1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DominatorTree class, which provides fast and efficient
11// dominance queries.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_DOMINATORS_H
16#define LLVM_ANALYSIS_DOMINATORS_H
17
18#include "llvm/Pass.h"
19#include "llvm/Function.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DepthFirstIterator.h"
22#include "llvm/ADT/GraphTraits.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/raw_ostream.h"
28#include <algorithm>
29
30namespace llvm {
31
32//===----------------------------------------------------------------------===//
33/// DominatorBase - Base class that other, more interesting dominator analyses
34/// inherit from.
35///
36template <class NodeT>
37class DominatorBase {
38protected:
39  std::vector<NodeT*> Roots;
40  const bool IsPostDominators;
41  inline explicit DominatorBase(bool isPostDom) :
42    Roots(), IsPostDominators(isPostDom) {}
43public:
44
45  /// getRoots - Return the root blocks of the current CFG.  This may include
46  /// multiple blocks if we are computing post dominators.  For forward
47  /// dominators, this will always be a single block (the entry node).
48  ///
49  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
50
51  /// isPostDominator - Returns true if analysis based of postdoms
52  ///
53  bool isPostDominator() const { return IsPostDominators; }
54};
55
56
57//===----------------------------------------------------------------------===//
58// DomTreeNode - Dominator Tree Node
59template<class NodeT> class DominatorTreeBase;
60struct PostDominatorTree;
61class MachineBasicBlock;
62
63template <class NodeT>
64class DomTreeNodeBase {
65  NodeT *TheBB;
66  DomTreeNodeBase<NodeT> *IDom;
67  std::vector<DomTreeNodeBase<NodeT> *> Children;
68  int DFSNumIn, DFSNumOut;
69
70  template<class N> friend class DominatorTreeBase;
71  friend struct PostDominatorTree;
72public:
73  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
74  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
75                   const_iterator;
76
77  iterator begin()             { return Children.begin(); }
78  iterator end()               { return Children.end(); }
79  const_iterator begin() const { return Children.begin(); }
80  const_iterator end()   const { return Children.end(); }
81
82  NodeT *getBlock() const { return TheBB; }
83  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
84  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
85    return Children;
86  }
87
88  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
89    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
90
91  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
92    Children.push_back(C);
93    return C;
94  }
95
96  size_t getNumChildren() const {
97    return Children.size();
98  }
99
100  void clearAllChildren() {
101    Children.clear();
102  }
103
104  bool compare(DomTreeNodeBase<NodeT> *Other) {
105    if (getNumChildren() != Other->getNumChildren())
106      return true;
107
108    SmallPtrSet<NodeT *, 4> OtherChildren;
109    for (iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
110      NodeT *Nd = (*I)->getBlock();
111      OtherChildren.insert(Nd);
112    }
113
114    for (iterator I = begin(), E = end(); I != E; ++I) {
115      NodeT *N = (*I)->getBlock();
116      if (OtherChildren.count(N) == 0)
117        return true;
118    }
119    return false;
120  }
121
122  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
123    assert(IDom && "No immediate dominator?");
124    if (IDom != NewIDom) {
125      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
126                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
127      assert(I != IDom->Children.end() &&
128             "Not in immediate dominator children set!");
129      // I am no longer your child...
130      IDom->Children.erase(I);
131
132      // Switch to new dominator
133      IDom = NewIDom;
134      IDom->Children.push_back(this);
135    }
136  }
137
138  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
139  /// not call them.
140  unsigned getDFSNumIn() const { return DFSNumIn; }
141  unsigned getDFSNumOut() const { return DFSNumOut; }
142private:
143  // Return true if this node is dominated by other. Use this only if DFS info
144  // is valid.
145  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
146    return this->DFSNumIn >= other->DFSNumIn &&
147      this->DFSNumOut <= other->DFSNumOut;
148  }
149};
150
151EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
152EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
153
154template<class NodeT>
155inline raw_ostream &operator<<(raw_ostream &o,
156                               const DomTreeNodeBase<NodeT> *Node) {
157  if (Node->getBlock())
158    WriteAsOperand(o, Node->getBlock(), false);
159  else
160    o << " <<exit node>>";
161
162  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
163
164  return o << "\n";
165}
166
167template<class NodeT>
168inline void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
169                         unsigned Lev) {
170  o.indent(2*Lev) << "[" << Lev << "] " << N;
171  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
172       E = N->end(); I != E; ++I)
173    PrintDomTree<NodeT>(*I, o, Lev+1);
174}
175
176typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
177
178//===----------------------------------------------------------------------===//
179/// DominatorTree - Calculate the immediate dominator tree for a function.
180///
181
182template<class FuncT, class N>
183void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
184               FuncT& F);
185
186template<class NodeT>
187class DominatorTreeBase : public DominatorBase<NodeT> {
188  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
189                               const DomTreeNodeBase<NodeT> *B) const {
190    assert(A != B);
191    assert(isReachableFromEntry(B));
192    assert(isReachableFromEntry(A));
193
194    const DomTreeNodeBase<NodeT> *IDom;
195    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
196      B = IDom;   // Walk up the tree
197    return IDom != 0;
198  }
199
200protected:
201  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
202  DomTreeNodeMapType DomTreeNodes;
203  DomTreeNodeBase<NodeT> *RootNode;
204
205  bool DFSInfoValid;
206  unsigned int SlowQueries;
207  // Information record used during immediate dominators computation.
208  struct InfoRec {
209    unsigned DFSNum;
210    unsigned Parent;
211    unsigned Semi;
212    NodeT *Label;
213
214    InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(0) {}
215  };
216
217  DenseMap<NodeT*, NodeT*> IDoms;
218
219  // Vertex - Map the DFS number to the BasicBlock*
220  std::vector<NodeT*> Vertex;
221
222  // Info - Collection of information used during the computation of idoms.
223  DenseMap<NodeT*, InfoRec> Info;
224
225  void reset() {
226    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
227           E = DomTreeNodes.end(); I != E; ++I)
228      delete I->second;
229    DomTreeNodes.clear();
230    IDoms.clear();
231    this->Roots.clear();
232    Vertex.clear();
233    RootNode = 0;
234  }
235
236  // NewBB is split and now it has one successor. Update dominator tree to
237  // reflect this change.
238  template<class N, class GraphT>
239  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
240             typename GraphT::NodeType* NewBB) {
241    assert(std::distance(GraphT::child_begin(NewBB),
242                         GraphT::child_end(NewBB)) == 1 &&
243           "NewBB should have a single successor!");
244    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
245
246    std::vector<typename GraphT::NodeType*> PredBlocks;
247    typedef GraphTraits<Inverse<N> > InvTraits;
248    for (typename InvTraits::ChildIteratorType PI =
249         InvTraits::child_begin(NewBB),
250         PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
251      PredBlocks.push_back(*PI);
252
253    assert(!PredBlocks.empty() && "No predblocks?");
254
255    bool NewBBDominatesNewBBSucc = true;
256    for (typename InvTraits::ChildIteratorType PI =
257         InvTraits::child_begin(NewBBSucc),
258         E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
259      typename InvTraits::NodeType *ND = *PI;
260      if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
261          DT.isReachableFromEntry(ND)) {
262        NewBBDominatesNewBBSucc = false;
263        break;
264      }
265    }
266
267    // Find NewBB's immediate dominator and create new dominator tree node for
268    // NewBB.
269    NodeT *NewBBIDom = 0;
270    unsigned i = 0;
271    for (i = 0; i < PredBlocks.size(); ++i)
272      if (DT.isReachableFromEntry(PredBlocks[i])) {
273        NewBBIDom = PredBlocks[i];
274        break;
275      }
276
277    // It's possible that none of the predecessors of NewBB are reachable;
278    // in that case, NewBB itself is unreachable, so nothing needs to be
279    // changed.
280    if (!NewBBIDom)
281      return;
282
283    for (i = i + 1; i < PredBlocks.size(); ++i) {
284      if (DT.isReachableFromEntry(PredBlocks[i]))
285        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
286    }
287
288    // Create the new dominator tree node... and set the idom of NewBB.
289    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
290
291    // If NewBB strictly dominates other blocks, then it is now the immediate
292    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
293    if (NewBBDominatesNewBBSucc) {
294      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
295      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
296    }
297  }
298
299public:
300  explicit DominatorTreeBase(bool isPostDom)
301    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
302  virtual ~DominatorTreeBase() { reset(); }
303
304  /// compare - Return false if the other dominator tree base matches this
305  /// dominator tree base. Otherwise return true.
306  bool compare(DominatorTreeBase &Other) const {
307
308    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
309    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
310      return true;
311
312    for (typename DomTreeNodeMapType::const_iterator
313           I = this->DomTreeNodes.begin(),
314           E = this->DomTreeNodes.end(); I != E; ++I) {
315      NodeT *BB = I->first;
316      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
317      if (OI == OtherDomTreeNodes.end())
318        return true;
319
320      DomTreeNodeBase<NodeT>* MyNd = I->second;
321      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
322
323      if (MyNd->compare(OtherNd))
324        return true;
325    }
326
327    return false;
328  }
329
330  virtual void releaseMemory() { reset(); }
331
332  /// getNode - return the (Post)DominatorTree node for the specified basic
333  /// block.  This is the same as using operator[] on this class.
334  ///
335  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
336    return DomTreeNodes.lookup(BB);
337  }
338
339  /// getRootNode - This returns the entry node for the CFG of the function.  If
340  /// this tree represents the post-dominance relations for a function, however,
341  /// this root may be a node with the block == NULL.  This is the case when
342  /// there are multiple exit nodes from a particular function.  Consumers of
343  /// post-dominance information must be capable of dealing with this
344  /// possibility.
345  ///
346  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
347  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
348
349  /// properlyDominates - Returns true iff this dominates N and this != N.
350  /// Note that this is not a constant time operation!
351  ///
352  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
353                         const DomTreeNodeBase<NodeT> *B) {
354    if (A == 0 || B == 0)
355      return false;
356    if (A == B)
357      return false;
358    return dominates(A, B);
359  }
360
361  bool properlyDominates(const NodeT *A, const NodeT *B);
362
363  /// isReachableFromEntry - Return true if A is dominated by the entry
364  /// block of the function containing it.
365  bool isReachableFromEntry(const NodeT* A) const {
366    assert(!this->isPostDominator() &&
367           "This is not implemented for post dominators");
368    return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
369  }
370
371  inline bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const {
372    return A;
373  }
374
375  /// dominates - Returns true iff A dominates B.  Note that this is not a
376  /// constant time operation!
377  ///
378  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
379                        const DomTreeNodeBase<NodeT> *B) {
380    // A node trivially dominates itself.
381    if (B == A)
382      return true;
383
384    // An unreachable node is dominated by anything.
385    if (!isReachableFromEntry(B))
386      return true;
387
388    // And dominates nothing.
389    if (!isReachableFromEntry(A))
390      return false;
391
392    // Compare the result of the tree walk and the dfs numbers, if expensive
393    // checks are enabled.
394#ifdef XDEBUG
395    assert((!DFSInfoValid ||
396            (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
397           "Tree walk disagrees with dfs numbers!");
398#endif
399
400    if (DFSInfoValid)
401      return B->DominatedBy(A);
402
403    // If we end up with too many slow queries, just update the
404    // DFS numbers on the theory that we are going to keep querying.
405    SlowQueries++;
406    if (SlowQueries > 32) {
407      updateDFSNumbers();
408      return B->DominatedBy(A);
409    }
410
411    return dominatedBySlowTreeWalk(A, B);
412  }
413
414  bool dominates(const NodeT *A, const NodeT *B);
415
416  NodeT *getRoot() const {
417    assert(this->Roots.size() == 1 && "Should always have entry node!");
418    return this->Roots[0];
419  }
420
421  /// findNearestCommonDominator - Find nearest common dominator basic block
422  /// for basic block A and B. If there is no such block then return NULL.
423  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
424    assert(A->getParent() == B->getParent() &&
425           "Two blocks are not in same function");
426
427    // If either A or B is a entry block then it is nearest common dominator
428    // (for forward-dominators).
429    if (!this->isPostDominator()) {
430      NodeT &Entry = A->getParent()->front();
431      if (A == &Entry || B == &Entry)
432        return &Entry;
433    }
434
435    // If B dominates A then B is nearest common dominator.
436    if (dominates(B, A))
437      return B;
438
439    // If A dominates B then A is nearest common dominator.
440    if (dominates(A, B))
441      return A;
442
443    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
444    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
445
446    // Collect NodeA dominators set.
447    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
448    NodeADoms.insert(NodeA);
449    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
450    while (IDomA) {
451      NodeADoms.insert(IDomA);
452      IDomA = IDomA->getIDom();
453    }
454
455    // Walk NodeB immediate dominators chain and find common dominator node.
456    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
457    while (IDomB) {
458      if (NodeADoms.count(IDomB) != 0)
459        return IDomB->getBlock();
460
461      IDomB = IDomB->getIDom();
462    }
463
464    return NULL;
465  }
466
467  const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
468    // Cast away the const qualifiers here. This is ok since
469    // const is re-introduced on the return type.
470    return findNearestCommonDominator(const_cast<NodeT *>(A),
471                                      const_cast<NodeT *>(B));
472  }
473
474  //===--------------------------------------------------------------------===//
475  // API to update (Post)DominatorTree information based on modifications to
476  // the CFG...
477
478  /// addNewBlock - Add a new node to the dominator tree information.  This
479  /// creates a new node as a child of DomBB dominator node,linking it into
480  /// the children list of the immediate dominator.
481  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
482    assert(getNode(BB) == 0 && "Block already in dominator tree!");
483    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
484    assert(IDomNode && "Not immediate dominator specified for block!");
485    DFSInfoValid = false;
486    return DomTreeNodes[BB] =
487      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
488  }
489
490  /// changeImmediateDominator - This method is used to update the dominator
491  /// tree information when a node's immediate dominator changes.
492  ///
493  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
494                                DomTreeNodeBase<NodeT> *NewIDom) {
495    assert(N && NewIDom && "Cannot change null node pointers!");
496    DFSInfoValid = false;
497    N->setIDom(NewIDom);
498  }
499
500  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
501    changeImmediateDominator(getNode(BB), getNode(NewBB));
502  }
503
504  /// eraseNode - Removes a node from the dominator tree. Block must not
505  /// dominate any other blocks. Removes node from its immediate dominator's
506  /// children list. Deletes dominator node associated with basic block BB.
507  void eraseNode(NodeT *BB) {
508    DomTreeNodeBase<NodeT> *Node = getNode(BB);
509    assert(Node && "Removing node that isn't in dominator tree.");
510    assert(Node->getChildren().empty() && "Node is not a leaf node.");
511
512      // Remove node from immediate dominator's children list.
513    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
514    if (IDom) {
515      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
516        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
517      assert(I != IDom->Children.end() &&
518             "Not in immediate dominator children set!");
519      // I am no longer your child...
520      IDom->Children.erase(I);
521    }
522
523    DomTreeNodes.erase(BB);
524    delete Node;
525  }
526
527  /// removeNode - Removes a node from the dominator tree.  Block must not
528  /// dominate any other blocks.  Invalidates any node pointing to removed
529  /// block.
530  void removeNode(NodeT *BB) {
531    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
532    DomTreeNodes.erase(BB);
533  }
534
535  /// splitBlock - BB is split and now it has one successor. Update dominator
536  /// tree to reflect this change.
537  void splitBlock(NodeT* NewBB) {
538    if (this->IsPostDominators)
539      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
540    else
541      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
542  }
543
544  /// print - Convert to human readable form
545  ///
546  void print(raw_ostream &o) const {
547    o << "=============================--------------------------------\n";
548    if (this->isPostDominator())
549      o << "Inorder PostDominator Tree: ";
550    else
551      o << "Inorder Dominator Tree: ";
552    if (!this->DFSInfoValid)
553      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
554    o << "\n";
555
556    // The postdom tree can have a null root if there are no returns.
557    if (getRootNode())
558      PrintDomTree<NodeT>(getRootNode(), o, 1);
559  }
560
561protected:
562  template<class GraphT>
563  friend typename GraphT::NodeType* Eval(
564                               DominatorTreeBase<typename GraphT::NodeType>& DT,
565                                         typename GraphT::NodeType* V,
566                                         unsigned LastLinked);
567
568  template<class GraphT>
569  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
570                          typename GraphT::NodeType* V,
571                          unsigned N);
572
573  template<class FuncT, class N>
574  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
575                        FuncT& F);
576
577  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
578  /// dominator tree in dfs order.
579  void updateDFSNumbers() {
580    unsigned DFSNum = 0;
581
582    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
583                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
584
585    DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
586
587    if (!ThisRoot)
588      return;
589
590    // Even in the case of multiple exits that form the post dominator root
591    // nodes, do not iterate over all exits, but start from the virtual root
592    // node. Otherwise bbs, that are not post dominated by any exit but by the
593    // virtual root node, will never be assigned a DFS number.
594    WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
595    ThisRoot->DFSNumIn = DFSNum++;
596
597    while (!WorkStack.empty()) {
598      DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
599      typename DomTreeNodeBase<NodeT>::iterator ChildIt =
600        WorkStack.back().second;
601
602      // If we visited all of the children of this node, "recurse" back up the
603      // stack setting the DFOutNum.
604      if (ChildIt == Node->end()) {
605        Node->DFSNumOut = DFSNum++;
606        WorkStack.pop_back();
607      } else {
608        // Otherwise, recursively visit this child.
609        DomTreeNodeBase<NodeT> *Child = *ChildIt;
610        ++WorkStack.back().second;
611
612        WorkStack.push_back(std::make_pair(Child, Child->begin()));
613        Child->DFSNumIn = DFSNum++;
614      }
615    }
616
617    SlowQueries = 0;
618    DFSInfoValid = true;
619  }
620
621  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
622    if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
623      return Node;
624
625    // Haven't calculated this node yet?  Get or calculate the node for the
626    // immediate dominator.
627    NodeT *IDom = getIDom(BB);
628
629    assert(IDom || this->DomTreeNodes[NULL]);
630    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
631
632    // Add a new tree node for this BasicBlock, and link it as a child of
633    // IDomNode
634    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
635    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
636  }
637
638  inline NodeT *getIDom(NodeT *BB) const {
639    return IDoms.lookup(BB);
640  }
641
642  inline void addRoot(NodeT* BB) {
643    this->Roots.push_back(BB);
644  }
645
646public:
647  /// recalculate - compute a dominator tree for the given function
648  template<class FT>
649  void recalculate(FT& F) {
650    typedef GraphTraits<FT*> TraitsTy;
651    reset();
652    this->Vertex.push_back(0);
653
654    if (!this->IsPostDominators) {
655      // Initialize root
656      NodeT *entry = TraitsTy::getEntryNode(&F);
657      this->Roots.push_back(entry);
658      this->IDoms[entry] = 0;
659      this->DomTreeNodes[entry] = 0;
660
661      Calculate<FT, NodeT*>(*this, F);
662    } else {
663      // Initialize the roots list
664      for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
665                                        E = TraitsTy::nodes_end(&F); I != E; ++I) {
666        if (std::distance(TraitsTy::child_begin(I),
667                          TraitsTy::child_end(I)) == 0)
668          addRoot(I);
669
670        // Prepopulate maps so that we don't get iterator invalidation issues later.
671        this->IDoms[I] = 0;
672        this->DomTreeNodes[I] = 0;
673      }
674
675      Calculate<FT, Inverse<NodeT*> >(*this, F);
676    }
677  }
678};
679
680// These two functions are declared out of line as a workaround for building
681// with old (< r147295) versions of clang because of pr11642.
682template<class NodeT>
683bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) {
684  if (A == B)
685    return true;
686
687  // Cast away the const qualifiers here. This is ok since
688  // this function doesn't actually return the values returned
689  // from getNode.
690  return dominates(getNode(const_cast<NodeT *>(A)),
691                   getNode(const_cast<NodeT *>(B)));
692}
693template<class NodeT>
694bool
695DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A, const NodeT *B) {
696  if (A == B)
697    return false;
698
699  // Cast away the const qualifiers here. This is ok since
700  // this function doesn't actually return the values returned
701  // from getNode.
702  return dominates(getNode(const_cast<NodeT *>(A)),
703                   getNode(const_cast<NodeT *>(B)));
704}
705
706EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
707
708class BasicBlockEdge {
709  const BasicBlock *Start;
710  const BasicBlock *End;
711public:
712  BasicBlockEdge(const BasicBlock *Start_, const BasicBlock *End_) :
713    Start(Start_), End(End_) { }
714  const BasicBlock *getStart() const {
715    return Start;
716  }
717  const BasicBlock *getEnd() const {
718    return End;
719  }
720  bool isSingleEdge() const;
721};
722
723//===-------------------------------------
724/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
725/// compute a normal dominator tree.
726///
727class DominatorTree : public FunctionPass {
728public:
729  static char ID; // Pass ID, replacement for typeid
730  DominatorTreeBase<BasicBlock>* DT;
731
732  DominatorTree() : FunctionPass(ID) {
733    initializeDominatorTreePass(*PassRegistry::getPassRegistry());
734    DT = new DominatorTreeBase<BasicBlock>(false);
735  }
736
737  ~DominatorTree() {
738    delete DT;
739  }
740
741  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
742
743  /// getRoots - Return the root blocks of the current CFG.  This may include
744  /// multiple blocks if we are computing post dominators.  For forward
745  /// dominators, this will always be a single block (the entry node).
746  ///
747  inline const std::vector<BasicBlock*> &getRoots() const {
748    return DT->getRoots();
749  }
750
751  inline BasicBlock *getRoot() const {
752    return DT->getRoot();
753  }
754
755  inline DomTreeNode *getRootNode() const {
756    return DT->getRootNode();
757  }
758
759  /// compare - Return false if the other dominator tree matches this
760  /// dominator tree. Otherwise return true.
761  inline bool compare(DominatorTree &Other) const {
762    DomTreeNode *R = getRootNode();
763    DomTreeNode *OtherR = Other.getRootNode();
764
765    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
766      return true;
767
768    if (DT->compare(Other.getBase()))
769      return true;
770
771    return false;
772  }
773
774  virtual bool runOnFunction(Function &F);
775
776  virtual void verifyAnalysis() const;
777
778  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
779    AU.setPreservesAll();
780  }
781
782  inline bool dominates(const DomTreeNode* A, const DomTreeNode* B) const {
783    return DT->dominates(A, B);
784  }
785
786  inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
787    return DT->dominates(A, B);
788  }
789
790  // dominates - Return true if Def dominates a use in User. This performs
791  // the special checks necessary if Def and User are in the same basic block.
792  // Note that Def doesn't dominate a use in Def itself!
793  bool dominates(const Instruction *Def, const Use &U) const;
794  bool dominates(const Instruction *Def, const Instruction *User) const;
795  bool dominates(const Instruction *Def, const BasicBlock *BB) const;
796  bool dominates(const BasicBlockEdge &BBE, const Use &U) const;
797  bool dominates(const BasicBlockEdge &BBE, const BasicBlock *BB) const;
798
799  bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
800    return DT->properlyDominates(A, B);
801  }
802
803  bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const {
804    return DT->properlyDominates(A, B);
805  }
806
807  /// findNearestCommonDominator - Find nearest common dominator basic block
808  /// for basic block A and B. If there is no such block then return NULL.
809  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
810    return DT->findNearestCommonDominator(A, B);
811  }
812
813  inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A,
814                                                      const BasicBlock *B) {
815    return DT->findNearestCommonDominator(A, B);
816  }
817
818  inline DomTreeNode *operator[](BasicBlock *BB) const {
819    return DT->getNode(BB);
820  }
821
822  /// getNode - return the (Post)DominatorTree node for the specified basic
823  /// block.  This is the same as using operator[] on this class.
824  ///
825  inline DomTreeNode *getNode(BasicBlock *BB) const {
826    return DT->getNode(BB);
827  }
828
829  /// addNewBlock - Add a new node to the dominator tree information.  This
830  /// creates a new node as a child of DomBB dominator node,linking it into
831  /// the children list of the immediate dominator.
832  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
833    return DT->addNewBlock(BB, DomBB);
834  }
835
836  /// changeImmediateDominator - This method is used to update the dominator
837  /// tree information when a node's immediate dominator changes.
838  ///
839  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
840    DT->changeImmediateDominator(N, NewIDom);
841  }
842
843  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
844    DT->changeImmediateDominator(N, NewIDom);
845  }
846
847  /// eraseNode - Removes a node from the dominator tree. Block must not
848  /// dominate any other blocks. Removes node from its immediate dominator's
849  /// children list. Deletes dominator node associated with basic block BB.
850  inline void eraseNode(BasicBlock *BB) {
851    DT->eraseNode(BB);
852  }
853
854  /// splitBlock - BB is split and now it has one successor. Update dominator
855  /// tree to reflect this change.
856  inline void splitBlock(BasicBlock* NewBB) {
857    DT->splitBlock(NewBB);
858  }
859
860  bool isReachableFromEntry(const BasicBlock* A) const {
861    return DT->isReachableFromEntry(A);
862  }
863
864  bool isReachableFromEntry(const Use &U) const;
865
866
867  virtual void releaseMemory() {
868    DT->releaseMemory();
869  }
870
871  virtual void print(raw_ostream &OS, const Module* M= 0) const;
872};
873
874//===-------------------------------------
875/// DominatorTree GraphTraits specialization so the DominatorTree can be
876/// iterable by generic graph iterators.
877///
878template <> struct GraphTraits<DomTreeNode*> {
879  typedef DomTreeNode NodeType;
880  typedef NodeType::iterator  ChildIteratorType;
881
882  static NodeType *getEntryNode(NodeType *N) {
883    return N;
884  }
885  static inline ChildIteratorType child_begin(NodeType *N) {
886    return N->begin();
887  }
888  static inline ChildIteratorType child_end(NodeType *N) {
889    return N->end();
890  }
891
892  typedef df_iterator<DomTreeNode*> nodes_iterator;
893
894  static nodes_iterator nodes_begin(DomTreeNode *N) {
895    return df_begin(getEntryNode(N));
896  }
897
898  static nodes_iterator nodes_end(DomTreeNode *N) {
899    return df_end(getEntryNode(N));
900  }
901};
902
903template <> struct GraphTraits<DominatorTree*>
904  : public GraphTraits<DomTreeNode*> {
905  static NodeType *getEntryNode(DominatorTree *DT) {
906    return DT->getRootNode();
907  }
908
909  static nodes_iterator nodes_begin(DominatorTree *N) {
910    return df_begin(getEntryNode(N));
911  }
912
913  static nodes_iterator nodes_end(DominatorTree *N) {
914    return df_end(getEntryNode(N));
915  }
916};
917
918
919} // End llvm namespace
920
921#endif
922