[0]) {
9637    case 'l': // Low regs or general regs.
9638      if (Subtarget->isThumb())
9639        return RCPair(0U, &ARM::tGPRRegClass);
9640      return RCPair(0U, &ARM::GPRRegClass);
9641    case 'h': // High regs or no regs.
9642      if (Subtarget->isThumb())
9643        return RCPair(0U, &ARM::hGPRRegClass);
9644      break;
9645    case 'r':
9646      return RCPair(0U, &ARM::GPRRegClass);
9647    case 'w':
9648      if (VT == MVT::f32)
9649        return RCPair(0U, &ARM::SPRRegClass);
9650      if (VT.getSizeInBits() == 64)
9651        return RCPair(0U, &ARM::DPRRegClass);
9652      if (VT.getSizeInBits() == 128)
9653        return RCPair(0U, &ARM::QPRRegClass);
9654      break;
9655    case 'x':
9656      if (VT == MVT::f32)
9657        return RCPair(0U, &ARM::SPR_8RegClass);
9658      if (VT.getSizeInBits() == 64)
9659        return RCPair(0U, &ARM::DPR_8RegClass);
9660      if (VT.getSizeInBits() == 128)
9661        return RCPair(0U, &ARM::QPR_8RegClass);
9662      break;
9663    case 't':
9664      if (VT == MVT::f32)
9665        return RCPair(0U, &ARM::SPRRegClass);
9666      break;
9667    }
9668  }
9669  if (StringRef("{cc}").equals_lower(Constraint))
9670    return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
9671
9672  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9673}
9674
9675/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9676/// vector.  If it is invalid, don't add anything to Ops.
9677void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9678                                                     std::string &Constraint,
9679                                                     std::vector<SDValue>&Ops,
9680                                                     SelectionDAG &DAG) const {
9681  SDValue Result(0, 0);
9682
9683  // Currently only support length 1 constraints.
9684  if (Constraint.length() != 1) return;
9685
9686  char ConstraintLetter = Constraint[0];
9687  switch (ConstraintLetter) {
9688  default: break;
9689  case 'j':
9690  case 'I': case 'J': case 'K': case 'L':
9691  case 'M': case 'N': case 'O':
9692    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
9693    if (!C)
9694      return;
9695
9696    int64_t CVal64 = C->getSExtValue();
9697    int CVal = (int) CVal64;
9698    // None of these constraints allow values larger than 32 bits.  Check
9699    // that the value fits in an int.
9700    if (CVal != CVal64)
9701      return;
9702
9703    switch (ConstraintLetter) {
9704      case 'j':
9705        // Constant suitable for movw, must be between 0 and
9706        // 65535.
9707        if (Subtarget->hasV6T2Ops())
9708          if (CVal >= 0 && CVal <= 65535)
9709            break;
9710        return;
9711      case 'I':
9712        if (Subtarget->isThumb1Only()) {
9713          // This must be a constant between 0 and 255, for ADD
9714          // immediates.
9715          if (CVal >= 0 && CVal <= 255)
9716            break;
9717        } else if (Subtarget->isThumb2()) {
9718          // A constant that can be used as an immediate value in a
9719          // data-processing instruction.
9720          if (ARM_AM::getT2SOImmVal(CVal) != -1)
9721            break;
9722        } else {
9723          // A constant that can be used as an immediate value in a
9724          // data-processing instruction.
9725          if (ARM_AM::getSOImmVal(CVal) != -1)
9726            break;
9727        }
9728        return;
9729
9730      case 'J':
9731        if (Subtarget->isThumb()) {  // FIXME thumb2
9732          // This must be a constant between -255 and -1, for negated ADD
9733          // immediates. This can be used in GCC with an "n" modifier that
9734          // prints the negated value, for use with SUB instructions. It is
9735          // not useful otherwise but is implemented for compatibility.
9736          if (CVal >= -255 && CVal <= -1)
9737            break;
9738        } else {
9739          // This must be a constant between -4095 and 4095. It is not clear
9740          // what this constraint is intended for. Implemented for
9741          // compatibility with GCC.
9742          if (CVal >= -4095 && CVal <= 4095)
9743            break;
9744        }
9745        return;
9746
9747      case 'K':
9748        if (Subtarget->isThumb1Only()) {
9749          // A 32-bit value where only one byte has a nonzero value. Exclude
9750          // zero to match GCC. This constraint is used by GCC internally for
9751          // constants that can be loaded with a move/shift combination.
9752          // It is not useful otherwise but is implemented for compatibility.
9753          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
9754            break;
9755        } else if (Subtarget->isThumb2()) {
9756          // A constant whose bitwise inverse can be used as an immediate
9757          // value in a data-processing instruction. This can be used in GCC
9758          // with a "B" modifier that prints the inverted value, for use with
9759          // BIC and MVN instructions. It is not useful otherwise but is
9760          // implemented for compatibility.
9761          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
9762            break;
9763        } else {
9764          // A constant whose bitwise inverse can be used as an immediate
9765          // value in a data-processing instruction. This can be used in GCC
9766          // with a "B" modifier that prints the inverted value, for use with
9767          // BIC and MVN instructions. It is not useful otherwise but is
9768          // implemented for compatibility.
9769          if (ARM_AM::getSOImmVal(~CVal) != -1)
9770            break;
9771        }
9772        return;
9773
9774      case 'L':
9775        if (Subtarget->isThumb1Only()) {
9776          // This must be a constant between -7 and 7,
9777          // for 3-operand ADD/SUB immediate instructions.
9778          if (CVal >= -7 && CVal < 7)
9779            break;
9780        } else if (Subtarget->isThumb2()) {
9781          // A constant whose negation can be used as an immediate value in a
9782          // data-processing instruction. This can be used in GCC with an "n"
9783          // modifier that prints the negated value, for use with SUB
9784          // instructions. It is not useful otherwise but is implemented for
9785          // compatibility.
9786          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
9787            break;
9788        } else {
9789          // A constant whose negation can be used as an immediate value in a
9790          // data-processing instruction. This can be used in GCC with an "n"
9791          // modifier that prints the negated value, for use with SUB
9792          // instructions. It is not useful otherwise but is implemented for
9793          // compatibility.
9794          if (ARM_AM::getSOImmVal(-CVal) != -1)
9795            break;
9796        }
9797        return;
9798
9799      case 'M':
9800        if (Subtarget->isThumb()) { // FIXME thumb2
9801          // This must be a multiple of 4 between 0 and 1020, for
9802          // ADD sp + immediate.
9803          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
9804            break;
9805        } else {
9806          // A power of two or a constant between 0 and 32.  This is used in
9807          // GCC for the shift amount on shifted register operands, but it is
9808          // useful in general for any shift amounts.
9809          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
9810            break;
9811        }
9812        return;
9813
9814      case 'N':
9815        if (Subtarget->isThumb()) {  // FIXME thumb2
9816          // This must be a constant between 0 and 31, for shift amounts.
9817          if (CVal >= 0 && CVal <= 31)
9818            break;
9819        }
9820        return;
9821
9822      case 'O':
9823        if (Subtarget->isThumb()) {  // FIXME thumb2
9824          // This must be a multiple of 4 between -508 and 508, for
9825          // ADD/SUB sp = sp + immediate.
9826          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
9827            break;
9828        }
9829        return;
9830    }
9831    Result = DAG.getTargetConstant(CVal, Op.getValueType());
9832    break;
9833  }
9834
9835  if (Result.getNode()) {
9836    Ops.push_back(Result);
9837    return;
9838  }
9839  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
9840}
9841
9842bool
9843ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
9844  // The ARM target isn't yet aware of offsets.
9845  return false;
9846}
9847
9848bool ARM::isBitFieldInvertedMask(unsigned v) {
9849  if (v == 0xffffffff)
9850    return 0;
9851  // there can be 1's on either or both "outsides", all the "inside"
9852  // bits must be 0's
9853  unsigned int lsb = 0, msb = 31;
9854  while (v & (1 << msb)) --msb;
9855  while (v & (1 << lsb)) ++lsb;
9856  for (unsigned int i = lsb; i <= msb; ++i) {
9857    if (v & (1 << i))
9858      return 0;
9859  }
9860  return 1;
9861}
9862
9863/// isFPImmLegal - Returns true if the target can instruction select the
9864/// specified FP immediate natively. If false, the legalizer will
9865/// materialize the FP immediate as a load from a constant pool.
9866bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
9867  if (!Subtarget->hasVFP3())
9868    return false;
9869  if (VT == MVT::f32)
9870    return ARM_AM::getFP32Imm(Imm) != -1;
9871  if (VT == MVT::f64)
9872    return ARM_AM::getFP64Imm(Imm) != -1;
9873  return false;
9874}
9875
9876/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
9877/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
9878/// specified in the intrinsic calls.
9879bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
9880                                           const CallInst &I,
9881                                           unsigned Intrinsic) const {
9882  switch (Intrinsic) {
9883  case Intrinsic::arm_neon_vld1:
9884  case Intrinsic::arm_neon_vld2:
9885  case Intrinsic::arm_neon_vld3:
9886  case Intrinsic::arm_neon_vld4:
9887  case Intrinsic::arm_neon_vld2lane:
9888  case Intrinsic::arm_neon_vld3lane:
9889  case Intrinsic::arm_neon_vld4lane: {
9890    Info.opc = ISD::INTRINSIC_W_CHAIN;
9891    // Conservatively set memVT to the entire set of vectors loaded.
9892    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
9893    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
9894    Info.ptrVal = I.getArgOperand(0);
9895    Info.offset = 0;
9896    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
9897    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
9898    Info.vol = false; // volatile loads with NEON intrinsics not supported
9899    Info.readMem = true;
9900    Info.writeMem = false;
9901    return true;
9902  }
9903  case Intrinsic::arm_neon_vst1:
9904  case Intrinsic::arm_neon_vst2:
9905  case Intrinsic::arm_neon_vst3:
9906  case Intrinsic::arm_neon_vst4:
9907  case Intrinsic::arm_neon_vst2lane:
9908  case Intrinsic::arm_neon_vst3lane:
9909  case Intrinsic::arm_neon_vst4lane: {
9910    Info.opc = ISD::INTRINSIC_VOID;
9911    // Conservatively set memVT to the entire set of vectors stored.
9912    unsigned NumElts = 0;
9913    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
9914      Type *ArgTy = I.getArgOperand(ArgI)->getType();
9915      if (!ArgTy->isVectorTy())
9916        break;
9917      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
9918    }
9919    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
9920    Info.ptrVal = I.getArgOperand(0);
9921    Info.offset = 0;
9922    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
9923    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
9924    Info.vol = false; // volatile stores with NEON intrinsics not supported
9925    Info.readMem = false;
9926    Info.writeMem = true;
9927    return true;
9928  }
9929  case Intrinsic::arm_strexd: {
9930    Info.opc = ISD::INTRINSIC_W_CHAIN;
9931    Info.memVT = MVT::i64;
9932    Info.ptrVal = I.getArgOperand(2);
9933    Info.offset = 0;
9934    Info.align = 8;
9935    Info.vol = true;
9936    Info.readMem = false;
9937    Info.writeMem = true;
9938    return true;
9939  }
9940  case Intrinsic::arm_ldrexd: {
9941    Info.opc = ISD::INTRINSIC_W_CHAIN;
9942    Info.memVT = MVT::i64;
9943    Info.ptrVal = I.getArgOperand(0);
9944    Info.offset = 0;
9945    Info.align = 8;
9946    Info.vol = true;
9947    Info.readMem = true;
9948    Info.writeMem = false;
9949    return true;
9950  }
9951  default:
9952    break;
9953  }
9954
9955  return false;
9956}
9957