1//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tool implements a just-in-time compiler for LLVM, allowing direct
11// execution of LLVM bitcode in an efficient manner.
12//
13//===----------------------------------------------------------------------===//
14
15#include "JIT.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/Instructions.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/CodeGen/JITCodeEmitter.h"
23#include "llvm/CodeGen/MachineCodeInfo.h"
24#include "llvm/ExecutionEngine/GenericValue.h"
25#include "llvm/ExecutionEngine/JITEventListener.h"
26#include "llvm/ExecutionEngine/JITMemoryManager.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetJITInfo.h"
30#include "llvm/Support/Dwarf.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MutexGuard.h"
34#include "llvm/Support/DynamicLibrary.h"
35#include "llvm/Config/config.h"
36
37using namespace llvm;
38
39#ifdef __APPLE__
40// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
41// of atexit). It passes the address of linker generated symbol __dso_handle
42// to the function.
43// This configuration change happened at version 5330.
44# include <AvailabilityMacros.h>
45# if defined(MAC_OS_X_VERSION_10_4) && \
46     ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
47      (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
48       __APPLE_CC__ >= 5330))
49#  ifndef HAVE___DSO_HANDLE
50#   define HAVE___DSO_HANDLE 1
51#  endif
52# endif
53#endif
54
55#if HAVE___DSO_HANDLE
56extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
57#endif
58
59namespace {
60
61static struct RegisterJIT {
62  RegisterJIT() { JIT::Register(); }
63} JITRegistrator;
64
65}
66
67extern "C" void LLVMLinkInJIT() {
68}
69
70// Determine whether we can register EH tables.
71#if (defined(__GNUC__) && !defined(__ARM_EABI__) && \
72     !defined(__USING_SJLJ_EXCEPTIONS__))
73#define HAVE_EHTABLE_SUPPORT 1
74#else
75#define HAVE_EHTABLE_SUPPORT 0
76#endif
77
78#if HAVE_EHTABLE_SUPPORT
79
80// libgcc defines the __register_frame function to dynamically register new
81// dwarf frames for exception handling. This functionality is not portable
82// across compilers and is only provided by GCC. We use the __register_frame
83// function here so that code generated by the JIT cooperates with the unwinding
84// runtime of libgcc. When JITting with exception handling enable, LLVM
85// generates dwarf frames and registers it to libgcc with __register_frame.
86//
87// The __register_frame function works with Linux.
88//
89// Unfortunately, this functionality seems to be in libgcc after the unwinding
90// library of libgcc for darwin was written. The code for darwin overwrites the
91// value updated by __register_frame with a value fetched with "keymgr".
92// "keymgr" is an obsolete functionality, which should be rewritten some day.
93// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
94// need a workaround in LLVM which uses the "keymgr" to dynamically modify the
95// values of an opaque key, used by libgcc to find dwarf tables.
96
97extern "C" void __register_frame(void*);
98extern "C" void __deregister_frame(void*);
99
100#if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
101# define USE_KEYMGR 1
102#else
103# define USE_KEYMGR 0
104#endif
105
106#if USE_KEYMGR
107
108namespace {
109
110// LibgccObject - This is the structure defined in libgcc. There is no #include
111// provided for this structure, so we also define it here. libgcc calls it
112// "struct object". The structure is undocumented in libgcc.
113struct LibgccObject {
114  void *unused1;
115  void *unused2;
116  void *unused3;
117
118  /// frame - Pointer to the exception table.
119  void *frame;
120
121  /// encoding -  The encoding of the object?
122  union {
123    struct {
124      unsigned long sorted : 1;
125      unsigned long from_array : 1;
126      unsigned long mixed_encoding : 1;
127      unsigned long encoding : 8;
128      unsigned long count : 21;
129    } b;
130    size_t i;
131  } encoding;
132
133  /// fde_end - libgcc defines this field only if some macro is defined. We
134  /// include this field even if it may not there, to make libgcc happy.
135  char *fde_end;
136
137  /// next - At least we know it's a chained list!
138  struct LibgccObject *next;
139};
140
141// "kemgr" stuff. Apparently, all frame tables are stored there.
142extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
143extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
144#define KEYMGR_GCC3_DW2_OBJ_LIST        302     /* Dwarf2 object list  */
145
146/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
147/// probably contains all dwarf tables that are loaded.
148struct LibgccObjectInfo {
149
150  /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
151  ///
152  struct LibgccObject* seenObjects;
153
154  /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
155  ///
156  struct LibgccObject* unseenObjects;
157
158  unsigned unused[2];
159};
160
161/// darwin_register_frame - Since __register_frame does not work with darwin's
162/// libgcc,we provide our own function, which "tricks" libgcc by modifying the
163/// "Dwarf2 object list" key.
164void DarwinRegisterFrame(void* FrameBegin) {
165  // Get the key.
166  LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
167    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
168  assert(LOI && "This should be preallocated by the runtime");
169
170  // Allocate a new LibgccObject to represent this frame. Deallocation of this
171  // object may be impossible: since darwin code in libgcc was written after
172  // the ability to dynamically register frames, things may crash if we
173  // deallocate it.
174  struct LibgccObject* ob = (struct LibgccObject*)
175    malloc(sizeof(struct LibgccObject));
176
177  // Do like libgcc for the values of the field.
178  ob->unused1 = (void *)-1;
179  ob->unused2 = 0;
180  ob->unused3 = 0;
181  ob->frame = FrameBegin;
182  ob->encoding.i = 0;
183  ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
184
185  // Put the info on both places, as libgcc uses the first or the second
186  // field. Note that we rely on having two pointers here. If fde_end was a
187  // char, things would get complicated.
188  ob->fde_end = (char*)LOI->unseenObjects;
189  ob->next = LOI->unseenObjects;
190
191  // Update the key's unseenObjects list.
192  LOI->unseenObjects = ob;
193
194  // Finally update the "key". Apparently, libgcc requires it.
195  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
196                                         LOI);
197
198}
199
200}
201#endif // __APPLE__
202#endif // HAVE_EHTABLE_SUPPORT
203
204/// createJIT - This is the factory method for creating a JIT for the current
205/// machine, it does not fall back to the interpreter.  This takes ownership
206/// of the module.
207ExecutionEngine *JIT::createJIT(Module *M,
208                                std::string *ErrorStr,
209                                JITMemoryManager *JMM,
210                                bool GVsWithCode,
211                                TargetMachine *TM) {
212  // Try to register the program as a source of symbols to resolve against.
213  //
214  // FIXME: Don't do this here.
215  sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
216
217  // If the target supports JIT code generation, create the JIT.
218  if (TargetJITInfo *TJ = TM->getJITInfo()) {
219    return new JIT(M, *TM, *TJ, JMM, GVsWithCode);
220  } else {
221    if (ErrorStr)
222      *ErrorStr = "target does not support JIT code generation";
223    return 0;
224  }
225}
226
227namespace {
228/// This class supports the global getPointerToNamedFunction(), which allows
229/// bugpoint or gdb users to search for a function by name without any context.
230class JitPool {
231  SmallPtrSet<JIT*, 1> JITs;  // Optimize for process containing just 1 JIT.
232  mutable sys::Mutex Lock;
233public:
234  void Add(JIT *jit) {
235    MutexGuard guard(Lock);
236    JITs.insert(jit);
237  }
238  void Remove(JIT *jit) {
239    MutexGuard guard(Lock);
240    JITs.erase(jit);
241  }
242  void *getPointerToNamedFunction(const char *Name) const {
243    MutexGuard guard(Lock);
244    assert(JITs.size() != 0 && "No Jit registered");
245    //search function in every instance of JIT
246    for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(),
247           end = JITs.end();
248         Jit != end; ++Jit) {
249      if (Function *F = (*Jit)->FindFunctionNamed(Name))
250        return (*Jit)->getPointerToFunction(F);
251    }
252    // The function is not available : fallback on the first created (will
253    // search in symbol of the current program/library)
254    return (*JITs.begin())->getPointerToNamedFunction(Name);
255  }
256};
257ManagedStatic<JitPool> AllJits;
258}
259extern "C" {
260  // getPointerToNamedFunction - This function is used as a global wrapper to
261  // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
262  // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
263  // need to resolve function(s) that are being mis-codegenerated, so we need to
264  // resolve their addresses at runtime, and this is the way to do it.
265  void *getPointerToNamedFunction(const char *Name) {
266    return AllJits->getPointerToNamedFunction(Name);
267  }
268}
269
270JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
271         JITMemoryManager *jmm, bool GVsWithCode)
272  : ExecutionEngine(M), TM(tm), TJI(tji),
273    JMM(jmm ? jmm : JITMemoryManager::CreateDefaultMemManager()),
274    AllocateGVsWithCode(GVsWithCode), isAlreadyCodeGenerating(false) {
275  setTargetData(TM.getTargetData());
276
277  jitstate = new JITState(M);
278
279  // Initialize JCE
280  JCE = createEmitter(*this, JMM, TM);
281
282  // Register in global list of all JITs.
283  AllJits->Add(this);
284
285  // Add target data
286  MutexGuard locked(lock);
287  FunctionPassManager &PM = jitstate->getPM(locked);
288  PM.add(new TargetData(*TM.getTargetData()));
289
290  // Turn the machine code intermediate representation into bytes in memory that
291  // may be executed.
292  if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
293    report_fatal_error("Target does not support machine code emission!");
294  }
295
296  // Register routine for informing unwinding runtime about new EH frames
297#if HAVE_EHTABLE_SUPPORT
298#if USE_KEYMGR
299  struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
300    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
301
302  // The key is created on demand, and libgcc creates it the first time an
303  // exception occurs. Since we need the key to register frames, we create
304  // it now.
305  if (!LOI)
306    LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
307  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
308  InstallExceptionTableRegister(DarwinRegisterFrame);
309  // Not sure about how to deregister on Darwin.
310#else
311  InstallExceptionTableRegister(__register_frame);
312  InstallExceptionTableDeregister(__deregister_frame);
313#endif // __APPLE__
314#endif // HAVE_EHTABLE_SUPPORT
315
316  // Initialize passes.
317  PM.doInitialization();
318}
319
320JIT::~JIT() {
321  // Unregister all exception tables registered by this JIT.
322  DeregisterAllTables();
323  // Cleanup.
324  AllJits->Remove(this);
325  delete jitstate;
326  delete JCE;
327  // JMM is a ownership of JCE, so we no need delete JMM here.
328  delete &TM;
329}
330
331/// addModule - Add a new Module to the JIT.  If we previously removed the last
332/// Module, we need re-initialize jitstate with a valid Module.
333void JIT::addModule(Module *M) {
334  MutexGuard locked(lock);
335
336  if (Modules.empty()) {
337    assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
338
339    jitstate = new JITState(M);
340
341    FunctionPassManager &PM = jitstate->getPM(locked);
342    PM.add(new TargetData(*TM.getTargetData()));
343
344    // Turn the machine code intermediate representation into bytes in memory
345    // that may be executed.
346    if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
347      report_fatal_error("Target does not support machine code emission!");
348    }
349
350    // Initialize passes.
351    PM.doInitialization();
352  }
353
354  ExecutionEngine::addModule(M);
355}
356
357/// removeModule - If we are removing the last Module, invalidate the jitstate
358/// since the PassManager it contains references a released Module.
359bool JIT::removeModule(Module *M) {
360  bool result = ExecutionEngine::removeModule(M);
361
362  MutexGuard locked(lock);
363
364  if (jitstate && jitstate->getModule() == M) {
365    delete jitstate;
366    jitstate = 0;
367  }
368
369  if (!jitstate && !Modules.empty()) {
370    jitstate = new JITState(Modules[0]);
371
372    FunctionPassManager &PM = jitstate->getPM(locked);
373    PM.add(new TargetData(*TM.getTargetData()));
374
375    // Turn the machine code intermediate representation into bytes in memory
376    // that may be executed.
377    if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
378      report_fatal_error("Target does not support machine code emission!");
379    }
380
381    // Initialize passes.
382    PM.doInitialization();
383  }
384  return result;
385}
386
387/// run - Start execution with the specified function and arguments.
388///
389GenericValue JIT::runFunction(Function *F,
390                              const std::vector<GenericValue> &ArgValues) {
391  assert(F && "Function *F was null at entry to run()");
392
393  void *FPtr = getPointerToFunction(F);
394  assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
395  FunctionType *FTy = F->getFunctionType();
396  Type *RetTy = FTy->getReturnType();
397
398  assert((FTy->getNumParams() == ArgValues.size() ||
399          (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
400         "Wrong number of arguments passed into function!");
401  assert(FTy->getNumParams() == ArgValues.size() &&
402         "This doesn't support passing arguments through varargs (yet)!");
403
404  // Handle some common cases first.  These cases correspond to common `main'
405  // prototypes.
406  if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
407    switch (ArgValues.size()) {
408    case 3:
409      if (FTy->getParamType(0)->isIntegerTy(32) &&
410          FTy->getParamType(1)->isPointerTy() &&
411          FTy->getParamType(2)->isPointerTy()) {
412        int (*PF)(int, char **, const char **) =
413          (int(*)(int, char **, const char **))(intptr_t)FPtr;
414
415        // Call the function.
416        GenericValue rv;
417        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
418                                 (char **)GVTOP(ArgValues[1]),
419                                 (const char **)GVTOP(ArgValues[2])));
420        return rv;
421      }
422      break;
423    case 2:
424      if (FTy->getParamType(0)->isIntegerTy(32) &&
425          FTy->getParamType(1)->isPointerTy()) {
426        int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
427
428        // Call the function.
429        GenericValue rv;
430        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
431                                 (char **)GVTOP(ArgValues[1])));
432        return rv;
433      }
434      break;
435    case 1:
436      if (FTy->getParamType(0)->isIntegerTy(32)) {
437        GenericValue rv;
438        int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
439        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
440        return rv;
441      }
442      if (FTy->getParamType(0)->isPointerTy()) {
443        GenericValue rv;
444        int (*PF)(char *) = (int(*)(char *))(intptr_t)FPtr;
445        rv.IntVal = APInt(32, PF((char*)GVTOP(ArgValues[0])));
446        return rv;
447      }
448      break;
449    }
450  }
451
452  // Handle cases where no arguments are passed first.
453  if (ArgValues.empty()) {
454    GenericValue rv;
455    switch (RetTy->getTypeID()) {
456    default: llvm_unreachable("Unknown return type for function call!");
457    case Type::IntegerTyID: {
458      unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
459      if (BitWidth == 1)
460        rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
461      else if (BitWidth <= 8)
462        rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
463      else if (BitWidth <= 16)
464        rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
465      else if (BitWidth <= 32)
466        rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
467      else if (BitWidth <= 64)
468        rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
469      else
470        llvm_unreachable("Integer types > 64 bits not supported");
471      return rv;
472    }
473    case Type::VoidTyID:
474      rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
475      return rv;
476    case Type::FloatTyID:
477      rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
478      return rv;
479    case Type::DoubleTyID:
480      rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
481      return rv;
482    case Type::X86_FP80TyID:
483    case Type::FP128TyID:
484    case Type::PPC_FP128TyID:
485      llvm_unreachable("long double not supported yet");
486    case Type::PointerTyID:
487      return PTOGV(((void*(*)())(intptr_t)FPtr)());
488    }
489  }
490
491  // Okay, this is not one of our quick and easy cases.  Because we don't have a
492  // full FFI, we have to codegen a nullary stub function that just calls the
493  // function we are interested in, passing in constants for all of the
494  // arguments.  Make this function and return.
495
496  // First, create the function.
497  FunctionType *STy=FunctionType::get(RetTy, false);
498  Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
499                                    F->getParent());
500
501  // Insert a basic block.
502  BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
503
504  // Convert all of the GenericValue arguments over to constants.  Note that we
505  // currently don't support varargs.
506  SmallVector<Value*, 8> Args;
507  for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
508    Constant *C = 0;
509    Type *ArgTy = FTy->getParamType(i);
510    const GenericValue &AV = ArgValues[i];
511    switch (ArgTy->getTypeID()) {
512    default: llvm_unreachable("Unknown argument type for function call!");
513    case Type::IntegerTyID:
514        C = ConstantInt::get(F->getContext(), AV.IntVal);
515        break;
516    case Type::FloatTyID:
517        C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
518        break;
519    case Type::DoubleTyID:
520        C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
521        break;
522    case Type::PPC_FP128TyID:
523    case Type::X86_FP80TyID:
524    case Type::FP128TyID:
525        C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
526        break;
527    case Type::PointerTyID:
528      void *ArgPtr = GVTOP(AV);
529      if (sizeof(void*) == 4)
530        C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
531                             (int)(intptr_t)ArgPtr);
532      else
533        C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
534                             (intptr_t)ArgPtr);
535      // Cast the integer to pointer
536      C = ConstantExpr::getIntToPtr(C, ArgTy);
537      break;
538    }
539    Args.push_back(C);
540  }
541
542  CallInst *TheCall = CallInst::Create(F, Args, "", StubBB);
543  TheCall->setCallingConv(F->getCallingConv());
544  TheCall->setTailCall();
545  if (!TheCall->getType()->isVoidTy())
546    // Return result of the call.
547    ReturnInst::Create(F->getContext(), TheCall, StubBB);
548  else
549    ReturnInst::Create(F->getContext(), StubBB);           // Just return void.
550
551  // Finally, call our nullary stub function.
552  GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
553  // Erase it, since no other function can have a reference to it.
554  Stub->eraseFromParent();
555  // And return the result.
556  return Result;
557}
558
559void JIT::RegisterJITEventListener(JITEventListener *L) {
560  if (L == NULL)
561    return;
562  MutexGuard locked(lock);
563  EventListeners.push_back(L);
564}
565void JIT::UnregisterJITEventListener(JITEventListener *L) {
566  if (L == NULL)
567    return;
568  MutexGuard locked(lock);
569  std::vector<JITEventListener*>::reverse_iterator I=
570      std::find(EventListeners.rbegin(), EventListeners.rend(), L);
571  if (I != EventListeners.rend()) {
572    std::swap(*I, EventListeners.back());
573    EventListeners.pop_back();
574  }
575}
576void JIT::NotifyFunctionEmitted(
577    const Function &F,
578    void *Code, size_t Size,
579    const JITEvent_EmittedFunctionDetails &Details) {
580  MutexGuard locked(lock);
581  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
582    EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
583  }
584}
585
586void JIT::NotifyFreeingMachineCode(void *OldPtr) {
587  MutexGuard locked(lock);
588  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
589    EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
590  }
591}
592
593/// runJITOnFunction - Run the FunctionPassManager full of
594/// just-in-time compilation passes on F, hopefully filling in
595/// GlobalAddress[F] with the address of F's machine code.
596///
597void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
598  MutexGuard locked(lock);
599
600  class MCIListener : public JITEventListener {
601    MachineCodeInfo *const MCI;
602   public:
603    MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
604    virtual void NotifyFunctionEmitted(const Function &,
605                                       void *Code, size_t Size,
606                                       const EmittedFunctionDetails &) {
607      MCI->setAddress(Code);
608      MCI->setSize(Size);
609    }
610  };
611  MCIListener MCIL(MCI);
612  if (MCI)
613    RegisterJITEventListener(&MCIL);
614
615  runJITOnFunctionUnlocked(F, locked);
616
617  if (MCI)
618    UnregisterJITEventListener(&MCIL);
619}
620
621void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
622  assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
623
624  jitTheFunction(F, locked);
625
626  // If the function referred to another function that had not yet been
627  // read from bitcode, and we are jitting non-lazily, emit it now.
628  while (!jitstate->getPendingFunctions(locked).empty()) {
629    Function *PF = jitstate->getPendingFunctions(locked).back();
630    jitstate->getPendingFunctions(locked).pop_back();
631
632    assert(!PF->hasAvailableExternallyLinkage() &&
633           "Externally-defined function should not be in pending list.");
634
635    jitTheFunction(PF, locked);
636
637    // Now that the function has been jitted, ask the JITEmitter to rewrite
638    // the stub with real address of the function.
639    updateFunctionStub(PF);
640  }
641}
642
643void JIT::jitTheFunction(Function *F, const MutexGuard &locked) {
644  isAlreadyCodeGenerating = true;
645  jitstate->getPM(locked).run(*F);
646  isAlreadyCodeGenerating = false;
647
648  // clear basic block addresses after this function is done
649  getBasicBlockAddressMap(locked).clear();
650}
651
652/// getPointerToFunction - This method is used to get the address of the
653/// specified function, compiling it if necessary.
654///
655void *JIT::getPointerToFunction(Function *F) {
656
657  if (void *Addr = getPointerToGlobalIfAvailable(F))
658    return Addr;   // Check if function already code gen'd
659
660  MutexGuard locked(lock);
661
662  // Now that this thread owns the lock, make sure we read in the function if it
663  // exists in this Module.
664  std::string ErrorMsg;
665  if (F->Materialize(&ErrorMsg)) {
666    report_fatal_error("Error reading function '" + F->getName()+
667                      "' from bitcode file: " + ErrorMsg);
668  }
669
670  // ... and check if another thread has already code gen'd the function.
671  if (void *Addr = getPointerToGlobalIfAvailable(F))
672    return Addr;
673
674  if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
675    bool AbortOnFailure = !F->hasExternalWeakLinkage();
676    void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
677    addGlobalMapping(F, Addr);
678    return Addr;
679  }
680
681  runJITOnFunctionUnlocked(F, locked);
682
683  void *Addr = getPointerToGlobalIfAvailable(F);
684  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
685  return Addr;
686}
687
688void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) {
689  MutexGuard locked(lock);
690
691  BasicBlockAddressMapTy::iterator I =
692    getBasicBlockAddressMap(locked).find(BB);
693  if (I == getBasicBlockAddressMap(locked).end()) {
694    getBasicBlockAddressMap(locked)[BB] = Addr;
695  } else {
696    // ignore repeats: some BBs can be split into few MBBs?
697  }
698}
699
700void JIT::clearPointerToBasicBlock(const BasicBlock *BB) {
701  MutexGuard locked(lock);
702  getBasicBlockAddressMap(locked).erase(BB);
703}
704
705void *JIT::getPointerToBasicBlock(BasicBlock *BB) {
706  // make sure it's function is compiled by JIT
707  (void)getPointerToFunction(BB->getParent());
708
709  // resolve basic block address
710  MutexGuard locked(lock);
711
712  BasicBlockAddressMapTy::iterator I =
713    getBasicBlockAddressMap(locked).find(BB);
714  if (I != getBasicBlockAddressMap(locked).end()) {
715    return I->second;
716  } else {
717    llvm_unreachable("JIT does not have BB address for address-of-label, was"
718                     " it eliminated by optimizer?");
719  }
720}
721
722void *JIT::getPointerToNamedFunction(const std::string &Name,
723                                     bool AbortOnFailure){
724  if (!isSymbolSearchingDisabled()) {
725    void *ptr = JMM->getPointerToNamedFunction(Name, false);
726    if (ptr)
727      return ptr;
728  }
729
730  /// If a LazyFunctionCreator is installed, use it to get/create the function.
731  if (LazyFunctionCreator)
732    if (void *RP = LazyFunctionCreator(Name))
733      return RP;
734
735  if (AbortOnFailure) {
736    report_fatal_error("Program used external function '"+Name+
737                      "' which could not be resolved!");
738  }
739  return 0;
740}
741
742
743/// getOrEmitGlobalVariable - Return the address of the specified global
744/// variable, possibly emitting it to memory if needed.  This is used by the
745/// Emitter.
746void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
747  MutexGuard locked(lock);
748
749  void *Ptr = getPointerToGlobalIfAvailable(GV);
750  if (Ptr) return Ptr;
751
752  // If the global is external, just remember the address.
753  if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
754#if HAVE___DSO_HANDLE
755    if (GV->getName() == "__dso_handle")
756      return (void*)&__dso_handle;
757#endif
758    Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
759    if (Ptr == 0) {
760      report_fatal_error("Could not resolve external global address: "
761                        +GV->getName());
762    }
763    addGlobalMapping(GV, Ptr);
764  } else {
765    // If the global hasn't been emitted to memory yet, allocate space and
766    // emit it into memory.
767    Ptr = getMemoryForGV(GV);
768    addGlobalMapping(GV, Ptr);
769    EmitGlobalVariable(GV);  // Initialize the variable.
770  }
771  return Ptr;
772}
773
774/// recompileAndRelinkFunction - This method is used to force a function
775/// which has already been compiled, to be compiled again, possibly
776/// after it has been modified. Then the entry to the old copy is overwritten
777/// with a branch to the new copy. If there was no old copy, this acts
778/// just like JIT::getPointerToFunction().
779///
780void *JIT::recompileAndRelinkFunction(Function *F) {
781  void *OldAddr = getPointerToGlobalIfAvailable(F);
782
783  // If it's not already compiled there is no reason to patch it up.
784  if (OldAddr == 0) { return getPointerToFunction(F); }
785
786  // Delete the old function mapping.
787  addGlobalMapping(F, 0);
788
789  // Recodegen the function
790  runJITOnFunction(F);
791
792  // Update state, forward the old function to the new function.
793  void *Addr = getPointerToGlobalIfAvailable(F);
794  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
795  TJI.replaceMachineCodeForFunction(OldAddr, Addr);
796  return Addr;
797}
798
799/// getMemoryForGV - This method abstracts memory allocation of global
800/// variable so that the JIT can allocate thread local variables depending
801/// on the target.
802///
803char* JIT::getMemoryForGV(const GlobalVariable* GV) {
804  char *Ptr;
805
806  // GlobalVariable's which are not "constant" will cause trouble in a server
807  // situation. It's returned in the same block of memory as code which may
808  // not be writable.
809  if (isGVCompilationDisabled() && !GV->isConstant()) {
810    report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
811  }
812
813  // Some applications require globals and code to live together, so they may
814  // be allocated into the same buffer, but in general globals are allocated
815  // through the memory manager which puts them near the code but not in the
816  // same buffer.
817  Type *GlobalType = GV->getType()->getElementType();
818  size_t S = getTargetData()->getTypeAllocSize(GlobalType);
819  size_t A = getTargetData()->getPreferredAlignment(GV);
820  if (GV->isThreadLocal()) {
821    MutexGuard locked(lock);
822    Ptr = TJI.allocateThreadLocalMemory(S);
823  } else if (TJI.allocateSeparateGVMemory()) {
824    if (A <= 8) {
825      Ptr = (char*)malloc(S);
826    } else {
827      // Allocate S+A bytes of memory, then use an aligned pointer within that
828      // space.
829      Ptr = (char*)malloc(S+A);
830      unsigned MisAligned = ((intptr_t)Ptr & (A-1));
831      Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
832    }
833  } else if (AllocateGVsWithCode) {
834    Ptr = (char*)JCE->allocateSpace(S, A);
835  } else {
836    Ptr = (char*)JCE->allocateGlobal(S, A);
837  }
838  return Ptr;
839}
840
841void JIT::addPendingFunction(Function *F) {
842  MutexGuard locked(lock);
843  jitstate->getPendingFunctions(locked).push_back(F);
844}
845
846
847JITEventListener::~JITEventListener() {}
848