1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3
4<html>
5<head>
6  <title>Kaleidoscope: Extending the Language: Mutable Variables / SSA
7         construction</title>
8  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
9  <meta name="author" content="Chris Lattner">
10  <meta name="author" content="Erick Tryzelaar">
11  <link rel="stylesheet" href="/_static/llvm.css" type="text/css">
12</head>
13
14<body>
15
16<h1>Kaleidoscope: Extending the Language: Mutable Variables</h1>
17
18<ul>
19<li><a href="index.html">Up to Tutorial Index</a></li>
20<li>Chapter 7
21  <ol>
22    <li><a href="#intro">Chapter 7 Introduction</a></li>
23    <li><a href="#why">Why is this a hard problem?</a></li>
24    <li><a href="#memory">Memory in LLVM</a></li>
25    <li><a href="#kalvars">Mutable Variables in Kaleidoscope</a></li>
26    <li><a href="#adjustments">Adjusting Existing Variables for
27     Mutation</a></li>
28    <li><a href="#assignment">New Assignment Operator</a></li>
29    <li><a href="#localvars">User-defined Local Variables</a></li>
30    <li><a href="#code">Full Code Listing</a></li>
31  </ol>
32</li>
33<li><a href="OCamlLangImpl8.html">Chapter 8</a>: Conclusion and other useful LLVM
34 tidbits</li>
35</ul>
36
37<div class="doc_author">
38	<p>
39		Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
40		and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
41	</p>
42</div>
43
44<!-- *********************************************************************** -->
45<h2><a name="intro">Chapter 7 Introduction</a></h2>
46<!-- *********************************************************************** -->
47
48<div>
49
50<p>Welcome to Chapter 7 of the "<a href="index.html">Implementing a language
51with LLVM</a>" tutorial.  In chapters 1 through 6, we've built a very
52respectable, albeit simple, <a
53href="http://en.wikipedia.org/wiki/Functional_programming">functional
54programming language</a>.  In our journey, we learned some parsing techniques,
55how to build and represent an AST, how to build LLVM IR, and how to optimize
56the resultant code as well as JIT compile it.</p>
57
58<p>While Kaleidoscope is interesting as a functional language, the fact that it
59is functional makes it "too easy" to generate LLVM IR for it.  In particular, a
60functional language makes it very easy to build LLVM IR directly in <a
61href="http://en.wikipedia.org/wiki/Static_single_assignment_form">SSA form</a>.
62Since LLVM requires that the input code be in SSA form, this is a very nice
63property and it is often unclear to newcomers how to generate code for an
64imperative language with mutable variables.</p>
65
66<p>The short (and happy) summary of this chapter is that there is no need for
67your front-end to build SSA form: LLVM provides highly tuned and well tested
68support for this, though the way it works is a bit unexpected for some.</p>
69
70</div>
71
72<!-- *********************************************************************** -->
73<h2><a name="why">Why is this a hard problem?</a></h2>
74<!-- *********************************************************************** -->
75
76<div>
77
78<p>
79To understand why mutable variables cause complexities in SSA construction,
80consider this extremely simple C example:
81</p>
82
83<div class="doc_code">
84<pre>
85int G, H;
86int test(_Bool Condition) {
87  int X;
88  if (Condition)
89    X = G;
90  else
91    X = H;
92  return X;
93}
94</pre>
95</div>
96
97<p>In this case, we have the variable "X", whose value depends on the path
98executed in the program.  Because there are two different possible values for X
99before the return instruction, a PHI node is inserted to merge the two values.
100The LLVM IR that we want for this example looks like this:</p>
101
102<div class="doc_code">
103<pre>
104@G = weak global i32 0   ; type of @G is i32*
105@H = weak global i32 0   ; type of @H is i32*
106
107define i32 @test(i1 %Condition) {
108entry:
109  br i1 %Condition, label %cond_true, label %cond_false
110
111cond_true:
112  %X.0 = load i32* @G
113  br label %cond_next
114
115cond_false:
116  %X.1 = load i32* @H
117  br label %cond_next
118
119cond_next:
120  %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
121  ret i32 %X.2
122}
123</pre>
124</div>
125
126<p>In this example, the loads from the G and H global variables are explicit in
127the LLVM IR, and they live in the then/else branches of the if statement
128(cond_true/cond_false).  In order to merge the incoming values, the X.2 phi node
129in the cond_next block selects the right value to use based on where control
130flow is coming from: if control flow comes from the cond_false block, X.2 gets
131the value of X.1.  Alternatively, if control flow comes from cond_true, it gets
132the value of X.0.  The intent of this chapter is not to explain the details of
133SSA form.  For more information, see one of the many <a
134href="http://en.wikipedia.org/wiki/Static_single_assignment_form">online
135references</a>.</p>
136
137<p>The question for this article is "who places the phi nodes when lowering
138assignments to mutable variables?".  The issue here is that LLVM
139<em>requires</em> that its IR be in SSA form: there is no "non-ssa" mode for it.
140However, SSA construction requires non-trivial algorithms and data structures,
141so it is inconvenient and wasteful for every front-end to have to reproduce this
142logic.</p>
143
144</div>
145
146<!-- *********************************************************************** -->
147<h2><a name="memory">Memory in LLVM</a></h2>
148<!-- *********************************************************************** -->
149
150<div>
151
152<p>The 'trick' here is that while LLVM does require all register values to be
153in SSA form, it does not require (or permit) memory objects to be in SSA form.
154In the example above, note that the loads from G and H are direct accesses to
155G and H: they are not renamed or versioned.  This differs from some other
156compiler systems, which do try to version memory objects.  In LLVM, instead of
157encoding dataflow analysis of memory into the LLVM IR, it is handled with <a
158href="/WritingAnLLVMPass.html">Analysis Passes</a> which are computed on
159demand.</p>
160
161<p>
162With this in mind, the high-level idea is that we want to make a stack variable
163(which lives in memory, because it is on the stack) for each mutable object in
164a function.  To take advantage of this trick, we need to talk about how LLVM
165represents stack variables.
166</p>
167
168<p>In LLVM, all memory accesses are explicit with load/store instructions, and
169it is carefully designed not to have (or need) an "address-of" operator.  Notice
170how the type of the @G/@H global variables is actually "i32*" even though the
171variable is defined as "i32".  What this means is that @G defines <em>space</em>
172for an i32 in the global data area, but its <em>name</em> actually refers to the
173address for that space.  Stack variables work the same way, except that instead of
174being declared with global variable definitions, they are declared with the
175<a href="/LangRef.html#i_alloca">LLVM alloca instruction</a>:</p>
176
177<div class="doc_code">
178<pre>
179define i32 @example() {
180entry:
181  %X = alloca i32           ; type of %X is i32*.
182  ...
183  %tmp = load i32* %X       ; load the stack value %X from the stack.
184  %tmp2 = add i32 %tmp, 1   ; increment it
185  store i32 %tmp2, i32* %X  ; store it back
186  ...
187</pre>
188</div>
189
190<p>This code shows an example of how you can declare and manipulate a stack
191variable in the LLVM IR.  Stack memory allocated with the alloca instruction is
192fully general: you can pass the address of the stack slot to functions, you can
193store it in other variables, etc.  In our example above, we could rewrite the
194example to use the alloca technique to avoid using a PHI node:</p>
195
196<div class="doc_code">
197<pre>
198@G = weak global i32 0   ; type of @G is i32*
199@H = weak global i32 0   ; type of @H is i32*
200
201define i32 @test(i1 %Condition) {
202entry:
203  %X = alloca i32           ; type of %X is i32*.
204  br i1 %Condition, label %cond_true, label %cond_false
205
206cond_true:
207  %X.0 = load i32* @G
208        store i32 %X.0, i32* %X   ; Update X
209  br label %cond_next
210
211cond_false:
212  %X.1 = load i32* @H
213        store i32 %X.1, i32* %X   ; Update X
214  br label %cond_next
215
216cond_next:
217  %X.2 = load i32* %X       ; Read X
218  ret i32 %X.2
219}
220</pre>
221</div>
222
223<p>With this, we have discovered a way to handle arbitrary mutable variables
224without the need to create Phi nodes at all:</p>
225
226<ol>
227<li>Each mutable variable becomes a stack allocation.</li>
228<li>Each read of the variable becomes a load from the stack.</li>
229<li>Each update of the variable becomes a store to the stack.</li>
230<li>Taking the address of a variable just uses the stack address directly.</li>
231</ol>
232
233<p>While this solution has solved our immediate problem, it introduced another
234one: we have now apparently introduced a lot of stack traffic for very simple
235and common operations, a major performance problem.  Fortunately for us, the
236LLVM optimizer has a highly-tuned optimization pass named "mem2reg" that handles
237this case, promoting allocas like this into SSA registers, inserting Phi nodes
238as appropriate.  If you run this example through the pass, for example, you'll
239get:</p>
240
241<div class="doc_code">
242<pre>
243$ <b>llvm-as &lt; example.ll | opt -mem2reg | llvm-dis</b>
244@G = weak global i32 0
245@H = weak global i32 0
246
247define i32 @test(i1 %Condition) {
248entry:
249  br i1 %Condition, label %cond_true, label %cond_false
250
251cond_true:
252  %X.0 = load i32* @G
253  br label %cond_next
254
255cond_false:
256  %X.1 = load i32* @H
257  br label %cond_next
258
259cond_next:
260  %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
261  ret i32 %X.01
262}
263</pre>
264</div>
265
266<p>The mem2reg pass implements the standard "iterated dominance frontier"
267algorithm for constructing SSA form and has a number of optimizations that speed
268up (very common) degenerate cases. The mem2reg optimization pass is the answer
269to dealing with mutable variables, and we highly recommend that you depend on
270it.  Note that mem2reg only works on variables in certain circumstances:</p>
271
272<ol>
273<li>mem2reg is alloca-driven: it looks for allocas and if it can handle them, it
274promotes them.  It does not apply to global variables or heap allocations.</li>
275
276<li>mem2reg only looks for alloca instructions in the entry block of the
277function.  Being in the entry block guarantees that the alloca is only executed
278once, which makes analysis simpler.</li>
279
280<li>mem2reg only promotes allocas whose uses are direct loads and stores.  If
281the address of the stack object is passed to a function, or if any funny pointer
282arithmetic is involved, the alloca will not be promoted.</li>
283
284<li>mem2reg only works on allocas of <a
285href="/LangRef.html#t_classifications">first class</a>
286values (such as pointers, scalars and vectors), and only if the array size
287of the allocation is 1 (or missing in the .ll file).  mem2reg is not capable of
288promoting structs or arrays to registers.  Note that the "scalarrepl" pass is
289more powerful and can promote structs, "unions", and arrays in many cases.</li>
290
291</ol>
292
293<p>
294All of these properties are easy to satisfy for most imperative languages, and
295we'll illustrate it below with Kaleidoscope.  The final question you may be
296asking is: should I bother with this nonsense for my front-end?  Wouldn't it be
297better if I just did SSA construction directly, avoiding use of the mem2reg
298optimization pass?  In short, we strongly recommend that you use this technique
299for building SSA form, unless there is an extremely good reason not to.  Using
300this technique is:</p>
301
302<ul>
303<li>Proven and well tested: llvm-gcc and clang both use this technique for local
304mutable variables.  As such, the most common clients of LLVM are using this to
305handle a bulk of their variables.  You can be sure that bugs are found fast and
306fixed early.</li>
307
308<li>Extremely Fast: mem2reg has a number of special cases that make it fast in
309common cases as well as fully general.  For example, it has fast-paths for
310variables that are only used in a single block, variables that only have one
311assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc.
312</li>
313
314<li>Needed for debug info generation: <a href="/SourceLevelDebugging.html">
315Debug information in LLVM</a> relies on having the address of the variable
316exposed so that debug info can be attached to it.  This technique dovetails
317very naturally with this style of debug info.</li>
318</ul>
319
320<p>If nothing else, this makes it much easier to get your front-end up and
321running, and is very simple to implement.  Lets extend Kaleidoscope with mutable
322variables now!
323</p>
324
325</div>
326
327<!-- *********************************************************************** -->
328<h2><a name="kalvars">Mutable Variables in Kaleidoscope</a></h2>
329<!-- *********************************************************************** -->
330
331<div>
332
333<p>Now that we know the sort of problem we want to tackle, lets see what this
334looks like in the context of our little Kaleidoscope language.  We're going to
335add two features:</p>
336
337<ol>
338<li>The ability to mutate variables with the '=' operator.</li>
339<li>The ability to define new variables.</li>
340</ol>
341
342<p>While the first item is really what this is about, we only have variables
343for incoming arguments as well as for induction variables, and redefining those only
344goes so far :).  Also, the ability to define new variables is a
345useful thing regardless of whether you will be mutating them.  Here's a
346motivating example that shows how we could use these:</p>
347
348<div class="doc_code">
349<pre>
350# Define ':' for sequencing: as a low-precedence operator that ignores operands
351# and just returns the RHS.
352def binary : 1 (x y) y;
353
354# Recursive fib, we could do this before.
355def fib(x)
356  if (x &lt; 3) then
357    1
358  else
359    fib(x-1)+fib(x-2);
360
361# Iterative fib.
362def fibi(x)
363  <b>var a = 1, b = 1, c in</b>
364  (for i = 3, i &lt; x in
365     <b>c = a + b</b> :
366     <b>a = b</b> :
367     <b>b = c</b>) :
368  b;
369
370# Call it.
371fibi(10);
372</pre>
373</div>
374
375<p>
376In order to mutate variables, we have to change our existing variables to use
377the "alloca trick".  Once we have that, we'll add our new operator, then extend
378Kaleidoscope to support new variable definitions.
379</p>
380
381</div>
382
383<!-- *********************************************************************** -->
384<h2><a name="adjustments">Adjusting Existing Variables for Mutation</a></h2>
385<!-- *********************************************************************** -->
386
387<div>
388
389<p>
390The symbol table in Kaleidoscope is managed at code generation time by the
391'<tt>named_values</tt>' map.  This map currently keeps track of the LLVM
392"Value*" that holds the double value for the named variable.  In order to
393support mutation, we need to change this slightly, so that it
394<tt>named_values</tt> holds the <em>memory location</em> of the variable in
395question.  Note that this change is a refactoring: it changes the structure of
396the code, but does not (by itself) change the behavior of the compiler.  All of
397these changes are isolated in the Kaleidoscope code generator.</p>
398
399<p>
400At this point in Kaleidoscope's development, it only supports variables for two
401things: incoming arguments to functions and the induction variable of 'for'
402loops.  For consistency, we'll allow mutation of these variables in addition to
403other user-defined variables.  This means that these will both need memory
404locations.
405</p>
406
407<p>To start our transformation of Kaleidoscope, we'll change the
408<tt>named_values</tt> map so that it maps to AllocaInst* instead of Value*.
409Once we do this, the C++ compiler will tell us what parts of the code we need to
410update:</p>
411
412<p><b>Note:</b> the ocaml bindings currently model both <tt>Value*</tt>s and
413<tt>AllocInst*</tt>s as <tt>Llvm.llvalue</tt>s, but this may change in the
414future to be more type safe.</p>
415
416<div class="doc_code">
417<pre>
418let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
419</pre>
420</div>
421
422<p>Also, since we will need to create these alloca's, we'll use a helper
423function that ensures that the allocas are created in the entry block of the
424function:</p>
425
426<div class="doc_code">
427<pre>
428(* Create an alloca instruction in the entry block of the function. This
429 * is used for mutable variables etc. *)
430let create_entry_block_alloca the_function var_name =
431  let builder = builder_at (instr_begin (entry_block the_function)) in
432  build_alloca double_type var_name builder
433</pre>
434</div>
435
436<p>This funny looking code creates an <tt>Llvm.llbuilder</tt> object that is
437pointing at the first instruction of the entry block.  It then creates an alloca
438with the expected name and returns it.  Because all values in Kaleidoscope are
439doubles, there is no need to pass in a type to use.</p>
440
441<p>With this in place, the first functionality change we want to make is to
442variable references.  In our new scheme, variables live on the stack, so code
443generating a reference to them actually needs to produce a load from the stack
444slot:</p>
445
446<div class="doc_code">
447<pre>
448let rec codegen_expr = function
449  ...
450  | Ast.Variable name -&gt;
451      let v = try Hashtbl.find named_values name with
452        | Not_found -&gt; raise (Error "unknown variable name")
453      in
454      <b>(* Load the value. *)
455      build_load v name builder</b>
456</pre>
457</div>
458
459<p>As you can see, this is pretty straightforward.  Now we need to update the
460things that define the variables to set up the alloca.  We'll start with
461<tt>codegen_expr Ast.For ...</tt> (see the <a href="#code">full code listing</a>
462for the unabridged code):</p>
463
464<div class="doc_code">
465<pre>
466  | Ast.For (var_name, start, end_, step, body) -&gt;
467      let the_function = block_parent (insertion_block builder) in
468
469      (* Create an alloca for the variable in the entry block. *)
470      <b>let alloca = create_entry_block_alloca the_function var_name in</b>
471
472      (* Emit the start code first, without 'variable' in scope. *)
473      let start_val = codegen_expr start in
474
475      <b>(* Store the value into the alloca. *)
476      ignore(build_store start_val alloca builder);</b>
477
478      ...
479
480      (* Within the loop, the variable is defined equal to the PHI node. If it
481       * shadows an existing variable, we have to restore it, so save it
482       * now. *)
483      let old_val =
484        try Some (Hashtbl.find named_values var_name) with Not_found -&gt; None
485      in
486      <b>Hashtbl.add named_values var_name alloca;</b>
487
488      ...
489
490      (* Compute the end condition. *)
491      let end_cond = codegen_expr end_ in
492
493      <b>(* Reload, increment, and restore the alloca. This handles the case where
494       * the body of the loop mutates the variable. *)
495      let cur_var = build_load alloca var_name builder in
496      let next_var = build_add cur_var step_val "nextvar" builder in
497      ignore(build_store next_var alloca builder);</b>
498      ...
499</pre>
500</div>
501
502<p>This code is virtually identical to the code <a
503href="OCamlLangImpl5.html#forcodegen">before we allowed mutable variables</a>.
504The big difference is that we no longer have to construct a PHI node, and we use
505load/store to access the variable as needed.</p>
506
507<p>To support mutable argument variables, we need to also make allocas for them.
508The code for this is also pretty simple:</p>
509
510<div class="doc_code">
511<pre>
512(* Create an alloca for each argument and register the argument in the symbol
513 * table so that references to it will succeed. *)
514let create_argument_allocas the_function proto =
515  let args = match proto with
516    | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -&gt; args
517  in
518  Array.iteri (fun i ai -&gt;
519    let var_name = args.(i) in
520    (* Create an alloca for this variable. *)
521    let alloca = create_entry_block_alloca the_function var_name in
522
523    (* Store the initial value into the alloca. *)
524    ignore(build_store ai alloca builder);
525
526    (* Add arguments to variable symbol table. *)
527    Hashtbl.add named_values var_name alloca;
528  ) (params the_function)
529</pre>
530</div>
531
532<p>For each argument, we make an alloca, store the input value to the function
533into the alloca, and register the alloca as the memory location for the
534argument.  This method gets invoked by <tt>Codegen.codegen_func</tt> right after
535it sets up the entry block for the function.</p>
536
537<p>The final missing piece is adding the mem2reg pass, which allows us to get
538good codegen once again:</p>
539
540<div class="doc_code">
541<pre>
542let main () =
543  ...
544  let the_fpm = PassManager.create_function Codegen.the_module in
545
546  (* Set up the optimizer pipeline.  Start with registering info about how the
547   * target lays out data structures. *)
548  TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
549
550  <b>(* Promote allocas to registers. *)
551  add_memory_to_register_promotion the_fpm;</b>
552
553  (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
554  add_instruction_combining the_fpm;
555
556  (* reassociate expressions. *)
557  add_reassociation the_fpm;
558</pre>
559</div>
560
561<p>It is interesting to see what the code looks like before and after the
562mem2reg optimization runs.  For example, this is the before/after code for our
563recursive fib function.  Before the optimization:</p>
564
565<div class="doc_code">
566<pre>
567define double @fib(double %x) {
568entry:
569  <b>%x1 = alloca double
570  store double %x, double* %x1
571  %x2 = load double* %x1</b>
572  %cmptmp = fcmp ult double %x2, 3.000000e+00
573  %booltmp = uitofp i1 %cmptmp to double
574  %ifcond = fcmp one double %booltmp, 0.000000e+00
575  br i1 %ifcond, label %then, label %else
576
577then:    ; preds = %entry
578  br label %ifcont
579
580else:    ; preds = %entry
581  <b>%x3 = load double* %x1</b>
582  %subtmp = fsub double %x3, 1.000000e+00
583  %calltmp = call double @fib(double %subtmp)
584  <b>%x4 = load double* %x1</b>
585  %subtmp5 = fsub double %x4, 2.000000e+00
586  %calltmp6 = call double @fib(double %subtmp5)
587  %addtmp = fadd double %calltmp, %calltmp6
588  br label %ifcont
589
590ifcont:    ; preds = %else, %then
591  %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
592  ret double %iftmp
593}
594</pre>
595</div>
596
597<p>Here there is only one variable (x, the input argument) but you can still
598see the extremely simple-minded code generation strategy we are using.  In the
599entry block, an alloca is created, and the initial input value is stored into
600it.  Each reference to the variable does a reload from the stack.  Also, note
601that we didn't modify the if/then/else expression, so it still inserts a PHI
602node.  While we could make an alloca for it, it is actually easier to create a
603PHI node for it, so we still just make the PHI.</p>
604
605<p>Here is the code after the mem2reg pass runs:</p>
606
607<div class="doc_code">
608<pre>
609define double @fib(double %x) {
610entry:
611  %cmptmp = fcmp ult double <b>%x</b>, 3.000000e+00
612  %booltmp = uitofp i1 %cmptmp to double
613  %ifcond = fcmp one double %booltmp, 0.000000e+00
614  br i1 %ifcond, label %then, label %else
615
616then:
617  br label %ifcont
618
619else:
620  %subtmp = fsub double <b>%x</b>, 1.000000e+00
621  %calltmp = call double @fib(double %subtmp)
622  %subtmp5 = fsub double <b>%x</b>, 2.000000e+00
623  %calltmp6 = call double @fib(double %subtmp5)
624  %addtmp = fadd double %calltmp, %calltmp6
625  br label %ifcont
626
627ifcont:    ; preds = %else, %then
628  %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
629  ret double %iftmp
630}
631</pre>
632</div>
633
634<p>This is a trivial case for mem2reg, since there are no redefinitions of the
635variable.  The point of showing this is to calm your tension about inserting
636such blatent inefficiencies :).</p>
637
638<p>After the rest of the optimizers run, we get:</p>
639
640<div class="doc_code">
641<pre>
642define double @fib(double %x) {
643entry:
644  %cmptmp = fcmp ult double %x, 3.000000e+00
645  %booltmp = uitofp i1 %cmptmp to double
646  %ifcond = fcmp ueq double %booltmp, 0.000000e+00
647  br i1 %ifcond, label %else, label %ifcont
648
649else:
650  %subtmp = fsub double %x, 1.000000e+00
651  %calltmp = call double @fib(double %subtmp)
652  %subtmp5 = fsub double %x, 2.000000e+00
653  %calltmp6 = call double @fib(double %subtmp5)
654  %addtmp = fadd double %calltmp, %calltmp6
655  ret double %addtmp
656
657ifcont:
658  ret double 1.000000e+00
659}
660</pre>
661</div>
662
663<p>Here we see that the simplifycfg pass decided to clone the return instruction
664into the end of the 'else' block.  This allowed it to eliminate some branches
665and the PHI node.</p>
666
667<p>Now that all symbol table references are updated to use stack variables,
668we'll add the assignment operator.</p>
669
670</div>
671
672<!-- *********************************************************************** -->
673<h2><a name="assignment">New Assignment Operator</a></h2>
674<!-- *********************************************************************** -->
675
676<div>
677
678<p>With our current framework, adding a new assignment operator is really
679simple.  We will parse it just like any other binary operator, but handle it
680internally (instead of allowing the user to define it).  The first step is to
681set a precedence:</p>
682
683<div class="doc_code">
684<pre>
685let main () =
686  (* Install standard binary operators.
687   * 1 is the lowest precedence. *)
688  <b>Hashtbl.add Parser.binop_precedence '=' 2;</b>
689  Hashtbl.add Parser.binop_precedence '&lt;' 10;
690  Hashtbl.add Parser.binop_precedence '+' 20;
691  Hashtbl.add Parser.binop_precedence '-' 20;
692  ...
693</pre>
694</div>
695
696<p>Now that the parser knows the precedence of the binary operator, it takes
697care of all the parsing and AST generation.  We just need to implement codegen
698for the assignment operator.  This looks like:</p>
699
700<div class="doc_code">
701<pre>
702let rec codegen_expr = function
703      begin match op with
704      | '=' -&gt;
705          (* Special case '=' because we don't want to emit the LHS as an
706           * expression. *)
707          let name =
708            match lhs with
709            | Ast.Variable name -&gt; name
710            | _ -&gt; raise (Error "destination of '=' must be a variable")
711          in
712</pre>
713</div>
714
715<p>Unlike the rest of the binary operators, our assignment operator doesn't
716follow the "emit LHS, emit RHS, do computation" model.  As such, it is handled
717as a special case before the other binary operators are handled.  The other
718strange thing is that it requires the LHS to be a variable.  It is invalid to
719have "(x+1) = expr" - only things like "x = expr" are allowed.
720</p>
721
722
723<div class="doc_code">
724<pre>
725          (* Codegen the rhs. *)
726          let val_ = codegen_expr rhs in
727
728          (* Lookup the name. *)
729          let variable = try Hashtbl.find named_values name with
730          | Not_found -&gt; raise (Error "unknown variable name")
731          in
732          ignore(build_store val_ variable builder);
733          val_
734      | _ -&gt;
735			...
736</pre>
737</div>
738
739<p>Once we have the variable, codegen'ing the assignment is straightforward:
740we emit the RHS of the assignment, create a store, and return the computed
741value.  Returning a value allows for chained assignments like "X = (Y = Z)".</p>
742
743<p>Now that we have an assignment operator, we can mutate loop variables and
744arguments.  For example, we can now run code like this:</p>
745
746<div class="doc_code">
747<pre>
748# Function to print a double.
749extern printd(x);
750
751# Define ':' for sequencing: as a low-precedence operator that ignores operands
752# and just returns the RHS.
753def binary : 1 (x y) y;
754
755def test(x)
756  printd(x) :
757  x = 4 :
758  printd(x);
759
760test(123);
761</pre>
762</div>
763
764<p>When run, this example prints "123" and then "4", showing that we did
765actually mutate the value!  Okay, we have now officially implemented our goal:
766getting this to work requires SSA construction in the general case.  However,
767to be really useful, we want the ability to define our own local variables, lets
768add this next!
769</p>
770
771</div>
772
773<!-- *********************************************************************** -->
774<h2><a name="localvars">User-defined Local Variables</a></h2>
775<!-- *********************************************************************** -->
776
777<div>
778
779<p>Adding var/in is just like any other other extensions we made to
780Kaleidoscope: we extend the lexer, the parser, the AST and the code generator.
781The first step for adding our new 'var/in' construct is to extend the lexer.
782As before, this is pretty trivial, the code looks like this:</p>
783
784<div class="doc_code">
785<pre>
786type token =
787  ...
788  <b>(* var definition *)
789  | Var</b>
790
791...
792
793and lex_ident buffer = parser
794      ...
795      | "in" -&gt; [&lt; 'Token.In; stream &gt;]
796      | "binary" -&gt; [&lt; 'Token.Binary; stream &gt;]
797      | "unary" -&gt; [&lt; 'Token.Unary; stream &gt;]
798      <b>| "var" -&gt; [&lt; 'Token.Var; stream &gt;]</b>
799      ...
800</pre>
801</div>
802
803<p>The next step is to define the AST node that we will construct.  For var/in,
804it looks like this:</p>
805
806<div class="doc_code">
807<pre>
808type expr =
809  ...
810  (* variant for var/in. *)
811  | Var of (string * expr option) array * expr
812  ...
813</pre>
814</div>
815
816<p>var/in allows a list of names to be defined all at once, and each name can
817optionally have an initializer value.  As such, we capture this information in
818the VarNames vector.  Also, var/in has a body, this body is allowed to access
819the variables defined by the var/in.</p>
820
821<p>With this in place, we can define the parser pieces.  The first thing we do
822is add it as a primary expression:</p>
823
824<div class="doc_code">
825<pre>
826(* primary
827 *   ::= identifier
828 *   ::= numberexpr
829 *   ::= parenexpr
830 *   ::= ifexpr
831 *   ::= forexpr
832 <b>*   ::= varexpr</b> *)
833let rec parse_primary = parser
834  ...
835  <b>(* varexpr
836   *   ::= 'var' identifier ('=' expression?
837   *             (',' identifier ('=' expression)?)* 'in' expression *)
838  | [&lt; 'Token.Var;
839       (* At least one variable name is required. *)
840       'Token.Ident id ?? "expected identifier after var";
841       init=parse_var_init;
842       var_names=parse_var_names [(id, init)];
843       (* At this point, we have to have 'in'. *)
844       'Token.In ?? "expected 'in' keyword after 'var'";
845       body=parse_expr &gt;] -&gt;
846      Ast.Var (Array.of_list (List.rev var_names), body)</b>
847
848...
849
850and parse_var_init = parser
851  (* read in the optional initializer. *)
852  | [&lt; 'Token.Kwd '='; e=parse_expr &gt;] -&gt; Some e
853  | [&lt; &gt;] -&gt; None
854
855and parse_var_names accumulator = parser
856  | [&lt; 'Token.Kwd ',';
857       'Token.Ident id ?? "expected identifier list after var";
858       init=parse_var_init;
859       e=parse_var_names ((id, init) :: accumulator) &gt;] -&gt; e
860  | [&lt; &gt;] -&gt; accumulator
861</pre>
862</div>
863
864<p>Now that we can parse and represent the code, we need to support emission of
865LLVM IR for it.  This code starts out with:</p>
866
867<div class="doc_code">
868<pre>
869let rec codegen_expr = function
870  ...
871  | Ast.Var (var_names, body)
872      let old_bindings = ref [] in
873
874      let the_function = block_parent (insertion_block builder) in
875
876      (* Register all variables and emit their initializer. *)
877      Array.iter (fun (var_name, init) -&gt;
878</pre>
879</div>
880
881<p>Basically it loops over all the variables, installing them one at a time.
882For each variable we put into the symbol table, we remember the previous value
883that we replace in OldBindings.</p>
884
885<div class="doc_code">
886<pre>
887        (* Emit the initializer before adding the variable to scope, this
888         * prevents the initializer from referencing the variable itself, and
889         * permits stuff like this:
890         *   var a = 1 in
891         *     var a = a in ...   # refers to outer 'a'. *)
892        let init_val =
893          match init with
894          | Some init -&gt; codegen_expr init
895          (* If not specified, use 0.0. *)
896          | None -&gt; const_float double_type 0.0
897        in
898
899        let alloca = create_entry_block_alloca the_function var_name in
900        ignore(build_store init_val alloca builder);
901
902        (* Remember the old variable binding so that we can restore the binding
903         * when we unrecurse. *)
904
905        begin
906          try
907            let old_value = Hashtbl.find named_values var_name in
908            old_bindings := (var_name, old_value) :: !old_bindings;
909          with Not_found &gt; ()
910        end;
911
912        (* Remember this binding. *)
913        Hashtbl.add named_values var_name alloca;
914      ) var_names;
915</pre>
916</div>
917
918<p>There are more comments here than code.  The basic idea is that we emit the
919initializer, create the alloca, then update the symbol table to point to it.
920Once all the variables are installed in the symbol table, we evaluate the body
921of the var/in expression:</p>
922
923<div class="doc_code">
924<pre>
925      (* Codegen the body, now that all vars are in scope. *)
926      let body_val = codegen_expr body in
927</pre>
928</div>
929
930<p>Finally, before returning, we restore the previous variable bindings:</p>
931
932<div class="doc_code">
933<pre>
934      (* Pop all our variables from scope. *)
935      List.iter (fun (var_name, old_value) -&gt;
936        Hashtbl.add named_values var_name old_value
937      ) !old_bindings;
938
939      (* Return the body computation. *)
940      body_val
941</pre>
942</div>
943
944<p>The end result of all of this is that we get properly scoped variable
945definitions, and we even (trivially) allow mutation of them :).</p>
946
947<p>With this, we completed what we set out to do.  Our nice iterative fib
948example from the intro compiles and runs just fine.  The mem2reg pass optimizes
949all of our stack variables into SSA registers, inserting PHI nodes where needed,
950and our front-end remains simple: no "iterated dominance frontier" computation
951anywhere in sight.</p>
952
953</div>
954
955<!-- *********************************************************************** -->
956<h2><a name="code">Full Code Listing</a></h2>
957<!-- *********************************************************************** -->
958
959<div>
960
961<p>
962Here is the complete code listing for our running example, enhanced with mutable
963variables and var/in support.  To build this example, use:
964</p>
965
966<div class="doc_code">
967<pre>
968# Compile
969ocamlbuild toy.byte
970# Run
971/toy.byte
972</pre>
973</div>
974
975<p>Here is the code:</p>
976
977<dl>
978<dt>_tags:</dt>
979<dd class="doc_code">
980<pre>
981&lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
982&lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
983&lt;*.{byte,native}&gt;: use_llvm_executionengine, use_llvm_target
984&lt;*.{byte,native}&gt;: use_llvm_scalar_opts, use_bindings
985</pre>
986</dd>
987
988<dt>myocamlbuild.ml:</dt>
989<dd class="doc_code">
990<pre>
991open Ocamlbuild_plugin;;
992
993ocaml_lib ~extern:true "llvm";;
994ocaml_lib ~extern:true "llvm_analysis";;
995ocaml_lib ~extern:true "llvm_executionengine";;
996ocaml_lib ~extern:true "llvm_target";;
997ocaml_lib ~extern:true "llvm_scalar_opts";;
998
999flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"; A"-cclib"; A"-rdynamic"]);;
1000dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
1001</pre>
1002</dd>
1003
1004<dt>token.ml:</dt>
1005<dd class="doc_code">
1006<pre>
1007(*===----------------------------------------------------------------------===
1008 * Lexer Tokens
1009 *===----------------------------------------------------------------------===*)
1010
1011(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
1012 * these others for known things. *)
1013type token =
1014  (* commands *)
1015  | Def | Extern
1016
1017  (* primary *)
1018  | Ident of string | Number of float
1019
1020  (* unknown *)
1021  | Kwd of char
1022
1023  (* control *)
1024  | If | Then | Else
1025  | For | In
1026
1027  (* operators *)
1028  | Binary | Unary
1029
1030  (* var definition *)
1031  | Var
1032</pre>
1033</dd>
1034
1035<dt>lexer.ml:</dt>
1036<dd class="doc_code">
1037<pre>
1038(*===----------------------------------------------------------------------===
1039 * Lexer
1040 *===----------------------------------------------------------------------===*)
1041
1042let rec lex = parser
1043  (* Skip any whitespace. *)
1044  | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
1045
1046  (* identifier: [a-zA-Z][a-zA-Z0-9] *)
1047  | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
1048      let buffer = Buffer.create 1 in
1049      Buffer.add_char buffer c;
1050      lex_ident buffer stream
1051
1052  (* number: [0-9.]+ *)
1053  | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
1054      let buffer = Buffer.create 1 in
1055      Buffer.add_char buffer c;
1056      lex_number buffer stream
1057
1058  (* Comment until end of line. *)
1059  | [&lt; ' ('#'); stream &gt;] -&gt;
1060      lex_comment stream
1061
1062  (* Otherwise, just return the character as its ascii value. *)
1063  | [&lt; 'c; stream &gt;] -&gt;
1064      [&lt; 'Token.Kwd c; lex stream &gt;]
1065
1066  (* end of stream. *)
1067  | [&lt; &gt;] -&gt; [&lt; &gt;]
1068
1069and lex_number buffer = parser
1070  | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
1071      Buffer.add_char buffer c;
1072      lex_number buffer stream
1073  | [&lt; stream=lex &gt;] -&gt;
1074      [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
1075
1076and lex_ident buffer = parser
1077  | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
1078      Buffer.add_char buffer c;
1079      lex_ident buffer stream
1080  | [&lt; stream=lex &gt;] -&gt;
1081      match Buffer.contents buffer with
1082      | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
1083      | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
1084      | "if" -&gt; [&lt; 'Token.If; stream &gt;]
1085      | "then" -&gt; [&lt; 'Token.Then; stream &gt;]
1086      | "else" -&gt; [&lt; 'Token.Else; stream &gt;]
1087      | "for" -&gt; [&lt; 'Token.For; stream &gt;]
1088      | "in" -&gt; [&lt; 'Token.In; stream &gt;]
1089      | "binary" -&gt; [&lt; 'Token.Binary; stream &gt;]
1090      | "unary" -&gt; [&lt; 'Token.Unary; stream &gt;]
1091      | "var" -&gt; [&lt; 'Token.Var; stream &gt;]
1092      | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
1093
1094and lex_comment = parser
1095  | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
1096  | [&lt; 'c; e=lex_comment &gt;] -&gt; e
1097  | [&lt; &gt;] -&gt; [&lt; &gt;]
1098</pre>
1099</dd>
1100
1101<dt>ast.ml:</dt>
1102<dd class="doc_code">
1103<pre>
1104(*===----------------------------------------------------------------------===
1105 * Abstract Syntax Tree (aka Parse Tree)
1106 *===----------------------------------------------------------------------===*)
1107
1108(* expr - Base type for all expression nodes. *)
1109type expr =
1110  (* variant for numeric literals like "1.0". *)
1111  | Number of float
1112
1113  (* variant for referencing a variable, like "a". *)
1114  | Variable of string
1115
1116  (* variant for a unary operator. *)
1117  | Unary of char * expr
1118
1119  (* variant for a binary operator. *)
1120  | Binary of char * expr * expr
1121
1122  (* variant for function calls. *)
1123  | Call of string * expr array
1124
1125  (* variant for if/then/else. *)
1126  | If of expr * expr * expr
1127
1128  (* variant for for/in. *)
1129  | For of string * expr * expr * expr option * expr
1130
1131  (* variant for var/in. *)
1132  | Var of (string * expr option) array * expr
1133
1134(* proto - This type represents the "prototype" for a function, which captures
1135 * its name, and its argument names (thus implicitly the number of arguments the
1136 * function takes). *)
1137type proto =
1138  | Prototype of string * string array
1139  | BinOpPrototype of string * string array * int
1140
1141(* func - This type represents a function definition itself. *)
1142type func = Function of proto * expr
1143</pre>
1144</dd>
1145
1146<dt>parser.ml:</dt>
1147<dd class="doc_code">
1148<pre>
1149(*===---------------------------------------------------------------------===
1150 * Parser
1151 *===---------------------------------------------------------------------===*)
1152
1153(* binop_precedence - This holds the precedence for each binary operator that is
1154 * defined *)
1155let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
1156
1157(* precedence - Get the precedence of the pending binary operator token. *)
1158let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
1159
1160(* primary
1161 *   ::= identifier
1162 *   ::= numberexpr
1163 *   ::= parenexpr
1164 *   ::= ifexpr
1165 *   ::= forexpr
1166 *   ::= varexpr *)
1167let rec parse_primary = parser
1168  (* numberexpr ::= number *)
1169  | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
1170
1171  (* parenexpr ::= '(' expression ')' *)
1172  | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
1173
1174  (* identifierexpr
1175   *   ::= identifier
1176   *   ::= identifier '(' argumentexpr ')' *)
1177  | [&lt; 'Token.Ident id; stream &gt;] -&gt;
1178      let rec parse_args accumulator = parser
1179        | [&lt; e=parse_expr; stream &gt;] -&gt;
1180            begin parser
1181              | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
1182              | [&lt; &gt;] -&gt; e :: accumulator
1183            end stream
1184        | [&lt; &gt;] -&gt; accumulator
1185      in
1186      let rec parse_ident id = parser
1187        (* Call. *)
1188        | [&lt; 'Token.Kwd '(';
1189             args=parse_args [];
1190             'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
1191            Ast.Call (id, Array.of_list (List.rev args))
1192
1193        (* Simple variable ref. *)
1194        | [&lt; &gt;] -&gt; Ast.Variable id
1195      in
1196      parse_ident id stream
1197
1198  (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
1199  | [&lt; 'Token.If; c=parse_expr;
1200       'Token.Then ?? "expected 'then'"; t=parse_expr;
1201       'Token.Else ?? "expected 'else'"; e=parse_expr &gt;] -&gt;
1202      Ast.If (c, t, e)
1203
1204  (* forexpr
1205        ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
1206  | [&lt; 'Token.For;
1207       'Token.Ident id ?? "expected identifier after for";
1208       'Token.Kwd '=' ?? "expected '=' after for";
1209       stream &gt;] -&gt;
1210      begin parser
1211        | [&lt;
1212             start=parse_expr;
1213             'Token.Kwd ',' ?? "expected ',' after for";
1214             end_=parse_expr;
1215             stream &gt;] -&gt;
1216            let step =
1217              begin parser
1218              | [&lt; 'Token.Kwd ','; step=parse_expr &gt;] -&gt; Some step
1219              | [&lt; &gt;] -&gt; None
1220              end stream
1221            in
1222            begin parser
1223            | [&lt; 'Token.In; body=parse_expr &gt;] -&gt;
1224                Ast.For (id, start, end_, step, body)
1225            | [&lt; &gt;] -&gt;
1226                raise (Stream.Error "expected 'in' after for")
1227            end stream
1228        | [&lt; &gt;] -&gt;
1229            raise (Stream.Error "expected '=' after for")
1230      end stream
1231
1232  (* varexpr
1233   *   ::= 'var' identifier ('=' expression?
1234   *             (',' identifier ('=' expression)?)* 'in' expression *)
1235  | [&lt; 'Token.Var;
1236       (* At least one variable name is required. *)
1237       'Token.Ident id ?? "expected identifier after var";
1238       init=parse_var_init;
1239       var_names=parse_var_names [(id, init)];
1240       (* At this point, we have to have 'in'. *)
1241       'Token.In ?? "expected 'in' keyword after 'var'";
1242       body=parse_expr &gt;] -&gt;
1243      Ast.Var (Array.of_list (List.rev var_names), body)
1244
1245  | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
1246
1247(* unary
1248 *   ::= primary
1249 *   ::= '!' unary *)
1250and parse_unary = parser
1251  (* If this is a unary operator, read it. *)
1252  | [&lt; 'Token.Kwd op when op != '(' &amp;&amp; op != ')'; operand=parse_expr &gt;] -&gt;
1253      Ast.Unary (op, operand)
1254
1255  (* If the current token is not an operator, it must be a primary expr. *)
1256  | [&lt; stream &gt;] -&gt; parse_primary stream
1257
1258(* binoprhs
1259 *   ::= ('+' primary)* *)
1260and parse_bin_rhs expr_prec lhs stream =
1261  match Stream.peek stream with
1262  (* If this is a binop, find its precedence. *)
1263  | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
1264      let token_prec = precedence c in
1265
1266      (* If this is a binop that binds at least as tightly as the current binop,
1267       * consume it, otherwise we are done. *)
1268      if token_prec &lt; expr_prec then lhs else begin
1269        (* Eat the binop. *)
1270        Stream.junk stream;
1271
1272        (* Parse the primary expression after the binary operator. *)
1273        let rhs = parse_unary stream in
1274
1275        (* Okay, we know this is a binop. *)
1276        let rhs =
1277          match Stream.peek stream with
1278          | Some (Token.Kwd c2) -&gt;
1279              (* If BinOp binds less tightly with rhs than the operator after
1280               * rhs, let the pending operator take rhs as its lhs. *)
1281              let next_prec = precedence c2 in
1282              if token_prec &lt; next_prec
1283              then parse_bin_rhs (token_prec + 1) rhs stream
1284              else rhs
1285          | _ -&gt; rhs
1286        in
1287
1288        (* Merge lhs/rhs. *)
1289        let lhs = Ast.Binary (c, lhs, rhs) in
1290        parse_bin_rhs expr_prec lhs stream
1291      end
1292  | _ -&gt; lhs
1293
1294and parse_var_init = parser
1295  (* read in the optional initializer. *)
1296  | [&lt; 'Token.Kwd '='; e=parse_expr &gt;] -&gt; Some e
1297  | [&lt; &gt;] -&gt; None
1298
1299and parse_var_names accumulator = parser
1300  | [&lt; 'Token.Kwd ',';
1301       'Token.Ident id ?? "expected identifier list after var";
1302       init=parse_var_init;
1303       e=parse_var_names ((id, init) :: accumulator) &gt;] -&gt; e
1304  | [&lt; &gt;] -&gt; accumulator
1305
1306(* expression
1307 *   ::= primary binoprhs *)
1308and parse_expr = parser
1309  | [&lt; lhs=parse_unary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
1310
1311(* prototype
1312 *   ::= id '(' id* ')'
1313 *   ::= binary LETTER number? (id, id)
1314 *   ::= unary LETTER number? (id) *)
1315let parse_prototype =
1316  let rec parse_args accumulator = parser
1317    | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
1318    | [&lt; &gt;] -&gt; accumulator
1319  in
1320  let parse_operator = parser
1321    | [&lt; 'Token.Unary &gt;] -&gt; "unary", 1
1322    | [&lt; 'Token.Binary &gt;] -&gt; "binary", 2
1323  in
1324  let parse_binary_precedence = parser
1325    | [&lt; 'Token.Number n &gt;] -&gt; int_of_float n
1326    | [&lt; &gt;] -&gt; 30
1327  in
1328  parser
1329  | [&lt; 'Token.Ident id;
1330       'Token.Kwd '(' ?? "expected '(' in prototype";
1331       args=parse_args [];
1332       'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
1333      (* success. *)
1334      Ast.Prototype (id, Array.of_list (List.rev args))
1335  | [&lt; (prefix, kind)=parse_operator;
1336       'Token.Kwd op ?? "expected an operator";
1337       (* Read the precedence if present. *)
1338       binary_precedence=parse_binary_precedence;
1339       'Token.Kwd '(' ?? "expected '(' in prototype";
1340        args=parse_args [];
1341       'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
1342      let name = prefix ^ (String.make 1 op) in
1343      let args = Array.of_list (List.rev args) in
1344
1345      (* Verify right number of arguments for operator. *)
1346      if Array.length args != kind
1347      then raise (Stream.Error "invalid number of operands for operator")
1348      else
1349        if kind == 1 then
1350          Ast.Prototype (name, args)
1351        else
1352          Ast.BinOpPrototype (name, args, binary_precedence)
1353  | [&lt; &gt;] -&gt;
1354      raise (Stream.Error "expected function name in prototype")
1355
1356(* definition ::= 'def' prototype expression *)
1357let parse_definition = parser
1358  | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
1359      Ast.Function (p, e)
1360
1361(* toplevelexpr ::= expression *)
1362let parse_toplevel = parser
1363  | [&lt; e=parse_expr &gt;] -&gt;
1364      (* Make an anonymous proto. *)
1365      Ast.Function (Ast.Prototype ("", [||]), e)
1366
1367(*  external ::= 'extern' prototype *)
1368let parse_extern = parser
1369  | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
1370</pre>
1371</dd>
1372
1373<dt>codegen.ml:</dt>
1374<dd class="doc_code">
1375<pre>
1376(*===----------------------------------------------------------------------===
1377 * Code Generation
1378 *===----------------------------------------------------------------------===*)
1379
1380open Llvm
1381
1382exception Error of string
1383
1384let context = global_context ()
1385let the_module = create_module context "my cool jit"
1386let builder = builder context
1387let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
1388let double_type = double_type context
1389
1390(* Create an alloca instruction in the entry block of the function. This
1391 * is used for mutable variables etc. *)
1392let create_entry_block_alloca the_function var_name =
1393  let builder = builder_at context (instr_begin (entry_block the_function)) in
1394  build_alloca double_type var_name builder
1395
1396let rec codegen_expr = function
1397  | Ast.Number n -&gt; const_float double_type n
1398  | Ast.Variable name -&gt;
1399      let v = try Hashtbl.find named_values name with
1400        | Not_found -&gt; raise (Error "unknown variable name")
1401      in
1402      (* Load the value. *)
1403      build_load v name builder
1404  | Ast.Unary (op, operand) -&gt;
1405      let operand = codegen_expr operand in
1406      let callee = "unary" ^ (String.make 1 op) in
1407      let callee =
1408        match lookup_function callee the_module with
1409        | Some callee -&gt; callee
1410        | None -&gt; raise (Error "unknown unary operator")
1411      in
1412      build_call callee [|operand|] "unop" builder
1413  | Ast.Binary (op, lhs, rhs) -&gt;
1414      begin match op with
1415      | '=' -&gt;
1416          (* Special case '=' because we don't want to emit the LHS as an
1417           * expression. *)
1418          let name =
1419            match lhs with
1420            | Ast.Variable name -&gt; name
1421            | _ -&gt; raise (Error "destination of '=' must be a variable")
1422          in
1423
1424          (* Codegen the rhs. *)
1425          let val_ = codegen_expr rhs in
1426
1427          (* Lookup the name. *)
1428          let variable = try Hashtbl.find named_values name with
1429          | Not_found -&gt; raise (Error "unknown variable name")
1430          in
1431          ignore(build_store val_ variable builder);
1432          val_
1433      | _ -&gt;
1434          let lhs_val = codegen_expr lhs in
1435          let rhs_val = codegen_expr rhs in
1436          begin
1437            match op with
1438            | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
1439            | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
1440            | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
1441            | '&lt;' -&gt;
1442                (* Convert bool 0/1 to double 0.0 or 1.0 *)
1443                let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
1444                build_uitofp i double_type "booltmp" builder
1445            | _ -&gt;
1446                (* If it wasn't a builtin binary operator, it must be a user defined
1447                 * one. Emit a call to it. *)
1448                let callee = "binary" ^ (String.make 1 op) in
1449                let callee =
1450                  match lookup_function callee the_module with
1451                  | Some callee -&gt; callee
1452                  | None -&gt; raise (Error "binary operator not found!")
1453                in
1454                build_call callee [|lhs_val; rhs_val|] "binop" builder
1455          end
1456      end
1457  | Ast.Call (callee, args) -&gt;
1458      (* Look up the name in the module table. *)
1459      let callee =
1460        match lookup_function callee the_module with
1461        | Some callee -&gt; callee
1462        | None -&gt; raise (Error "unknown function referenced")
1463      in
1464      let params = params callee in
1465
1466      (* If argument mismatch error. *)
1467      if Array.length params == Array.length args then () else
1468        raise (Error "incorrect # arguments passed");
1469      let args = Array.map codegen_expr args in
1470      build_call callee args "calltmp" builder
1471  | Ast.If (cond, then_, else_) -&gt;
1472      let cond = codegen_expr cond in
1473
1474      (* Convert condition to a bool by comparing equal to 0.0 *)
1475      let zero = const_float double_type 0.0 in
1476      let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
1477
1478      (* Grab the first block so that we might later add the conditional branch
1479       * to it at the end of the function. *)
1480      let start_bb = insertion_block builder in
1481      let the_function = block_parent start_bb in
1482
1483      let then_bb = append_block context "then" the_function in
1484
1485      (* Emit 'then' value. *)
1486      position_at_end then_bb builder;
1487      let then_val = codegen_expr then_ in
1488
1489      (* Codegen of 'then' can change the current block, update then_bb for the
1490       * phi. We create a new name because one is used for the phi node, and the
1491       * other is used for the conditional branch. *)
1492      let new_then_bb = insertion_block builder in
1493
1494      (* Emit 'else' value. *)
1495      let else_bb = append_block context "else" the_function in
1496      position_at_end else_bb builder;
1497      let else_val = codegen_expr else_ in
1498
1499      (* Codegen of 'else' can change the current block, update else_bb for the
1500       * phi. *)
1501      let new_else_bb = insertion_block builder in
1502
1503      (* Emit merge block. *)
1504      let merge_bb = append_block context "ifcont" the_function in
1505      position_at_end merge_bb builder;
1506      let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
1507      let phi = build_phi incoming "iftmp" builder in
1508
1509      (* Return to the start block to add the conditional branch. *)
1510      position_at_end start_bb builder;
1511      ignore (build_cond_br cond_val then_bb else_bb builder);
1512
1513      (* Set a unconditional branch at the end of the 'then' block and the
1514       * 'else' block to the 'merge' block. *)
1515      position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
1516      position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
1517
1518      (* Finally, set the builder to the end of the merge block. *)
1519      position_at_end merge_bb builder;
1520
1521      phi
1522  | Ast.For (var_name, start, end_, step, body) -&gt;
1523      (* Output this as:
1524       *   var = alloca double
1525       *   ...
1526       *   start = startexpr
1527       *   store start -&gt; var
1528       *   goto loop
1529       * loop:
1530       *   ...
1531       *   bodyexpr
1532       *   ...
1533       * loopend:
1534       *   step = stepexpr
1535       *   endcond = endexpr
1536       *
1537       *   curvar = load var
1538       *   nextvar = curvar + step
1539       *   store nextvar -&gt; var
1540       *   br endcond, loop, endloop
1541       * outloop: *)
1542
1543      let the_function = block_parent (insertion_block builder) in
1544
1545      (* Create an alloca for the variable in the entry block. *)
1546      let alloca = create_entry_block_alloca the_function var_name in
1547
1548      (* Emit the start code first, without 'variable' in scope. *)
1549      let start_val = codegen_expr start in
1550
1551      (* Store the value into the alloca. *)
1552      ignore(build_store start_val alloca builder);
1553
1554      (* Make the new basic block for the loop header, inserting after current
1555       * block. *)
1556      let loop_bb = append_block context "loop" the_function in
1557
1558      (* Insert an explicit fall through from the current block to the
1559       * loop_bb. *)
1560      ignore (build_br loop_bb builder);
1561
1562      (* Start insertion in loop_bb. *)
1563      position_at_end loop_bb builder;
1564
1565      (* Within the loop, the variable is defined equal to the PHI node. If it
1566       * shadows an existing variable, we have to restore it, so save it
1567       * now. *)
1568      let old_val =
1569        try Some (Hashtbl.find named_values var_name) with Not_found -&gt; None
1570      in
1571      Hashtbl.add named_values var_name alloca;
1572
1573      (* Emit the body of the loop.  This, like any other expr, can change the
1574       * current BB.  Note that we ignore the value computed by the body, but
1575       * don't allow an error *)
1576      ignore (codegen_expr body);
1577
1578      (* Emit the step value. *)
1579      let step_val =
1580        match step with
1581        | Some step -&gt; codegen_expr step
1582        (* If not specified, use 1.0. *)
1583        | None -&gt; const_float double_type 1.0
1584      in
1585
1586      (* Compute the end condition. *)
1587      let end_cond = codegen_expr end_ in
1588
1589      (* Reload, increment, and restore the alloca. This handles the case where
1590       * the body of the loop mutates the variable. *)
1591      let cur_var = build_load alloca var_name builder in
1592      let next_var = build_add cur_var step_val "nextvar" builder in
1593      ignore(build_store next_var alloca builder);
1594
1595      (* Convert condition to a bool by comparing equal to 0.0. *)
1596      let zero = const_float double_type 0.0 in
1597      let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
1598
1599      (* Create the "after loop" block and insert it. *)
1600      let after_bb = append_block context "afterloop" the_function in
1601
1602      (* Insert the conditional branch into the end of loop_end_bb. *)
1603      ignore (build_cond_br end_cond loop_bb after_bb builder);
1604
1605      (* Any new code will be inserted in after_bb. *)
1606      position_at_end after_bb builder;
1607
1608      (* Restore the unshadowed variable. *)
1609      begin match old_val with
1610      | Some old_val -&gt; Hashtbl.add named_values var_name old_val
1611      | None -&gt; ()
1612      end;
1613
1614      (* for expr always returns 0.0. *)
1615      const_null double_type
1616  | Ast.Var (var_names, body) -&gt;
1617      let old_bindings = ref [] in
1618
1619      let the_function = block_parent (insertion_block builder) in
1620
1621      (* Register all variables and emit their initializer. *)
1622      Array.iter (fun (var_name, init) -&gt;
1623        (* Emit the initializer before adding the variable to scope, this
1624         * prevents the initializer from referencing the variable itself, and
1625         * permits stuff like this:
1626         *   var a = 1 in
1627         *     var a = a in ...   # refers to outer 'a'. *)
1628        let init_val =
1629          match init with
1630          | Some init -&gt; codegen_expr init
1631          (* If not specified, use 0.0. *)
1632          | None -&gt; const_float double_type 0.0
1633        in
1634
1635        let alloca = create_entry_block_alloca the_function var_name in
1636        ignore(build_store init_val alloca builder);
1637
1638        (* Remember the old variable binding so that we can restore the binding
1639         * when we unrecurse. *)
1640        begin
1641          try
1642            let old_value = Hashtbl.find named_values var_name in
1643            old_bindings := (var_name, old_value) :: !old_bindings;
1644          with Not_found -&gt; ()
1645        end;
1646
1647        (* Remember this binding. *)
1648        Hashtbl.add named_values var_name alloca;
1649      ) var_names;
1650
1651      (* Codegen the body, now that all vars are in scope. *)
1652      let body_val = codegen_expr body in
1653
1654      (* Pop all our variables from scope. *)
1655      List.iter (fun (var_name, old_value) -&gt;
1656        Hashtbl.add named_values var_name old_value
1657      ) !old_bindings;
1658
1659      (* Return the body computation. *)
1660      body_val
1661
1662let codegen_proto = function
1663  | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) -&gt;
1664      (* Make the function type: double(double,double) etc. *)
1665      let doubles = Array.make (Array.length args) double_type in
1666      let ft = function_type double_type doubles in
1667      let f =
1668        match lookup_function name the_module with
1669        | None -&gt; declare_function name ft the_module
1670
1671        (* If 'f' conflicted, there was already something named 'name'. If it
1672         * has a body, don't allow redefinition or reextern. *)
1673        | Some f -&gt;
1674            (* If 'f' already has a body, reject this. *)
1675            if block_begin f &lt;&gt; At_end f then
1676              raise (Error "redefinition of function");
1677
1678            (* If 'f' took a different number of arguments, reject. *)
1679            if element_type (type_of f) &lt;&gt; ft then
1680              raise (Error "redefinition of function with different # args");
1681            f
1682      in
1683
1684      (* Set names for all arguments. *)
1685      Array.iteri (fun i a -&gt;
1686        let n = args.(i) in
1687        set_value_name n a;
1688        Hashtbl.add named_values n a;
1689      ) (params f);
1690      f
1691
1692(* Create an alloca for each argument and register the argument in the symbol
1693 * table so that references to it will succeed. *)
1694let create_argument_allocas the_function proto =
1695  let args = match proto with
1696    | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -&gt; args
1697  in
1698  Array.iteri (fun i ai -&gt;
1699    let var_name = args.(i) in
1700    (* Create an alloca for this variable. *)
1701    let alloca = create_entry_block_alloca the_function var_name in
1702
1703    (* Store the initial value into the alloca. *)
1704    ignore(build_store ai alloca builder);
1705
1706    (* Add arguments to variable symbol table. *)
1707    Hashtbl.add named_values var_name alloca;
1708  ) (params the_function)
1709
1710let codegen_func the_fpm = function
1711  | Ast.Function (proto, body) -&gt;
1712      Hashtbl.clear named_values;
1713      let the_function = codegen_proto proto in
1714
1715      (* If this is an operator, install it. *)
1716      begin match proto with
1717      | Ast.BinOpPrototype (name, args, prec) -&gt;
1718          let op = name.[String.length name - 1] in
1719          Hashtbl.add Parser.binop_precedence op prec;
1720      | _ -&gt; ()
1721      end;
1722
1723      (* Create a new basic block to start insertion into. *)
1724      let bb = append_block context "entry" the_function in
1725      position_at_end bb builder;
1726
1727      try
1728        (* Add all arguments to the symbol table and create their allocas. *)
1729        create_argument_allocas the_function proto;
1730
1731        let ret_val = codegen_expr body in
1732
1733        (* Finish off the function. *)
1734        let _ = build_ret ret_val builder in
1735
1736        (* Validate the generated code, checking for consistency. *)
1737        Llvm_analysis.assert_valid_function the_function;
1738
1739        (* Optimize the function. *)
1740        let _ = PassManager.run_function the_function the_fpm in
1741
1742        the_function
1743      with e -&gt;
1744        delete_function the_function;
1745        raise e
1746</pre>
1747</dd>
1748
1749<dt>toplevel.ml:</dt>
1750<dd class="doc_code">
1751<pre>
1752(*===----------------------------------------------------------------------===
1753 * Top-Level parsing and JIT Driver
1754 *===----------------------------------------------------------------------===*)
1755
1756open Llvm
1757open Llvm_executionengine
1758
1759(* top ::= definition | external | expression | ';' *)
1760let rec main_loop the_fpm the_execution_engine stream =
1761  match Stream.peek stream with
1762  | None -&gt; ()
1763
1764  (* ignore top-level semicolons. *)
1765  | Some (Token.Kwd ';') -&gt;
1766      Stream.junk stream;
1767      main_loop the_fpm the_execution_engine stream
1768
1769  | Some token -&gt;
1770      begin
1771        try match token with
1772        | Token.Def -&gt;
1773            let e = Parser.parse_definition stream in
1774            print_endline "parsed a function definition.";
1775            dump_value (Codegen.codegen_func the_fpm e);
1776        | Token.Extern -&gt;
1777            let e = Parser.parse_extern stream in
1778            print_endline "parsed an extern.";
1779            dump_value (Codegen.codegen_proto e);
1780        | _ -&gt;
1781            (* Evaluate a top-level expression into an anonymous function. *)
1782            let e = Parser.parse_toplevel stream in
1783            print_endline "parsed a top-level expr";
1784            let the_function = Codegen.codegen_func the_fpm e in
1785            dump_value the_function;
1786
1787            (* JIT the function, returning a function pointer. *)
1788            let result = ExecutionEngine.run_function the_function [||]
1789              the_execution_engine in
1790
1791            print_string "Evaluated to ";
1792            print_float (GenericValue.as_float Codegen.double_type result);
1793            print_newline ();
1794        with Stream.Error s | Codegen.Error s -&gt;
1795          (* Skip token for error recovery. *)
1796          Stream.junk stream;
1797          print_endline s;
1798      end;
1799      print_string "ready&gt; "; flush stdout;
1800      main_loop the_fpm the_execution_engine stream
1801</pre>
1802</dd>
1803
1804<dt>toy.ml:</dt>
1805<dd class="doc_code">
1806<pre>
1807(*===----------------------------------------------------------------------===
1808 * Main driver code.
1809 *===----------------------------------------------------------------------===*)
1810
1811open Llvm
1812open Llvm_executionengine
1813open Llvm_target
1814open Llvm_scalar_opts
1815
1816let main () =
1817  ignore (initialize_native_target ());
1818
1819  (* Install standard binary operators.
1820   * 1 is the lowest precedence. *)
1821  Hashtbl.add Parser.binop_precedence '=' 2;
1822  Hashtbl.add Parser.binop_precedence '&lt;' 10;
1823  Hashtbl.add Parser.binop_precedence '+' 20;
1824  Hashtbl.add Parser.binop_precedence '-' 20;
1825  Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
1826
1827  (* Prime the first token. *)
1828  print_string "ready&gt; "; flush stdout;
1829  let stream = Lexer.lex (Stream.of_channel stdin) in
1830
1831  (* Create the JIT. *)
1832  let the_execution_engine = ExecutionEngine.create Codegen.the_module in
1833  let the_fpm = PassManager.create_function Codegen.the_module in
1834
1835  (* Set up the optimizer pipeline.  Start with registering info about how the
1836   * target lays out data structures. *)
1837  TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
1838
1839  (* Promote allocas to registers. *)
1840  add_memory_to_register_promotion the_fpm;
1841
1842  (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
1843  add_instruction_combination the_fpm;
1844
1845  (* reassociate expressions. *)
1846  add_reassociation the_fpm;
1847
1848  (* Eliminate Common SubExpressions. *)
1849  add_gvn the_fpm;
1850
1851  (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
1852  add_cfg_simplification the_fpm;
1853
1854  ignore (PassManager.initialize the_fpm);
1855
1856  (* Run the main "interpreter loop" now. *)
1857  Toplevel.main_loop the_fpm the_execution_engine stream;
1858
1859  (* Print out all the generated code. *)
1860  dump_module Codegen.the_module
1861;;
1862
1863main ()
1864</pre>
1865</dd>
1866
1867<dt>bindings.c</dt>
1868<dd class="doc_code">
1869<pre>
1870#include &lt;stdio.h&gt;
1871
1872/* putchard - putchar that takes a double and returns 0. */
1873extern double putchard(double X) {
1874  putchar((char)X);
1875  return 0;
1876}
1877
1878/* printd - printf that takes a double prints it as "%f\n", returning 0. */
1879extern double printd(double X) {
1880  printf("%f\n", X);
1881  return 0;
1882}
1883</pre>
1884</dd>
1885</dl>
1886
1887<a href="OCamlLangImpl8.html">Next: Conclusion and other useful LLVM tidbits</a>
1888</div>
1889
1890<!-- *********************************************************************** -->
1891<hr>
1892<address>
1893  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1894  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1895  <a href="http://validator.w3.org/check/referer"><img
1896  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1897
1898  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1899  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
1900  <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
1901  Last modified: $Date$
1902</address>
1903</body>
1904</html>
1905