1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <meta http-equiv="Content-Type" Content="text/html; charset=UTF-8" >
6  <title>Accurate Garbage Collection with LLVM</title>
7  <link rel="stylesheet" href="_static/llvm.css" type="text/css">
8  <style type="text/css">
9    .rowhead { text-align: left; background: inherit; }
10    .indent { padding-left: 1em; }
11    .optl { color: #BFBFBF; }
12  </style>
13</head>
14<body>
15
16<h1>
17  Accurate Garbage Collection with LLVM
18</h1>
19
20<ol>
21  <li><a href="#introduction">Introduction</a>
22    <ul>
23    <li><a href="#feature">Goals and non-goals</a></li>
24    </ul>
25  </li>
26
27  <li><a href="#quickstart">Getting started</a>
28    <ul>
29    <li><a href="#quickstart-compiler">In your compiler</a></li>
30    <li><a href="#quickstart-runtime">In your runtime library</a></li>
31    <li><a href="#shadow-stack">About the shadow stack</a></li>
32    </ul>
33  </li>
34
35  <li><a href="#core">Core support</a>
36    <ul>
37    <li><a href="#gcattr">Specifying GC code generation:
38      <tt>gc "..."</tt></a></li>
39    <li><a href="#gcroot">Identifying GC roots on the stack:
40      <tt>llvm.gcroot</tt></a></li>
41    <li><a href="#barriers">Reading and writing references in the heap</a>
42      <ul>
43      <li><a href="#gcwrite">Write barrier: <tt>llvm.gcwrite</tt></a></li>
44      <li><a href="#gcread">Read barrier: <tt>llvm.gcread</tt></a></li>
45      </ul>
46    </li>
47    </ul>
48  </li>
49  
50  <li><a href="#plugin">Compiler plugin interface</a>
51    <ul>
52    <li><a href="#collector-algos">Overview of available features</a></li>
53    <li><a href="#stack-map">Computing stack maps</a></li>
54    <li><a href="#init-roots">Initializing roots to null:
55      <tt>InitRoots</tt></a></li>
56    <li><a href="#custom">Custom lowering of intrinsics: <tt>CustomRoots</tt>, 
57      <tt>CustomReadBarriers</tt>, and <tt>CustomWriteBarriers</tt></a></li>
58    <li><a href="#safe-points">Generating safe points:
59      <tt>NeededSafePoints</tt></a></li>
60    <li><a href="#assembly">Emitting assembly code:
61      <tt>GCMetadataPrinter</tt></a></li>
62    </ul>
63  </li>
64
65  <li><a href="#runtime-impl">Implementing a collector runtime</a>
66    <ul>
67      <li><a href="#gcdescriptors">Tracing GC pointers from heap
68      objects</a></li>
69    </ul>
70  </li>
71  
72  <li><a href="#references">References</a></li>
73  
74</ol>
75
76<div class="doc_author">
77  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and
78     Gordon Henriksen</p>
79</div>
80
81<!-- *********************************************************************** -->
82<h2>
83  <a name="introduction">Introduction</a>
84</h2>
85<!-- *********************************************************************** -->
86
87<div>
88
89<p>Garbage collection is a widely used technique that frees the programmer from
90having to know the lifetimes of heap objects, making software easier to produce
91and maintain. Many programming languages rely on garbage collection for
92automatic memory management. There are two primary forms of garbage collection:
93conservative and accurate.</p>
94
95<p>Conservative garbage collection often does not require any special support
96from either the language or the compiler: it can handle non-type-safe
97programming languages (such as C/C++) and does not require any special
98information from the compiler. The
99<a href="http://www.hpl.hp.com/personal/Hans_Boehm/gc/">Boehm collector</a> is
100an example of a state-of-the-art conservative collector.</p>
101
102<p>Accurate garbage collection requires the ability to identify all pointers in
103the program at run-time (which requires that the source-language be type-safe in
104most cases). Identifying pointers at run-time requires compiler support to
105locate all places that hold live pointer variables at run-time, including the
106<a href="#gcroot">processor stack and registers</a>.</p>
107
108<p>Conservative garbage collection is attractive because it does not require any
109special compiler support, but it does have problems. In particular, because the
110conservative garbage collector cannot <i>know</i> that a particular word in the
111machine is a pointer, it cannot move live objects in the heap (preventing the
112use of compacting and generational GC algorithms) and it can occasionally suffer
113from memory leaks due to integer values that happen to point to objects in the
114program. In addition, some aggressive compiler transformations can break
115conservative garbage collectors (though these seem rare in practice).</p>
116
117<p>Accurate garbage collectors do not suffer from any of these problems, but
118they can suffer from degraded scalar optimization of the program. In particular,
119because the runtime must be able to identify and update all pointers active in
120the program, some optimizations are less effective. In practice, however, the
121locality and performance benefits of using aggressive garbage collection
122techniques dominates any low-level losses.</p>
123
124<p>This document describes the mechanisms and interfaces provided by LLVM to
125support accurate garbage collection.</p>
126
127<!-- ======================================================================= -->
128<h3>
129  <a name="feature">Goals and non-goals</a>
130</h3>
131
132<div>
133
134<p>LLVM's intermediate representation provides <a href="#intrinsics">garbage
135collection intrinsics</a> that offer support for a broad class of
136collector models. For instance, the intrinsics permit:</p>
137
138<ul>
139  <li>semi-space collectors</li>
140  <li>mark-sweep collectors</li>
141  <li>generational collectors</li>
142  <li>reference counting</li>
143  <li>incremental collectors</li>
144  <li>concurrent collectors</li>
145  <li>cooperative collectors</li>
146</ul>
147
148<p>We hope that the primitive support built into the LLVM IR is sufficient to
149support a broad class of garbage collected languages including Scheme, ML, Java,
150C#, Perl, Python, Lua, Ruby, other scripting languages, and more.</p>
151
152<p>However, LLVM does not itself provide a garbage collector&mdash;this should
153be part of your language's runtime library. LLVM provides a framework for
154compile time <a href="#plugin">code generation plugins</a>. The role of these
155plugins is to generate code and data structures which conforms to the <em>binary
156interface</em> specified by the <em>runtime library</em>. This is similar to the
157relationship between LLVM and DWARF debugging info, for example. The
158difference primarily lies in the lack of an established standard in the domain
159of garbage collection&mdash;thus the plugins.</p>
160
161<p>The aspects of the binary interface with which LLVM's GC support is
162concerned are:</p>
163
164<ul>
165  <li>Creation of GC-safe points within code where collection is allowed to
166      execute safely.</li>
167  <li>Computation of the stack map. For each safe point in the code, object
168      references within the stack frame must be identified so that the
169      collector may traverse and perhaps update them.</li>
170  <li>Write barriers when storing object references to the heap. These are
171      commonly used to optimize incremental scans in generational
172      collectors.</li>
173  <li>Emission of read barriers when loading object references. These are
174      useful for interoperating with concurrent collectors.</li>
175</ul>
176
177<p>There are additional areas that LLVM does not directly address:</p>
178
179<ul>
180  <li>Registration of global roots with the runtime.</li>
181  <li>Registration of stack map entries with the runtime.</li>
182  <li>The functions used by the program to allocate memory, trigger a
183      collection, etc.</li>
184  <li>Computation or compilation of type maps, or registration of them with
185      the runtime. These are used to crawl the heap for object
186      references.</li>
187</ul>
188
189<p>In general, LLVM's support for GC does not include features which can be
190adequately addressed with other features of the IR and does not specify a
191particular binary interface. On the plus side, this means that you should be
192able to integrate LLVM with an existing runtime. On the other hand, it leaves
193a lot of work for the developer of a novel language. However, it's easy to get
194started quickly and scale up to a more sophisticated implementation as your
195compiler matures.</p>
196
197</div>
198
199</div>
200
201<!-- *********************************************************************** -->
202<h2>
203  <a name="quickstart">Getting started</a>
204</h2>
205<!-- *********************************************************************** -->
206
207<div>
208
209<p>Using a GC with LLVM implies many things, for example:</p>
210
211<ul>
212  <li>Write a runtime library or find an existing one which implements a GC
213      heap.<ol>
214    <li>Implement a memory allocator.</li>
215    <li>Design a binary interface for the stack map, used to identify
216        references within a stack frame on the machine stack.*</li>
217    <li>Implement a stack crawler to discover functions on the call stack.*</li>
218    <li>Implement a registry for global roots.</li>
219    <li>Design a binary interface for type maps, used to identify references
220        within heap objects.</li>
221    <li>Implement a collection routine bringing together all of the above.</li>
222  </ol></li>
223  <li>Emit compatible code from your compiler.<ul>
224    <li>Initialization in the main function.</li>
225    <li>Use the <tt>gc "..."</tt> attribute to enable GC code generation
226        (or <tt>F.setGC("...")</tt>).</li>
227    <li>Use <tt>@llvm.gcroot</tt> to mark stack roots.</li>
228    <li>Use <tt>@llvm.gcread</tt> and/or <tt>@llvm.gcwrite</tt> to
229        manipulate GC references, if necessary.</li>
230    <li>Allocate memory using the GC allocation routine provided by the
231        runtime library.</li>
232    <li>Generate type maps according to your runtime's binary interface.</li>
233  </ul></li>
234  <li>Write a compiler plugin to interface LLVM with the runtime library.*<ul>
235    <li>Lower <tt>@llvm.gcread</tt> and <tt>@llvm.gcwrite</tt> to appropriate
236        code sequences.*</li>
237    <li>Compile LLVM's stack map to the binary form expected by the
238        runtime.</li>
239  </ul></li>
240  <li>Load the plugin into the compiler. Use <tt>llc -load</tt> or link the
241      plugin statically with your language's compiler.*</li>
242  <li>Link program executables with the runtime.</li>
243</ul>
244
245<p>To help with several of these tasks (those indicated with a *), LLVM
246includes a highly portable, built-in ShadowStack code generator. It is compiled
247into <tt>llc</tt> and works even with the interpreter and C backends.</p>
248
249<!-- ======================================================================= -->
250<h3>
251  <a name="quickstart-compiler">In your compiler</a>
252</h3>
253
254<div>
255
256<p>To turn the shadow stack on for your functions, first call:</p>
257
258<div class="doc_code"><pre
259>F.setGC("shadow-stack");</pre></div>
260
261<p>for each function your compiler emits. Since the shadow stack is built into
262LLVM, you do not need to load a plugin.</p>
263
264<p>Your compiler must also use <tt>@llvm.gcroot</tt> as documented.
265Don't forget to create a root for each intermediate value that is generated
266when evaluating an expression. In <tt>h(f(), g())</tt>, the result of
267<tt>f()</tt> could easily be collected if evaluating <tt>g()</tt> triggers a
268collection.</p>
269
270<p>There's no need to use <tt>@llvm.gcread</tt> and <tt>@llvm.gcwrite</tt> over
271plain <tt>load</tt> and <tt>store</tt> for now. You will need them when
272switching to a more advanced GC.</p>
273
274</div>
275
276<!-- ======================================================================= -->
277<h3>
278  <a name="quickstart-runtime">In your runtime</a>
279</h3>
280
281<div>
282
283<p>The shadow stack doesn't imply a memory allocation algorithm. A semispace
284collector or building atop <tt>malloc</tt> are great places to start, and can
285be implemented with very little code.</p>
286
287<p>When it comes time to collect, however, your runtime needs to traverse the
288stack roots, and for this it needs to integrate with the shadow stack. Luckily,
289doing so is very simple. (This code is heavily commented to help you
290understand the data structure, but there are only 20 lines of meaningful
291code.)</p>
292
293<pre class="doc_code">
294/// @brief The map for a single function's stack frame. One of these is
295///        compiled as constant data into the executable for each function.
296/// 
297/// Storage of metadata values is elided if the %metadata parameter to
298/// @llvm.gcroot is null.
299struct FrameMap {
300  int32_t NumRoots;    //&lt; Number of roots in stack frame.
301  int32_t NumMeta;     //&lt; Number of metadata entries. May be &lt; NumRoots.
302  const void *Meta[0]; //&lt; Metadata for each root.
303};
304
305/// @brief A link in the dynamic shadow stack. One of these is embedded in the
306///        stack frame of each function on the call stack.
307struct StackEntry {
308  StackEntry *Next;    //&lt; Link to next stack entry (the caller's).
309  const FrameMap *Map; //&lt; Pointer to constant FrameMap.
310  void *Roots[0];      //&lt; Stack roots (in-place array).
311};
312
313/// @brief The head of the singly-linked list of StackEntries. Functions push
314///        and pop onto this in their prologue and epilogue.
315/// 
316/// Since there is only a global list, this technique is not threadsafe.
317StackEntry *llvm_gc_root_chain;
318
319/// @brief Calls Visitor(root, meta) for each GC root on the stack.
320///        root and meta are exactly the values passed to
321///        <tt>@llvm.gcroot</tt>.
322/// 
323/// Visitor could be a function to recursively mark live objects. Or it
324/// might copy them to another heap or generation.
325/// 
326/// @param Visitor A function to invoke for every GC root on the stack.
327void visitGCRoots(void (*Visitor)(void **Root, const void *Meta)) {
328  for (StackEntry *R = llvm_gc_root_chain; R; R = R->Next) {
329    unsigned i = 0;
330    
331    // For roots [0, NumMeta), the metadata pointer is in the FrameMap.
332    for (unsigned e = R->Map->NumMeta; i != e; ++i)
333      Visitor(&amp;R->Roots[i], R->Map->Meta[i]);
334    
335    // For roots [NumMeta, NumRoots), the metadata pointer is null.
336    for (unsigned e = R->Map->NumRoots; i != e; ++i)
337      Visitor(&amp;R->Roots[i], NULL);
338  }
339}</pre>
340
341</div>
342
343<!-- ======================================================================= -->
344<h3>
345  <a name="shadow-stack">About the shadow stack</a>
346</h3>
347
348<div>
349
350<p>Unlike many GC algorithms which rely on a cooperative code generator to
351compile stack maps, this algorithm carefully maintains a linked list of stack
352roots [<a href="#henderson02">Henderson2002</a>]. This so-called "shadow stack"
353mirrors the machine stack. Maintaining this data structure is slower than using
354a stack map compiled into the executable as constant data, but has a significant
355portability advantage because it requires no special support from the target
356code generator, and does not require tricky platform-specific code to crawl
357the machine stack.</p>
358
359<p>The tradeoff for this simplicity and portability is:</p>
360
361<ul>
362  <li>High overhead per function call.</li>
363  <li>Not thread-safe.</li>
364</ul>
365
366<p>Still, it's an easy way to get started. After your compiler and runtime are
367up and running, writing a <a href="#plugin">plugin</a> will allow you to take
368advantage of <a href="#collector-algos">more advanced GC features</a> of LLVM
369in order to improve performance.</p>
370
371</div>
372
373</div>
374
375<!-- *********************************************************************** -->
376<h2>
377  <a name="core">IR features</a><a name="intrinsics"></a>
378</h2>
379<!-- *********************************************************************** -->
380
381<div>
382
383<p>This section describes the garbage collection facilities provided by the
384<a href="LangRef.html">LLVM intermediate representation</a>. The exact behavior
385of these IR features is specified by the binary interface implemented by a
386<a href="#plugin">code generation plugin</a>, not by this document.</p>
387
388<p>These facilities are limited to those strictly necessary; they are not
389intended to be a complete interface to any garbage collector. A program will
390need to interface with the GC library using the facilities provided by that
391program.</p>
392
393<!-- ======================================================================= -->
394<h3>
395  <a name="gcattr">Specifying GC code generation: <tt>gc "..."</tt></a>
396</h3>
397
398<div>
399
400<div class="doc_code"><tt>
401  define <i>ty</i> @<i>name</i>(...) <span style="text-decoration: underline">gc "<i>name</i>"</span> { ...
402</tt></div>
403
404<p>The <tt>gc</tt> function attribute is used to specify the desired GC style
405to the compiler. Its programmatic equivalent is the <tt>setGC</tt> method of
406<tt>Function</tt>.</p>
407
408<p>Setting <tt>gc "<i>name</i>"</tt> on a function triggers a search for a
409matching code generation plugin "<i>name</i>"; it is that plugin which defines
410the exact nature of the code generated to support GC. If none is found, the
411compiler will raise an error.</p>
412
413<p>Specifying the GC style on a per-function basis allows LLVM to link together
414programs that use different garbage collection algorithms (or none at all).</p>
415
416</div>
417
418<!-- ======================================================================= -->
419<h3>
420  <a name="gcroot">Identifying GC roots on the stack: <tt>llvm.gcroot</tt></a>
421</h3>
422
423<div>
424
425<div class="doc_code"><tt>
426  void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
427</tt></div>
428
429<p>The <tt>llvm.gcroot</tt> intrinsic is used to inform LLVM that a stack
430variable references an object on the heap and is to be tracked for garbage
431collection. The exact impact on generated code is specified by a <a
432href="#plugin">compiler plugin</a>. All calls to <tt>llvm.gcroot</tt> <b>must</b> reside
433 inside the first basic block.</p>
434
435<p>A compiler which uses mem2reg to raise imperative code using <tt>alloca</tt>
436into SSA form need only add a call to <tt>@llvm.gcroot</tt> for those variables
437which a pointers into the GC heap.</p>
438
439<p>It is also important to mark intermediate values with <tt>llvm.gcroot</tt>.
440For example, consider <tt>h(f(), g())</tt>. Beware leaking the result of
441<tt>f()</tt> in the case that <tt>g()</tt> triggers a collection. Note, that
442stack variables must be initialized and marked with <tt>llvm.gcroot</tt> in
443function's prologue.</p>
444
445<p>The first argument <b>must</b> be a value referring to an alloca instruction
446or a bitcast of an alloca. The second contains a pointer to metadata that
447should be associated with the pointer, and <b>must</b> be a constant or global
448value address. If your target collector uses tags, use a null pointer for
449metadata.</p>
450
451<p>The <tt>%metadata</tt> argument can be used to avoid requiring heap objects
452to have 'isa' pointers or tag bits. [<a href="#appel89">Appel89</a>, <a
453href="#goldberg91">Goldberg91</a>, <a href="#tolmach94">Tolmach94</a>] If
454specified, its value will be tracked along with the location of the pointer in
455the stack frame.</p>
456
457<p>Consider the following fragment of Java code:</p>
458
459<pre class="doc_code">
460       {
461         Object X;   // A null-initialized reference to an object
462         ...
463       }
464</pre>
465
466<p>This block (which may be located in the middle of a function or in a loop
467nest), could be compiled to this LLVM code:</p>
468
469<pre class="doc_code">
470Entry:
471   ;; In the entry block for the function, allocate the
472   ;; stack space for X, which is an LLVM pointer.
473   %X = alloca %Object*
474   
475   ;; Tell LLVM that the stack space is a stack root.
476   ;; Java has type-tags on objects, so we pass null as metadata.
477   %tmp = bitcast %Object** %X to i8**
478   call void @llvm.gcroot(i8** %tmp, i8* null)
479   ...
480
481   ;; "CodeBlock" is the block corresponding to the start
482   ;;  of the scope above.
483CodeBlock:
484   ;; Java null-initializes pointers.
485   store %Object* null, %Object** %X
486
487   ...
488
489   ;; As the pointer goes out of scope, store a null value into
490   ;; it, to indicate that the value is no longer live.
491   store %Object* null, %Object** %X
492   ...
493</pre>
494
495</div>
496
497<!-- ======================================================================= -->
498<h3>
499  <a name="barriers">Reading and writing references in the heap</a>
500</h3>
501
502<div>
503
504<p>Some collectors need to be informed when the mutator (the program that needs
505garbage collection) either reads a pointer from or writes a pointer to a field
506of a heap object. The code fragments inserted at these points are called
507<em>read barriers</em> and <em>write barriers</em>, respectively. The amount of
508code that needs to be executed is usually quite small and not on the critical
509path of any computation, so the overall performance impact of the barrier is
510tolerable.</p>
511
512<p>Barriers often require access to the <em>object pointer</em> rather than the
513<em>derived pointer</em> (which is a pointer to the field within the
514object). Accordingly, these intrinsics take both pointers as separate arguments
515for completeness. In this snippet, <tt>%object</tt> is the object pointer, and 
516<tt>%derived</tt> is the derived pointer:</p>
517
518<blockquote><pre>
519    ;; An array type.
520    %class.Array = type { %class.Object, i32, [0 x %class.Object*] }
521    ...
522
523    ;; Load the object pointer from a gcroot.
524    %object = load %class.Array** %object_addr
525
526    ;; Compute the derived pointer.
527    %derived = getelementptr %object, i32 0, i32 2, i32 %n</pre></blockquote>
528
529<p>LLVM does not enforce this relationship between the object and derived
530pointer (although a <a href="#plugin">plugin</a> might). However, it would be
531an unusual collector that violated it.</p>
532
533<p>The use of these intrinsics is naturally optional if the target GC does
534require the corresponding barrier. Such a GC plugin will replace the intrinsic
535calls with the corresponding <tt>load</tt> or <tt>store</tt> instruction if they
536are used.</p>
537
538<!-- ======================================================================= -->
539<h4>
540  <a name="gcwrite">Write barrier: <tt>llvm.gcwrite</tt></a>
541</h4>
542
543<div>
544
545<div class="doc_code"><tt>
546void @llvm.gcwrite(i8* %value, i8* %object, i8** %derived)
547</tt></div>
548
549<p>For write barriers, LLVM provides the <tt>llvm.gcwrite</tt> intrinsic
550function. It has exactly the same semantics as a non-volatile <tt>store</tt> to
551the derived pointer (the third argument). The exact code generated is specified
552by a <a href="#plugin">compiler plugin</a>.</p>
553
554<p>Many important algorithms require write barriers, including generational
555and concurrent collectors. Additionally, write barriers could be used to
556implement reference counting.</p>
557
558</div>
559
560<!-- ======================================================================= -->
561<h4>
562  <a name="gcread">Read barrier: <tt>llvm.gcread</tt></a>
563</h4>
564
565<div>
566
567<div class="doc_code"><tt>
568i8* @llvm.gcread(i8* %object, i8** %derived)<br>
569</tt></div>
570
571<p>For read barriers, LLVM provides the <tt>llvm.gcread</tt> intrinsic function.
572It has exactly the same semantics as a non-volatile <tt>load</tt> from the
573derived pointer (the second argument). The exact code generated is specified by
574a <a href="#plugin">compiler plugin</a>.</p>
575
576<p>Read barriers are needed by fewer algorithms than write barriers, and may
577have a greater performance impact since pointer reads are more frequent than
578writes.</p>
579
580</div>
581
582</div>
583
584</div>
585
586<!-- *********************************************************************** -->
587<h2>
588  <a name="plugin">Implementing a collector plugin</a>
589</h2>
590<!-- *********************************************************************** -->
591
592<div>
593
594<p>User code specifies which GC code generation to use with the <tt>gc</tt>
595function attribute or, equivalently, with the <tt>setGC</tt> method of
596<tt>Function</tt>.</p>
597
598<p>To implement a GC plugin, it is necessary to subclass
599<tt>llvm::GCStrategy</tt>, which can be accomplished in a few lines of
600boilerplate code. LLVM's infrastructure provides access to several important
601algorithms. For an uncontroversial collector, all that remains may be to
602compile LLVM's computed stack map to assembly code (using the binary
603representation expected by the runtime library). This can be accomplished in
604about 100 lines of code.</p>
605
606<p>This is not the appropriate place to implement a garbage collected heap or a
607garbage collector itself. That code should exist in the language's runtime
608library. The compiler plugin is responsible for generating code which
609conforms to the binary interface defined by library, most essentially the
610<a href="#stack-map">stack map</a>.</p>
611
612<p>To subclass <tt>llvm::GCStrategy</tt> and register it with the compiler:</p>
613
614<blockquote><pre>// lib/MyGC/MyGC.cpp - Example LLVM GC plugin
615
616#include "llvm/CodeGen/GCStrategy.h"
617#include "llvm/CodeGen/GCMetadata.h"
618#include "llvm/Support/Compiler.h"
619
620using namespace llvm;
621
622namespace {
623  class LLVM_LIBRARY_VISIBILITY MyGC : public GCStrategy {
624  public:
625    MyGC() {}
626  };
627  
628  GCRegistry::Add&lt;MyGC&gt;
629  X("mygc", "My bespoke garbage collector.");
630}</pre></blockquote>
631
632<p>This boilerplate collector does nothing. More specifically:</p>
633
634<ul>
635  <li><tt>llvm.gcread</tt> calls are replaced with the corresponding
636      <tt>load</tt> instruction.</li>
637  <li><tt>llvm.gcwrite</tt> calls are replaced with the corresponding
638      <tt>store</tt> instruction.</li>
639  <li>No safe points are added to the code.</li>
640  <li>The stack map is not compiled into the executable.</li>
641</ul>
642
643<p>Using the LLVM makefiles (like the <a
644href="http://llvm.org/viewvc/llvm-project/llvm/trunk/projects/sample/">sample
645project</a>), this code can be compiled as a plugin using a simple
646makefile:</p>
647
648<blockquote><pre
649># lib/MyGC/Makefile
650
651LEVEL := ../..
652LIBRARYNAME = <var>MyGC</var>
653LOADABLE_MODULE = 1
654
655include $(LEVEL)/Makefile.common</pre></blockquote>
656
657<p>Once the plugin is compiled, code using it may be compiled using <tt>llc
658-load=<var>MyGC.so</var></tt> (though <var>MyGC.so</var> may have some other
659platform-specific extension):</p>
660
661<blockquote><pre
662>$ cat sample.ll
663define void @f() gc "mygc" {
664entry:
665        ret void
666}
667$ llvm-as &lt; sample.ll | llc -load=MyGC.so</pre></blockquote>
668
669<p>It is also possible to statically link the collector plugin into tools, such
670as a language-specific compiler front-end.</p>
671
672<!-- ======================================================================= -->
673<h3>
674  <a name="collector-algos">Overview of available features</a>
675</h3>
676
677<div>
678
679<p><tt>GCStrategy</tt> provides a range of features through which a plugin
680may do useful work. Some of these are callbacks, some are algorithms that can
681be enabled, disabled, or customized. This matrix summarizes the supported (and
682planned) features and correlates them with the collection techniques which
683typically require them.</p>
684
685<table>
686  <tr>
687    <th>Algorithm</th>
688    <th>Done</th>
689    <th>shadow stack</th>
690    <th>refcount</th>
691    <th>mark-sweep</th>
692    <th>copying</th>
693    <th>incremental</th>
694    <th>threaded</th>
695    <th>concurrent</th>
696  </tr>
697  <tr>
698    <th class="rowhead"><a href="#stack-map">stack map</a></th>
699    <td>&#10004;</td>
700    <td></td>
701    <td></td>
702    <td>&#10008;</td>
703    <td>&#10008;</td>
704    <td>&#10008;</td>
705    <td>&#10008;</td>
706    <td>&#10008;</td>
707  </tr>
708  <tr>
709    <th class="rowhead"><a href="#init-roots">initialize roots</a></th>
710    <td>&#10004;</td>
711    <td>&#10008;</td>
712    <td>&#10008;</td>
713    <td>&#10008;</td>
714    <td>&#10008;</td>
715    <td>&#10008;</td>
716    <td>&#10008;</td>
717    <td>&#10008;</td>
718  </tr>
719  <tr class="doc_warning">
720    <th class="rowhead">derived pointers</th>
721    <td>NO</td>
722    <td></td>
723    <td></td>
724    <td></td>
725    <td></td>
726    <td></td>
727    <td>&#10008;*</td>
728    <td>&#10008;*</td>
729  </tr>
730  <tr>
731    <th class="rowhead"><em><a href="#custom">custom lowering</a></em></th>
732    <td>&#10004;</td>
733    <th></th>
734    <th></th>
735    <th></th>
736    <th></th>
737    <th></th>
738    <th></th>
739    <th></th>
740  </tr>
741  <tr>
742    <th class="rowhead indent">gcroot</th>
743    <td>&#10004;</td>
744    <td>&#10008;</td>
745    <td>&#10008;</td>
746    <td></td>
747    <td></td>
748    <td></td>
749    <td></td>
750    <td></td>
751  </tr>
752  <tr>
753    <th class="rowhead indent">gcwrite</th>
754    <td>&#10004;</td>
755    <td></td>
756    <td>&#10008;</td>
757    <td></td>
758    <td></td>
759    <td>&#10008;</td>
760    <td></td>
761    <td>&#10008;</td>
762  </tr>
763  <tr>
764    <th class="rowhead indent">gcread</th>
765    <td>&#10004;</td>
766    <td></td>
767    <td></td>
768    <td></td>
769    <td></td>
770    <td></td>
771    <td></td>
772    <td>&#10008;</td>
773  </tr>
774  <tr>
775    <th class="rowhead"><em><a href="#safe-points">safe points</a></em></th>
776    <td></td>
777    <th></th>
778    <th></th>
779    <th></th>
780    <th></th>
781    <th></th>
782    <th></th>
783    <th></th>
784  </tr>
785  <tr>
786    <th class="rowhead indent">in calls</th>
787    <td>&#10004;</td>
788    <td></td>
789    <td></td>
790    <td>&#10008;</td>
791    <td>&#10008;</td>
792    <td>&#10008;</td>
793    <td>&#10008;</td>
794    <td>&#10008;</td>
795  </tr>
796  <tr>
797    <th class="rowhead indent">before calls</th>
798    <td>&#10004;</td>
799    <td></td>
800    <td></td>
801    <td></td>
802    <td></td>
803    <td></td>
804    <td>&#10008;</td>
805    <td>&#10008;</td>
806  </tr>
807  <tr class="doc_warning">
808    <th class="rowhead indent">for loops</th>
809    <td>NO</td>
810    <td></td>
811    <td></td>
812    <td></td>
813    <td></td>
814    <td></td>
815    <td>&#10008;</td>
816    <td>&#10008;</td>
817  </tr>
818  <tr>
819    <th class="rowhead indent">before escape</th>
820    <td>&#10004;</td>
821    <td></td>
822    <td></td>
823    <td></td>
824    <td></td>
825    <td></td>
826    <td>&#10008;</td>
827    <td>&#10008;</td>
828  </tr>
829  <tr class="doc_warning">
830    <th class="rowhead">emit code at safe points</th>
831    <td>NO</td>
832    <td></td>
833    <td></td>
834    <td></td>
835    <td></td>
836    <td></td>
837    <td>&#10008;</td>
838    <td>&#10008;</td>
839  </tr>
840  <tr>
841    <th class="rowhead"><em>output</em></th>
842    <td></td>
843    <th></th>
844    <th></th>
845    <th></th>
846    <th></th>
847    <th></th>
848    <th></th>
849    <th></th>
850  </tr>
851  <tr>
852    <th class="rowhead indent"><a href="#assembly">assembly</a></th>
853    <td>&#10004;</td>
854    <td></td>
855    <td></td>
856    <td>&#10008;</td>
857    <td>&#10008;</td>
858    <td>&#10008;</td>
859    <td>&#10008;</td>
860    <td>&#10008;</td>
861  </tr>
862  <tr class="doc_warning">
863    <th class="rowhead indent">JIT</th>
864    <td>NO</td>
865    <td></td>
866    <td></td>
867    <td class="optl">&#10008;</td>
868    <td class="optl">&#10008;</td>
869    <td class="optl">&#10008;</td>
870    <td class="optl">&#10008;</td>
871    <td class="optl">&#10008;</td>
872  </tr>
873  <tr class="doc_warning">
874    <th class="rowhead indent">obj</th>
875    <td>NO</td>
876    <td></td>
877    <td></td>
878    <td class="optl">&#10008;</td>
879    <td class="optl">&#10008;</td>
880    <td class="optl">&#10008;</td>
881    <td class="optl">&#10008;</td>
882    <td class="optl">&#10008;</td>
883  </tr>
884  <tr class="doc_warning">
885    <th class="rowhead">live analysis</th>
886    <td>NO</td>
887    <td></td>
888    <td></td>
889    <td class="optl">&#10008;</td>
890    <td class="optl">&#10008;</td>
891    <td class="optl">&#10008;</td>
892    <td class="optl">&#10008;</td>
893    <td class="optl">&#10008;</td>
894  </tr>
895  <tr class="doc_warning">
896    <th class="rowhead">register map</th>
897    <td>NO</td>
898    <td></td>
899    <td></td>
900    <td class="optl">&#10008;</td>
901    <td class="optl">&#10008;</td>
902    <td class="optl">&#10008;</td>
903    <td class="optl">&#10008;</td>
904    <td class="optl">&#10008;</td>
905  </tr>
906  <tr>
907    <td colspan="10">
908      <div><span class="doc_warning">*</span> Derived pointers only pose a
909           hazard to copying collectors.</div>
910      <div><span class="optl">&#10008;</span> in gray denotes a feature which
911           could be utilized if available.</div>
912    </td>
913  </tr>
914</table>
915
916<p>To be clear, the collection techniques above are defined as:</p>
917
918<dl>
919  <dt>Shadow Stack</dt>
920  <dd>The mutator carefully maintains a linked list of stack roots.</dd>
921  <dt>Reference Counting</dt>
922  <dd>The mutator maintains a reference count for each object and frees an
923      object when its count falls to zero.</dd>
924  <dt>Mark-Sweep</dt>
925  <dd>When the heap is exhausted, the collector marks reachable objects starting
926      from the roots, then deallocates unreachable objects in a sweep
927      phase.</dd>
928  <dt>Copying</dt>
929  <dd>As reachability analysis proceeds, the collector copies objects from one
930      heap area to another, compacting them in the process. Copying collectors
931      enable highly efficient "bump pointer" allocation and can improve locality
932      of reference.</dd>
933  <dt>Incremental</dt>
934  <dd>(Including generational collectors.) Incremental collectors generally have
935      all the properties of a copying collector (regardless of whether the
936      mature heap is compacting), but bring the added complexity of requiring
937      write barriers.</dd>
938  <dt>Threaded</dt>
939  <dd>Denotes a multithreaded mutator; the collector must still stop the mutator
940      ("stop the world") before beginning reachability analysis. Stopping a
941      multithreaded mutator is a complicated problem. It generally requires
942      highly platform specific code in the runtime, and the production of
943      carefully designed machine code at safe points.</dd>
944  <dt>Concurrent</dt>
945  <dd>In this technique, the mutator and the collector run concurrently, with
946      the goal of eliminating pause times. In a <em>cooperative</em> collector,
947      the mutator further aids with collection should a pause occur, allowing
948      collection to take advantage of multiprocessor hosts. The "stop the world"
949      problem of threaded collectors is generally still present to a limited
950      extent. Sophisticated marking algorithms are necessary. Read barriers may
951      be necessary.</dd>
952</dl>
953
954<p>As the matrix indicates, LLVM's garbage collection infrastructure is already
955suitable for a wide variety of collectors, but does not currently extend to
956multithreaded programs. This will be added in the future as there is
957interest.</p>
958
959</div>
960
961<!-- ======================================================================= -->
962<h3>
963  <a name="stack-map">Computing stack maps</a>
964</h3>
965
966<div>
967
968<p>LLVM automatically computes a stack map. One of the most important features
969of a <tt>GCStrategy</tt> is to compile this information into the executable in
970the binary representation expected by the runtime library.</p>
971
972<p>The stack map consists of the location and identity of each GC root in the
973each function in the module. For each root:</p>
974
975<ul>
976  <li><tt>RootNum</tt>: The index of the root.</li>
977  <li><tt>StackOffset</tt>: The offset of the object relative to the frame
978      pointer.</li>
979  <li><tt>RootMetadata</tt>: The value passed as the <tt>%metadata</tt>
980      parameter to the <a href="#gcroot"><tt>@llvm.gcroot</tt></a> intrinsic.</li>
981</ul>
982
983<p>Also, for the function as a whole:</p>
984
985<ul>
986  <li><tt>getFrameSize()</tt>: The overall size of the function's initial
987      stack frame, not accounting for any dynamic allocation.</li>
988  <li><tt>roots_size()</tt>: The count of roots in the function.</li>
989</ul>
990
991<p>To access the stack map, use <tt>GCFunctionMetadata::roots_begin()</tt> and
992-<tt>end()</tt> from the <tt><a
993href="#assembly">GCMetadataPrinter</a></tt>:</p>
994
995<blockquote><pre
996>for (iterator I = begin(), E = end(); I != E; ++I) {
997  GCFunctionInfo *FI = *I;
998  unsigned FrameSize = FI-&gt;getFrameSize();
999  size_t RootCount = FI-&gt;roots_size();
1000
1001  for (GCFunctionInfo::roots_iterator RI = FI-&gt;roots_begin(),
1002                                      RE = FI-&gt;roots_end();
1003                                      RI != RE; ++RI) {
1004    int RootNum = RI->Num;
1005    int RootStackOffset = RI->StackOffset;
1006    Constant *RootMetadata = RI->Metadata;
1007  }
1008}</pre></blockquote>
1009
1010<p>If the <tt>llvm.gcroot</tt> intrinsic is eliminated before code generation by
1011a custom lowering pass, LLVM will compute an empty stack map. This may be useful
1012for collector plugins which implement reference counting or a shadow stack.</p>
1013
1014</div>
1015
1016
1017<!-- ======================================================================= -->
1018<h3>
1019  <a name="init-roots">Initializing roots to null: <tt>InitRoots</tt></a>
1020</h3>
1021
1022<div>
1023
1024<blockquote><pre
1025>MyGC::MyGC() {
1026  InitRoots = true;
1027}</pre></blockquote>
1028
1029<p>When set, LLVM will automatically initialize each root to <tt>null</tt> upon
1030entry to the function. This prevents the GC's sweep phase from visiting
1031uninitialized pointers, which will almost certainly cause it to crash. This
1032initialization occurs before custom lowering, so the two may be used
1033together.</p>
1034
1035<p>Since LLVM does not yet compute liveness information, there is no means of
1036distinguishing an uninitialized stack root from an initialized one. Therefore,
1037this feature should be used by all GC plugins. It is enabled by default.</p>
1038
1039</div>
1040
1041
1042<!-- ======================================================================= -->
1043<h3>
1044  <a name="custom">Custom lowering of intrinsics: <tt>CustomRoots</tt>, 
1045    <tt>CustomReadBarriers</tt>, and <tt>CustomWriteBarriers</tt></a>
1046</h3>
1047
1048<div>
1049
1050<p>For GCs which use barriers or unusual treatment of stack roots, these
1051flags allow the collector to perform arbitrary transformations of the LLVM
1052IR:</p>
1053
1054<blockquote><pre
1055>class MyGC : public GCStrategy {
1056public:
1057  MyGC() {
1058    CustomRoots = true;
1059    CustomReadBarriers = true;
1060    CustomWriteBarriers = true;
1061  }
1062  
1063  virtual bool initializeCustomLowering(Module &amp;M);
1064  virtual bool performCustomLowering(Function &amp;F);
1065};</pre></blockquote>
1066
1067<p>If any of these flags are set, then LLVM suppresses its default lowering for
1068the corresponding intrinsics and instead calls
1069<tt>performCustomLowering</tt>.</p>
1070
1071<p>LLVM's default action for each intrinsic is as follows:</p>
1072
1073<ul>
1074  <li><tt>llvm.gcroot</tt>: Leave it alone. The code generator must see it
1075                            or the stack map will not be computed.</li>
1076  <li><tt>llvm.gcread</tt>: Substitute a <tt>load</tt> instruction.</li>
1077  <li><tt>llvm.gcwrite</tt>: Substitute a <tt>store</tt> instruction.</li>
1078</ul>
1079
1080<p>If <tt>CustomReadBarriers</tt> or <tt>CustomWriteBarriers</tt> are specified,
1081then <tt>performCustomLowering</tt> <strong>must</strong> eliminate the
1082corresponding barriers.</p>
1083
1084<p><tt>performCustomLowering</tt> must comply with the same restrictions as <a
1085href="WritingAnLLVMPass.html#runOnFunction"><tt
1086>FunctionPass::runOnFunction</tt></a>.
1087Likewise, <tt>initializeCustomLowering</tt> has the same semantics as <a
1088href="WritingAnLLVMPass.html#doInitialization_mod"><tt
1089>Pass::doInitialization(Module&amp;)</tt></a>.</p>
1090
1091<p>The following can be used as a template:</p>
1092
1093<blockquote><pre
1094>#include "llvm/Module.h"
1095#include "llvm/IntrinsicInst.h"
1096
1097bool MyGC::initializeCustomLowering(Module &amp;M) {
1098  return false;
1099}
1100
1101bool MyGC::performCustomLowering(Function &amp;F) {
1102  bool MadeChange = false;
1103  
1104  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1105    for (BasicBlock::iterator II = BB-&gt;begin(), E = BB-&gt;end(); II != E; )
1106      if (IntrinsicInst *CI = dyn_cast&lt;IntrinsicInst&gt;(II++))
1107        if (Function *F = CI-&gt;getCalledFunction())
1108          switch (F-&gt;getIntrinsicID()) {
1109          case Intrinsic::gcwrite:
1110            // Handle llvm.gcwrite.
1111            CI-&gt;eraseFromParent();
1112            MadeChange = true;
1113            break;
1114          case Intrinsic::gcread:
1115            // Handle llvm.gcread.
1116            CI-&gt;eraseFromParent();
1117            MadeChange = true;
1118            break;
1119          case Intrinsic::gcroot:
1120            // Handle llvm.gcroot.
1121            CI-&gt;eraseFromParent();
1122            MadeChange = true;
1123            break;
1124          }
1125  
1126  return MadeChange;
1127}</pre></blockquote>
1128
1129</div>
1130
1131
1132<!-- ======================================================================= -->
1133<h3>
1134  <a name="safe-points">Generating safe points: <tt>NeededSafePoints</tt></a>
1135</h3>
1136
1137<div>
1138
1139<p>LLVM can compute four kinds of safe points:</p>
1140
1141<blockquote><pre
1142>namespace GC {
1143  /// PointKind - The type of a collector-safe point.
1144  /// 
1145  enum PointKind {
1146    Loop,    //&lt; Instr is a loop (backwards branch).
1147    Return,  //&lt; Instr is a return instruction.
1148    PreCall, //&lt; Instr is a call instruction.
1149    PostCall //&lt; Instr is the return address of a call.
1150  };
1151}</pre></blockquote>
1152
1153<p>A collector can request any combination of the four by setting the 
1154<tt>NeededSafePoints</tt> mask:</p>
1155
1156<blockquote><pre
1157>MyGC::MyGC() {
1158  NeededSafePoints = 1 &lt;&lt; GC::Loop
1159                   | 1 &lt;&lt; GC::Return
1160                   | 1 &lt;&lt; GC::PreCall
1161                   | 1 &lt;&lt; GC::PostCall;
1162}</pre></blockquote>
1163
1164<p>It can then use the following routines to access safe points.</p>
1165
1166<blockquote><pre
1167>for (iterator I = begin(), E = end(); I != E; ++I) {
1168  GCFunctionInfo *MD = *I;
1169  size_t PointCount = MD-&gt;size();
1170
1171  for (GCFunctionInfo::iterator PI = MD-&gt;begin(),
1172                                PE = MD-&gt;end(); PI != PE; ++PI) {
1173    GC::PointKind PointKind = PI-&gt;Kind;
1174    unsigned PointNum = PI-&gt;Num;
1175  }
1176}
1177</pre></blockquote>
1178
1179<p>Almost every collector requires <tt>PostCall</tt> safe points, since these
1180correspond to the moments when the function is suspended during a call to a
1181subroutine.</p>
1182
1183<p>Threaded programs generally require <tt>Loop</tt> safe points to guarantee
1184that the application will reach a safe point within a bounded amount of time,
1185even if it is executing a long-running loop which contains no function
1186calls.</p>
1187
1188<p>Threaded collectors may also require <tt>Return</tt> and <tt>PreCall</tt>
1189safe points to implement "stop the world" techniques using self-modifying code,
1190where it is important that the program not exit the function without reaching a
1191safe point (because only the topmost function has been patched).</p>
1192
1193</div>
1194
1195
1196<!-- ======================================================================= -->
1197<h3>
1198  <a name="assembly">Emitting assembly code: <tt>GCMetadataPrinter</tt></a>
1199</h3>
1200
1201<div>
1202
1203<p>LLVM allows a plugin to print arbitrary assembly code before and after the
1204rest of a module's assembly code. At the end of the module, the GC can compile
1205the LLVM stack map into assembly code. (At the beginning, this information is not
1206yet computed.)</p>
1207
1208<p>Since AsmWriter and CodeGen are separate components of LLVM, a separate
1209abstract base class and registry is provided for printing assembly code, the
1210<tt>GCMetadaPrinter</tt> and <tt>GCMetadataPrinterRegistry</tt>. The AsmWriter
1211will look for such a subclass if the <tt>GCStrategy</tt> sets
1212<tt>UsesMetadata</tt>:</p>
1213
1214<blockquote><pre
1215>MyGC::MyGC() {
1216  UsesMetadata = true;
1217}</pre></blockquote>
1218
1219<p>This separation allows JIT-only clients to be smaller.</p>
1220
1221<p>Note that LLVM does not currently have analogous APIs to support code
1222generation in the JIT, nor using the object writers.</p>
1223
1224<blockquote><pre
1225>// lib/MyGC/MyGCPrinter.cpp - Example LLVM GC printer
1226
1227#include "llvm/CodeGen/GCMetadataPrinter.h"
1228#include "llvm/Support/Compiler.h"
1229
1230using namespace llvm;
1231
1232namespace {
1233  class LLVM_LIBRARY_VISIBILITY MyGCPrinter : public GCMetadataPrinter {
1234  public:
1235    virtual void beginAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
1236                               const TargetAsmInfo &amp;TAI);
1237  
1238    virtual void finishAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
1239                                const TargetAsmInfo &amp;TAI);
1240  };
1241  
1242  GCMetadataPrinterRegistry::Add&lt;MyGCPrinter&gt;
1243  X("mygc", "My bespoke garbage collector.");
1244}</pre></blockquote>
1245
1246<p>The collector should use <tt>AsmPrinter</tt> and <tt>TargetAsmInfo</tt> to
1247print portable assembly code to the <tt>std::ostream</tt>. The collector itself
1248contains the stack map for the entire module, and may access the
1249<tt>GCFunctionInfo</tt> using its own <tt>begin()</tt> and <tt>end()</tt>
1250methods. Here's a realistic example:</p>
1251
1252<blockquote><pre
1253>#include "llvm/CodeGen/AsmPrinter.h"
1254#include "llvm/Function.h"
1255#include "llvm/Target/TargetMachine.h"
1256#include "llvm/Target/TargetData.h"
1257#include "llvm/Target/TargetAsmInfo.h"
1258
1259void MyGCPrinter::beginAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
1260                                const TargetAsmInfo &amp;TAI) {
1261  // Nothing to do.
1262}
1263
1264void MyGCPrinter::finishAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
1265                                 const TargetAsmInfo &amp;TAI) {
1266  // Set up for emitting addresses.
1267  const char *AddressDirective;
1268  int AddressAlignLog;
1269  if (AP.TM.getTargetData()->getPointerSize() == sizeof(int32_t)) {
1270    AddressDirective = TAI.getData32bitsDirective();
1271    AddressAlignLog = 2;
1272  } else {
1273    AddressDirective = TAI.getData64bitsDirective();
1274    AddressAlignLog = 3;
1275  }
1276  
1277  // Put this in the data section.
1278  AP.SwitchToDataSection(TAI.getDataSection());
1279  
1280  // For each function...
1281  for (iterator FI = begin(), FE = end(); FI != FE; ++FI) {
1282    GCFunctionInfo &amp;MD = **FI;
1283    
1284    // Emit this data structure:
1285    // 
1286    // struct {
1287    //   int32_t PointCount;
1288    //   struct {
1289    //     void *SafePointAddress;
1290    //     int32_t LiveCount;
1291    //     int32_t LiveOffsets[LiveCount];
1292    //   } Points[PointCount];
1293    // } __gcmap_&lt;FUNCTIONNAME&gt;;
1294    
1295    // Align to address width.
1296    AP.EmitAlignment(AddressAlignLog);
1297    
1298    // Emit the symbol by which the stack map entry can be found.
1299    std::string Symbol;
1300    Symbol += TAI.getGlobalPrefix();
1301    Symbol += "__gcmap_";
1302    Symbol += MD.getFunction().getName();
1303    if (const char *GlobalDirective = TAI.getGlobalDirective())
1304      OS &lt;&lt; GlobalDirective &lt;&lt; Symbol &lt;&lt; "\n";
1305    OS &lt;&lt; TAI.getGlobalPrefix() &lt;&lt; Symbol &lt;&lt; ":\n";
1306    
1307    // Emit PointCount.
1308    AP.EmitInt32(MD.size());
1309    AP.EOL("safe point count");
1310    
1311    // And each safe point...
1312    for (GCFunctionInfo::iterator PI = MD.begin(),
1313                                     PE = MD.end(); PI != PE; ++PI) {
1314      // Align to address width.
1315      AP.EmitAlignment(AddressAlignLog);
1316      
1317      // Emit the address of the safe point.
1318      OS &lt;&lt; AddressDirective
1319         &lt;&lt; TAI.getPrivateGlobalPrefix() &lt;&lt; "label" &lt;&lt; PI-&gt;Num;
1320      AP.EOL("safe point address");
1321      
1322      // Emit the stack frame size.
1323      AP.EmitInt32(MD.getFrameSize());
1324      AP.EOL("stack frame size");
1325      
1326      // Emit the number of live roots in the function.
1327      AP.EmitInt32(MD.live_size(PI));
1328      AP.EOL("live root count");
1329      
1330      // And for each live root...
1331      for (GCFunctionInfo::live_iterator LI = MD.live_begin(PI),
1332                                            LE = MD.live_end(PI);
1333                                            LI != LE; ++LI) {
1334        // Print its offset within the stack frame.
1335        AP.EmitInt32(LI-&gt;StackOffset);
1336        AP.EOL("stack offset");
1337      }
1338    }
1339  }
1340}
1341</pre></blockquote>
1342
1343</div>
1344
1345</div>
1346
1347<!-- *********************************************************************** -->
1348<h2>
1349  <a name="references">References</a>
1350</h2>
1351<!-- *********************************************************************** -->
1352
1353<div>
1354
1355<p><a name="appel89">[Appel89]</a> Runtime Tags Aren't Necessary. Andrew
1356W. Appel. Lisp and Symbolic Computation 19(7):703-705, July 1989.</p>
1357
1358<p><a name="goldberg91">[Goldberg91]</a> Tag-free garbage collection for
1359strongly typed programming languages. Benjamin Goldberg. ACM SIGPLAN
1360PLDI'91.</p>
1361
1362<p><a name="tolmach94">[Tolmach94]</a> Tag-free garbage collection using
1363explicit type parameters. Andrew Tolmach. Proceedings of the 1994 ACM
1364conference on LISP and functional programming.</p>
1365
1366<p><a name="henderson02">[Henderson2002]</a> <a
1367href="http://citeseer.ist.psu.edu/henderson02accurate.html">
1368Accurate Garbage Collection in an Uncooperative Environment</a>.
1369Fergus Henderson. International Symposium on Memory Management 2002.</p>
1370
1371</div>
1372
1373
1374<!-- *********************************************************************** -->
1375
1376<hr>
1377<address>
1378  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1379  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
1380  <a href="http://validator.w3.org/check/referer"><img
1381  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
1382
1383  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1384  <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
1385  Last modified: $Date$
1386</address>
1387
1388</body>
1389</html>
1390