1//===- ELF.h - ELF object file implementation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the ELFObjectFile template class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_OBJECT_ELF_H
15#define LLVM_OBJECT_ELF_H
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringSwitch.h"
19#include "llvm/ADT/Triple.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/PointerIntPair.h"
22#include "llvm/Object/ObjectFile.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/ELF.h"
25#include "llvm/Support/Endian.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <limits>
31#include <utility>
32
33namespace llvm {
34namespace object {
35
36// Subclasses of ELFObjectFile may need this for template instantiation
37inline std::pair<unsigned char, unsigned char>
38getElfArchType(MemoryBuffer *Object) {
39  if (Object->getBufferSize() < ELF::EI_NIDENT)
40    return std::make_pair((uint8_t)ELF::ELFCLASSNONE,(uint8_t)ELF::ELFDATANONE);
41  return std::make_pair( (uint8_t)Object->getBufferStart()[ELF::EI_CLASS]
42                       , (uint8_t)Object->getBufferStart()[ELF::EI_DATA]);
43}
44
45// Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
46template<support::endianness target_endianness>
47struct ELFDataTypeTypedefHelperCommon {
48  typedef support::detail::packed_endian_specific_integral
49    <uint16_t, target_endianness, support::aligned> Elf_Half;
50  typedef support::detail::packed_endian_specific_integral
51    <uint32_t, target_endianness, support::aligned> Elf_Word;
52  typedef support::detail::packed_endian_specific_integral
53    <int32_t, target_endianness, support::aligned> Elf_Sword;
54  typedef support::detail::packed_endian_specific_integral
55    <uint64_t, target_endianness, support::aligned> Elf_Xword;
56  typedef support::detail::packed_endian_specific_integral
57    <int64_t, target_endianness, support::aligned> Elf_Sxword;
58};
59
60template<support::endianness target_endianness, bool is64Bits>
61struct ELFDataTypeTypedefHelper;
62
63/// ELF 32bit types.
64template<support::endianness target_endianness>
65struct ELFDataTypeTypedefHelper<target_endianness, false>
66  : ELFDataTypeTypedefHelperCommon<target_endianness> {
67  typedef uint32_t value_type;
68  typedef support::detail::packed_endian_specific_integral
69    <value_type, target_endianness, support::aligned> Elf_Addr;
70  typedef support::detail::packed_endian_specific_integral
71    <value_type, target_endianness, support::aligned> Elf_Off;
72};
73
74/// ELF 64bit types.
75template<support::endianness target_endianness>
76struct ELFDataTypeTypedefHelper<target_endianness, true>
77  : ELFDataTypeTypedefHelperCommon<target_endianness>{
78  typedef uint64_t value_type;
79  typedef support::detail::packed_endian_specific_integral
80    <value_type, target_endianness, support::aligned> Elf_Addr;
81  typedef support::detail::packed_endian_specific_integral
82    <value_type, target_endianness, support::aligned> Elf_Off;
83};
84
85// I really don't like doing this, but the alternative is copypasta.
86#define LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits) \
87typedef typename \
88  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Addr Elf_Addr; \
89typedef typename \
90  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Off Elf_Off; \
91typedef typename \
92  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Half Elf_Half; \
93typedef typename \
94  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Word Elf_Word; \
95typedef typename \
96  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Sword Elf_Sword; \
97typedef typename \
98  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Xword Elf_Xword; \
99typedef typename \
100  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Sxword Elf_Sxword;
101
102  // Section header.
103template<support::endianness target_endianness, bool is64Bits>
104struct Elf_Shdr_Base;
105
106template<support::endianness target_endianness>
107struct Elf_Shdr_Base<target_endianness, false> {
108  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
109  Elf_Word sh_name;     // Section name (index into string table)
110  Elf_Word sh_type;     // Section type (SHT_*)
111  Elf_Word sh_flags;    // Section flags (SHF_*)
112  Elf_Addr sh_addr;     // Address where section is to be loaded
113  Elf_Off  sh_offset;   // File offset of section data, in bytes
114  Elf_Word sh_size;     // Size of section, in bytes
115  Elf_Word sh_link;     // Section type-specific header table index link
116  Elf_Word sh_info;     // Section type-specific extra information
117  Elf_Word sh_addralign;// Section address alignment
118  Elf_Word sh_entsize;  // Size of records contained within the section
119};
120
121template<support::endianness target_endianness>
122struct Elf_Shdr_Base<target_endianness, true> {
123  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
124  Elf_Word  sh_name;     // Section name (index into string table)
125  Elf_Word  sh_type;     // Section type (SHT_*)
126  Elf_Xword sh_flags;    // Section flags (SHF_*)
127  Elf_Addr  sh_addr;     // Address where section is to be loaded
128  Elf_Off   sh_offset;   // File offset of section data, in bytes
129  Elf_Xword sh_size;     // Size of section, in bytes
130  Elf_Word  sh_link;     // Section type-specific header table index link
131  Elf_Word  sh_info;     // Section type-specific extra information
132  Elf_Xword sh_addralign;// Section address alignment
133  Elf_Xword sh_entsize;  // Size of records contained within the section
134};
135
136template<support::endianness target_endianness, bool is64Bits>
137struct Elf_Shdr_Impl : Elf_Shdr_Base<target_endianness, is64Bits> {
138  using Elf_Shdr_Base<target_endianness, is64Bits>::sh_entsize;
139  using Elf_Shdr_Base<target_endianness, is64Bits>::sh_size;
140
141  /// @brief Get the number of entities this section contains if it has any.
142  unsigned getEntityCount() const {
143    if (sh_entsize == 0)
144      return 0;
145    return sh_size / sh_entsize;
146  }
147};
148
149template<support::endianness target_endianness, bool is64Bits>
150struct Elf_Sym_Base;
151
152template<support::endianness target_endianness>
153struct Elf_Sym_Base<target_endianness, false> {
154  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
155  Elf_Word      st_name;  // Symbol name (index into string table)
156  Elf_Addr      st_value; // Value or address associated with the symbol
157  Elf_Word      st_size;  // Size of the symbol
158  unsigned char st_info;  // Symbol's type and binding attributes
159  unsigned char st_other; // Must be zero; reserved
160  Elf_Half      st_shndx; // Which section (header table index) it's defined in
161};
162
163template<support::endianness target_endianness>
164struct Elf_Sym_Base<target_endianness, true> {
165  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
166  Elf_Word      st_name;  // Symbol name (index into string table)
167  unsigned char st_info;  // Symbol's type and binding attributes
168  unsigned char st_other; // Must be zero; reserved
169  Elf_Half      st_shndx; // Which section (header table index) it's defined in
170  Elf_Addr      st_value; // Value or address associated with the symbol
171  Elf_Xword     st_size;  // Size of the symbol
172};
173
174template<support::endianness target_endianness, bool is64Bits>
175struct Elf_Sym_Impl : Elf_Sym_Base<target_endianness, is64Bits> {
176  using Elf_Sym_Base<target_endianness, is64Bits>::st_info;
177
178  // These accessors and mutators correspond to the ELF32_ST_BIND,
179  // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
180  unsigned char getBinding() const { return st_info >> 4; }
181  unsigned char getType() const { return st_info & 0x0f; }
182  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
183  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
184  void setBindingAndType(unsigned char b, unsigned char t) {
185    st_info = (b << 4) + (t & 0x0f);
186  }
187};
188
189/// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
190/// (.gnu.version). This structure is identical for ELF32 and ELF64.
191template<support::endianness target_endianness, bool is64Bits>
192struct Elf_Versym_Impl {
193  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
194  Elf_Half vs_index;   // Version index with flags (e.g. VERSYM_HIDDEN)
195};
196
197template<support::endianness target_endianness, bool is64Bits>
198struct Elf_Verdaux_Impl;
199
200/// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
201/// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
202template<support::endianness target_endianness, bool is64Bits>
203struct Elf_Verdef_Impl {
204  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
205  typedef Elf_Verdaux_Impl<target_endianness, is64Bits> Elf_Verdaux;
206  Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
207  Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
208  Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
209  Elf_Half vd_cnt;     // Number of Verdaux entries
210  Elf_Word vd_hash;    // Hash of name
211  Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
212  Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
213
214  /// Get the first Verdaux entry for this Verdef.
215  const Elf_Verdaux *getAux() const {
216    return reinterpret_cast<const Elf_Verdaux*>((const char*)this + vd_aux);
217  }
218};
219
220/// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
221/// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
222template<support::endianness target_endianness, bool is64Bits>
223struct Elf_Verdaux_Impl {
224  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
225  Elf_Word vda_name; // Version name (offset in string table)
226  Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
227};
228
229/// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
230/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
231template<support::endianness target_endianness, bool is64Bits>
232struct Elf_Verneed_Impl {
233  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
234  Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
235  Elf_Half vn_cnt;     // Number of associated Vernaux entries
236  Elf_Word vn_file;    // Library name (string table offset)
237  Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
238  Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
239};
240
241/// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
242/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
243template<support::endianness target_endianness, bool is64Bits>
244struct Elf_Vernaux_Impl {
245  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
246  Elf_Word vna_hash;  // Hash of dependency name
247  Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
248  Elf_Half vna_other; // Version index, used in .gnu.version entries
249  Elf_Word vna_name;  // Dependency name
250  Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
251};
252
253/// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
254///               table section (.dynamic) look like.
255template<support::endianness target_endianness, bool is64Bits>
256struct Elf_Dyn_Base;
257
258template<support::endianness target_endianness>
259struct Elf_Dyn_Base<target_endianness, false> {
260  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
261  Elf_Sword d_tag;
262  union {
263    Elf_Word d_val;
264    Elf_Addr d_ptr;
265  } d_un;
266};
267
268template<support::endianness target_endianness>
269struct Elf_Dyn_Base<target_endianness, true> {
270  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
271  Elf_Sxword d_tag;
272  union {
273    Elf_Xword d_val;
274    Elf_Addr d_ptr;
275  } d_un;
276};
277
278/// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters and setters.
279template<support::endianness target_endianness, bool is64Bits>
280struct Elf_Dyn_Impl : Elf_Dyn_Base<target_endianness, is64Bits> {
281  using Elf_Dyn_Base<target_endianness, is64Bits>::d_tag;
282  using Elf_Dyn_Base<target_endianness, is64Bits>::d_un;
283  int64_t getTag() const { return d_tag; }
284  uint64_t getVal() const { return d_un.d_val; }
285  uint64_t getPtr() const { return d_un.ptr; }
286};
287
288template<support::endianness target_endianness, bool is64Bits>
289class ELFObjectFile;
290
291// DynRefImpl: Reference to an entry in the dynamic table
292// This is an ELF-specific interface.
293template<support::endianness target_endianness, bool is64Bits>
294class DynRefImpl {
295  typedef Elf_Dyn_Impl<target_endianness, is64Bits> Elf_Dyn;
296  typedef ELFObjectFile<target_endianness, is64Bits> OwningType;
297
298  DataRefImpl DynPimpl;
299  const OwningType *OwningObject;
300
301public:
302  DynRefImpl() : OwningObject(NULL) { }
303
304  DynRefImpl(DataRefImpl DynP, const OwningType *Owner);
305
306  bool operator==(const DynRefImpl &Other) const;
307  bool operator <(const DynRefImpl &Other) const;
308
309  error_code getNext(DynRefImpl &Result) const;
310  int64_t getTag() const;
311  uint64_t getVal() const;
312  uint64_t getPtr() const;
313
314  DataRefImpl getRawDataRefImpl() const;
315};
316
317// Elf_Rel: Elf Relocation
318template<support::endianness target_endianness, bool is64Bits, bool isRela>
319struct Elf_Rel_Base;
320
321template<support::endianness target_endianness>
322struct Elf_Rel_Base<target_endianness, false, false> {
323  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
324  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
325  Elf_Word      r_info;  // Symbol table index and type of relocation to apply
326};
327
328template<support::endianness target_endianness>
329struct Elf_Rel_Base<target_endianness, true, false> {
330  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
331  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
332  Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
333};
334
335template<support::endianness target_endianness>
336struct Elf_Rel_Base<target_endianness, false, true> {
337  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
338  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
339  Elf_Word      r_info;   // Symbol table index and type of relocation to apply
340  Elf_Sword     r_addend; // Compute value for relocatable field by adding this
341};
342
343template<support::endianness target_endianness>
344struct Elf_Rel_Base<target_endianness, true, true> {
345  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
346  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
347  Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
348  Elf_Sxword    r_addend; // Compute value for relocatable field by adding this.
349};
350
351template<support::endianness target_endianness, bool is64Bits, bool isRela>
352struct Elf_Rel_Impl;
353
354template<support::endianness target_endianness, bool isRela>
355struct Elf_Rel_Impl<target_endianness, true, isRela>
356       : Elf_Rel_Base<target_endianness, true, isRela> {
357  using Elf_Rel_Base<target_endianness, true, isRela>::r_info;
358  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
359
360  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
361  // and ELF64_R_INFO macros defined in the ELF specification:
362  uint64_t getSymbol() const { return (r_info >> 32); }
363  unsigned char getType() const {
364    return (unsigned char) (r_info & 0xffffffffL);
365  }
366  void setSymbol(uint64_t s) { setSymbolAndType(s, getType()); }
367  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
368  void setSymbolAndType(uint64_t s, unsigned char t) {
369    r_info = (s << 32) + (t&0xffffffffL);
370  }
371};
372
373template<support::endianness target_endianness, bool isRela>
374struct Elf_Rel_Impl<target_endianness, false, isRela>
375       : Elf_Rel_Base<target_endianness, false, isRela> {
376  using Elf_Rel_Base<target_endianness, false, isRela>::r_info;
377  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
378
379  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
380  // and ELF32_R_INFO macros defined in the ELF specification:
381  uint32_t getSymbol() const { return (r_info >> 8); }
382  unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
383  void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
384  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
385  void setSymbolAndType(uint32_t s, unsigned char t) {
386    r_info = (s << 8) + t;
387  }
388};
389
390template<support::endianness target_endianness, bool is64Bits>
391struct Elf_Ehdr_Impl {
392  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
393  unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
394  Elf_Half e_type;     // Type of file (see ET_*)
395  Elf_Half e_machine;  // Required architecture for this file (see EM_*)
396  Elf_Word e_version;  // Must be equal to 1
397  Elf_Addr e_entry;    // Address to jump to in order to start program
398  Elf_Off  e_phoff;    // Program header table's file offset, in bytes
399  Elf_Off  e_shoff;    // Section header table's file offset, in bytes
400  Elf_Word e_flags;    // Processor-specific flags
401  Elf_Half e_ehsize;   // Size of ELF header, in bytes
402  Elf_Half e_phentsize;// Size of an entry in the program header table
403  Elf_Half e_phnum;    // Number of entries in the program header table
404  Elf_Half e_shentsize;// Size of an entry in the section header table
405  Elf_Half e_shnum;    // Number of entries in the section header table
406  Elf_Half e_shstrndx; // Section header table index of section name
407                                 // string table
408  bool checkMagic() const {
409    return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
410  }
411   unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
412   unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
413};
414
415template<support::endianness target_endianness, bool is64Bits>
416class ELFObjectFile : public ObjectFile {
417  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
418
419  typedef Elf_Ehdr_Impl<target_endianness, is64Bits> Elf_Ehdr;
420  typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
421  typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
422  typedef Elf_Dyn_Impl<target_endianness, is64Bits> Elf_Dyn;
423  typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
424  typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;
425  typedef Elf_Verdef_Impl<target_endianness, is64Bits> Elf_Verdef;
426  typedef Elf_Verdaux_Impl<target_endianness, is64Bits> Elf_Verdaux;
427  typedef Elf_Verneed_Impl<target_endianness, is64Bits> Elf_Verneed;
428  typedef Elf_Vernaux_Impl<target_endianness, is64Bits> Elf_Vernaux;
429  typedef Elf_Versym_Impl<target_endianness, is64Bits> Elf_Versym;
430  typedef DynRefImpl<target_endianness, is64Bits> DynRef;
431  typedef content_iterator<DynRef> dyn_iterator;
432
433protected:
434  // This flag is used for classof, to distinguish ELFObjectFile from
435  // its subclass. If more subclasses will be created, this flag will
436  // have to become an enum.
437  bool isDyldELFObject;
438
439private:
440  typedef SmallVector<const Elf_Shdr*, 1> Sections_t;
441  typedef DenseMap<unsigned, unsigned> IndexMap_t;
442  typedef DenseMap<const Elf_Shdr*, SmallVector<uint32_t, 1> > RelocMap_t;
443
444  const Elf_Ehdr *Header;
445  const Elf_Shdr *SectionHeaderTable;
446  const Elf_Shdr *dot_shstrtab_sec; // Section header string table.
447  const Elf_Shdr *dot_strtab_sec;   // Symbol header string table.
448  const Elf_Shdr *dot_dynstr_sec;   // Dynamic symbol string table.
449
450  // SymbolTableSections[0] always points to the dynamic string table section
451  // header, or NULL if there is no dynamic string table.
452  Sections_t SymbolTableSections;
453  IndexMap_t SymbolTableSectionsIndexMap;
454  DenseMap<const Elf_Sym*, ELF::Elf64_Word> ExtendedSymbolTable;
455
456  const Elf_Shdr *dot_dynamic_sec;       // .dynamic
457  const Elf_Shdr *dot_gnu_version_sec;   // .gnu.version
458  const Elf_Shdr *dot_gnu_version_r_sec; // .gnu.version_r
459  const Elf_Shdr *dot_gnu_version_d_sec; // .gnu.version_d
460
461  // Pointer to SONAME entry in dynamic string table
462  // This is set the first time getLoadName is called.
463  mutable const char *dt_soname;
464
465public:
466  /// \brief Iterate over relocations in a .rel or .rela section.
467  template<class RelocT>
468  class ELFRelocationIterator {
469  public:
470    typedef void difference_type;
471    typedef const RelocT value_type;
472    typedef std::forward_iterator_tag iterator_category;
473    typedef value_type &reference;
474    typedef value_type *pointer;
475
476    /// \brief Default construct iterator.
477    ELFRelocationIterator() : Section(0), Current(0) {}
478    ELFRelocationIterator(const Elf_Shdr *Sec, const char *Start)
479      : Section(Sec)
480      , Current(Start) {}
481
482    reference operator *() {
483      assert(Current && "Attempted to dereference an invalid iterator!");
484      return *reinterpret_cast<const RelocT*>(Current);
485    }
486
487    pointer operator ->() {
488      assert(Current && "Attempted to dereference an invalid iterator!");
489      return reinterpret_cast<const RelocT*>(Current);
490    }
491
492    bool operator ==(const ELFRelocationIterator &Other) {
493      return Section == Other.Section && Current == Other.Current;
494    }
495
496    bool operator !=(const ELFRelocationIterator &Other) {
497      return !(*this == Other);
498    }
499
500    ELFRelocationIterator &operator ++(int) {
501      assert(Current && "Attempted to increment an invalid iterator!");
502      Current += Section->sh_entsize;
503      return *this;
504    }
505
506    ELFRelocationIterator operator ++() {
507      ELFRelocationIterator Tmp = *this;
508      ++*this;
509      return Tmp;
510    }
511
512  private:
513    const Elf_Shdr *Section;
514    const char *Current;
515  };
516
517private:
518  // Records for each version index the corresponding Verdef or Vernaux entry.
519  // This is filled the first time LoadVersionMap() is called.
520  class VersionMapEntry : public PointerIntPair<const void*, 1> {
521    public:
522    // If the integer is 0, this is an Elf_Verdef*.
523    // If the integer is 1, this is an Elf_Vernaux*.
524    VersionMapEntry() : PointerIntPair<const void*, 1>(NULL, 0) { }
525    VersionMapEntry(const Elf_Verdef *verdef)
526        : PointerIntPair<const void*, 1>(verdef, 0) { }
527    VersionMapEntry(const Elf_Vernaux *vernaux)
528        : PointerIntPair<const void*, 1>(vernaux, 1) { }
529    bool isNull() const { return getPointer() == NULL; }
530    bool isVerdef() const { return !isNull() && getInt() == 0; }
531    bool isVernaux() const { return !isNull() && getInt() == 1; }
532    const Elf_Verdef *getVerdef() const {
533      return isVerdef() ? (const Elf_Verdef*)getPointer() : NULL;
534    }
535    const Elf_Vernaux *getVernaux() const {
536      return isVernaux() ? (const Elf_Vernaux*)getPointer() : NULL;
537    }
538  };
539  mutable SmallVector<VersionMapEntry, 16> VersionMap;
540  void LoadVersionDefs(const Elf_Shdr *sec) const;
541  void LoadVersionNeeds(const Elf_Shdr *ec) const;
542  void LoadVersionMap() const;
543
544  /// @brief Map sections to an array of relocation sections that reference
545  ///        them sorted by section index.
546  RelocMap_t SectionRelocMap;
547
548  /// @brief Get the relocation section that contains \a Rel.
549  const Elf_Shdr *getRelSection(DataRefImpl Rel) const {
550    return getSection(Rel.w.b);
551  }
552
553  bool            isRelocationHasAddend(DataRefImpl Rel) const;
554  template<typename T>
555  const T        *getEntry(uint16_t Section, uint32_t Entry) const;
556  template<typename T>
557  const T        *getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
558  const Elf_Shdr *getSection(DataRefImpl index) const;
559  const Elf_Shdr *getSection(uint32_t index) const;
560  const Elf_Rel  *getRel(DataRefImpl Rel) const;
561  const Elf_Rela *getRela(DataRefImpl Rela) const;
562  const char     *getString(uint32_t section, uint32_t offset) const;
563  const char     *getString(const Elf_Shdr *section, uint32_t offset) const;
564  error_code      getSymbolVersion(const Elf_Shdr *section,
565                                   const Elf_Sym *Symb,
566                                   StringRef &Version,
567                                   bool &IsDefault) const;
568  void VerifyStrTab(const Elf_Shdr *sh) const;
569
570protected:
571  const Elf_Sym  *getSymbol(DataRefImpl Symb) const; // FIXME: Should be private?
572  void            validateSymbol(DataRefImpl Symb) const;
573
574public:
575  error_code      getSymbolName(const Elf_Shdr *section,
576                                const Elf_Sym *Symb,
577                                StringRef &Res) const;
578  error_code      getSectionName(const Elf_Shdr *section,
579                                 StringRef &Res) const;
580  const Elf_Dyn  *getDyn(DataRefImpl DynData) const;
581  error_code getSymbolVersion(SymbolRef Symb, StringRef &Version,
582                              bool &IsDefault) const;
583protected:
584  virtual error_code getSymbolNext(DataRefImpl Symb, SymbolRef &Res) const;
585  virtual error_code getSymbolName(DataRefImpl Symb, StringRef &Res) const;
586  virtual error_code getSymbolFileOffset(DataRefImpl Symb, uint64_t &Res) const;
587  virtual error_code getSymbolAddress(DataRefImpl Symb, uint64_t &Res) const;
588  virtual error_code getSymbolSize(DataRefImpl Symb, uint64_t &Res) const;
589  virtual error_code getSymbolNMTypeChar(DataRefImpl Symb, char &Res) const;
590  virtual error_code getSymbolFlags(DataRefImpl Symb, uint32_t &Res) const;
591  virtual error_code getSymbolType(DataRefImpl Symb, SymbolRef::Type &Res) const;
592  virtual error_code getSymbolSection(DataRefImpl Symb,
593                                      section_iterator &Res) const;
594
595  friend class DynRefImpl<target_endianness, is64Bits>;
596  virtual error_code getDynNext(DataRefImpl DynData, DynRef &Result) const;
597
598  virtual error_code getLibraryNext(DataRefImpl Data, LibraryRef &Result) const;
599  virtual error_code getLibraryPath(DataRefImpl Data, StringRef &Res) const;
600
601  virtual error_code getSectionNext(DataRefImpl Sec, SectionRef &Res) const;
602  virtual error_code getSectionName(DataRefImpl Sec, StringRef &Res) const;
603  virtual error_code getSectionAddress(DataRefImpl Sec, uint64_t &Res) const;
604  virtual error_code getSectionSize(DataRefImpl Sec, uint64_t &Res) const;
605  virtual error_code getSectionContents(DataRefImpl Sec, StringRef &Res) const;
606  virtual error_code getSectionAlignment(DataRefImpl Sec, uint64_t &Res) const;
607  virtual error_code isSectionText(DataRefImpl Sec, bool &Res) const;
608  virtual error_code isSectionData(DataRefImpl Sec, bool &Res) const;
609  virtual error_code isSectionBSS(DataRefImpl Sec, bool &Res) const;
610  virtual error_code isSectionRequiredForExecution(DataRefImpl Sec,
611                                                   bool &Res) const;
612  virtual error_code isSectionVirtual(DataRefImpl Sec, bool &Res) const;
613  virtual error_code isSectionZeroInit(DataRefImpl Sec, bool &Res) const;
614  virtual error_code sectionContainsSymbol(DataRefImpl Sec, DataRefImpl Symb,
615                                           bool &Result) const;
616  virtual relocation_iterator getSectionRelBegin(DataRefImpl Sec) const;
617  virtual relocation_iterator getSectionRelEnd(DataRefImpl Sec) const;
618
619  virtual error_code getRelocationNext(DataRefImpl Rel,
620                                       RelocationRef &Res) const;
621  virtual error_code getRelocationAddress(DataRefImpl Rel,
622                                          uint64_t &Res) const;
623  virtual error_code getRelocationOffset(DataRefImpl Rel,
624                                         uint64_t &Res) const;
625  virtual error_code getRelocationSymbol(DataRefImpl Rel,
626                                         SymbolRef &Res) const;
627  virtual error_code getRelocationType(DataRefImpl Rel,
628                                       uint64_t &Res) const;
629  virtual error_code getRelocationTypeName(DataRefImpl Rel,
630                                           SmallVectorImpl<char> &Result) const;
631  virtual error_code getRelocationAdditionalInfo(DataRefImpl Rel,
632                                                 int64_t &Res) const;
633  virtual error_code getRelocationValueString(DataRefImpl Rel,
634                                           SmallVectorImpl<char> &Result) const;
635
636public:
637  ELFObjectFile(MemoryBuffer *Object, error_code &ec);
638  virtual symbol_iterator begin_symbols() const;
639  virtual symbol_iterator end_symbols() const;
640
641  virtual symbol_iterator begin_dynamic_symbols() const;
642  virtual symbol_iterator end_dynamic_symbols() const;
643
644  virtual section_iterator begin_sections() const;
645  virtual section_iterator end_sections() const;
646
647  virtual library_iterator begin_libraries_needed() const;
648  virtual library_iterator end_libraries_needed() const;
649
650  virtual dyn_iterator begin_dynamic_table() const;
651  virtual dyn_iterator end_dynamic_table() const;
652
653  typedef ELFRelocationIterator<Elf_Rela> Elf_Rela_Iter;
654  typedef ELFRelocationIterator<Elf_Rel> Elf_Rel_Iter;
655
656  virtual Elf_Rela_Iter beginELFRela(const Elf_Shdr *sec) const {
657    return Elf_Rela_Iter(sec, (const char *)(base() + sec->sh_offset));
658  }
659
660  virtual Elf_Rela_Iter endELFRela(const Elf_Shdr *sec) const {
661    return Elf_Rela_Iter(sec, (const char *)
662                         (base() + sec->sh_offset + sec->sh_size));
663  }
664
665  virtual Elf_Rel_Iter beginELFRel(const Elf_Shdr *sec) const {
666    return Elf_Rel_Iter(sec, (const char *)(base() + sec->sh_offset));
667  }
668
669  virtual Elf_Rel_Iter endELFRel(const Elf_Shdr *sec) const {
670    return Elf_Rel_Iter(sec, (const char *)
671                        (base() + sec->sh_offset + sec->sh_size));
672  }
673
674  virtual uint8_t getBytesInAddress() const;
675  virtual StringRef getFileFormatName() const;
676  virtual StringRef getObjectType() const { return "ELF"; }
677  virtual unsigned getArch() const;
678  virtual StringRef getLoadName() const;
679  virtual error_code getSectionContents(const Elf_Shdr *sec,
680                                        StringRef &Res) const;
681
682  uint64_t getNumSections() const;
683  uint64_t getStringTableIndex() const;
684  ELF::Elf64_Word getSymbolTableIndex(const Elf_Sym *symb) const;
685  const Elf_Shdr *getSection(const Elf_Sym *symb) const;
686  const Elf_Shdr *getElfSection(section_iterator &It) const;
687  const Elf_Sym *getElfSymbol(symbol_iterator &It) const;
688  const Elf_Sym *getElfSymbol(uint32_t index) const;
689
690  // Methods for type inquiry through isa, cast, and dyn_cast
691  bool isDyldType() const { return isDyldELFObject; }
692  static inline bool classof(const Binary *v) {
693    return v->getType() == getELFType(target_endianness == support::little,
694                                      is64Bits);
695  }
696  static inline bool classof(const ELFObjectFile *v) { return true; }
697};
698
699// Iterate through the version definitions, and place each Elf_Verdef
700// in the VersionMap according to its index.
701template<support::endianness target_endianness, bool is64Bits>
702void ELFObjectFile<target_endianness, is64Bits>::
703                  LoadVersionDefs(const Elf_Shdr *sec) const {
704  unsigned vd_size = sec->sh_size; // Size of section in bytes
705  unsigned vd_count = sec->sh_info; // Number of Verdef entries
706  const char *sec_start = (const char*)base() + sec->sh_offset;
707  const char *sec_end = sec_start + vd_size;
708  // The first Verdef entry is at the start of the section.
709  const char *p = sec_start;
710  for (unsigned i = 0; i < vd_count; i++) {
711    if (p + sizeof(Elf_Verdef) > sec_end)
712      report_fatal_error("Section ended unexpectedly while scanning "
713                         "version definitions.");
714    const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
715    if (vd->vd_version != ELF::VER_DEF_CURRENT)
716      report_fatal_error("Unexpected verdef version");
717    size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
718    if (index >= VersionMap.size())
719      VersionMap.resize(index+1);
720    VersionMap[index] = VersionMapEntry(vd);
721    p += vd->vd_next;
722  }
723}
724
725// Iterate through the versions needed section, and place each Elf_Vernaux
726// in the VersionMap according to its index.
727template<support::endianness target_endianness, bool is64Bits>
728void ELFObjectFile<target_endianness, is64Bits>::
729                  LoadVersionNeeds(const Elf_Shdr *sec) const {
730  unsigned vn_size = sec->sh_size; // Size of section in bytes
731  unsigned vn_count = sec->sh_info; // Number of Verneed entries
732  const char *sec_start = (const char*)base() + sec->sh_offset;
733  const char *sec_end = sec_start + vn_size;
734  // The first Verneed entry is at the start of the section.
735  const char *p = sec_start;
736  for (unsigned i = 0; i < vn_count; i++) {
737    if (p + sizeof(Elf_Verneed) > sec_end)
738      report_fatal_error("Section ended unexpectedly while scanning "
739                         "version needed records.");
740    const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
741    if (vn->vn_version != ELF::VER_NEED_CURRENT)
742      report_fatal_error("Unexpected verneed version");
743    // Iterate through the Vernaux entries
744    const char *paux = p + vn->vn_aux;
745    for (unsigned j = 0; j < vn->vn_cnt; j++) {
746      if (paux + sizeof(Elf_Vernaux) > sec_end)
747        report_fatal_error("Section ended unexpected while scanning auxiliary "
748                           "version needed records.");
749      const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
750      size_t index = vna->vna_other & ELF::VERSYM_VERSION;
751      if (index >= VersionMap.size())
752        VersionMap.resize(index+1);
753      VersionMap[index] = VersionMapEntry(vna);
754      paux += vna->vna_next;
755    }
756    p += vn->vn_next;
757  }
758}
759
760template<support::endianness target_endianness, bool is64Bits>
761void ELFObjectFile<target_endianness, is64Bits>::LoadVersionMap() const {
762  // If there is no dynamic symtab or version table, there is nothing to do.
763  if (SymbolTableSections[0] == NULL || dot_gnu_version_sec == NULL)
764    return;
765
766  // Has the VersionMap already been loaded?
767  if (VersionMap.size() > 0)
768    return;
769
770  // The first two version indexes are reserved.
771  // Index 0 is LOCAL, index 1 is GLOBAL.
772  VersionMap.push_back(VersionMapEntry());
773  VersionMap.push_back(VersionMapEntry());
774
775  if (dot_gnu_version_d_sec)
776    LoadVersionDefs(dot_gnu_version_d_sec);
777
778  if (dot_gnu_version_r_sec)
779    LoadVersionNeeds(dot_gnu_version_r_sec);
780}
781
782template<support::endianness target_endianness, bool is64Bits>
783void ELFObjectFile<target_endianness, is64Bits>
784                  ::validateSymbol(DataRefImpl Symb) const {
785  const Elf_Sym  *symb = getSymbol(Symb);
786  const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
787  // FIXME: We really need to do proper error handling in the case of an invalid
788  //        input file. Because we don't use exceptions, I think we'll just pass
789  //        an error object around.
790  if (!(  symb
791        && SymbolTableSection
792        && symb >= (const Elf_Sym*)(base()
793                   + SymbolTableSection->sh_offset)
794        && symb <  (const Elf_Sym*)(base()
795                   + SymbolTableSection->sh_offset
796                   + SymbolTableSection->sh_size)))
797    // FIXME: Proper error handling.
798    report_fatal_error("Symb must point to a valid symbol!");
799}
800
801template<support::endianness target_endianness, bool is64Bits>
802error_code ELFObjectFile<target_endianness, is64Bits>
803                        ::getSymbolNext(DataRefImpl Symb,
804                                        SymbolRef &Result) const {
805  validateSymbol(Symb);
806  const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
807
808  ++Symb.d.a;
809  // Check to see if we are at the end of this symbol table.
810  if (Symb.d.a >= SymbolTableSection->getEntityCount()) {
811    // We are at the end. If there are other symbol tables, jump to them.
812    // If the symbol table is .dynsym, we are iterating dynamic symbols,
813    // and there is only one table of these.
814    if (Symb.d.b != 0) {
815      ++Symb.d.b;
816      Symb.d.a = 1; // The 0th symbol in ELF is fake.
817    }
818    // Otherwise return the terminator.
819    if (Symb.d.b == 0 || Symb.d.b >= SymbolTableSections.size()) {
820      Symb.d.a = std::numeric_limits<uint32_t>::max();
821      Symb.d.b = std::numeric_limits<uint32_t>::max();
822    }
823  }
824
825  Result = SymbolRef(Symb, this);
826  return object_error::success;
827}
828
829template<support::endianness target_endianness, bool is64Bits>
830error_code ELFObjectFile<target_endianness, is64Bits>
831                        ::getSymbolName(DataRefImpl Symb,
832                                        StringRef &Result) const {
833  validateSymbol(Symb);
834  const Elf_Sym *symb = getSymbol(Symb);
835  return getSymbolName(SymbolTableSections[Symb.d.b], symb, Result);
836}
837
838template<support::endianness target_endianness, bool is64Bits>
839error_code ELFObjectFile<target_endianness, is64Bits>
840                        ::getSymbolVersion(SymbolRef SymRef,
841                                           StringRef &Version,
842                                           bool &IsDefault) const {
843  DataRefImpl Symb = SymRef.getRawDataRefImpl();
844  validateSymbol(Symb);
845  const Elf_Sym *symb = getSymbol(Symb);
846  return getSymbolVersion(SymbolTableSections[Symb.d.b], symb,
847                          Version, IsDefault);
848}
849
850template<support::endianness target_endianness, bool is64Bits>
851ELF::Elf64_Word ELFObjectFile<target_endianness, is64Bits>
852                      ::getSymbolTableIndex(const Elf_Sym *symb) const {
853  if (symb->st_shndx == ELF::SHN_XINDEX)
854    return ExtendedSymbolTable.lookup(symb);
855  return symb->st_shndx;
856}
857
858template<support::endianness target_endianness, bool is64Bits>
859const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Shdr *
860ELFObjectFile<target_endianness, is64Bits>
861                             ::getSection(const Elf_Sym *symb) const {
862  if (symb->st_shndx == ELF::SHN_XINDEX)
863    return getSection(ExtendedSymbolTable.lookup(symb));
864  if (symb->st_shndx >= ELF::SHN_LORESERVE)
865    return 0;
866  return getSection(symb->st_shndx);
867}
868
869template<support::endianness target_endianness, bool is64Bits>
870const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Shdr *
871ELFObjectFile<target_endianness, is64Bits>
872                             ::getElfSection(section_iterator &It) const {
873  llvm::object::DataRefImpl ShdrRef = It->getRawDataRefImpl();
874  return reinterpret_cast<const Elf_Shdr *>(ShdrRef.p);
875}
876
877template<support::endianness target_endianness, bool is64Bits>
878const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Sym *
879ELFObjectFile<target_endianness, is64Bits>
880                             ::getElfSymbol(symbol_iterator &It) const {
881  return getSymbol(It->getRawDataRefImpl());
882}
883
884template<support::endianness target_endianness, bool is64Bits>
885const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Sym *
886ELFObjectFile<target_endianness, is64Bits>
887                             ::getElfSymbol(uint32_t index) const {
888  DataRefImpl SymbolData;
889  SymbolData.d.a = index;
890  SymbolData.d.b = 1;
891  return getSymbol(SymbolData);
892}
893
894template<support::endianness target_endianness, bool is64Bits>
895error_code ELFObjectFile<target_endianness, is64Bits>
896                        ::getSymbolFileOffset(DataRefImpl Symb,
897                                          uint64_t &Result) const {
898  validateSymbol(Symb);
899  const Elf_Sym  *symb = getSymbol(Symb);
900  const Elf_Shdr *Section;
901  switch (getSymbolTableIndex(symb)) {
902  case ELF::SHN_COMMON:
903   // Unintialized symbols have no offset in the object file
904  case ELF::SHN_UNDEF:
905    Result = UnknownAddressOrSize;
906    return object_error::success;
907  case ELF::SHN_ABS:
908    Result = symb->st_value;
909    return object_error::success;
910  default: Section = getSection(symb);
911  }
912
913  switch (symb->getType()) {
914  case ELF::STT_SECTION:
915    Result = Section ? Section->sh_addr : UnknownAddressOrSize;
916    return object_error::success;
917  case ELF::STT_FUNC:
918  case ELF::STT_OBJECT:
919  case ELF::STT_NOTYPE:
920    Result = symb->st_value +
921             (Section ? Section->sh_offset : 0);
922    return object_error::success;
923  default:
924    Result = UnknownAddressOrSize;
925    return object_error::success;
926  }
927}
928
929template<support::endianness target_endianness, bool is64Bits>
930error_code ELFObjectFile<target_endianness, is64Bits>
931                        ::getSymbolAddress(DataRefImpl Symb,
932                                           uint64_t &Result) const {
933  validateSymbol(Symb);
934  const Elf_Sym  *symb = getSymbol(Symb);
935  const Elf_Shdr *Section;
936  switch (getSymbolTableIndex(symb)) {
937  case ELF::SHN_COMMON:
938  case ELF::SHN_UNDEF:
939    Result = UnknownAddressOrSize;
940    return object_error::success;
941  case ELF::SHN_ABS:
942    Result = symb->st_value;
943    return object_error::success;
944  default: Section = getSection(symb);
945  }
946
947  switch (symb->getType()) {
948  case ELF::STT_SECTION:
949    Result = Section ? Section->sh_addr : UnknownAddressOrSize;
950    return object_error::success;
951  case ELF::STT_FUNC:
952  case ELF::STT_OBJECT:
953  case ELF::STT_NOTYPE:
954    bool IsRelocatable;
955    switch(Header->e_type) {
956    case ELF::ET_EXEC:
957    case ELF::ET_DYN:
958      IsRelocatable = false;
959      break;
960    default:
961      IsRelocatable = true;
962    }
963    Result = symb->st_value;
964    if (IsRelocatable && Section != 0)
965      Result += Section->sh_addr;
966    return object_error::success;
967  default:
968    Result = UnknownAddressOrSize;
969    return object_error::success;
970  }
971}
972
973template<support::endianness target_endianness, bool is64Bits>
974error_code ELFObjectFile<target_endianness, is64Bits>
975                        ::getSymbolSize(DataRefImpl Symb,
976                                        uint64_t &Result) const {
977  validateSymbol(Symb);
978  const Elf_Sym  *symb = getSymbol(Symb);
979  if (symb->st_size == 0)
980    Result = UnknownAddressOrSize;
981  Result = symb->st_size;
982  return object_error::success;
983}
984
985template<support::endianness target_endianness, bool is64Bits>
986error_code ELFObjectFile<target_endianness, is64Bits>
987                        ::getSymbolNMTypeChar(DataRefImpl Symb,
988                                              char &Result) const {
989  validateSymbol(Symb);
990  const Elf_Sym  *symb = getSymbol(Symb);
991  const Elf_Shdr *Section = getSection(symb);
992
993  char ret = '?';
994
995  if (Section) {
996    switch (Section->sh_type) {
997    case ELF::SHT_PROGBITS:
998    case ELF::SHT_DYNAMIC:
999      switch (Section->sh_flags) {
1000      case (ELF::SHF_ALLOC | ELF::SHF_EXECINSTR):
1001        ret = 't'; break;
1002      case (ELF::SHF_ALLOC | ELF::SHF_WRITE):
1003        ret = 'd'; break;
1004      case ELF::SHF_ALLOC:
1005      case (ELF::SHF_ALLOC | ELF::SHF_MERGE):
1006      case (ELF::SHF_ALLOC | ELF::SHF_MERGE | ELF::SHF_STRINGS):
1007        ret = 'r'; break;
1008      }
1009      break;
1010    case ELF::SHT_NOBITS: ret = 'b';
1011    }
1012  }
1013
1014  switch (getSymbolTableIndex(symb)) {
1015  case ELF::SHN_UNDEF:
1016    if (ret == '?')
1017      ret = 'U';
1018    break;
1019  case ELF::SHN_ABS: ret = 'a'; break;
1020  case ELF::SHN_COMMON: ret = 'c'; break;
1021  }
1022
1023  switch (symb->getBinding()) {
1024  case ELF::STB_GLOBAL: ret = ::toupper(ret); break;
1025  case ELF::STB_WEAK:
1026    if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
1027      ret = 'w';
1028    else
1029      if (symb->getType() == ELF::STT_OBJECT)
1030        ret = 'V';
1031      else
1032        ret = 'W';
1033  }
1034
1035  if (ret == '?' && symb->getType() == ELF::STT_SECTION) {
1036    StringRef name;
1037    if (error_code ec = getSymbolName(Symb, name))
1038      return ec;
1039    Result = StringSwitch<char>(name)
1040      .StartsWith(".debug", 'N')
1041      .StartsWith(".note", 'n')
1042      .Default('?');
1043    return object_error::success;
1044  }
1045
1046  Result = ret;
1047  return object_error::success;
1048}
1049
1050template<support::endianness target_endianness, bool is64Bits>
1051error_code ELFObjectFile<target_endianness, is64Bits>
1052                        ::getSymbolType(DataRefImpl Symb,
1053                                        SymbolRef::Type &Result) const {
1054  validateSymbol(Symb);
1055  const Elf_Sym  *symb = getSymbol(Symb);
1056
1057  switch (symb->getType()) {
1058  case ELF::STT_NOTYPE:
1059    Result = SymbolRef::ST_Unknown;
1060    break;
1061  case ELF::STT_SECTION:
1062    Result = SymbolRef::ST_Debug;
1063    break;
1064  case ELF::STT_FILE:
1065    Result = SymbolRef::ST_File;
1066    break;
1067  case ELF::STT_FUNC:
1068    Result = SymbolRef::ST_Function;
1069    break;
1070  case ELF::STT_OBJECT:
1071  case ELF::STT_COMMON:
1072  case ELF::STT_TLS:
1073    Result = SymbolRef::ST_Data;
1074    break;
1075  default:
1076    Result = SymbolRef::ST_Other;
1077    break;
1078  }
1079  return object_error::success;
1080}
1081
1082template<support::endianness target_endianness, bool is64Bits>
1083error_code ELFObjectFile<target_endianness, is64Bits>
1084                        ::getSymbolFlags(DataRefImpl Symb,
1085                                         uint32_t &Result) const {
1086  validateSymbol(Symb);
1087  const Elf_Sym  *symb = getSymbol(Symb);
1088
1089  Result = SymbolRef::SF_None;
1090
1091  if (symb->getBinding() != ELF::STB_LOCAL)
1092    Result |= SymbolRef::SF_Global;
1093
1094  if (symb->getBinding() == ELF::STB_WEAK)
1095    Result |= SymbolRef::SF_Weak;
1096
1097  if (symb->st_shndx == ELF::SHN_ABS)
1098    Result |= SymbolRef::SF_Absolute;
1099
1100  if (symb->getType() == ELF::STT_FILE ||
1101      symb->getType() == ELF::STT_SECTION)
1102    Result |= SymbolRef::SF_FormatSpecific;
1103
1104  if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
1105    Result |= SymbolRef::SF_Undefined;
1106
1107  if (symb->getType() == ELF::STT_COMMON ||
1108      getSymbolTableIndex(symb) == ELF::SHN_COMMON)
1109    Result |= SymbolRef::SF_Common;
1110
1111  if (symb->getType() == ELF::STT_TLS)
1112    Result |= SymbolRef::SF_ThreadLocal;
1113
1114  return object_error::success;
1115}
1116
1117template<support::endianness target_endianness, bool is64Bits>
1118error_code ELFObjectFile<target_endianness, is64Bits>
1119                        ::getSymbolSection(DataRefImpl Symb,
1120                                           section_iterator &Res) const {
1121  validateSymbol(Symb);
1122  const Elf_Sym  *symb = getSymbol(Symb);
1123  const Elf_Shdr *sec = getSection(symb);
1124  if (!sec)
1125    Res = end_sections();
1126  else {
1127    DataRefImpl Sec;
1128    Sec.p = reinterpret_cast<intptr_t>(sec);
1129    Res = section_iterator(SectionRef(Sec, this));
1130  }
1131  return object_error::success;
1132}
1133
1134template<support::endianness target_endianness, bool is64Bits>
1135error_code ELFObjectFile<target_endianness, is64Bits>
1136                        ::getSectionNext(DataRefImpl Sec, SectionRef &Result) const {
1137  const uint8_t *sec = reinterpret_cast<const uint8_t *>(Sec.p);
1138  sec += Header->e_shentsize;
1139  Sec.p = reinterpret_cast<intptr_t>(sec);
1140  Result = SectionRef(Sec, this);
1141  return object_error::success;
1142}
1143
1144template<support::endianness target_endianness, bool is64Bits>
1145error_code ELFObjectFile<target_endianness, is64Bits>
1146                        ::getSectionName(DataRefImpl Sec,
1147                                         StringRef &Result) const {
1148  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1149  Result = StringRef(getString(dot_shstrtab_sec, sec->sh_name));
1150  return object_error::success;
1151}
1152
1153template<support::endianness target_endianness, bool is64Bits>
1154error_code ELFObjectFile<target_endianness, is64Bits>
1155                        ::getSectionAddress(DataRefImpl Sec,
1156                                            uint64_t &Result) const {
1157  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1158  Result = sec->sh_addr;
1159  return object_error::success;
1160}
1161
1162template<support::endianness target_endianness, bool is64Bits>
1163error_code ELFObjectFile<target_endianness, is64Bits>
1164                        ::getSectionSize(DataRefImpl Sec,
1165                                         uint64_t &Result) const {
1166  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1167  Result = sec->sh_size;
1168  return object_error::success;
1169}
1170
1171template<support::endianness target_endianness, bool is64Bits>
1172error_code ELFObjectFile<target_endianness, is64Bits>
1173                        ::getSectionContents(DataRefImpl Sec,
1174                                             StringRef &Result) const {
1175  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1176  const char *start = (const char*)base() + sec->sh_offset;
1177  Result = StringRef(start, sec->sh_size);
1178  return object_error::success;
1179}
1180
1181template<support::endianness target_endianness, bool is64Bits>
1182error_code ELFObjectFile<target_endianness, is64Bits>
1183                        ::getSectionContents(const Elf_Shdr *Sec,
1184                                             StringRef &Result) const {
1185  const char *start = (const char*)base() + Sec->sh_offset;
1186  Result = StringRef(start, Sec->sh_size);
1187  return object_error::success;
1188}
1189
1190template<support::endianness target_endianness, bool is64Bits>
1191error_code ELFObjectFile<target_endianness, is64Bits>
1192                        ::getSectionAlignment(DataRefImpl Sec,
1193                                              uint64_t &Result) const {
1194  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1195  Result = sec->sh_addralign;
1196  return object_error::success;
1197}
1198
1199template<support::endianness target_endianness, bool is64Bits>
1200error_code ELFObjectFile<target_endianness, is64Bits>
1201                        ::isSectionText(DataRefImpl Sec,
1202                                        bool &Result) const {
1203  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1204  if (sec->sh_flags & ELF::SHF_EXECINSTR)
1205    Result = true;
1206  else
1207    Result = false;
1208  return object_error::success;
1209}
1210
1211template<support::endianness target_endianness, bool is64Bits>
1212error_code ELFObjectFile<target_endianness, is64Bits>
1213                        ::isSectionData(DataRefImpl Sec,
1214                                        bool &Result) const {
1215  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1216  if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
1217      && sec->sh_type == ELF::SHT_PROGBITS)
1218    Result = true;
1219  else
1220    Result = false;
1221  return object_error::success;
1222}
1223
1224template<support::endianness target_endianness, bool is64Bits>
1225error_code ELFObjectFile<target_endianness, is64Bits>
1226                        ::isSectionBSS(DataRefImpl Sec,
1227                                       bool &Result) const {
1228  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1229  if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
1230      && sec->sh_type == ELF::SHT_NOBITS)
1231    Result = true;
1232  else
1233    Result = false;
1234  return object_error::success;
1235}
1236
1237template<support::endianness target_endianness, bool is64Bits>
1238error_code ELFObjectFile<target_endianness, is64Bits>
1239                        ::isSectionRequiredForExecution(DataRefImpl Sec,
1240                                                        bool &Result) const {
1241  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1242  if (sec->sh_flags & ELF::SHF_ALLOC)
1243    Result = true;
1244  else
1245    Result = false;
1246  return object_error::success;
1247}
1248
1249template<support::endianness target_endianness, bool is64Bits>
1250error_code ELFObjectFile<target_endianness, is64Bits>
1251                        ::isSectionVirtual(DataRefImpl Sec,
1252                                           bool &Result) const {
1253  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1254  if (sec->sh_type == ELF::SHT_NOBITS)
1255    Result = true;
1256  else
1257    Result = false;
1258  return object_error::success;
1259}
1260
1261template<support::endianness target_endianness, bool is64Bits>
1262error_code ELFObjectFile<target_endianness, is64Bits>::isSectionZeroInit(DataRefImpl Sec,
1263                                            bool &Result) const {
1264  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1265  // For ELF, all zero-init sections are virtual (that is, they occupy no space
1266  //   in the object image) and vice versa.
1267  if (sec->sh_flags & ELF::SHT_NOBITS)
1268    Result = true;
1269  else
1270    Result = false;
1271  return object_error::success;
1272}
1273
1274template<support::endianness target_endianness, bool is64Bits>
1275error_code ELFObjectFile<target_endianness, is64Bits>
1276                          ::sectionContainsSymbol(DataRefImpl Sec,
1277                                                  DataRefImpl Symb,
1278                                                  bool &Result) const {
1279  // FIXME: Unimplemented.
1280  Result = false;
1281  return object_error::success;
1282}
1283
1284template<support::endianness target_endianness, bool is64Bits>
1285relocation_iterator ELFObjectFile<target_endianness, is64Bits>
1286                                 ::getSectionRelBegin(DataRefImpl Sec) const {
1287  DataRefImpl RelData;
1288  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1289  typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
1290  if (sec != 0 && ittr != SectionRelocMap.end()) {
1291    RelData.w.a = getSection(ittr->second[0])->sh_info;
1292    RelData.w.b = ittr->second[0];
1293    RelData.w.c = 0;
1294  }
1295  return relocation_iterator(RelocationRef(RelData, this));
1296}
1297
1298template<support::endianness target_endianness, bool is64Bits>
1299relocation_iterator ELFObjectFile<target_endianness, is64Bits>
1300                                 ::getSectionRelEnd(DataRefImpl Sec) const {
1301  DataRefImpl RelData;
1302  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1303  typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
1304  if (sec != 0 && ittr != SectionRelocMap.end()) {
1305    // Get the index of the last relocation section for this section.
1306    std::size_t relocsecindex = ittr->second[ittr->second.size() - 1];
1307    const Elf_Shdr *relocsec = getSection(relocsecindex);
1308    RelData.w.a = relocsec->sh_info;
1309    RelData.w.b = relocsecindex;
1310    RelData.w.c = relocsec->sh_size / relocsec->sh_entsize;
1311  }
1312  return relocation_iterator(RelocationRef(RelData, this));
1313}
1314
1315// Relocations
1316template<support::endianness target_endianness, bool is64Bits>
1317error_code ELFObjectFile<target_endianness, is64Bits>
1318                        ::getRelocationNext(DataRefImpl Rel,
1319                                            RelocationRef &Result) const {
1320  ++Rel.w.c;
1321  const Elf_Shdr *relocsec = getSection(Rel.w.b);
1322  if (Rel.w.c >= (relocsec->sh_size / relocsec->sh_entsize)) {
1323    // We have reached the end of the relocations for this section. See if there
1324    // is another relocation section.
1325    typename RelocMap_t::mapped_type relocseclist =
1326      SectionRelocMap.lookup(getSection(Rel.w.a));
1327
1328    // Do a binary search for the current reloc section index (which must be
1329    // present). Then get the next one.
1330    typename RelocMap_t::mapped_type::const_iterator loc =
1331      std::lower_bound(relocseclist.begin(), relocseclist.end(), Rel.w.b);
1332    ++loc;
1333
1334    // If there is no next one, don't do anything. The ++Rel.w.c above sets Rel
1335    // to the end iterator.
1336    if (loc != relocseclist.end()) {
1337      Rel.w.b = *loc;
1338      Rel.w.a = 0;
1339    }
1340  }
1341  Result = RelocationRef(Rel, this);
1342  return object_error::success;
1343}
1344
1345template<support::endianness target_endianness, bool is64Bits>
1346error_code ELFObjectFile<target_endianness, is64Bits>
1347                        ::getRelocationSymbol(DataRefImpl Rel,
1348                                              SymbolRef &Result) const {
1349  uint32_t symbolIdx;
1350  const Elf_Shdr *sec = getSection(Rel.w.b);
1351  switch (sec->sh_type) {
1352    default :
1353      report_fatal_error("Invalid section type in Rel!");
1354    case ELF::SHT_REL : {
1355      symbolIdx = getRel(Rel)->getSymbol();
1356      break;
1357    }
1358    case ELF::SHT_RELA : {
1359      symbolIdx = getRela(Rel)->getSymbol();
1360      break;
1361    }
1362  }
1363  DataRefImpl SymbolData;
1364  IndexMap_t::const_iterator it = SymbolTableSectionsIndexMap.find(sec->sh_link);
1365  if (it == SymbolTableSectionsIndexMap.end())
1366    report_fatal_error("Relocation symbol table not found!");
1367  SymbolData.d.a = symbolIdx;
1368  SymbolData.d.b = it->second;
1369  Result = SymbolRef(SymbolData, this);
1370  return object_error::success;
1371}
1372
1373template<support::endianness target_endianness, bool is64Bits>
1374error_code ELFObjectFile<target_endianness, is64Bits>
1375                        ::getRelocationAddress(DataRefImpl Rel,
1376                                               uint64_t &Result) const {
1377  uint64_t offset;
1378  const Elf_Shdr *sec = getSection(Rel.w.b);
1379  switch (sec->sh_type) {
1380    default :
1381      report_fatal_error("Invalid section type in Rel!");
1382    case ELF::SHT_REL : {
1383      offset = getRel(Rel)->r_offset;
1384      break;
1385    }
1386    case ELF::SHT_RELA : {
1387      offset = getRela(Rel)->r_offset;
1388      break;
1389    }
1390  }
1391
1392  Result = offset;
1393  return object_error::success;
1394}
1395
1396template<support::endianness target_endianness, bool is64Bits>
1397error_code ELFObjectFile<target_endianness, is64Bits>
1398                        ::getRelocationOffset(DataRefImpl Rel,
1399                                              uint64_t &Result) const {
1400  uint64_t offset;
1401  const Elf_Shdr *sec = getSection(Rel.w.b);
1402  switch (sec->sh_type) {
1403    default :
1404      report_fatal_error("Invalid section type in Rel!");
1405    case ELF::SHT_REL : {
1406      offset = getRel(Rel)->r_offset;
1407      break;
1408    }
1409    case ELF::SHT_RELA : {
1410      offset = getRela(Rel)->r_offset;
1411      break;
1412    }
1413  }
1414
1415  Result = offset - sec->sh_addr;
1416  return object_error::success;
1417}
1418
1419template<support::endianness target_endianness, bool is64Bits>
1420error_code ELFObjectFile<target_endianness, is64Bits>
1421                        ::getRelocationType(DataRefImpl Rel,
1422                                            uint64_t &Result) const {
1423  const Elf_Shdr *sec = getSection(Rel.w.b);
1424  switch (sec->sh_type) {
1425    default :
1426      report_fatal_error("Invalid section type in Rel!");
1427    case ELF::SHT_REL : {
1428      Result = getRel(Rel)->getType();
1429      break;
1430    }
1431    case ELF::SHT_RELA : {
1432      Result = getRela(Rel)->getType();
1433      break;
1434    }
1435  }
1436  return object_error::success;
1437}
1438
1439#define LLVM_ELF_SWITCH_RELOC_TYPE_NAME(enum) \
1440  case ELF::enum: res = #enum; break;
1441
1442template<support::endianness target_endianness, bool is64Bits>
1443error_code ELFObjectFile<target_endianness, is64Bits>
1444                        ::getRelocationTypeName(DataRefImpl Rel,
1445                                          SmallVectorImpl<char> &Result) const {
1446  const Elf_Shdr *sec = getSection(Rel.w.b);
1447  uint8_t type;
1448  StringRef res;
1449  switch (sec->sh_type) {
1450    default :
1451      return object_error::parse_failed;
1452    case ELF::SHT_REL : {
1453      type = getRel(Rel)->getType();
1454      break;
1455    }
1456    case ELF::SHT_RELA : {
1457      type = getRela(Rel)->getType();
1458      break;
1459    }
1460  }
1461  switch (Header->e_machine) {
1462  case ELF::EM_X86_64:
1463    switch (type) {
1464      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_NONE);
1465      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_64);
1466      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC32);
1467      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOT32);
1468      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PLT32);
1469      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_COPY);
1470      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GLOB_DAT);
1471      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_JUMP_SLOT);
1472      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_RELATIVE);
1473      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPCREL);
1474      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32);
1475      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32S);
1476      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_16);
1477      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC16);
1478      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_8);
1479      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC8);
1480      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPMOD64);
1481      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF64);
1482      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF64);
1483      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSGD);
1484      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSLD);
1485      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF32);
1486      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTTPOFF);
1487      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF32);
1488      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC64);
1489      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTOFF64);
1490      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32);
1491      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE32);
1492      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE64);
1493      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32_TLSDESC);
1494      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC_CALL);
1495      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC);
1496    default:
1497      res = "Unknown";
1498    }
1499    break;
1500  case ELF::EM_386:
1501    switch (type) {
1502      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_NONE);
1503      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32);
1504      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC32);
1505      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOT32);
1506      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PLT32);
1507      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_COPY);
1508      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GLOB_DAT);
1509      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_JUMP_SLOT);
1510      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_RELATIVE);
1511      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTOFF);
1512      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTPC);
1513      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32PLT);
1514      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF);
1515      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE);
1516      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTIE);
1517      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE);
1518      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD);
1519      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM);
1520      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_16);
1521      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC16);
1522      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_8);
1523      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC8);
1524      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_32);
1525      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_PUSH);
1526      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_CALL);
1527      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_POP);
1528      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_32);
1529      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_PUSH);
1530      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_CALL);
1531      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_POP);
1532      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDO_32);
1533      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE_32);
1534      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE_32);
1535      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPMOD32);
1536      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPOFF32);
1537      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF32);
1538      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTDESC);
1539      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC_CALL);
1540      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC);
1541      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_IRELATIVE);
1542    default:
1543      res = "Unknown";
1544    }
1545    break;
1546  case ELF::EM_ARM:
1547    switch (type) {
1548      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_NONE);
1549      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PC24);
1550      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32);
1551      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32);
1552      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G0);
1553      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS16);
1554      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS12);
1555      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ABS5);
1556      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS8);
1557      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL32);
1558      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_CALL);
1559      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC8);
1560      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BREL_ADJ);
1561      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESC);
1562      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_SWI8);
1563      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_XPC25);
1564      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_XPC22);
1565      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPMOD32);
1566      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPOFF32);
1567      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_TPOFF32);
1568      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_COPY);
1569      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GLOB_DAT);
1570      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP_SLOT);
1571      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_RELATIVE);
1572      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF32);
1573      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_PREL);
1574      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL);
1575      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32);
1576      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_CALL);
1577      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP24);
1578      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP24);
1579      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_ABS);
1580      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_7_0);
1581      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_15_8);
1582      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_23_15);
1583      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SBREL_11_0_NC);
1584      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_19_12_NC);
1585      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_27_20_CK);
1586      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET1);
1587      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL31);
1588      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_V4BX);
1589      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET2);
1590      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PREL31);
1591      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_ABS_NC);
1592      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_ABS);
1593      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_PREL_NC);
1594      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_PREL);
1595      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_ABS_NC);
1596      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_ABS);
1597      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_PREL_NC);
1598      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_PREL);
1599      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP19);
1600      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP6);
1601      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ALU_PREL_11_0);
1602      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC12);
1603      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32_NOI);
1604      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32_NOI);
1605      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0_NC);
1606      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0);
1607      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1_NC);
1608      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1);
1609      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G2);
1610      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G1);
1611      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G2);
1612      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G0);
1613      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G1);
1614      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G2);
1615      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G0);
1616      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G1);
1617      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G2);
1618      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0_NC);
1619      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0);
1620      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1_NC);
1621      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1);
1622      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G2);
1623      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G0);
1624      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G1);
1625      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G2);
1626      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G0);
1627      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G1);
1628      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G2);
1629      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G0);
1630      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G1);
1631      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G2);
1632      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL_NC);
1633      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_BREL);
1634      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL);
1635      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL_NC);
1636      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_BREL);
1637      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL);
1638      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GOTDESC);
1639      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_CALL);
1640      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESCSEQ);
1641      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_CALL);
1642      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32_ABS);
1643      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_ABS);
1644      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_PREL);
1645      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL12);
1646      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF12);
1647      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTRELAX);
1648      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTENTRY);
1649      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTINHERIT);
1650      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP11);
1651      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP8);
1652      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GD32);
1653      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDM32);
1654      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO32);
1655      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE32);
1656      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE32);
1657      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO12);
1658      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE12);
1659      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE12GP);
1660      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_0);
1661      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_1);
1662      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_2);
1663      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_3);
1664      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_4);
1665      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_5);
1666      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_6);
1667      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_7);
1668      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_8);
1669      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_9);
1670      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_10);
1671      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_11);
1672      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_12);
1673      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_13);
1674      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_14);
1675      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_15);
1676      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ME_TOO);
1677      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ16);
1678      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ32);
1679    default:
1680      res = "Unknown";
1681    }
1682    break;
1683  case ELF::EM_HEXAGON:
1684    switch (type) {
1685      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_NONE);
1686      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL);
1687      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL);
1688      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL);
1689      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_LO16);
1690      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HI16);
1691      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32);
1692      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16);
1693      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8);
1694      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_0);
1695      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_1);
1696      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_2);
1697      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_3);
1698      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HL16);
1699      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL);
1700      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL);
1701      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B32_PCREL_X);
1702      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_6_X);
1703      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL_X);
1704      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL_X);
1705      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL_X);
1706      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL_X);
1707      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL_X);
1708      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16_X);
1709      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_12_X);
1710      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_11_X);
1711      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_10_X);
1712      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_9_X);
1713      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8_X);
1714      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_7_X);
1715      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_X);
1716      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_PCREL);
1717      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_COPY);
1718      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GLOB_DAT);
1719      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_JMP_SLOT);
1720      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_RELATIVE);
1721      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_PLT_B22_PCREL);
1722      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_LO16);
1723      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_HI16);
1724      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32);
1725      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_LO16);
1726      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_HI16);
1727      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32);
1728      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16);
1729      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPMOD_32);
1730      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_LO16);
1731      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_HI16);
1732      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32);
1733      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16);
1734      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_PLT_B22_PCREL);
1735      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_LO16);
1736      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_HI16);
1737      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32);
1738      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16);
1739      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_LO16);
1740      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_HI16);
1741      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32);
1742      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_LO16);
1743      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_HI16);
1744      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32);
1745      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16);
1746      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_LO16);
1747      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_HI16);
1748      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32);
1749      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16);
1750      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_PCREL_X);
1751      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32_6_X);
1752      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_16_X);
1753      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_11_X);
1754      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32_6_X);
1755      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16_X);
1756      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_11_X);
1757      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32_6_X);
1758      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16_X);
1759      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_11_X);
1760      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32_6_X);
1761      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16_X);
1762      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_11_X);
1763      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32_6_X);
1764      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_16_X);
1765      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32_6_X);
1766      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16_X);
1767      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_11_X);
1768      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32_6_X);
1769      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16_X);
1770      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_11_X);
1771    default:
1772      res = "Unknown";
1773    }
1774    break;
1775  default:
1776    res = "Unknown";
1777  }
1778  Result.append(res.begin(), res.end());
1779  return object_error::success;
1780}
1781
1782#undef LLVM_ELF_SWITCH_RELOC_TYPE_NAME
1783
1784template<support::endianness target_endianness, bool is64Bits>
1785error_code ELFObjectFile<target_endianness, is64Bits>
1786                        ::getRelocationAdditionalInfo(DataRefImpl Rel,
1787                                                      int64_t &Result) const {
1788  const Elf_Shdr *sec = getSection(Rel.w.b);
1789  switch (sec->sh_type) {
1790    default :
1791      report_fatal_error("Invalid section type in Rel!");
1792    case ELF::SHT_REL : {
1793      Result = 0;
1794      return object_error::success;
1795    }
1796    case ELF::SHT_RELA : {
1797      Result = getRela(Rel)->r_addend;
1798      return object_error::success;
1799    }
1800  }
1801}
1802
1803template<support::endianness target_endianness, bool is64Bits>
1804error_code ELFObjectFile<target_endianness, is64Bits>
1805                        ::getRelocationValueString(DataRefImpl Rel,
1806                                          SmallVectorImpl<char> &Result) const {
1807  const Elf_Shdr *sec = getSection(Rel.w.b);
1808  uint8_t type;
1809  StringRef res;
1810  int64_t addend = 0;
1811  uint16_t symbol_index = 0;
1812  switch (sec->sh_type) {
1813    default:
1814      return object_error::parse_failed;
1815    case ELF::SHT_REL: {
1816      type = getRel(Rel)->getType();
1817      symbol_index = getRel(Rel)->getSymbol();
1818      // TODO: Read implicit addend from section data.
1819      break;
1820    }
1821    case ELF::SHT_RELA: {
1822      type = getRela(Rel)->getType();
1823      symbol_index = getRela(Rel)->getSymbol();
1824      addend = getRela(Rel)->r_addend;
1825      break;
1826    }
1827  }
1828  const Elf_Sym *symb = getEntry<Elf_Sym>(sec->sh_link, symbol_index);
1829  StringRef symname;
1830  if (error_code ec = getSymbolName(getSection(sec->sh_link), symb, symname))
1831    return ec;
1832  switch (Header->e_machine) {
1833  case ELF::EM_X86_64:
1834    switch (type) {
1835    case ELF::R_X86_64_PC8:
1836    case ELF::R_X86_64_PC16:
1837    case ELF::R_X86_64_PC32: {
1838        std::string fmtbuf;
1839        raw_string_ostream fmt(fmtbuf);
1840        fmt << symname << (addend < 0 ? "" : "+") << addend << "-P";
1841        fmt.flush();
1842        Result.append(fmtbuf.begin(), fmtbuf.end());
1843      }
1844      break;
1845    case ELF::R_X86_64_8:
1846    case ELF::R_X86_64_16:
1847    case ELF::R_X86_64_32:
1848    case ELF::R_X86_64_32S:
1849    case ELF::R_X86_64_64: {
1850        std::string fmtbuf;
1851        raw_string_ostream fmt(fmtbuf);
1852        fmt << symname << (addend < 0 ? "" : "+") << addend;
1853        fmt.flush();
1854        Result.append(fmtbuf.begin(), fmtbuf.end());
1855      }
1856      break;
1857    default:
1858      res = "Unknown";
1859    }
1860    break;
1861  case ELF::EM_ARM:
1862  case ELF::EM_HEXAGON:
1863    res = symname;
1864    break;
1865  default:
1866    res = "Unknown";
1867  }
1868  if (Result.empty())
1869    Result.append(res.begin(), res.end());
1870  return object_error::success;
1871}
1872
1873// Verify that the last byte in the string table in a null.
1874template<support::endianness target_endianness, bool is64Bits>
1875void ELFObjectFile<target_endianness, is64Bits>
1876                  ::VerifyStrTab(const Elf_Shdr *sh) const {
1877  const char *strtab = (const char*)base() + sh->sh_offset;
1878  if (strtab[sh->sh_size - 1] != 0)
1879    // FIXME: Proper error handling.
1880    report_fatal_error("String table must end with a null terminator!");
1881}
1882
1883template<support::endianness target_endianness, bool is64Bits>
1884ELFObjectFile<target_endianness, is64Bits>::ELFObjectFile(MemoryBuffer *Object
1885                                                          , error_code &ec)
1886  : ObjectFile(getELFType(target_endianness == support::little, is64Bits),
1887               Object, ec)
1888  , isDyldELFObject(false)
1889  , SectionHeaderTable(0)
1890  , dot_shstrtab_sec(0)
1891  , dot_strtab_sec(0)
1892  , dot_dynstr_sec(0)
1893  , dot_dynamic_sec(0)
1894  , dot_gnu_version_sec(0)
1895  , dot_gnu_version_r_sec(0)
1896  , dot_gnu_version_d_sec(0)
1897  , dt_soname(0)
1898 {
1899
1900  const uint64_t FileSize = Data->getBufferSize();
1901
1902  if (sizeof(Elf_Ehdr) > FileSize)
1903    // FIXME: Proper error handling.
1904    report_fatal_error("File too short!");
1905
1906  Header = reinterpret_cast<const Elf_Ehdr *>(base());
1907
1908  if (Header->e_shoff == 0)
1909    return;
1910
1911  const uint64_t SectionTableOffset = Header->e_shoff;
1912
1913  if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize)
1914    // FIXME: Proper error handling.
1915    report_fatal_error("Section header table goes past end of file!");
1916
1917  // The getNumSections() call below depends on SectionHeaderTable being set.
1918  SectionHeaderTable =
1919    reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset);
1920  const uint64_t SectionTableSize = getNumSections() * Header->e_shentsize;
1921
1922  if (SectionTableOffset + SectionTableSize > FileSize)
1923    // FIXME: Proper error handling.
1924    report_fatal_error("Section table goes past end of file!");
1925
1926  // To find the symbol tables we walk the section table to find SHT_SYMTAB.
1927  const Elf_Shdr* SymbolTableSectionHeaderIndex = 0;
1928  const Elf_Shdr* sh = SectionHeaderTable;
1929
1930  // Reserve SymbolTableSections[0] for .dynsym
1931  SymbolTableSections.push_back(NULL);
1932
1933  for (uint64_t i = 0, e = getNumSections(); i != e; ++i) {
1934    switch (sh->sh_type) {
1935    case ELF::SHT_SYMTAB_SHNDX: {
1936      if (SymbolTableSectionHeaderIndex)
1937        // FIXME: Proper error handling.
1938        report_fatal_error("More than one .symtab_shndx!");
1939      SymbolTableSectionHeaderIndex = sh;
1940      break;
1941    }
1942    case ELF::SHT_SYMTAB: {
1943      SymbolTableSectionsIndexMap[i] = SymbolTableSections.size();
1944      SymbolTableSections.push_back(sh);
1945      break;
1946    }
1947    case ELF::SHT_DYNSYM: {
1948      if (SymbolTableSections[0] != NULL)
1949        // FIXME: Proper error handling.
1950        report_fatal_error("More than one .dynsym!");
1951      SymbolTableSectionsIndexMap[i] = 0;
1952      SymbolTableSections[0] = sh;
1953      break;
1954    }
1955    case ELF::SHT_REL:
1956    case ELF::SHT_RELA: {
1957      SectionRelocMap[getSection(sh->sh_info)].push_back(i);
1958      break;
1959    }
1960    case ELF::SHT_DYNAMIC: {
1961      if (dot_dynamic_sec != NULL)
1962        // FIXME: Proper error handling.
1963        report_fatal_error("More than one .dynamic!");
1964      dot_dynamic_sec = sh;
1965      break;
1966    }
1967    case ELF::SHT_GNU_versym: {
1968      if (dot_gnu_version_sec != NULL)
1969        // FIXME: Proper error handling.
1970        report_fatal_error("More than one .gnu.version section!");
1971      dot_gnu_version_sec = sh;
1972      break;
1973    }
1974    case ELF::SHT_GNU_verdef: {
1975      if (dot_gnu_version_d_sec != NULL)
1976        // FIXME: Proper error handling.
1977        report_fatal_error("More than one .gnu.version_d section!");
1978      dot_gnu_version_d_sec = sh;
1979      break;
1980    }
1981    case ELF::SHT_GNU_verneed: {
1982      if (dot_gnu_version_r_sec != NULL)
1983        // FIXME: Proper error handling.
1984        report_fatal_error("More than one .gnu.version_r section!");
1985      dot_gnu_version_r_sec = sh;
1986      break;
1987    }
1988    }
1989    ++sh;
1990  }
1991
1992  // Sort section relocation lists by index.
1993  for (typename RelocMap_t::iterator i = SectionRelocMap.begin(),
1994                                     e = SectionRelocMap.end(); i != e; ++i) {
1995    std::sort(i->second.begin(), i->second.end());
1996  }
1997
1998  // Get string table sections.
1999  dot_shstrtab_sec = getSection(getStringTableIndex());
2000  if (dot_shstrtab_sec) {
2001    // Verify that the last byte in the string table in a null.
2002    VerifyStrTab(dot_shstrtab_sec);
2003  }
2004
2005  // Merge this into the above loop.
2006  for (const char *i = reinterpret_cast<const char *>(SectionHeaderTable),
2007                  *e = i + getNumSections() * Header->e_shentsize;
2008                   i != e; i += Header->e_shentsize) {
2009    const Elf_Shdr *sh = reinterpret_cast<const Elf_Shdr*>(i);
2010    if (sh->sh_type == ELF::SHT_STRTAB) {
2011      StringRef SectionName(getString(dot_shstrtab_sec, sh->sh_name));
2012      if (SectionName == ".strtab") {
2013        if (dot_strtab_sec != 0)
2014          // FIXME: Proper error handling.
2015          report_fatal_error("Already found section named .strtab!");
2016        dot_strtab_sec = sh;
2017        VerifyStrTab(dot_strtab_sec);
2018      } else if (SectionName == ".dynstr") {
2019        if (dot_dynstr_sec != 0)
2020          // FIXME: Proper error handling.
2021          report_fatal_error("Already found section named .dynstr!");
2022        dot_dynstr_sec = sh;
2023        VerifyStrTab(dot_dynstr_sec);
2024      }
2025    }
2026  }
2027
2028  // Build symbol name side-mapping if there is one.
2029  if (SymbolTableSectionHeaderIndex) {
2030    const Elf_Word *ShndxTable = reinterpret_cast<const Elf_Word*>(base() +
2031                                      SymbolTableSectionHeaderIndex->sh_offset);
2032    error_code ec;
2033    for (symbol_iterator si = begin_symbols(),
2034                         se = end_symbols(); si != se; si.increment(ec)) {
2035      if (ec)
2036        report_fatal_error("Fewer extended symbol table entries than symbols!");
2037      if (*ShndxTable != ELF::SHN_UNDEF)
2038        ExtendedSymbolTable[getSymbol(si->getRawDataRefImpl())] = *ShndxTable;
2039      ++ShndxTable;
2040    }
2041  }
2042}
2043
2044template<support::endianness target_endianness, bool is64Bits>
2045symbol_iterator ELFObjectFile<target_endianness, is64Bits>
2046                             ::begin_symbols() const {
2047  DataRefImpl SymbolData;
2048  if (SymbolTableSections.size() <= 1) {
2049    SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2050    SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2051  } else {
2052    SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
2053    SymbolData.d.b = 1; // The 0th table is .dynsym
2054  }
2055  return symbol_iterator(SymbolRef(SymbolData, this));
2056}
2057
2058template<support::endianness target_endianness, bool is64Bits>
2059symbol_iterator ELFObjectFile<target_endianness, is64Bits>
2060                             ::end_symbols() const {
2061  DataRefImpl SymbolData;
2062  SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2063  SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2064  return symbol_iterator(SymbolRef(SymbolData, this));
2065}
2066
2067template<support::endianness target_endianness, bool is64Bits>
2068symbol_iterator ELFObjectFile<target_endianness, is64Bits>
2069                             ::begin_dynamic_symbols() const {
2070  DataRefImpl SymbolData;
2071  if (SymbolTableSections[0] == NULL) {
2072    SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2073    SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2074  } else {
2075    SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
2076    SymbolData.d.b = 0; // The 0th table is .dynsym
2077  }
2078  return symbol_iterator(SymbolRef(SymbolData, this));
2079}
2080
2081template<support::endianness target_endianness, bool is64Bits>
2082symbol_iterator ELFObjectFile<target_endianness, is64Bits>
2083                             ::end_dynamic_symbols() const {
2084  DataRefImpl SymbolData;
2085  SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2086  SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2087  return symbol_iterator(SymbolRef(SymbolData, this));
2088}
2089
2090template<support::endianness target_endianness, bool is64Bits>
2091section_iterator ELFObjectFile<target_endianness, is64Bits>
2092                              ::begin_sections() const {
2093  DataRefImpl ret;
2094  ret.p = reinterpret_cast<intptr_t>(base() + Header->e_shoff);
2095  return section_iterator(SectionRef(ret, this));
2096}
2097
2098template<support::endianness target_endianness, bool is64Bits>
2099section_iterator ELFObjectFile<target_endianness, is64Bits>
2100                              ::end_sections() const {
2101  DataRefImpl ret;
2102  ret.p = reinterpret_cast<intptr_t>(base()
2103                                     + Header->e_shoff
2104                                     + (Header->e_shentsize*getNumSections()));
2105  return section_iterator(SectionRef(ret, this));
2106}
2107
2108template<support::endianness target_endianness, bool is64Bits>
2109typename ELFObjectFile<target_endianness, is64Bits>::dyn_iterator
2110ELFObjectFile<target_endianness, is64Bits>::begin_dynamic_table() const {
2111  DataRefImpl DynData;
2112  if (dot_dynamic_sec == NULL || dot_dynamic_sec->sh_size == 0) {
2113    DynData.d.a = std::numeric_limits<uint32_t>::max();
2114  } else {
2115    DynData.d.a = 0;
2116  }
2117  return dyn_iterator(DynRef(DynData, this));
2118}
2119
2120template<support::endianness target_endianness, bool is64Bits>
2121typename ELFObjectFile<target_endianness, is64Bits>::dyn_iterator
2122ELFObjectFile<target_endianness, is64Bits>
2123                          ::end_dynamic_table() const {
2124  DataRefImpl DynData;
2125  DynData.d.a = std::numeric_limits<uint32_t>::max();
2126  return dyn_iterator(DynRef(DynData, this));
2127}
2128
2129template<support::endianness target_endianness, bool is64Bits>
2130error_code ELFObjectFile<target_endianness, is64Bits>
2131                        ::getDynNext(DataRefImpl DynData,
2132                                     DynRef &Result) const {
2133  ++DynData.d.a;
2134
2135  // Check to see if we are at the end of .dynamic
2136  if (DynData.d.a >= dot_dynamic_sec->getEntityCount()) {
2137    // We are at the end. Return the terminator.
2138    DynData.d.a = std::numeric_limits<uint32_t>::max();
2139  }
2140
2141  Result = DynRef(DynData, this);
2142  return object_error::success;
2143}
2144
2145template<support::endianness target_endianness, bool is64Bits>
2146StringRef
2147ELFObjectFile<target_endianness, is64Bits>::getLoadName() const {
2148  if (!dt_soname) {
2149    // Find the DT_SONAME entry
2150    dyn_iterator it = begin_dynamic_table();
2151    dyn_iterator ie = end_dynamic_table();
2152    error_code ec;
2153    while (it != ie) {
2154      if (it->getTag() == ELF::DT_SONAME)
2155        break;
2156      it.increment(ec);
2157      if (ec)
2158        report_fatal_error("dynamic table iteration failed");
2159    }
2160    if (it != ie) {
2161      if (dot_dynstr_sec == NULL)
2162        report_fatal_error("Dynamic string table is missing");
2163      dt_soname = getString(dot_dynstr_sec, it->getVal());
2164    } else {
2165      dt_soname = "";
2166    }
2167  }
2168  return dt_soname;
2169}
2170
2171template<support::endianness target_endianness, bool is64Bits>
2172library_iterator ELFObjectFile<target_endianness, is64Bits>
2173                             ::begin_libraries_needed() const {
2174  // Find the first DT_NEEDED entry
2175  dyn_iterator i = begin_dynamic_table();
2176  dyn_iterator e = end_dynamic_table();
2177  error_code ec;
2178  while (i != e) {
2179    if (i->getTag() == ELF::DT_NEEDED)
2180      break;
2181    i.increment(ec);
2182    if (ec)
2183      report_fatal_error("dynamic table iteration failed");
2184  }
2185  // Use the same DataRefImpl format as DynRef.
2186  return library_iterator(LibraryRef(i->getRawDataRefImpl(), this));
2187}
2188
2189template<support::endianness target_endianness, bool is64Bits>
2190error_code ELFObjectFile<target_endianness, is64Bits>
2191                        ::getLibraryNext(DataRefImpl Data,
2192                                         LibraryRef &Result) const {
2193  // Use the same DataRefImpl format as DynRef.
2194  dyn_iterator i = dyn_iterator(DynRef(Data, this));
2195  dyn_iterator e = end_dynamic_table();
2196
2197  // Skip the current dynamic table entry.
2198  error_code ec;
2199  if (i != e) {
2200    i.increment(ec);
2201    // TODO: proper error handling
2202    if (ec)
2203      report_fatal_error("dynamic table iteration failed");
2204  }
2205
2206  // Find the next DT_NEEDED entry.
2207  while (i != e) {
2208    if (i->getTag() == ELF::DT_NEEDED)
2209      break;
2210    i.increment(ec);
2211    if (ec)
2212      report_fatal_error("dynamic table iteration failed");
2213  }
2214  Result = LibraryRef(i->getRawDataRefImpl(), this);
2215  return object_error::success;
2216}
2217
2218template<support::endianness target_endianness, bool is64Bits>
2219error_code ELFObjectFile<target_endianness, is64Bits>
2220         ::getLibraryPath(DataRefImpl Data, StringRef &Res) const {
2221  dyn_iterator i = dyn_iterator(DynRef(Data, this));
2222  if (i == end_dynamic_table())
2223    report_fatal_error("getLibraryPath() called on iterator end");
2224
2225  if (i->getTag() != ELF::DT_NEEDED)
2226    report_fatal_error("Invalid library_iterator");
2227
2228  // This uses .dynstr to lookup the name of the DT_NEEDED entry.
2229  // THis works as long as DT_STRTAB == .dynstr. This is true most of
2230  // the time, but the specification allows exceptions.
2231  // TODO: This should really use DT_STRTAB instead. Doing this requires
2232  // reading the program headers.
2233  if (dot_dynstr_sec == NULL)
2234    report_fatal_error("Dynamic string table is missing");
2235  Res = getString(dot_dynstr_sec, i->getVal());
2236  return object_error::success;
2237}
2238
2239template<support::endianness target_endianness, bool is64Bits>
2240library_iterator ELFObjectFile<target_endianness, is64Bits>
2241                             ::end_libraries_needed() const {
2242  dyn_iterator e = end_dynamic_table();
2243  // Use the same DataRefImpl format as DynRef.
2244  return library_iterator(LibraryRef(e->getRawDataRefImpl(), this));
2245}
2246
2247template<support::endianness target_endianness, bool is64Bits>
2248uint8_t ELFObjectFile<target_endianness, is64Bits>::getBytesInAddress() const {
2249  return is64Bits ? 8 : 4;
2250}
2251
2252template<support::endianness target_endianness, bool is64Bits>
2253StringRef ELFObjectFile<target_endianness, is64Bits>
2254                       ::getFileFormatName() const {
2255  switch(Header->e_ident[ELF::EI_CLASS]) {
2256  case ELF::ELFCLASS32:
2257    switch(Header->e_machine) {
2258    case ELF::EM_386:
2259      return "ELF32-i386";
2260    case ELF::EM_X86_64:
2261      return "ELF32-x86-64";
2262    case ELF::EM_ARM:
2263      return "ELF32-arm";
2264    case ELF::EM_HEXAGON:
2265      return "ELF32-hexagon";
2266    default:
2267      return "ELF32-unknown";
2268    }
2269  case ELF::ELFCLASS64:
2270    switch(Header->e_machine) {
2271    case ELF::EM_386:
2272      return "ELF64-i386";
2273    case ELF::EM_X86_64:
2274      return "ELF64-x86-64";
2275    default:
2276      return "ELF64-unknown";
2277    }
2278  default:
2279    // FIXME: Proper error handling.
2280    report_fatal_error("Invalid ELFCLASS!");
2281  }
2282}
2283
2284template<support::endianness target_endianness, bool is64Bits>
2285unsigned ELFObjectFile<target_endianness, is64Bits>::getArch() const {
2286  switch(Header->e_machine) {
2287  case ELF::EM_386:
2288    return Triple::x86;
2289  case ELF::EM_X86_64:
2290    return Triple::x86_64;
2291  case ELF::EM_ARM:
2292    return Triple::arm;
2293  case ELF::EM_HEXAGON:
2294    return Triple::hexagon;
2295  case ELF::EM_MIPS:
2296    return (target_endianness == support::little) ?
2297           Triple::mipsel : Triple::mips;
2298  default:
2299    return Triple::UnknownArch;
2300  }
2301}
2302
2303template<support::endianness target_endianness, bool is64Bits>
2304uint64_t ELFObjectFile<target_endianness, is64Bits>::getNumSections() const {
2305  assert(Header && "Header not initialized!");
2306  if (Header->e_shnum == ELF::SHN_UNDEF) {
2307    assert(SectionHeaderTable && "SectionHeaderTable not initialized!");
2308    return SectionHeaderTable->sh_size;
2309  }
2310  return Header->e_shnum;
2311}
2312
2313template<support::endianness target_endianness, bool is64Bits>
2314uint64_t
2315ELFObjectFile<target_endianness, is64Bits>::getStringTableIndex() const {
2316  if (Header->e_shnum == ELF::SHN_UNDEF) {
2317    if (Header->e_shstrndx == ELF::SHN_HIRESERVE)
2318      return SectionHeaderTable->sh_link;
2319    if (Header->e_shstrndx >= getNumSections())
2320      return 0;
2321  }
2322  return Header->e_shstrndx;
2323}
2324
2325
2326template<support::endianness target_endianness, bool is64Bits>
2327template<typename T>
2328inline const T *
2329ELFObjectFile<target_endianness, is64Bits>::getEntry(uint16_t Section,
2330                                                     uint32_t Entry) const {
2331  return getEntry<T>(getSection(Section), Entry);
2332}
2333
2334template<support::endianness target_endianness, bool is64Bits>
2335template<typename T>
2336inline const T *
2337ELFObjectFile<target_endianness, is64Bits>::getEntry(const Elf_Shdr * Section,
2338                                                     uint32_t Entry) const {
2339  return reinterpret_cast<const T *>(
2340           base()
2341           + Section->sh_offset
2342           + (Entry * Section->sh_entsize));
2343}
2344
2345template<support::endianness target_endianness, bool is64Bits>
2346const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Sym *
2347ELFObjectFile<target_endianness, is64Bits>::getSymbol(DataRefImpl Symb) const {
2348  return getEntry<Elf_Sym>(SymbolTableSections[Symb.d.b], Symb.d.a);
2349}
2350
2351template<support::endianness target_endianness, bool is64Bits>
2352const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Dyn *
2353ELFObjectFile<target_endianness, is64Bits>::getDyn(DataRefImpl DynData) const {
2354  return getEntry<Elf_Dyn>(dot_dynamic_sec, DynData.d.a);
2355}
2356
2357template<support::endianness target_endianness, bool is64Bits>
2358const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Rel *
2359ELFObjectFile<target_endianness, is64Bits>::getRel(DataRefImpl Rel) const {
2360  return getEntry<Elf_Rel>(Rel.w.b, Rel.w.c);
2361}
2362
2363template<support::endianness target_endianness, bool is64Bits>
2364const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Rela *
2365ELFObjectFile<target_endianness, is64Bits>::getRela(DataRefImpl Rela) const {
2366  return getEntry<Elf_Rela>(Rela.w.b, Rela.w.c);
2367}
2368
2369template<support::endianness target_endianness, bool is64Bits>
2370const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Shdr *
2371ELFObjectFile<target_endianness, is64Bits>::getSection(DataRefImpl Symb) const {
2372  const Elf_Shdr *sec = getSection(Symb.d.b);
2373  if (sec->sh_type != ELF::SHT_SYMTAB || sec->sh_type != ELF::SHT_DYNSYM)
2374    // FIXME: Proper error handling.
2375    report_fatal_error("Invalid symbol table section!");
2376  return sec;
2377}
2378
2379template<support::endianness target_endianness, bool is64Bits>
2380const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Shdr *
2381ELFObjectFile<target_endianness, is64Bits>::getSection(uint32_t index) const {
2382  if (index == 0)
2383    return 0;
2384  if (!SectionHeaderTable || index >= getNumSections())
2385    // FIXME: Proper error handling.
2386    report_fatal_error("Invalid section index!");
2387
2388  return reinterpret_cast<const Elf_Shdr *>(
2389         reinterpret_cast<const char *>(SectionHeaderTable)
2390         + (index * Header->e_shentsize));
2391}
2392
2393template<support::endianness target_endianness, bool is64Bits>
2394const char *ELFObjectFile<target_endianness, is64Bits>
2395                         ::getString(uint32_t section,
2396                                     ELF::Elf32_Word offset) const {
2397  return getString(getSection(section), offset);
2398}
2399
2400template<support::endianness target_endianness, bool is64Bits>
2401const char *ELFObjectFile<target_endianness, is64Bits>
2402                         ::getString(const Elf_Shdr *section,
2403                                     ELF::Elf32_Word offset) const {
2404  assert(section && section->sh_type == ELF::SHT_STRTAB && "Invalid section!");
2405  if (offset >= section->sh_size)
2406    // FIXME: Proper error handling.
2407    report_fatal_error("Symbol name offset outside of string table!");
2408  return (const char *)base() + section->sh_offset + offset;
2409}
2410
2411template<support::endianness target_endianness, bool is64Bits>
2412error_code ELFObjectFile<target_endianness, is64Bits>
2413                        ::getSymbolName(const Elf_Shdr *section,
2414                                        const Elf_Sym *symb,
2415                                        StringRef &Result) const {
2416  if (symb->st_name == 0) {
2417    const Elf_Shdr *section = getSection(symb);
2418    if (!section)
2419      Result = "";
2420    else
2421      Result = getString(dot_shstrtab_sec, section->sh_name);
2422    return object_error::success;
2423  }
2424
2425  if (section == SymbolTableSections[0]) {
2426    // Symbol is in .dynsym, use .dynstr string table
2427    Result = getString(dot_dynstr_sec, symb->st_name);
2428  } else {
2429    // Use the default symbol table name section.
2430    Result = getString(dot_strtab_sec, symb->st_name);
2431  }
2432  return object_error::success;
2433}
2434
2435template<support::endianness target_endianness, bool is64Bits>
2436error_code ELFObjectFile<target_endianness, is64Bits>
2437                        ::getSectionName(const Elf_Shdr *section,
2438                                        StringRef &Result) const {
2439  Result = StringRef(getString(dot_shstrtab_sec, section->sh_name));
2440  return object_error::success;
2441}
2442
2443template<support::endianness target_endianness, bool is64Bits>
2444error_code ELFObjectFile<target_endianness, is64Bits>
2445                        ::getSymbolVersion(const Elf_Shdr *section,
2446                                           const Elf_Sym *symb,
2447                                           StringRef &Version,
2448                                           bool &IsDefault) const {
2449  // Handle non-dynamic symbols.
2450  if (section != SymbolTableSections[0]) {
2451    // Non-dynamic symbols can have versions in their names
2452    // A name of the form 'foo@V1' indicates version 'V1', non-default.
2453    // A name of the form 'foo@@V2' indicates version 'V2', default version.
2454    StringRef Name;
2455    error_code ec = getSymbolName(section, symb, Name);
2456    if (ec != object_error::success)
2457      return ec;
2458    size_t atpos = Name.find('@');
2459    if (atpos == StringRef::npos) {
2460      Version = "";
2461      IsDefault = false;
2462      return object_error::success;
2463    }
2464    ++atpos;
2465    if (atpos < Name.size() && Name[atpos] == '@') {
2466      IsDefault = true;
2467      ++atpos;
2468    } else {
2469      IsDefault = false;
2470    }
2471    Version = Name.substr(atpos);
2472    return object_error::success;
2473  }
2474
2475  // This is a dynamic symbol. Look in the GNU symbol version table.
2476  if (dot_gnu_version_sec == NULL) {
2477    // No version table.
2478    Version = "";
2479    IsDefault = false;
2480    return object_error::success;
2481  }
2482
2483  // Determine the position in the symbol table of this entry.
2484  const char *sec_start = (const char*)base() + section->sh_offset;
2485  size_t entry_index = ((const char*)symb - sec_start)/section->sh_entsize;
2486
2487  // Get the corresponding version index entry
2488  const Elf_Versym *vs = getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
2489  size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
2490
2491  // Special markers for unversioned symbols.
2492  if (version_index == ELF::VER_NDX_LOCAL ||
2493      version_index == ELF::VER_NDX_GLOBAL) {
2494    Version = "";
2495    IsDefault = false;
2496    return object_error::success;
2497  }
2498
2499  // Lookup this symbol in the version table
2500  LoadVersionMap();
2501  if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
2502    report_fatal_error("Symbol has version index without corresponding "
2503                       "define or reference entry");
2504  const VersionMapEntry &entry = VersionMap[version_index];
2505
2506  // Get the version name string
2507  size_t name_offset;
2508  if (entry.isVerdef()) {
2509    // The first Verdaux entry holds the name.
2510    name_offset = entry.getVerdef()->getAux()->vda_name;
2511  } else {
2512    name_offset = entry.getVernaux()->vna_name;
2513  }
2514  Version = getString(dot_dynstr_sec, name_offset);
2515
2516  // Set IsDefault
2517  if (entry.isVerdef()) {
2518    IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
2519  } else {
2520    IsDefault = false;
2521  }
2522
2523  return object_error::success;
2524}
2525
2526template<support::endianness target_endianness, bool is64Bits>
2527inline DynRefImpl<target_endianness, is64Bits>
2528                 ::DynRefImpl(DataRefImpl DynP, const OwningType *Owner)
2529  : DynPimpl(DynP)
2530  , OwningObject(Owner) {}
2531
2532template<support::endianness target_endianness, bool is64Bits>
2533inline bool DynRefImpl<target_endianness, is64Bits>
2534                      ::operator==(const DynRefImpl &Other) const {
2535  return DynPimpl == Other.DynPimpl;
2536}
2537
2538template<support::endianness target_endianness, bool is64Bits>
2539inline bool DynRefImpl<target_endianness, is64Bits>
2540                      ::operator <(const DynRefImpl &Other) const {
2541  return DynPimpl < Other.DynPimpl;
2542}
2543
2544template<support::endianness target_endianness, bool is64Bits>
2545inline error_code DynRefImpl<target_endianness, is64Bits>
2546                            ::getNext(DynRefImpl &Result) const {
2547  return OwningObject->getDynNext(DynPimpl, Result);
2548}
2549
2550template<support::endianness target_endianness, bool is64Bits>
2551inline int64_t DynRefImpl<target_endianness, is64Bits>
2552                            ::getTag() const {
2553  return OwningObject->getDyn(DynPimpl)->d_tag;
2554}
2555
2556template<support::endianness target_endianness, bool is64Bits>
2557inline uint64_t DynRefImpl<target_endianness, is64Bits>
2558                            ::getVal() const {
2559  return OwningObject->getDyn(DynPimpl)->d_un.d_val;
2560}
2561
2562template<support::endianness target_endianness, bool is64Bits>
2563inline uint64_t DynRefImpl<target_endianness, is64Bits>
2564                            ::getPtr() const {
2565  return OwningObject->getDyn(DynPimpl)->d_un.d_ptr;
2566}
2567
2568template<support::endianness target_endianness, bool is64Bits>
2569inline DataRefImpl DynRefImpl<target_endianness, is64Bits>
2570                             ::getRawDataRefImpl() const {
2571  return DynPimpl;
2572}
2573
2574/// This is a generic interface for retrieving GNU symbol version
2575/// information from an ELFObjectFile.
2576static inline error_code GetELFSymbolVersion(const ObjectFile *Obj,
2577                                             const SymbolRef &Sym,
2578                                             StringRef &Version,
2579                                             bool &IsDefault) {
2580  // Little-endian 32-bit
2581  if (const ELFObjectFile<support::little, false> *ELFObj =
2582          dyn_cast<ELFObjectFile<support::little, false> >(Obj))
2583    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2584
2585  // Big-endian 32-bit
2586  if (const ELFObjectFile<support::big, false> *ELFObj =
2587          dyn_cast<ELFObjectFile<support::big, false> >(Obj))
2588    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2589
2590  // Little-endian 64-bit
2591  if (const ELFObjectFile<support::little, true> *ELFObj =
2592          dyn_cast<ELFObjectFile<support::little, true> >(Obj))
2593    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2594
2595  // Big-endian 64-bit
2596  if (const ELFObjectFile<support::big, true> *ELFObj =
2597          dyn_cast<ELFObjectFile<support::big, true> >(Obj))
2598    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2599
2600  llvm_unreachable("Object passed to GetELFSymbolVersion() is not ELF");
2601}
2602
2603}
2604}
2605
2606#endif
2607