1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Methods common to all machine instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/MachineInstr.h"
15#include "llvm/Constants.h"
16#include "llvm/DebugInfo.h"
17#include "llvm/Function.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Metadata.h"
21#include "llvm/Module.h"
22#include "llvm/Type.h"
23#include "llvm/Value.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineMemOperand.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/MC/MCInstrDesc.h"
32#include "llvm/MC/MCSymbol.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetRegisterInfo.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/LeakDetector.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/ADT/FoldingSet.h"
43#include "llvm/ADT/Hashing.h"
44using namespace llvm;
45
46//===----------------------------------------------------------------------===//
47// MachineOperand Implementation
48//===----------------------------------------------------------------------===//
49
50void MachineOperand::setReg(unsigned Reg) {
51  if (getReg() == Reg) return; // No change.
52
53  // Otherwise, we have to change the register.  If this operand is embedded
54  // into a machine function, we need to update the old and new register's
55  // use/def lists.
56  if (MachineInstr *MI = getParent())
57    if (MachineBasicBlock *MBB = MI->getParent())
58      if (MachineFunction *MF = MBB->getParent()) {
59        MachineRegisterInfo &MRI = MF->getRegInfo();
60        MRI.removeRegOperandFromUseList(this);
61        SmallContents.RegNo = Reg;
62        MRI.addRegOperandToUseList(this);
63        return;
64      }
65
66  // Otherwise, just change the register, no problem.  :)
67  SmallContents.RegNo = Reg;
68}
69
70void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
71                                  const TargetRegisterInfo &TRI) {
72  assert(TargetRegisterInfo::isVirtualRegister(Reg));
73  if (SubIdx && getSubReg())
74    SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
75  setReg(Reg);
76  if (SubIdx)
77    setSubReg(SubIdx);
78}
79
80void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
81  assert(TargetRegisterInfo::isPhysicalRegister(Reg));
82  if (getSubReg()) {
83    Reg = TRI.getSubReg(Reg, getSubReg());
84    // Note that getSubReg() may return 0 if the sub-register doesn't exist.
85    // That won't happen in legal code.
86    setSubReg(0);
87  }
88  setReg(Reg);
89}
90
91/// Change a def to a use, or a use to a def.
92void MachineOperand::setIsDef(bool Val) {
93  assert(isReg() && "Wrong MachineOperand accessor");
94  assert((!Val || !isDebug()) && "Marking a debug operation as def");
95  if (IsDef == Val)
96    return;
97  // MRI may keep uses and defs in different list positions.
98  if (MachineInstr *MI = getParent())
99    if (MachineBasicBlock *MBB = MI->getParent())
100      if (MachineFunction *MF = MBB->getParent()) {
101        MachineRegisterInfo &MRI = MF->getRegInfo();
102        MRI.removeRegOperandFromUseList(this);
103        IsDef = Val;
104        MRI.addRegOperandToUseList(this);
105        return;
106      }
107  IsDef = Val;
108}
109
110/// ChangeToImmediate - Replace this operand with a new immediate operand of
111/// the specified value.  If an operand is known to be an immediate already,
112/// the setImm method should be used.
113void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
114  assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
115  // If this operand is currently a register operand, and if this is in a
116  // function, deregister the operand from the register's use/def list.
117  if (isReg() && isOnRegUseList())
118    if (MachineInstr *MI = getParent())
119      if (MachineBasicBlock *MBB = MI->getParent())
120        if (MachineFunction *MF = MBB->getParent())
121          MF->getRegInfo().removeRegOperandFromUseList(this);
122
123  OpKind = MO_Immediate;
124  Contents.ImmVal = ImmVal;
125}
126
127/// ChangeToRegister - Replace this operand with a new register operand of
128/// the specified value.  If an operand is known to be an register already,
129/// the setReg method should be used.
130void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
131                                      bool isKill, bool isDead, bool isUndef,
132                                      bool isDebug) {
133  MachineRegisterInfo *RegInfo = 0;
134  if (MachineInstr *MI = getParent())
135    if (MachineBasicBlock *MBB = MI->getParent())
136      if (MachineFunction *MF = MBB->getParent())
137        RegInfo = &MF->getRegInfo();
138  // If this operand is already a register operand, remove it from the
139  // register's use/def lists.
140  bool WasReg = isReg();
141  if (RegInfo && WasReg)
142    RegInfo->removeRegOperandFromUseList(this);
143
144  // Change this to a register and set the reg#.
145  OpKind = MO_Register;
146  SmallContents.RegNo = Reg;
147  SubReg = 0;
148  IsDef = isDef;
149  IsImp = isImp;
150  IsKill = isKill;
151  IsDead = isDead;
152  IsUndef = isUndef;
153  IsInternalRead = false;
154  IsEarlyClobber = false;
155  IsDebug = isDebug;
156  // Ensure isOnRegUseList() returns false.
157  Contents.Reg.Prev = 0;
158  // Preserve the tie when the operand was already a register.
159  if (!WasReg)
160    TiedTo = 0;
161
162  // If this operand is embedded in a function, add the operand to the
163  // register's use/def list.
164  if (RegInfo)
165    RegInfo->addRegOperandToUseList(this);
166}
167
168/// isIdenticalTo - Return true if this operand is identical to the specified
169/// operand. Note that this should stay in sync with the hash_value overload
170/// below.
171bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
172  if (getType() != Other.getType() ||
173      getTargetFlags() != Other.getTargetFlags())
174    return false;
175
176  switch (getType()) {
177  case MachineOperand::MO_Register:
178    return getReg() == Other.getReg() && isDef() == Other.isDef() &&
179           getSubReg() == Other.getSubReg();
180  case MachineOperand::MO_Immediate:
181    return getImm() == Other.getImm();
182  case MachineOperand::MO_CImmediate:
183    return getCImm() == Other.getCImm();
184  case MachineOperand::MO_FPImmediate:
185    return getFPImm() == Other.getFPImm();
186  case MachineOperand::MO_MachineBasicBlock:
187    return getMBB() == Other.getMBB();
188  case MachineOperand::MO_FrameIndex:
189    return getIndex() == Other.getIndex();
190  case MachineOperand::MO_ConstantPoolIndex:
191  case MachineOperand::MO_TargetIndex:
192    return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
193  case MachineOperand::MO_JumpTableIndex:
194    return getIndex() == Other.getIndex();
195  case MachineOperand::MO_GlobalAddress:
196    return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
197  case MachineOperand::MO_ExternalSymbol:
198    return !strcmp(getSymbolName(), Other.getSymbolName()) &&
199           getOffset() == Other.getOffset();
200  case MachineOperand::MO_BlockAddress:
201    return getBlockAddress() == Other.getBlockAddress() &&
202           getOffset() == Other.getOffset();
203  case MO_RegisterMask:
204    return getRegMask() == Other.getRegMask();
205  case MachineOperand::MO_MCSymbol:
206    return getMCSymbol() == Other.getMCSymbol();
207  case MachineOperand::MO_Metadata:
208    return getMetadata() == Other.getMetadata();
209  }
210  llvm_unreachable("Invalid machine operand type");
211}
212
213// Note: this must stay exactly in sync with isIdenticalTo above.
214hash_code llvm::hash_value(const MachineOperand &MO) {
215  switch (MO.getType()) {
216  case MachineOperand::MO_Register:
217    // Register operands don't have target flags.
218    return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
219  case MachineOperand::MO_Immediate:
220    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
221  case MachineOperand::MO_CImmediate:
222    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
223  case MachineOperand::MO_FPImmediate:
224    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
225  case MachineOperand::MO_MachineBasicBlock:
226    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
227  case MachineOperand::MO_FrameIndex:
228    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
229  case MachineOperand::MO_ConstantPoolIndex:
230  case MachineOperand::MO_TargetIndex:
231    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
232                        MO.getOffset());
233  case MachineOperand::MO_JumpTableIndex:
234    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
235  case MachineOperand::MO_ExternalSymbol:
236    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
237                        MO.getSymbolName());
238  case MachineOperand::MO_GlobalAddress:
239    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
240                        MO.getOffset());
241  case MachineOperand::MO_BlockAddress:
242    return hash_combine(MO.getType(), MO.getTargetFlags(),
243                        MO.getBlockAddress(), MO.getOffset());
244  case MachineOperand::MO_RegisterMask:
245    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
246  case MachineOperand::MO_Metadata:
247    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
248  case MachineOperand::MO_MCSymbol:
249    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
250  }
251  llvm_unreachable("Invalid machine operand type");
252}
253
254/// print - Print the specified machine operand.
255///
256void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
257  // If the instruction is embedded into a basic block, we can find the
258  // target info for the instruction.
259  if (!TM)
260    if (const MachineInstr *MI = getParent())
261      if (const MachineBasicBlock *MBB = MI->getParent())
262        if (const MachineFunction *MF = MBB->getParent())
263          TM = &MF->getTarget();
264  const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
265
266  switch (getType()) {
267  case MachineOperand::MO_Register:
268    OS << PrintReg(getReg(), TRI, getSubReg());
269
270    if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
271        isInternalRead() || isEarlyClobber() || isTied()) {
272      OS << '<';
273      bool NeedComma = false;
274      if (isDef()) {
275        if (NeedComma) OS << ',';
276        if (isEarlyClobber())
277          OS << "earlyclobber,";
278        if (isImplicit())
279          OS << "imp-";
280        OS << "def";
281        NeedComma = true;
282        // <def,read-undef> only makes sense when getSubReg() is set.
283        // Don't clutter the output otherwise.
284        if (isUndef() && getSubReg())
285          OS << ",read-undef";
286      } else if (isImplicit()) {
287          OS << "imp-use";
288          NeedComma = true;
289      }
290
291      if (isKill()) {
292        if (NeedComma) OS << ',';
293        OS << "kill";
294        NeedComma = true;
295      }
296      if (isDead()) {
297        if (NeedComma) OS << ',';
298        OS << "dead";
299        NeedComma = true;
300      }
301      if (isUndef() && isUse()) {
302        if (NeedComma) OS << ',';
303        OS << "undef";
304        NeedComma = true;
305      }
306      if (isInternalRead()) {
307        if (NeedComma) OS << ',';
308        OS << "internal";
309        NeedComma = true;
310      }
311      if (isTied()) {
312        if (NeedComma) OS << ',';
313        OS << "tied";
314        if (TiedTo != 15)
315          OS << unsigned(TiedTo - 1);
316        NeedComma = true;
317      }
318      OS << '>';
319    }
320    break;
321  case MachineOperand::MO_Immediate:
322    OS << getImm();
323    break;
324  case MachineOperand::MO_CImmediate:
325    getCImm()->getValue().print(OS, false);
326    break;
327  case MachineOperand::MO_FPImmediate:
328    if (getFPImm()->getType()->isFloatTy())
329      OS << getFPImm()->getValueAPF().convertToFloat();
330    else
331      OS << getFPImm()->getValueAPF().convertToDouble();
332    break;
333  case MachineOperand::MO_MachineBasicBlock:
334    OS << "<BB#" << getMBB()->getNumber() << ">";
335    break;
336  case MachineOperand::MO_FrameIndex:
337    OS << "<fi#" << getIndex() << '>';
338    break;
339  case MachineOperand::MO_ConstantPoolIndex:
340    OS << "<cp#" << getIndex();
341    if (getOffset()) OS << "+" << getOffset();
342    OS << '>';
343    break;
344  case MachineOperand::MO_TargetIndex:
345    OS << "<ti#" << getIndex();
346    if (getOffset()) OS << "+" << getOffset();
347    OS << '>';
348    break;
349  case MachineOperand::MO_JumpTableIndex:
350    OS << "<jt#" << getIndex() << '>';
351    break;
352  case MachineOperand::MO_GlobalAddress:
353    OS << "<ga:";
354    WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
355    if (getOffset()) OS << "+" << getOffset();
356    OS << '>';
357    break;
358  case MachineOperand::MO_ExternalSymbol:
359    OS << "<es:" << getSymbolName();
360    if (getOffset()) OS << "+" << getOffset();
361    OS << '>';
362    break;
363  case MachineOperand::MO_BlockAddress:
364    OS << '<';
365    WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
366    if (getOffset()) OS << "+" << getOffset();
367    OS << '>';
368    break;
369  case MachineOperand::MO_RegisterMask:
370    OS << "<regmask>";
371    break;
372  case MachineOperand::MO_Metadata:
373    OS << '<';
374    WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
375    OS << '>';
376    break;
377  case MachineOperand::MO_MCSymbol:
378    OS << "<MCSym=" << *getMCSymbol() << '>';
379    break;
380  }
381
382  if (unsigned TF = getTargetFlags())
383    OS << "[TF=" << TF << ']';
384}
385
386//===----------------------------------------------------------------------===//
387// MachineMemOperand Implementation
388//===----------------------------------------------------------------------===//
389
390/// getAddrSpace - Return the LLVM IR address space number that this pointer
391/// points into.
392unsigned MachinePointerInfo::getAddrSpace() const {
393  if (V == 0) return 0;
394  return cast<PointerType>(V->getType())->getAddressSpace();
395}
396
397/// getConstantPool - Return a MachinePointerInfo record that refers to the
398/// constant pool.
399MachinePointerInfo MachinePointerInfo::getConstantPool() {
400  return MachinePointerInfo(PseudoSourceValue::getConstantPool());
401}
402
403/// getFixedStack - Return a MachinePointerInfo record that refers to the
404/// the specified FrameIndex.
405MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
406  return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
407}
408
409MachinePointerInfo MachinePointerInfo::getJumpTable() {
410  return MachinePointerInfo(PseudoSourceValue::getJumpTable());
411}
412
413MachinePointerInfo MachinePointerInfo::getGOT() {
414  return MachinePointerInfo(PseudoSourceValue::getGOT());
415}
416
417MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
418  return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
419}
420
421MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
422                                     uint64_t s, unsigned int a,
423                                     const MDNode *TBAAInfo,
424                                     const MDNode *Ranges)
425  : PtrInfo(ptrinfo), Size(s),
426    Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
427    TBAAInfo(TBAAInfo), Ranges(Ranges) {
428  assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
429         "invalid pointer value");
430  assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
431  assert((isLoad() || isStore()) && "Not a load/store!");
432}
433
434/// Profile - Gather unique data for the object.
435///
436void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
437  ID.AddInteger(getOffset());
438  ID.AddInteger(Size);
439  ID.AddPointer(getValue());
440  ID.AddInteger(Flags);
441}
442
443void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
444  // The Value and Offset may differ due to CSE. But the flags and size
445  // should be the same.
446  assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
447  assert(MMO->getSize() == getSize() && "Size mismatch!");
448
449  if (MMO->getBaseAlignment() >= getBaseAlignment()) {
450    // Update the alignment value.
451    Flags = (Flags & ((1 << MOMaxBits) - 1)) |
452      ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
453    // Also update the base and offset, because the new alignment may
454    // not be applicable with the old ones.
455    PtrInfo = MMO->PtrInfo;
456  }
457}
458
459/// getAlignment - Return the minimum known alignment in bytes of the
460/// actual memory reference.
461uint64_t MachineMemOperand::getAlignment() const {
462  return MinAlign(getBaseAlignment(), getOffset());
463}
464
465raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
466  assert((MMO.isLoad() || MMO.isStore()) &&
467         "SV has to be a load, store or both.");
468
469  if (MMO.isVolatile())
470    OS << "Volatile ";
471
472  if (MMO.isLoad())
473    OS << "LD";
474  if (MMO.isStore())
475    OS << "ST";
476  OS << MMO.getSize();
477
478  // Print the address information.
479  OS << "[";
480  if (!MMO.getValue())
481    OS << "<unknown>";
482  else
483    WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
484
485  // If the alignment of the memory reference itself differs from the alignment
486  // of the base pointer, print the base alignment explicitly, next to the base
487  // pointer.
488  if (MMO.getBaseAlignment() != MMO.getAlignment())
489    OS << "(align=" << MMO.getBaseAlignment() << ")";
490
491  if (MMO.getOffset() != 0)
492    OS << "+" << MMO.getOffset();
493  OS << "]";
494
495  // Print the alignment of the reference.
496  if (MMO.getBaseAlignment() != MMO.getAlignment() ||
497      MMO.getBaseAlignment() != MMO.getSize())
498    OS << "(align=" << MMO.getAlignment() << ")";
499
500  // Print TBAA info.
501  if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
502    OS << "(tbaa=";
503    if (TBAAInfo->getNumOperands() > 0)
504      WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
505    else
506      OS << "<unknown>";
507    OS << ")";
508  }
509
510  // Print nontemporal info.
511  if (MMO.isNonTemporal())
512    OS << "(nontemporal)";
513
514  return OS;
515}
516
517//===----------------------------------------------------------------------===//
518// MachineInstr Implementation
519//===----------------------------------------------------------------------===//
520
521/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
522/// MCID NULL and no operands.
523MachineInstr::MachineInstr()
524  : MCID(0), Flags(0), AsmPrinterFlags(0),
525    NumMemRefs(0), MemRefs(0),
526    Parent(0) {
527  // Make sure that we get added to a machine basicblock
528  LeakDetector::addGarbageObject(this);
529}
530
531void MachineInstr::addImplicitDefUseOperands() {
532  if (MCID->ImplicitDefs)
533    for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
534      addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
535  if (MCID->ImplicitUses)
536    for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
537      addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
538}
539
540/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
541/// implicit operands. It reserves space for the number of operands specified by
542/// the MCInstrDesc.
543MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
544  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
545    NumMemRefs(0), MemRefs(0), Parent(0) {
546  unsigned NumImplicitOps = 0;
547  if (!NoImp)
548    NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
549  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
550  if (!NoImp)
551    addImplicitDefUseOperands();
552  // Make sure that we get added to a machine basicblock
553  LeakDetector::addGarbageObject(this);
554}
555
556/// MachineInstr ctor - As above, but with a DebugLoc.
557MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
558                           bool NoImp)
559  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
560    NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
561  unsigned NumImplicitOps = 0;
562  if (!NoImp)
563    NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
564  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
565  if (!NoImp)
566    addImplicitDefUseOperands();
567  // Make sure that we get added to a machine basicblock
568  LeakDetector::addGarbageObject(this);
569}
570
571/// MachineInstr ctor - Work exactly the same as the ctor two above, except
572/// that the MachineInstr is created and added to the end of the specified
573/// basic block.
574MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
575  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
576    NumMemRefs(0), MemRefs(0), Parent(0) {
577  assert(MBB && "Cannot use inserting ctor with null basic block!");
578  unsigned NumImplicitOps =
579    MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
580  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
581  addImplicitDefUseOperands();
582  // Make sure that we get added to a machine basicblock
583  LeakDetector::addGarbageObject(this);
584  MBB->push_back(this);  // Add instruction to end of basic block!
585}
586
587/// MachineInstr ctor - As above, but with a DebugLoc.
588///
589MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
590                           const MCInstrDesc &tid)
591  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
592    NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
593  assert(MBB && "Cannot use inserting ctor with null basic block!");
594  unsigned NumImplicitOps =
595    MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
596  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
597  addImplicitDefUseOperands();
598  // Make sure that we get added to a machine basicblock
599  LeakDetector::addGarbageObject(this);
600  MBB->push_back(this);  // Add instruction to end of basic block!
601}
602
603/// MachineInstr ctor - Copies MachineInstr arg exactly
604///
605MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
606  : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
607    NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
608    Parent(0), debugLoc(MI.getDebugLoc()) {
609  Operands.reserve(MI.getNumOperands());
610
611  // Add operands
612  for (unsigned i = 0; i != MI.getNumOperands(); ++i)
613    addOperand(MI.getOperand(i));
614
615  // Copy all the flags.
616  Flags = MI.Flags;
617
618  // Set parent to null.
619  Parent = 0;
620
621  LeakDetector::addGarbageObject(this);
622}
623
624MachineInstr::~MachineInstr() {
625  LeakDetector::removeGarbageObject(this);
626#ifndef NDEBUG
627  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
628    assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
629    assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
630           "Reg operand def/use list corrupted");
631  }
632#endif
633}
634
635/// getRegInfo - If this instruction is embedded into a MachineFunction,
636/// return the MachineRegisterInfo object for the current function, otherwise
637/// return null.
638MachineRegisterInfo *MachineInstr::getRegInfo() {
639  if (MachineBasicBlock *MBB = getParent())
640    return &MBB->getParent()->getRegInfo();
641  return 0;
642}
643
644/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
645/// this instruction from their respective use lists.  This requires that the
646/// operands already be on their use lists.
647void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
648  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
649    if (Operands[i].isReg())
650      MRI.removeRegOperandFromUseList(&Operands[i]);
651}
652
653/// AddRegOperandsToUseLists - Add all of the register operands in
654/// this instruction from their respective use lists.  This requires that the
655/// operands not be on their use lists yet.
656void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
657  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
658    if (Operands[i].isReg())
659      MRI.addRegOperandToUseList(&Operands[i]);
660}
661
662/// addOperand - Add the specified operand to the instruction.  If it is an
663/// implicit operand, it is added to the end of the operand list.  If it is
664/// an explicit operand it is added at the end of the explicit operand list
665/// (before the first implicit operand).
666void MachineInstr::addOperand(const MachineOperand &Op) {
667  assert(MCID && "Cannot add operands before providing an instr descriptor");
668  bool isImpReg = Op.isReg() && Op.isImplicit();
669  MachineRegisterInfo *RegInfo = getRegInfo();
670
671  // If the Operands backing store is reallocated, all register operands must
672  // be removed and re-added to RegInfo.  It is storing pointers to operands.
673  bool Reallocate = RegInfo &&
674    !Operands.empty() && Operands.size() == Operands.capacity();
675
676  // Find the insert location for the new operand.  Implicit registers go at
677  // the end, everything goes before the implicit regs.
678  unsigned OpNo = Operands.size();
679
680  // Remove all the implicit operands from RegInfo if they need to be shifted.
681  // FIXME: Allow mixed explicit and implicit operands on inline asm.
682  // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
683  // implicit-defs, but they must not be moved around.  See the FIXME in
684  // InstrEmitter.cpp.
685  if (!isImpReg && !isInlineAsm()) {
686    while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
687      --OpNo;
688      assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
689      if (RegInfo)
690        RegInfo->removeRegOperandFromUseList(&Operands[OpNo]);
691    }
692  }
693
694  // OpNo now points as the desired insertion point.  Unless this is a variadic
695  // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
696  // RegMask operands go between the explicit and implicit operands.
697  assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
698          OpNo < MCID->getNumOperands()) &&
699         "Trying to add an operand to a machine instr that is already done!");
700
701  // All operands from OpNo have been removed from RegInfo.  If the Operands
702  // backing store needs to be reallocated, we also need to remove any other
703  // register operands.
704  if (Reallocate)
705    for (unsigned i = 0; i != OpNo; ++i)
706      if (Operands[i].isReg())
707        RegInfo->removeRegOperandFromUseList(&Operands[i]);
708
709  // Insert the new operand at OpNo.
710  Operands.insert(Operands.begin() + OpNo, Op);
711  Operands[OpNo].ParentMI = this;
712
713  // The Operands backing store has now been reallocated, so we can re-add the
714  // operands before OpNo.
715  if (Reallocate)
716    for (unsigned i = 0; i != OpNo; ++i)
717      if (Operands[i].isReg())
718        RegInfo->addRegOperandToUseList(&Operands[i]);
719
720  // When adding a register operand, tell RegInfo about it.
721  if (Operands[OpNo].isReg()) {
722    // Ensure isOnRegUseList() returns false, regardless of Op's status.
723    Operands[OpNo].Contents.Reg.Prev = 0;
724    // Ignore existing ties. This is not a property that can be copied.
725    Operands[OpNo].TiedTo = 0;
726    // Add the new operand to RegInfo.
727    if (RegInfo)
728      RegInfo->addRegOperandToUseList(&Operands[OpNo]);
729    // The MCID operand information isn't accurate until we start adding
730    // explicit operands. The implicit operands are added first, then the
731    // explicits are inserted before them.
732    if (!isImpReg) {
733      // Tie uses to defs as indicated in MCInstrDesc.
734      if (Operands[OpNo].isUse()) {
735        int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
736        if (DefIdx != -1)
737          tieOperands(DefIdx, OpNo);
738      }
739      // If the register operand is flagged as early, mark the operand as such.
740      if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
741        Operands[OpNo].setIsEarlyClobber(true);
742    }
743  }
744
745  // Re-add all the implicit ops.
746  if (RegInfo) {
747    for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
748      assert(Operands[i].isReg() && "Should only be an implicit reg!");
749      RegInfo->addRegOperandToUseList(&Operands[i]);
750    }
751  }
752}
753
754/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
755/// fewer operand than it started with.
756///
757void MachineInstr::RemoveOperand(unsigned OpNo) {
758  assert(OpNo < Operands.size() && "Invalid operand number");
759  untieRegOperand(OpNo);
760  MachineRegisterInfo *RegInfo = getRegInfo();
761
762  // Special case removing the last one.
763  if (OpNo == Operands.size()-1) {
764    // If needed, remove from the reg def/use list.
765    if (RegInfo && Operands.back().isReg() && Operands.back().isOnRegUseList())
766      RegInfo->removeRegOperandFromUseList(&Operands.back());
767
768    Operands.pop_back();
769    return;
770  }
771
772  // Otherwise, we are removing an interior operand.  If we have reginfo to
773  // update, remove all operands that will be shifted down from their reg lists,
774  // move everything down, then re-add them.
775  if (RegInfo) {
776    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
777      if (Operands[i].isReg())
778        RegInfo->removeRegOperandFromUseList(&Operands[i]);
779    }
780  }
781
782#ifndef NDEBUG
783  // Moving tied operands would break the ties.
784  for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i)
785    if (Operands[i].isReg())
786      assert(!Operands[i].isTied() && "Cannot move tied operands");
787#endif
788
789  Operands.erase(Operands.begin()+OpNo);
790
791  if (RegInfo) {
792    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
793      if (Operands[i].isReg())
794        RegInfo->addRegOperandToUseList(&Operands[i]);
795    }
796  }
797}
798
799/// addMemOperand - Add a MachineMemOperand to the machine instruction.
800/// This function should be used only occasionally. The setMemRefs function
801/// is the primary method for setting up a MachineInstr's MemRefs list.
802void MachineInstr::addMemOperand(MachineFunction &MF,
803                                 MachineMemOperand *MO) {
804  mmo_iterator OldMemRefs = MemRefs;
805  uint16_t OldNumMemRefs = NumMemRefs;
806
807  uint16_t NewNum = NumMemRefs + 1;
808  mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
809
810  std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
811  NewMemRefs[NewNum - 1] = MO;
812
813  MemRefs = NewMemRefs;
814  NumMemRefs = NewNum;
815}
816
817bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
818  const MachineBasicBlock *MBB = getParent();
819  MachineBasicBlock::const_instr_iterator MII = *this; ++MII;
820  while (MII != MBB->end() && MII->isInsideBundle()) {
821    if (MII->getDesc().getFlags() & Mask) {
822      if (Type == AnyInBundle)
823        return true;
824    } else {
825      if (Type == AllInBundle)
826        return false;
827    }
828    ++MII;
829  }
830
831  return Type == AllInBundle;
832}
833
834bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
835                                 MICheckType Check) const {
836  // If opcodes or number of operands are not the same then the two
837  // instructions are obviously not identical.
838  if (Other->getOpcode() != getOpcode() ||
839      Other->getNumOperands() != getNumOperands())
840    return false;
841
842  if (isBundle()) {
843    // Both instructions are bundles, compare MIs inside the bundle.
844    MachineBasicBlock::const_instr_iterator I1 = *this;
845    MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
846    MachineBasicBlock::const_instr_iterator I2 = *Other;
847    MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
848    while (++I1 != E1 && I1->isInsideBundle()) {
849      ++I2;
850      if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
851        return false;
852    }
853  }
854
855  // Check operands to make sure they match.
856  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
857    const MachineOperand &MO = getOperand(i);
858    const MachineOperand &OMO = Other->getOperand(i);
859    if (!MO.isReg()) {
860      if (!MO.isIdenticalTo(OMO))
861        return false;
862      continue;
863    }
864
865    // Clients may or may not want to ignore defs when testing for equality.
866    // For example, machine CSE pass only cares about finding common
867    // subexpressions, so it's safe to ignore virtual register defs.
868    if (MO.isDef()) {
869      if (Check == IgnoreDefs)
870        continue;
871      else if (Check == IgnoreVRegDefs) {
872        if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
873            TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
874          if (MO.getReg() != OMO.getReg())
875            return false;
876      } else {
877        if (!MO.isIdenticalTo(OMO))
878          return false;
879        if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
880          return false;
881      }
882    } else {
883      if (!MO.isIdenticalTo(OMO))
884        return false;
885      if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
886        return false;
887    }
888  }
889  // If DebugLoc does not match then two dbg.values are not identical.
890  if (isDebugValue())
891    if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
892        && getDebugLoc() != Other->getDebugLoc())
893      return false;
894  return true;
895}
896
897/// removeFromParent - This method unlinks 'this' from the containing basic
898/// block, and returns it, but does not delete it.
899MachineInstr *MachineInstr::removeFromParent() {
900  assert(getParent() && "Not embedded in a basic block!");
901
902  // If it's a bundle then remove the MIs inside the bundle as well.
903  if (isBundle()) {
904    MachineBasicBlock *MBB = getParent();
905    MachineBasicBlock::instr_iterator MII = *this; ++MII;
906    MachineBasicBlock::instr_iterator E = MBB->instr_end();
907    while (MII != E && MII->isInsideBundle()) {
908      MachineInstr *MI = &*MII;
909      ++MII;
910      MBB->remove(MI);
911    }
912  }
913  getParent()->remove(this);
914  return this;
915}
916
917
918/// eraseFromParent - This method unlinks 'this' from the containing basic
919/// block, and deletes it.
920void MachineInstr::eraseFromParent() {
921  assert(getParent() && "Not embedded in a basic block!");
922  // If it's a bundle then remove the MIs inside the bundle as well.
923  if (isBundle()) {
924    MachineBasicBlock *MBB = getParent();
925    MachineBasicBlock::instr_iterator MII = *this; ++MII;
926    MachineBasicBlock::instr_iterator E = MBB->instr_end();
927    while (MII != E && MII->isInsideBundle()) {
928      MachineInstr *MI = &*MII;
929      ++MII;
930      MBB->erase(MI);
931    }
932  }
933  // Erase the individual instruction, which may itself be inside a bundle.
934  getParent()->erase_instr(this);
935}
936
937
938/// getNumExplicitOperands - Returns the number of non-implicit operands.
939///
940unsigned MachineInstr::getNumExplicitOperands() const {
941  unsigned NumOperands = MCID->getNumOperands();
942  if (!MCID->isVariadic())
943    return NumOperands;
944
945  for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
946    const MachineOperand &MO = getOperand(i);
947    if (!MO.isReg() || !MO.isImplicit())
948      NumOperands++;
949  }
950  return NumOperands;
951}
952
953/// isBundled - Return true if this instruction part of a bundle. This is true
954/// if either itself or its following instruction is marked "InsideBundle".
955bool MachineInstr::isBundled() const {
956  if (isInsideBundle())
957    return true;
958  MachineBasicBlock::const_instr_iterator nextMI = this;
959  ++nextMI;
960  return nextMI != Parent->instr_end() && nextMI->isInsideBundle();
961}
962
963bool MachineInstr::isStackAligningInlineAsm() const {
964  if (isInlineAsm()) {
965    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
966    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
967      return true;
968  }
969  return false;
970}
971
972InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
973  assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
974  unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
975  return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
976}
977
978int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
979                                       unsigned *GroupNo) const {
980  assert(isInlineAsm() && "Expected an inline asm instruction");
981  assert(OpIdx < getNumOperands() && "OpIdx out of range");
982
983  // Ignore queries about the initial operands.
984  if (OpIdx < InlineAsm::MIOp_FirstOperand)
985    return -1;
986
987  unsigned Group = 0;
988  unsigned NumOps;
989  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
990       i += NumOps) {
991    const MachineOperand &FlagMO = getOperand(i);
992    // If we reach the implicit register operands, stop looking.
993    if (!FlagMO.isImm())
994      return -1;
995    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
996    if (i + NumOps > OpIdx) {
997      if (GroupNo)
998        *GroupNo = Group;
999      return i;
1000    }
1001    ++Group;
1002  }
1003  return -1;
1004}
1005
1006const TargetRegisterClass*
1007MachineInstr::getRegClassConstraint(unsigned OpIdx,
1008                                    const TargetInstrInfo *TII,
1009                                    const TargetRegisterInfo *TRI) const {
1010  assert(getParent() && "Can't have an MBB reference here!");
1011  assert(getParent()->getParent() && "Can't have an MF reference here!");
1012  const MachineFunction &MF = *getParent()->getParent();
1013
1014  // Most opcodes have fixed constraints in their MCInstrDesc.
1015  if (!isInlineAsm())
1016    return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1017
1018  if (!getOperand(OpIdx).isReg())
1019    return NULL;
1020
1021  // For tied uses on inline asm, get the constraint from the def.
1022  unsigned DefIdx;
1023  if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1024    OpIdx = DefIdx;
1025
1026  // Inline asm stores register class constraints in the flag word.
1027  int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1028  if (FlagIdx < 0)
1029    return NULL;
1030
1031  unsigned Flag = getOperand(FlagIdx).getImm();
1032  unsigned RCID;
1033  if (InlineAsm::hasRegClassConstraint(Flag, RCID))
1034    return TRI->getRegClass(RCID);
1035
1036  // Assume that all registers in a memory operand are pointers.
1037  if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1038    return TRI->getPointerRegClass(MF);
1039
1040  return NULL;
1041}
1042
1043/// getBundleSize - Return the number of instructions inside the MI bundle.
1044unsigned MachineInstr::getBundleSize() const {
1045  assert(isBundle() && "Expecting a bundle");
1046
1047  MachineBasicBlock::const_instr_iterator I = *this;
1048  unsigned Size = 0;
1049  while ((++I)->isInsideBundle()) {
1050    ++Size;
1051  }
1052  assert(Size > 1 && "Malformed bundle");
1053
1054  return Size;
1055}
1056
1057/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1058/// the specific register or -1 if it is not found. It further tightens
1059/// the search criteria to a use that kills the register if isKill is true.
1060int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1061                                          const TargetRegisterInfo *TRI) const {
1062  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1063    const MachineOperand &MO = getOperand(i);
1064    if (!MO.isReg() || !MO.isUse())
1065      continue;
1066    unsigned MOReg = MO.getReg();
1067    if (!MOReg)
1068      continue;
1069    if (MOReg == Reg ||
1070        (TRI &&
1071         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1072         TargetRegisterInfo::isPhysicalRegister(Reg) &&
1073         TRI->isSubRegister(MOReg, Reg)))
1074      if (!isKill || MO.isKill())
1075        return i;
1076  }
1077  return -1;
1078}
1079
1080/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1081/// indicating if this instruction reads or writes Reg. This also considers
1082/// partial defines.
1083std::pair<bool,bool>
1084MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1085                                         SmallVectorImpl<unsigned> *Ops) const {
1086  bool PartDef = false; // Partial redefine.
1087  bool FullDef = false; // Full define.
1088  bool Use = false;
1089
1090  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1091    const MachineOperand &MO = getOperand(i);
1092    if (!MO.isReg() || MO.getReg() != Reg)
1093      continue;
1094    if (Ops)
1095      Ops->push_back(i);
1096    if (MO.isUse())
1097      Use |= !MO.isUndef();
1098    else if (MO.getSubReg() && !MO.isUndef())
1099      // A partial <def,undef> doesn't count as reading the register.
1100      PartDef = true;
1101    else
1102      FullDef = true;
1103  }
1104  // A partial redefine uses Reg unless there is also a full define.
1105  return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1106}
1107
1108/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1109/// the specified register or -1 if it is not found. If isDead is true, defs
1110/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1111/// also checks if there is a def of a super-register.
1112int
1113MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1114                                        const TargetRegisterInfo *TRI) const {
1115  bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1116  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1117    const MachineOperand &MO = getOperand(i);
1118    // Accept regmask operands when Overlap is set.
1119    // Ignore them when looking for a specific def operand (Overlap == false).
1120    if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1121      return i;
1122    if (!MO.isReg() || !MO.isDef())
1123      continue;
1124    unsigned MOReg = MO.getReg();
1125    bool Found = (MOReg == Reg);
1126    if (!Found && TRI && isPhys &&
1127        TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1128      if (Overlap)
1129        Found = TRI->regsOverlap(MOReg, Reg);
1130      else
1131        Found = TRI->isSubRegister(MOReg, Reg);
1132    }
1133    if (Found && (!isDead || MO.isDead()))
1134      return i;
1135  }
1136  return -1;
1137}
1138
1139/// findFirstPredOperandIdx() - Find the index of the first operand in the
1140/// operand list that is used to represent the predicate. It returns -1 if
1141/// none is found.
1142int MachineInstr::findFirstPredOperandIdx() const {
1143  // Don't call MCID.findFirstPredOperandIdx() because this variant
1144  // is sometimes called on an instruction that's not yet complete, and
1145  // so the number of operands is less than the MCID indicates. In
1146  // particular, the PTX target does this.
1147  const MCInstrDesc &MCID = getDesc();
1148  if (MCID.isPredicable()) {
1149    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1150      if (MCID.OpInfo[i].isPredicate())
1151        return i;
1152  }
1153
1154  return -1;
1155}
1156
1157// MachineOperand::TiedTo is 4 bits wide.
1158const unsigned TiedMax = 15;
1159
1160/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1161///
1162/// Use and def operands can be tied together, indicated by a non-zero TiedTo
1163/// field. TiedTo can have these values:
1164///
1165/// 0:              Operand is not tied to anything.
1166/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1167/// TiedMax:        Tied to an operand >= TiedMax-1.
1168///
1169/// The tied def must be one of the first TiedMax operands on a normal
1170/// instruction. INLINEASM instructions allow more tied defs.
1171///
1172void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1173  MachineOperand &DefMO = getOperand(DefIdx);
1174  MachineOperand &UseMO = getOperand(UseIdx);
1175  assert(DefMO.isDef() && "DefIdx must be a def operand");
1176  assert(UseMO.isUse() && "UseIdx must be a use operand");
1177  assert(!DefMO.isTied() && "Def is already tied to another use");
1178  assert(!UseMO.isTied() && "Use is already tied to another def");
1179
1180  if (DefIdx < TiedMax)
1181    UseMO.TiedTo = DefIdx + 1;
1182  else {
1183    // Inline asm can use the group descriptors to find tied operands, but on
1184    // normal instruction, the tied def must be within the first TiedMax
1185    // operands.
1186    assert(isInlineAsm() && "DefIdx out of range");
1187    UseMO.TiedTo = TiedMax;
1188  }
1189
1190  // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1191  DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1192}
1193
1194/// Given the index of a tied register operand, find the operand it is tied to.
1195/// Defs are tied to uses and vice versa. Returns the index of the tied operand
1196/// which must exist.
1197unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1198  const MachineOperand &MO = getOperand(OpIdx);
1199  assert(MO.isTied() && "Operand isn't tied");
1200
1201  // Normally TiedTo is in range.
1202  if (MO.TiedTo < TiedMax)
1203    return MO.TiedTo - 1;
1204
1205  // Uses on normal instructions can be out of range.
1206  if (!isInlineAsm()) {
1207    // Normal tied defs must be in the 0..TiedMax-1 range.
1208    if (MO.isUse())
1209      return TiedMax - 1;
1210    // MO is a def. Search for the tied use.
1211    for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1212      const MachineOperand &UseMO = getOperand(i);
1213      if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1214        return i;
1215    }
1216    llvm_unreachable("Can't find tied use");
1217  }
1218
1219  // Now deal with inline asm by parsing the operand group descriptor flags.
1220  // Find the beginning of each operand group.
1221  SmallVector<unsigned, 8> GroupIdx;
1222  unsigned OpIdxGroup = ~0u;
1223  unsigned NumOps;
1224  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1225       i += NumOps) {
1226    const MachineOperand &FlagMO = getOperand(i);
1227    assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1228    unsigned CurGroup = GroupIdx.size();
1229    GroupIdx.push_back(i);
1230    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1231    // OpIdx belongs to this operand group.
1232    if (OpIdx > i && OpIdx < i + NumOps)
1233      OpIdxGroup = CurGroup;
1234    unsigned TiedGroup;
1235    if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1236      continue;
1237    // Operands in this group are tied to operands in TiedGroup which must be
1238    // earlier. Find the number of operands between the two groups.
1239    unsigned Delta = i - GroupIdx[TiedGroup];
1240
1241    // OpIdx is a use tied to TiedGroup.
1242    if (OpIdxGroup == CurGroup)
1243      return OpIdx - Delta;
1244
1245    // OpIdx is a def tied to this use group.
1246    if (OpIdxGroup == TiedGroup)
1247      return OpIdx + Delta;
1248  }
1249  llvm_unreachable("Invalid tied operand on inline asm");
1250}
1251
1252/// clearKillInfo - Clears kill flags on all operands.
1253///
1254void MachineInstr::clearKillInfo() {
1255  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1256    MachineOperand &MO = getOperand(i);
1257    if (MO.isReg() && MO.isUse())
1258      MO.setIsKill(false);
1259  }
1260}
1261
1262/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1263///
1264void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1265  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1266    const MachineOperand &MO = MI->getOperand(i);
1267    if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1268      continue;
1269    for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1270      MachineOperand &MOp = getOperand(j);
1271      if (!MOp.isIdenticalTo(MO))
1272        continue;
1273      if (MO.isKill())
1274        MOp.setIsKill();
1275      else
1276        MOp.setIsDead();
1277      break;
1278    }
1279  }
1280}
1281
1282/// copyPredicates - Copies predicate operand(s) from MI.
1283void MachineInstr::copyPredicates(const MachineInstr *MI) {
1284  assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles");
1285
1286  const MCInstrDesc &MCID = MI->getDesc();
1287  if (!MCID.isPredicable())
1288    return;
1289  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1290    if (MCID.OpInfo[i].isPredicate()) {
1291      // Predicated operands must be last operands.
1292      addOperand(MI->getOperand(i));
1293    }
1294  }
1295}
1296
1297void MachineInstr::substituteRegister(unsigned FromReg,
1298                                      unsigned ToReg,
1299                                      unsigned SubIdx,
1300                                      const TargetRegisterInfo &RegInfo) {
1301  if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1302    if (SubIdx)
1303      ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1304    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1305      MachineOperand &MO = getOperand(i);
1306      if (!MO.isReg() || MO.getReg() != FromReg)
1307        continue;
1308      MO.substPhysReg(ToReg, RegInfo);
1309    }
1310  } else {
1311    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1312      MachineOperand &MO = getOperand(i);
1313      if (!MO.isReg() || MO.getReg() != FromReg)
1314        continue;
1315      MO.substVirtReg(ToReg, SubIdx, RegInfo);
1316    }
1317  }
1318}
1319
1320/// isSafeToMove - Return true if it is safe to move this instruction. If
1321/// SawStore is set to true, it means that there is a store (or call) between
1322/// the instruction's location and its intended destination.
1323bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1324                                AliasAnalysis *AA,
1325                                bool &SawStore) const {
1326  // Ignore stuff that we obviously can't move.
1327  //
1328  // Treat volatile loads as stores. This is not strictly necessary for
1329  // volatiles, but it is required for atomic loads. It is not allowed to move
1330  // a load across an atomic load with Ordering > Monotonic.
1331  if (mayStore() || isCall() ||
1332      (mayLoad() && hasOrderedMemoryRef())) {
1333    SawStore = true;
1334    return false;
1335  }
1336
1337  if (isLabel() || isDebugValue() ||
1338      isTerminator() || hasUnmodeledSideEffects())
1339    return false;
1340
1341  // See if this instruction does a load.  If so, we have to guarantee that the
1342  // loaded value doesn't change between the load and the its intended
1343  // destination. The check for isInvariantLoad gives the targe the chance to
1344  // classify the load as always returning a constant, e.g. a constant pool
1345  // load.
1346  if (mayLoad() && !isInvariantLoad(AA))
1347    // Otherwise, this is a real load.  If there is a store between the load and
1348    // end of block, we can't move it.
1349    return !SawStore;
1350
1351  return true;
1352}
1353
1354/// isSafeToReMat - Return true if it's safe to rematerialize the specified
1355/// instruction which defined the specified register instead of copying it.
1356bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1357                                 AliasAnalysis *AA,
1358                                 unsigned DstReg) const {
1359  bool SawStore = false;
1360  if (!TII->isTriviallyReMaterializable(this, AA) ||
1361      !isSafeToMove(TII, AA, SawStore))
1362    return false;
1363  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1364    const MachineOperand &MO = getOperand(i);
1365    if (!MO.isReg())
1366      continue;
1367    // FIXME: For now, do not remat any instruction with register operands.
1368    // Later on, we can loosen the restriction is the register operands have
1369    // not been modified between the def and use. Note, this is different from
1370    // MachineSink because the code is no longer in two-address form (at least
1371    // partially).
1372    if (MO.isUse())
1373      return false;
1374    else if (!MO.isDead() && MO.getReg() != DstReg)
1375      return false;
1376  }
1377  return true;
1378}
1379
1380/// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1381/// or volatile memory reference, or if the information describing the memory
1382/// reference is not available. Return false if it is known to have no ordered
1383/// memory references.
1384bool MachineInstr::hasOrderedMemoryRef() const {
1385  // An instruction known never to access memory won't have a volatile access.
1386  if (!mayStore() &&
1387      !mayLoad() &&
1388      !isCall() &&
1389      !hasUnmodeledSideEffects())
1390    return false;
1391
1392  // Otherwise, if the instruction has no memory reference information,
1393  // conservatively assume it wasn't preserved.
1394  if (memoperands_empty())
1395    return true;
1396
1397  // Check the memory reference information for ordered references.
1398  for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1399    if (!(*I)->isUnordered())
1400      return true;
1401
1402  return false;
1403}
1404
1405/// isInvariantLoad - Return true if this instruction is loading from a
1406/// location whose value is invariant across the function.  For example,
1407/// loading a value from the constant pool or from the argument area
1408/// of a function if it does not change.  This should only return true of
1409/// *all* loads the instruction does are invariant (if it does multiple loads).
1410bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1411  // If the instruction doesn't load at all, it isn't an invariant load.
1412  if (!mayLoad())
1413    return false;
1414
1415  // If the instruction has lost its memoperands, conservatively assume that
1416  // it may not be an invariant load.
1417  if (memoperands_empty())
1418    return false;
1419
1420  const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1421
1422  for (mmo_iterator I = memoperands_begin(),
1423       E = memoperands_end(); I != E; ++I) {
1424    if ((*I)->isVolatile()) return false;
1425    if ((*I)->isStore()) return false;
1426    if ((*I)->isInvariant()) return true;
1427
1428    if (const Value *V = (*I)->getValue()) {
1429      // A load from a constant PseudoSourceValue is invariant.
1430      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1431        if (PSV->isConstant(MFI))
1432          continue;
1433      // If we have an AliasAnalysis, ask it whether the memory is constant.
1434      if (AA && AA->pointsToConstantMemory(
1435                      AliasAnalysis::Location(V, (*I)->getSize(),
1436                                              (*I)->getTBAAInfo())))
1437        continue;
1438    }
1439
1440    // Otherwise assume conservatively.
1441    return false;
1442  }
1443
1444  // Everything checks out.
1445  return true;
1446}
1447
1448/// isConstantValuePHI - If the specified instruction is a PHI that always
1449/// merges together the same virtual register, return the register, otherwise
1450/// return 0.
1451unsigned MachineInstr::isConstantValuePHI() const {
1452  if (!isPHI())
1453    return 0;
1454  assert(getNumOperands() >= 3 &&
1455         "It's illegal to have a PHI without source operands");
1456
1457  unsigned Reg = getOperand(1).getReg();
1458  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1459    if (getOperand(i).getReg() != Reg)
1460      return 0;
1461  return Reg;
1462}
1463
1464bool MachineInstr::hasUnmodeledSideEffects() const {
1465  if (hasProperty(MCID::UnmodeledSideEffects))
1466    return true;
1467  if (isInlineAsm()) {
1468    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1469    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1470      return true;
1471  }
1472
1473  return false;
1474}
1475
1476/// allDefsAreDead - Return true if all the defs of this instruction are dead.
1477///
1478bool MachineInstr::allDefsAreDead() const {
1479  for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1480    const MachineOperand &MO = getOperand(i);
1481    if (!MO.isReg() || MO.isUse())
1482      continue;
1483    if (!MO.isDead())
1484      return false;
1485  }
1486  return true;
1487}
1488
1489/// copyImplicitOps - Copy implicit register operands from specified
1490/// instruction to this instruction.
1491void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1492  for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1493       i != e; ++i) {
1494    const MachineOperand &MO = MI->getOperand(i);
1495    if (MO.isReg() && MO.isImplicit())
1496      addOperand(MO);
1497  }
1498}
1499
1500void MachineInstr::dump() const {
1501#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1502  dbgs() << "  " << *this;
1503#endif
1504}
1505
1506static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1507                         raw_ostream &CommentOS) {
1508  const LLVMContext &Ctx = MF->getFunction()->getContext();
1509  if (!DL.isUnknown()) {          // Print source line info.
1510    DIScope Scope(DL.getScope(Ctx));
1511    // Omit the directory, because it's likely to be long and uninteresting.
1512    if (Scope.Verify())
1513      CommentOS << Scope.getFilename();
1514    else
1515      CommentOS << "<unknown>";
1516    CommentOS << ':' << DL.getLine();
1517    if (DL.getCol() != 0)
1518      CommentOS << ':' << DL.getCol();
1519    DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1520    if (!InlinedAtDL.isUnknown()) {
1521      CommentOS << " @[ ";
1522      printDebugLoc(InlinedAtDL, MF, CommentOS);
1523      CommentOS << " ]";
1524    }
1525  }
1526}
1527
1528void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1529  // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1530  const MachineFunction *MF = 0;
1531  const MachineRegisterInfo *MRI = 0;
1532  if (const MachineBasicBlock *MBB = getParent()) {
1533    MF = MBB->getParent();
1534    if (!TM && MF)
1535      TM = &MF->getTarget();
1536    if (MF)
1537      MRI = &MF->getRegInfo();
1538  }
1539
1540  // Save a list of virtual registers.
1541  SmallVector<unsigned, 8> VirtRegs;
1542
1543  // Print explicitly defined operands on the left of an assignment syntax.
1544  unsigned StartOp = 0, e = getNumOperands();
1545  for (; StartOp < e && getOperand(StartOp).isReg() &&
1546         getOperand(StartOp).isDef() &&
1547         !getOperand(StartOp).isImplicit();
1548       ++StartOp) {
1549    if (StartOp != 0) OS << ", ";
1550    getOperand(StartOp).print(OS, TM);
1551    unsigned Reg = getOperand(StartOp).getReg();
1552    if (TargetRegisterInfo::isVirtualRegister(Reg))
1553      VirtRegs.push_back(Reg);
1554  }
1555
1556  if (StartOp != 0)
1557    OS << " = ";
1558
1559  // Print the opcode name.
1560  if (TM && TM->getInstrInfo())
1561    OS << TM->getInstrInfo()->getName(getOpcode());
1562  else
1563    OS << "UNKNOWN";
1564
1565  // Print the rest of the operands.
1566  bool OmittedAnyCallClobbers = false;
1567  bool FirstOp = true;
1568  unsigned AsmDescOp = ~0u;
1569  unsigned AsmOpCount = 0;
1570
1571  if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1572    // Print asm string.
1573    OS << " ";
1574    getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1575
1576    // Print HasSideEffects, IsAlignStack
1577    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1578    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1579      OS << " [sideeffect]";
1580    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1581      OS << " [alignstack]";
1582    if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1583      OS << " [attdialect]";
1584    if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1585      OS << " [inteldialect]";
1586
1587    StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1588    FirstOp = false;
1589  }
1590
1591
1592  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1593    const MachineOperand &MO = getOperand(i);
1594
1595    if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1596      VirtRegs.push_back(MO.getReg());
1597
1598    // Omit call-clobbered registers which aren't used anywhere. This makes
1599    // call instructions much less noisy on targets where calls clobber lots
1600    // of registers. Don't rely on MO.isDead() because we may be called before
1601    // LiveVariables is run, or we may be looking at a non-allocatable reg.
1602    if (MF && isCall() &&
1603        MO.isReg() && MO.isImplicit() && MO.isDef()) {
1604      unsigned Reg = MO.getReg();
1605      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1606        const MachineRegisterInfo &MRI = MF->getRegInfo();
1607        if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1608          bool HasAliasLive = false;
1609          for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true);
1610               AI.isValid(); ++AI) {
1611            unsigned AliasReg = *AI;
1612            if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1613              HasAliasLive = true;
1614              break;
1615            }
1616          }
1617          if (!HasAliasLive) {
1618            OmittedAnyCallClobbers = true;
1619            continue;
1620          }
1621        }
1622      }
1623    }
1624
1625    if (FirstOp) FirstOp = false; else OS << ",";
1626    OS << " ";
1627    if (i < getDesc().NumOperands) {
1628      const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1629      if (MCOI.isPredicate())
1630        OS << "pred:";
1631      if (MCOI.isOptionalDef())
1632        OS << "opt:";
1633    }
1634    if (isDebugValue() && MO.isMetadata()) {
1635      // Pretty print DBG_VALUE instructions.
1636      const MDNode *MD = MO.getMetadata();
1637      if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1638        OS << "!\"" << MDS->getString() << '\"';
1639      else
1640        MO.print(OS, TM);
1641    } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1642      OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1643    } else if (i == AsmDescOp && MO.isImm()) {
1644      // Pretty print the inline asm operand descriptor.
1645      OS << '$' << AsmOpCount++;
1646      unsigned Flag = MO.getImm();
1647      switch (InlineAsm::getKind(Flag)) {
1648      case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1649      case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1650      case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1651      case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1652      case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1653      case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1654      default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1655      }
1656
1657      unsigned RCID = 0;
1658      if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1659        if (TM)
1660          OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
1661        else
1662          OS << ":RC" << RCID;
1663      }
1664
1665      unsigned TiedTo = 0;
1666      if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1667        OS << " tiedto:$" << TiedTo;
1668
1669      OS << ']';
1670
1671      // Compute the index of the next operand descriptor.
1672      AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1673    } else
1674      MO.print(OS, TM);
1675  }
1676
1677  // Briefly indicate whether any call clobbers were omitted.
1678  if (OmittedAnyCallClobbers) {
1679    if (!FirstOp) OS << ",";
1680    OS << " ...";
1681  }
1682
1683  bool HaveSemi = false;
1684  if (Flags) {
1685    if (!HaveSemi) OS << ";"; HaveSemi = true;
1686    OS << " flags: ";
1687
1688    if (Flags & FrameSetup)
1689      OS << "FrameSetup";
1690  }
1691
1692  if (!memoperands_empty()) {
1693    if (!HaveSemi) OS << ";"; HaveSemi = true;
1694
1695    OS << " mem:";
1696    for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1697         i != e; ++i) {
1698      OS << **i;
1699      if (llvm::next(i) != e)
1700        OS << " ";
1701    }
1702  }
1703
1704  // Print the regclass of any virtual registers encountered.
1705  if (MRI && !VirtRegs.empty()) {
1706    if (!HaveSemi) OS << ";"; HaveSemi = true;
1707    for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1708      const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1709      OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1710      for (unsigned j = i+1; j != VirtRegs.size();) {
1711        if (MRI->getRegClass(VirtRegs[j]) != RC) {
1712          ++j;
1713          continue;
1714        }
1715        if (VirtRegs[i] != VirtRegs[j])
1716          OS << "," << PrintReg(VirtRegs[j]);
1717        VirtRegs.erase(VirtRegs.begin()+j);
1718      }
1719    }
1720  }
1721
1722  // Print debug location information.
1723  if (isDebugValue() && getOperand(e - 1).isMetadata()) {
1724    if (!HaveSemi) OS << ";"; HaveSemi = true;
1725    DIVariable DV(getOperand(e - 1).getMetadata());
1726    OS << " line no:" <<  DV.getLineNumber();
1727    if (MDNode *InlinedAt = DV.getInlinedAt()) {
1728      DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
1729      if (!InlinedAtDL.isUnknown()) {
1730        OS << " inlined @[ ";
1731        printDebugLoc(InlinedAtDL, MF, OS);
1732        OS << " ]";
1733      }
1734    }
1735  } else if (!debugLoc.isUnknown() && MF) {
1736    if (!HaveSemi) OS << ";"; HaveSemi = true;
1737    OS << " dbg:";
1738    printDebugLoc(debugLoc, MF, OS);
1739  }
1740
1741  OS << '\n';
1742}
1743
1744bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1745                                     const TargetRegisterInfo *RegInfo,
1746                                     bool AddIfNotFound) {
1747  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1748  bool hasAliases = isPhysReg &&
1749    MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1750  bool Found = false;
1751  SmallVector<unsigned,4> DeadOps;
1752  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1753    MachineOperand &MO = getOperand(i);
1754    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1755      continue;
1756    unsigned Reg = MO.getReg();
1757    if (!Reg)
1758      continue;
1759
1760    if (Reg == IncomingReg) {
1761      if (!Found) {
1762        if (MO.isKill())
1763          // The register is already marked kill.
1764          return true;
1765        if (isPhysReg && isRegTiedToDefOperand(i))
1766          // Two-address uses of physregs must not be marked kill.
1767          return true;
1768        MO.setIsKill();
1769        Found = true;
1770      }
1771    } else if (hasAliases && MO.isKill() &&
1772               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1773      // A super-register kill already exists.
1774      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1775        return true;
1776      if (RegInfo->isSubRegister(IncomingReg, Reg))
1777        DeadOps.push_back(i);
1778    }
1779  }
1780
1781  // Trim unneeded kill operands.
1782  while (!DeadOps.empty()) {
1783    unsigned OpIdx = DeadOps.back();
1784    if (getOperand(OpIdx).isImplicit())
1785      RemoveOperand(OpIdx);
1786    else
1787      getOperand(OpIdx).setIsKill(false);
1788    DeadOps.pop_back();
1789  }
1790
1791  // If not found, this means an alias of one of the operands is killed. Add a
1792  // new implicit operand if required.
1793  if (!Found && AddIfNotFound) {
1794    addOperand(MachineOperand::CreateReg(IncomingReg,
1795                                         false /*IsDef*/,
1796                                         true  /*IsImp*/,
1797                                         true  /*IsKill*/));
1798    return true;
1799  }
1800  return Found;
1801}
1802
1803void MachineInstr::clearRegisterKills(unsigned Reg,
1804                                      const TargetRegisterInfo *RegInfo) {
1805  if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1806    RegInfo = 0;
1807  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1808    MachineOperand &MO = getOperand(i);
1809    if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1810      continue;
1811    unsigned OpReg = MO.getReg();
1812    if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1813      MO.setIsKill(false);
1814  }
1815}
1816
1817bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1818                                   const TargetRegisterInfo *RegInfo,
1819                                   bool AddIfNotFound) {
1820  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1821  bool hasAliases = isPhysReg &&
1822    MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1823  bool Found = false;
1824  SmallVector<unsigned,4> DeadOps;
1825  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1826    MachineOperand &MO = getOperand(i);
1827    if (!MO.isReg() || !MO.isDef())
1828      continue;
1829    unsigned Reg = MO.getReg();
1830    if (!Reg)
1831      continue;
1832
1833    if (Reg == IncomingReg) {
1834      MO.setIsDead();
1835      Found = true;
1836    } else if (hasAliases && MO.isDead() &&
1837               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1838      // There exists a super-register that's marked dead.
1839      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1840        return true;
1841      if (RegInfo->isSubRegister(IncomingReg, Reg))
1842        DeadOps.push_back(i);
1843    }
1844  }
1845
1846  // Trim unneeded dead operands.
1847  while (!DeadOps.empty()) {
1848    unsigned OpIdx = DeadOps.back();
1849    if (getOperand(OpIdx).isImplicit())
1850      RemoveOperand(OpIdx);
1851    else
1852      getOperand(OpIdx).setIsDead(false);
1853    DeadOps.pop_back();
1854  }
1855
1856  // If not found, this means an alias of one of the operands is dead. Add a
1857  // new implicit operand if required.
1858  if (Found || !AddIfNotFound)
1859    return Found;
1860
1861  addOperand(MachineOperand::CreateReg(IncomingReg,
1862                                       true  /*IsDef*/,
1863                                       true  /*IsImp*/,
1864                                       false /*IsKill*/,
1865                                       true  /*IsDead*/));
1866  return true;
1867}
1868
1869void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1870                                      const TargetRegisterInfo *RegInfo) {
1871  if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1872    MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1873    if (MO)
1874      return;
1875  } else {
1876    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1877      const MachineOperand &MO = getOperand(i);
1878      if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1879          MO.getSubReg() == 0)
1880        return;
1881    }
1882  }
1883  addOperand(MachineOperand::CreateReg(IncomingReg,
1884                                       true  /*IsDef*/,
1885                                       true  /*IsImp*/));
1886}
1887
1888void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1889                                         const TargetRegisterInfo &TRI) {
1890  bool HasRegMask = false;
1891  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1892    MachineOperand &MO = getOperand(i);
1893    if (MO.isRegMask()) {
1894      HasRegMask = true;
1895      continue;
1896    }
1897    if (!MO.isReg() || !MO.isDef()) continue;
1898    unsigned Reg = MO.getReg();
1899    if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1900    bool Dead = true;
1901    for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1902         I != E; ++I)
1903      if (TRI.regsOverlap(*I, Reg)) {
1904        Dead = false;
1905        break;
1906      }
1907    // If there are no uses, including partial uses, the def is dead.
1908    if (Dead) MO.setIsDead();
1909  }
1910
1911  // This is a call with a register mask operand.
1912  // Mask clobbers are always dead, so add defs for the non-dead defines.
1913  if (HasRegMask)
1914    for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1915         I != E; ++I)
1916      addRegisterDefined(*I, &TRI);
1917}
1918
1919unsigned
1920MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1921  // Build up a buffer of hash code components.
1922  SmallVector<size_t, 8> HashComponents;
1923  HashComponents.reserve(MI->getNumOperands() + 1);
1924  HashComponents.push_back(MI->getOpcode());
1925  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1926    const MachineOperand &MO = MI->getOperand(i);
1927    if (MO.isReg() && MO.isDef() &&
1928        TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1929      continue;  // Skip virtual register defs.
1930
1931    HashComponents.push_back(hash_value(MO));
1932  }
1933  return hash_combine_range(HashComponents.begin(), HashComponents.end());
1934}
1935
1936void MachineInstr::emitError(StringRef Msg) const {
1937  // Find the source location cookie.
1938  unsigned LocCookie = 0;
1939  const MDNode *LocMD = 0;
1940  for (unsigned i = getNumOperands(); i != 0; --i) {
1941    if (getOperand(i-1).isMetadata() &&
1942        (LocMD = getOperand(i-1).getMetadata()) &&
1943        LocMD->getNumOperands() != 0) {
1944      if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1945        LocCookie = CI->getZExtValue();
1946        break;
1947      }
1948    }
1949  }
1950
1951  if (const MachineBasicBlock *MBB = getParent())
1952    if (const MachineFunction *MF = MBB->getParent())
1953      return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1954  report_fatal_error(Msg);
1955}
1956