1/*
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 *
21 *  Optimization module for tcpdump intermediate representation.
22 */
23#ifndef lint
24static const char rcsid[] _U_ =
25    "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.91 2008-01-02 04:16:46 guy Exp $ (LBL)";
26#endif
27
28#ifdef HAVE_CONFIG_H
29#include "config.h"
30#endif
31
32#ifdef WIN32
33#include <pcap-stdinc.h>
34#else /* WIN32 */
35#if HAVE_INTTYPES_H
36#include <inttypes.h>
37#elif HAVE_STDINT_H
38#include <stdint.h>
39#endif
40#ifdef HAVE_SYS_BITYPES_H
41#include <sys/bitypes.h>
42#endif
43#include <sys/types.h>
44#endif /* WIN32 */
45
46#include <stdio.h>
47#include <stdlib.h>
48#include <memory.h>
49#include <string.h>
50
51#include <errno.h>
52
53#include "pcap-int.h"
54
55#include "gencode.h"
56
57#ifdef HAVE_OS_PROTO_H
58#include "os-proto.h"
59#endif
60
61#ifdef BDEBUG
62extern int dflag;
63#endif
64
65#if defined(MSDOS) && !defined(__DJGPP__)
66extern int _w32_ffs (int mask);
67#define ffs _w32_ffs
68#endif
69
70#if defined(WIN32) && defined (_MSC_VER)
71int ffs(int mask);
72#endif
73
74/*
75 * Represents a deleted instruction.
76 */
77#define NOP -1
78
79/*
80 * Register numbers for use-def values.
81 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
82 * location.  A_ATOM is the accumulator and X_ATOM is the index
83 * register.
84 */
85#define A_ATOM BPF_MEMWORDS
86#define X_ATOM (BPF_MEMWORDS+1)
87
88/*
89 * This define is used to represent *both* the accumulator and
90 * x register in use-def computations.
91 * Currently, the use-def code assumes only one definition per instruction.
92 */
93#define AX_ATOM N_ATOMS
94
95/*
96 * A flag to indicate that further optimization is needed.
97 * Iterative passes are continued until a given pass yields no
98 * branch movement.
99 */
100static int done;
101
102/*
103 * A block is marked if only if its mark equals the current mark.
104 * Rather than traverse the code array, marking each item, 'cur_mark' is
105 * incremented.  This automatically makes each element unmarked.
106 */
107static int cur_mark;
108#define isMarked(p) ((p)->mark == cur_mark)
109#define unMarkAll() cur_mark += 1
110#define Mark(p) ((p)->mark = cur_mark)
111
112static void opt_init(struct block *);
113static void opt_cleanup(void);
114
115static void make_marks(struct block *);
116static void mark_code(struct block *);
117
118static void intern_blocks(struct block *);
119
120static int eq_slist(struct slist *, struct slist *);
121
122static void find_levels_r(struct block *);
123
124static void find_levels(struct block *);
125static void find_dom(struct block *);
126static void propedom(struct edge *);
127static void find_edom(struct block *);
128static void find_closure(struct block *);
129static int atomuse(struct stmt *);
130static int atomdef(struct stmt *);
131static void compute_local_ud(struct block *);
132static void find_ud(struct block *);
133static void init_val(void);
134static int F(int, int, int);
135static inline void vstore(struct stmt *, int *, int, int);
136static void opt_blk(struct block *, int);
137static int use_conflict(struct block *, struct block *);
138static void opt_j(struct edge *);
139static void or_pullup(struct block *);
140static void and_pullup(struct block *);
141static void opt_blks(struct block *, int);
142static inline void link_inedge(struct edge *, struct block *);
143static void find_inedges(struct block *);
144static void opt_root(struct block **);
145static void opt_loop(struct block *, int);
146static void fold_op(struct stmt *, int, int);
147static inline struct slist *this_op(struct slist *);
148static void opt_not(struct block *);
149static void opt_peep(struct block *);
150static void opt_stmt(struct stmt *, int[], int);
151static void deadstmt(struct stmt *, struct stmt *[]);
152static void opt_deadstores(struct block *);
153static struct block *fold_edge(struct block *, struct edge *);
154static inline int eq_blk(struct block *, struct block *);
155static u_int slength(struct slist *);
156static int count_blocks(struct block *);
157static void number_blks_r(struct block *);
158static u_int count_stmts(struct block *);
159static int convert_code_r(struct block *);
160#ifdef BDEBUG
161static void opt_dump(struct block *);
162#endif
163
164static int n_blocks;
165struct block **blocks;
166static int n_edges;
167struct edge **edges;
168
169/*
170 * A bit vector set representation of the dominators.
171 * We round up the set size to the next power of two.
172 */
173static int nodewords;
174static int edgewords;
175struct block **levels;
176bpf_u_int32 *space;
177#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
178/*
179 * True if a is in uset {p}
180 */
181#define SET_MEMBER(p, a) \
182((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
183
184/*
185 * Add 'a' to uset p.
186 */
187#define SET_INSERT(p, a) \
188(p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
189
190/*
191 * Delete 'a' from uset p.
192 */
193#define SET_DELETE(p, a) \
194(p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
195
196/*
197 * a := a intersect b
198 */
199#define SET_INTERSECT(a, b, n)\
200{\
201	register bpf_u_int32 *_x = a, *_y = b;\
202	register int _n = n;\
203	while (--_n >= 0) *_x++ &= *_y++;\
204}
205
206/*
207 * a := a - b
208 */
209#define SET_SUBTRACT(a, b, n)\
210{\
211	register bpf_u_int32 *_x = a, *_y = b;\
212	register int _n = n;\
213	while (--_n >= 0) *_x++ &=~ *_y++;\
214}
215
216/*
217 * a := a union b
218 */
219#define SET_UNION(a, b, n)\
220{\
221	register bpf_u_int32 *_x = a, *_y = b;\
222	register int _n = n;\
223	while (--_n >= 0) *_x++ |= *_y++;\
224}
225
226static uset all_dom_sets;
227static uset all_closure_sets;
228static uset all_edge_sets;
229
230#ifndef MAX
231#define MAX(a,b) ((a)>(b)?(a):(b))
232#endif
233
234static void
235find_levels_r(b)
236	struct block *b;
237{
238	int level;
239
240	if (isMarked(b))
241		return;
242
243	Mark(b);
244	b->link = 0;
245
246	if (JT(b)) {
247		find_levels_r(JT(b));
248		find_levels_r(JF(b));
249		level = MAX(JT(b)->level, JF(b)->level) + 1;
250	} else
251		level = 0;
252	b->level = level;
253	b->link = levels[level];
254	levels[level] = b;
255}
256
257/*
258 * Level graph.  The levels go from 0 at the leaves to
259 * N_LEVELS at the root.  The levels[] array points to the
260 * first node of the level list, whose elements are linked
261 * with the 'link' field of the struct block.
262 */
263static void
264find_levels(root)
265	struct block *root;
266{
267	memset((char *)levels, 0, n_blocks * sizeof(*levels));
268	unMarkAll();
269	find_levels_r(root);
270}
271
272/*
273 * Find dominator relationships.
274 * Assumes graph has been leveled.
275 */
276static void
277find_dom(root)
278	struct block *root;
279{
280	int i;
281	struct block *b;
282	bpf_u_int32 *x;
283
284	/*
285	 * Initialize sets to contain all nodes.
286	 */
287	x = all_dom_sets;
288	i = n_blocks * nodewords;
289	while (--i >= 0)
290		*x++ = ~0;
291	/* Root starts off empty. */
292	for (i = nodewords; --i >= 0;)
293		root->dom[i] = 0;
294
295	/* root->level is the highest level no found. */
296	for (i = root->level; i >= 0; --i) {
297		for (b = levels[i]; b; b = b->link) {
298			SET_INSERT(b->dom, b->id);
299			if (JT(b) == 0)
300				continue;
301			SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
302			SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
303		}
304	}
305}
306
307static void
308propedom(ep)
309	struct edge *ep;
310{
311	SET_INSERT(ep->edom, ep->id);
312	if (ep->succ) {
313		SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
314		SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
315	}
316}
317
318/*
319 * Compute edge dominators.
320 * Assumes graph has been leveled and predecessors established.
321 */
322static void
323find_edom(root)
324	struct block *root;
325{
326	int i;
327	uset x;
328	struct block *b;
329
330	x = all_edge_sets;
331	for (i = n_edges * edgewords; --i >= 0; )
332		x[i] = ~0;
333
334	/* root->level is the highest level no found. */
335	memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
336	memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
337	for (i = root->level; i >= 0; --i) {
338		for (b = levels[i]; b != 0; b = b->link) {
339			propedom(&b->et);
340			propedom(&b->ef);
341		}
342	}
343}
344
345/*
346 * Find the backwards transitive closure of the flow graph.  These sets
347 * are backwards in the sense that we find the set of nodes that reach
348 * a given node, not the set of nodes that can be reached by a node.
349 *
350 * Assumes graph has been leveled.
351 */
352static void
353find_closure(root)
354	struct block *root;
355{
356	int i;
357	struct block *b;
358
359	/*
360	 * Initialize sets to contain no nodes.
361	 */
362	memset((char *)all_closure_sets, 0,
363	      n_blocks * nodewords * sizeof(*all_closure_sets));
364
365	/* root->level is the highest level no found. */
366	for (i = root->level; i >= 0; --i) {
367		for (b = levels[i]; b; b = b->link) {
368			SET_INSERT(b->closure, b->id);
369			if (JT(b) == 0)
370				continue;
371			SET_UNION(JT(b)->closure, b->closure, nodewords);
372			SET_UNION(JF(b)->closure, b->closure, nodewords);
373		}
374	}
375}
376
377/*
378 * Return the register number that is used by s.  If A and X are both
379 * used, return AX_ATOM.  If no register is used, return -1.
380 *
381 * The implementation should probably change to an array access.
382 */
383static int
384atomuse(s)
385	struct stmt *s;
386{
387	register int c = s->code;
388
389	if (c == NOP)
390		return -1;
391
392	switch (BPF_CLASS(c)) {
393
394	case BPF_RET:
395		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
396			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
397
398	case BPF_LD:
399	case BPF_LDX:
400		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
401			(BPF_MODE(c) == BPF_MEM) ? s->k : -1;
402
403	case BPF_ST:
404		return A_ATOM;
405
406	case BPF_STX:
407		return X_ATOM;
408
409	case BPF_JMP:
410	case BPF_ALU:
411		if (BPF_SRC(c) == BPF_X)
412			return AX_ATOM;
413		return A_ATOM;
414
415	case BPF_MISC:
416		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
417	}
418	abort();
419	/* NOTREACHED */
420}
421
422/*
423 * Return the register number that is defined by 's'.  We assume that
424 * a single stmt cannot define more than one register.  If no register
425 * is defined, return -1.
426 *
427 * The implementation should probably change to an array access.
428 */
429static int
430atomdef(s)
431	struct stmt *s;
432{
433	if (s->code == NOP)
434		return -1;
435
436	switch (BPF_CLASS(s->code)) {
437
438	case BPF_LD:
439	case BPF_ALU:
440		return A_ATOM;
441
442	case BPF_LDX:
443		return X_ATOM;
444
445	case BPF_ST:
446	case BPF_STX:
447		return s->k;
448
449	case BPF_MISC:
450		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
451	}
452	return -1;
453}
454
455/*
456 * Compute the sets of registers used, defined, and killed by 'b'.
457 *
458 * "Used" means that a statement in 'b' uses the register before any
459 * statement in 'b' defines it, i.e. it uses the value left in
460 * that register by a predecessor block of this block.
461 * "Defined" means that a statement in 'b' defines it.
462 * "Killed" means that a statement in 'b' defines it before any
463 * statement in 'b' uses it, i.e. it kills the value left in that
464 * register by a predecessor block of this block.
465 */
466static void
467compute_local_ud(b)
468	struct block *b;
469{
470	struct slist *s;
471	atomset def = 0, use = 0, kill = 0;
472	int atom;
473
474	for (s = b->stmts; s; s = s->next) {
475		if (s->s.code == NOP)
476			continue;
477		atom = atomuse(&s->s);
478		if (atom >= 0) {
479			if (atom == AX_ATOM) {
480				if (!ATOMELEM(def, X_ATOM))
481					use |= ATOMMASK(X_ATOM);
482				if (!ATOMELEM(def, A_ATOM))
483					use |= ATOMMASK(A_ATOM);
484			}
485			else if (atom < N_ATOMS) {
486				if (!ATOMELEM(def, atom))
487					use |= ATOMMASK(atom);
488			}
489			else
490				abort();
491		}
492		atom = atomdef(&s->s);
493		if (atom >= 0) {
494			if (!ATOMELEM(use, atom))
495				kill |= ATOMMASK(atom);
496			def |= ATOMMASK(atom);
497		}
498	}
499	if (BPF_CLASS(b->s.code) == BPF_JMP) {
500		/*
501		 * XXX - what about RET?
502		 */
503		atom = atomuse(&b->s);
504		if (atom >= 0) {
505			if (atom == AX_ATOM) {
506				if (!ATOMELEM(def, X_ATOM))
507					use |= ATOMMASK(X_ATOM);
508				if (!ATOMELEM(def, A_ATOM))
509					use |= ATOMMASK(A_ATOM);
510			}
511			else if (atom < N_ATOMS) {
512				if (!ATOMELEM(def, atom))
513					use |= ATOMMASK(atom);
514			}
515			else
516				abort();
517		}
518	}
519
520	b->def = def;
521	b->kill = kill;
522	b->in_use = use;
523}
524
525/*
526 * Assume graph is already leveled.
527 */
528static void
529find_ud(root)
530	struct block *root;
531{
532	int i, maxlevel;
533	struct block *p;
534
535	/*
536	 * root->level is the highest level no found;
537	 * count down from there.
538	 */
539	maxlevel = root->level;
540	for (i = maxlevel; i >= 0; --i)
541		for (p = levels[i]; p; p = p->link) {
542			compute_local_ud(p);
543			p->out_use = 0;
544		}
545
546	for (i = 1; i <= maxlevel; ++i) {
547		for (p = levels[i]; p; p = p->link) {
548			p->out_use |= JT(p)->in_use | JF(p)->in_use;
549			p->in_use |= p->out_use &~ p->kill;
550		}
551	}
552}
553
554/*
555 * These data structures are used in a Cocke and Shwarz style
556 * value numbering scheme.  Since the flowgraph is acyclic,
557 * exit values can be propagated from a node's predecessors
558 * provided it is uniquely defined.
559 */
560struct valnode {
561	int code;
562	int v0, v1;
563	int val;
564	struct valnode *next;
565};
566
567#define MODULUS 213
568static struct valnode *hashtbl[MODULUS];
569static int curval;
570static int maxval;
571
572/* Integer constants mapped with the load immediate opcode. */
573#define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
574
575struct vmapinfo {
576	int is_const;
577	bpf_int32 const_val;
578};
579
580struct vmapinfo *vmap;
581struct valnode *vnode_base;
582struct valnode *next_vnode;
583
584static void
585init_val()
586{
587	curval = 0;
588	next_vnode = vnode_base;
589	memset((char *)vmap, 0, maxval * sizeof(*vmap));
590	memset((char *)hashtbl, 0, sizeof hashtbl);
591}
592
593/* Because we really don't have an IR, this stuff is a little messy. */
594static int
595F(code, v0, v1)
596	int code;
597	int v0, v1;
598{
599	u_int hash;
600	int val;
601	struct valnode *p;
602
603	hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
604	hash %= MODULUS;
605
606	for (p = hashtbl[hash]; p; p = p->next)
607		if (p->code == code && p->v0 == v0 && p->v1 == v1)
608			return p->val;
609
610	val = ++curval;
611	if (BPF_MODE(code) == BPF_IMM &&
612	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
613		vmap[val].const_val = v0;
614		vmap[val].is_const = 1;
615	}
616	p = next_vnode++;
617	p->val = val;
618	p->code = code;
619	p->v0 = v0;
620	p->v1 = v1;
621	p->next = hashtbl[hash];
622	hashtbl[hash] = p;
623
624	return val;
625}
626
627static inline void
628vstore(s, valp, newval, alter)
629	struct stmt *s;
630	int *valp;
631	int newval;
632	int alter;
633{
634	if (alter && *valp == newval)
635		s->code = NOP;
636	else
637		*valp = newval;
638}
639
640static void
641fold_op(s, v0, v1)
642	struct stmt *s;
643	int v0, v1;
644{
645	bpf_u_int32 a, b;
646
647	a = vmap[v0].const_val;
648	b = vmap[v1].const_val;
649
650	switch (BPF_OP(s->code)) {
651	case BPF_ADD:
652		a += b;
653		break;
654
655	case BPF_SUB:
656		a -= b;
657		break;
658
659	case BPF_MUL:
660		a *= b;
661		break;
662
663	case BPF_DIV:
664		if (b == 0)
665			bpf_error("division by zero");
666		a /= b;
667		break;
668
669	case BPF_AND:
670		a &= b;
671		break;
672
673	case BPF_OR:
674		a |= b;
675		break;
676
677	case BPF_LSH:
678		a <<= b;
679		break;
680
681	case BPF_RSH:
682		a >>= b;
683		break;
684
685	case BPF_NEG:
686		a = -a;
687		break;
688
689	default:
690		abort();
691	}
692	s->k = a;
693	s->code = BPF_LD|BPF_IMM;
694	done = 0;
695}
696
697static inline struct slist *
698this_op(s)
699	struct slist *s;
700{
701	while (s != 0 && s->s.code == NOP)
702		s = s->next;
703	return s;
704}
705
706static void
707opt_not(b)
708	struct block *b;
709{
710	struct block *tmp = JT(b);
711
712	JT(b) = JF(b);
713	JF(b) = tmp;
714}
715
716static void
717opt_peep(b)
718	struct block *b;
719{
720	struct slist *s;
721	struct slist *next, *last;
722	int val;
723
724	s = b->stmts;
725	if (s == 0)
726		return;
727
728	last = s;
729	for (/*empty*/; /*empty*/; s = next) {
730		/*
731		 * Skip over nops.
732		 */
733		s = this_op(s);
734		if (s == 0)
735			break;	/* nothing left in the block */
736
737		/*
738		 * Find the next real instruction after that one
739		 * (skipping nops).
740		 */
741		next = this_op(s->next);
742		if (next == 0)
743			break;	/* no next instruction */
744		last = next;
745
746		/*
747		 * st  M[k]	-->	st  M[k]
748		 * ldx M[k]		tax
749		 */
750		if (s->s.code == BPF_ST &&
751		    next->s.code == (BPF_LDX|BPF_MEM) &&
752		    s->s.k == next->s.k) {
753			done = 0;
754			next->s.code = BPF_MISC|BPF_TAX;
755		}
756		/*
757		 * ld  #k	-->	ldx  #k
758		 * tax			txa
759		 */
760		if (s->s.code == (BPF_LD|BPF_IMM) &&
761		    next->s.code == (BPF_MISC|BPF_TAX)) {
762			s->s.code = BPF_LDX|BPF_IMM;
763			next->s.code = BPF_MISC|BPF_TXA;
764			done = 0;
765		}
766		/*
767		 * This is an ugly special case, but it happens
768		 * when you say tcp[k] or udp[k] where k is a constant.
769		 */
770		if (s->s.code == (BPF_LD|BPF_IMM)) {
771			struct slist *add, *tax, *ild;
772
773			/*
774			 * Check that X isn't used on exit from this
775			 * block (which the optimizer might cause).
776			 * We know the code generator won't generate
777			 * any local dependencies.
778			 */
779			if (ATOMELEM(b->out_use, X_ATOM))
780				continue;
781
782			/*
783			 * Check that the instruction following the ldi
784			 * is an addx, or it's an ldxms with an addx
785			 * following it (with 0 or more nops between the
786			 * ldxms and addx).
787			 */
788			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
789				add = next;
790			else
791				add = this_op(next->next);
792			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
793				continue;
794
795			/*
796			 * Check that a tax follows that (with 0 or more
797			 * nops between them).
798			 */
799			tax = this_op(add->next);
800			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
801				continue;
802
803			/*
804			 * Check that an ild follows that (with 0 or more
805			 * nops between them).
806			 */
807			ild = this_op(tax->next);
808			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
809			    BPF_MODE(ild->s.code) != BPF_IND)
810				continue;
811			/*
812			 * We want to turn this sequence:
813			 *
814			 * (004) ldi     #0x2		{s}
815			 * (005) ldxms   [14]		{next}  -- optional
816			 * (006) addx			{add}
817			 * (007) tax			{tax}
818			 * (008) ild     [x+0]		{ild}
819			 *
820			 * into this sequence:
821			 *
822			 * (004) nop
823			 * (005) ldxms   [14]
824			 * (006) nop
825			 * (007) nop
826			 * (008) ild     [x+2]
827			 *
828			 * XXX We need to check that X is not
829			 * subsequently used, because we want to change
830			 * what'll be in it after this sequence.
831			 *
832			 * We know we can eliminate the accumulator
833			 * modifications earlier in the sequence since
834			 * it is defined by the last stmt of this sequence
835			 * (i.e., the last statement of the sequence loads
836			 * a value into the accumulator, so we can eliminate
837			 * earlier operations on the accumulator).
838			 */
839			ild->s.k += s->s.k;
840			s->s.code = NOP;
841			add->s.code = NOP;
842			tax->s.code = NOP;
843			done = 0;
844		}
845	}
846	/*
847	 * If the comparison at the end of a block is an equality
848	 * comparison against a constant, and nobody uses the value
849	 * we leave in the A register at the end of a block, and
850	 * the operation preceding the comparison is an arithmetic
851	 * operation, we can sometime optimize it away.
852	 */
853	if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
854	    !ATOMELEM(b->out_use, A_ATOM)) {
855	    	/*
856	    	 * We can optimize away certain subtractions of the
857	    	 * X register.
858	    	 */
859		if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
860			val = b->val[X_ATOM];
861			if (vmap[val].is_const) {
862				/*
863				 * If we have a subtract to do a comparison,
864				 * and the X register is a known constant,
865				 * we can merge this value into the
866				 * comparison:
867				 *
868				 * sub x  ->	nop
869				 * jeq #y	jeq #(x+y)
870				 */
871				b->s.k += vmap[val].const_val;
872				last->s.code = NOP;
873				done = 0;
874			} else if (b->s.k == 0) {
875				/*
876				 * If the X register isn't a constant,
877				 * and the comparison in the test is
878				 * against 0, we can compare with the
879				 * X register, instead:
880				 *
881				 * sub x  ->	nop
882				 * jeq #0	jeq x
883				 */
884				last->s.code = NOP;
885				b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
886				done = 0;
887			}
888		}
889		/*
890		 * Likewise, a constant subtract can be simplified:
891		 *
892		 * sub #x ->	nop
893		 * jeq #y ->	jeq #(x+y)
894		 */
895		else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
896			last->s.code = NOP;
897			b->s.k += last->s.k;
898			done = 0;
899		}
900		/*
901		 * And, similarly, a constant AND can be simplified
902		 * if we're testing against 0, i.e.:
903		 *
904		 * and #k	nop
905		 * jeq #0  ->	jset #k
906		 */
907		else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
908		    b->s.k == 0) {
909			b->s.k = last->s.k;
910			b->s.code = BPF_JMP|BPF_K|BPF_JSET;
911			last->s.code = NOP;
912			done = 0;
913			opt_not(b);
914		}
915	}
916	/*
917	 * jset #0        ->   never
918	 * jset #ffffffff ->   always
919	 */
920	if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
921		if (b->s.k == 0)
922			JT(b) = JF(b);
923		if (b->s.k == 0xffffffff)
924			JF(b) = JT(b);
925	}
926	/*
927	 * If we're comparing against the index register, and the index
928	 * register is a known constant, we can just compare against that
929	 * constant.
930	 */
931	val = b->val[X_ATOM];
932	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
933		bpf_int32 v = vmap[val].const_val;
934		b->s.code &= ~BPF_X;
935		b->s.k = v;
936	}
937	/*
938	 * If the accumulator is a known constant, we can compute the
939	 * comparison result.
940	 */
941	val = b->val[A_ATOM];
942	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
943		bpf_int32 v = vmap[val].const_val;
944		switch (BPF_OP(b->s.code)) {
945
946		case BPF_JEQ:
947			v = v == b->s.k;
948			break;
949
950		case BPF_JGT:
951			v = (unsigned)v > b->s.k;
952			break;
953
954		case BPF_JGE:
955			v = (unsigned)v >= b->s.k;
956			break;
957
958		case BPF_JSET:
959			v &= b->s.k;
960			break;
961
962		default:
963			abort();
964		}
965		if (JF(b) != JT(b))
966			done = 0;
967		if (v)
968			JF(b) = JT(b);
969		else
970			JT(b) = JF(b);
971	}
972}
973
974/*
975 * Compute the symbolic value of expression of 's', and update
976 * anything it defines in the value table 'val'.  If 'alter' is true,
977 * do various optimizations.  This code would be cleaner if symbolic
978 * evaluation and code transformations weren't folded together.
979 */
980static void
981opt_stmt(s, val, alter)
982	struct stmt *s;
983	int val[];
984	int alter;
985{
986	int op;
987	int v;
988
989	switch (s->code) {
990
991	case BPF_LD|BPF_ABS|BPF_W:
992	case BPF_LD|BPF_ABS|BPF_H:
993	case BPF_LD|BPF_ABS|BPF_B:
994		v = F(s->code, s->k, 0L);
995		vstore(s, &val[A_ATOM], v, alter);
996		break;
997
998	case BPF_LD|BPF_IND|BPF_W:
999	case BPF_LD|BPF_IND|BPF_H:
1000	case BPF_LD|BPF_IND|BPF_B:
1001		v = val[X_ATOM];
1002		if (alter && vmap[v].is_const) {
1003			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1004			s->k += vmap[v].const_val;
1005			v = F(s->code, s->k, 0L);
1006			done = 0;
1007		}
1008		else
1009			v = F(s->code, s->k, v);
1010		vstore(s, &val[A_ATOM], v, alter);
1011		break;
1012
1013	case BPF_LD|BPF_LEN:
1014		v = F(s->code, 0L, 0L);
1015		vstore(s, &val[A_ATOM], v, alter);
1016		break;
1017
1018	case BPF_LD|BPF_IMM:
1019		v = K(s->k);
1020		vstore(s, &val[A_ATOM], v, alter);
1021		break;
1022
1023	case BPF_LDX|BPF_IMM:
1024		v = K(s->k);
1025		vstore(s, &val[X_ATOM], v, alter);
1026		break;
1027
1028	case BPF_LDX|BPF_MSH|BPF_B:
1029		v = F(s->code, s->k, 0L);
1030		vstore(s, &val[X_ATOM], v, alter);
1031		break;
1032
1033	case BPF_ALU|BPF_NEG:
1034		if (alter && vmap[val[A_ATOM]].is_const) {
1035			s->code = BPF_LD|BPF_IMM;
1036			s->k = -vmap[val[A_ATOM]].const_val;
1037			val[A_ATOM] = K(s->k);
1038		}
1039		else
1040			val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
1041		break;
1042
1043	case BPF_ALU|BPF_ADD|BPF_K:
1044	case BPF_ALU|BPF_SUB|BPF_K:
1045	case BPF_ALU|BPF_MUL|BPF_K:
1046	case BPF_ALU|BPF_DIV|BPF_K:
1047	case BPF_ALU|BPF_AND|BPF_K:
1048	case BPF_ALU|BPF_OR|BPF_K:
1049	case BPF_ALU|BPF_LSH|BPF_K:
1050	case BPF_ALU|BPF_RSH|BPF_K:
1051		op = BPF_OP(s->code);
1052		if (alter) {
1053			if (s->k == 0) {
1054				/* don't optimize away "sub #0"
1055				 * as it may be needed later to
1056				 * fixup the generated math code */
1057				if (op == BPF_ADD ||
1058				    op == BPF_LSH || op == BPF_RSH ||
1059				    op == BPF_OR) {
1060					s->code = NOP;
1061					break;
1062				}
1063				if (op == BPF_MUL || op == BPF_AND) {
1064					s->code = BPF_LD|BPF_IMM;
1065					val[A_ATOM] = K(s->k);
1066					break;
1067				}
1068			}
1069			if (vmap[val[A_ATOM]].is_const) {
1070				fold_op(s, val[A_ATOM], K(s->k));
1071				val[A_ATOM] = K(s->k);
1072				break;
1073			}
1074		}
1075		val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
1076		break;
1077
1078	case BPF_ALU|BPF_ADD|BPF_X:
1079	case BPF_ALU|BPF_SUB|BPF_X:
1080	case BPF_ALU|BPF_MUL|BPF_X:
1081	case BPF_ALU|BPF_DIV|BPF_X:
1082	case BPF_ALU|BPF_AND|BPF_X:
1083	case BPF_ALU|BPF_OR|BPF_X:
1084	case BPF_ALU|BPF_LSH|BPF_X:
1085	case BPF_ALU|BPF_RSH|BPF_X:
1086		op = BPF_OP(s->code);
1087		if (alter && vmap[val[X_ATOM]].is_const) {
1088			if (vmap[val[A_ATOM]].is_const) {
1089				fold_op(s, val[A_ATOM], val[X_ATOM]);
1090				val[A_ATOM] = K(s->k);
1091			}
1092			else {
1093				s->code = BPF_ALU|BPF_K|op;
1094				s->k = vmap[val[X_ATOM]].const_val;
1095				done = 0;
1096				val[A_ATOM] =
1097					F(s->code, val[A_ATOM], K(s->k));
1098			}
1099			break;
1100		}
1101		/*
1102		 * Check if we're doing something to an accumulator
1103		 * that is 0, and simplify.  This may not seem like
1104		 * much of a simplification but it could open up further
1105		 * optimizations.
1106		 * XXX We could also check for mul by 1, etc.
1107		 */
1108		if (alter && vmap[val[A_ATOM]].is_const
1109		    && vmap[val[A_ATOM]].const_val == 0) {
1110			if (op == BPF_ADD || op == BPF_OR) {
1111				s->code = BPF_MISC|BPF_TXA;
1112				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1113				break;
1114			}
1115			else if (op == BPF_MUL || op == BPF_DIV ||
1116				 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1117				s->code = BPF_LD|BPF_IMM;
1118				s->k = 0;
1119				vstore(s, &val[A_ATOM], K(s->k), alter);
1120				break;
1121			}
1122			else if (op == BPF_NEG) {
1123				s->code = NOP;
1124				break;
1125			}
1126		}
1127		val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
1128		break;
1129
1130	case BPF_MISC|BPF_TXA:
1131		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1132		break;
1133
1134	case BPF_LD|BPF_MEM:
1135		v = val[s->k];
1136		if (alter && vmap[v].is_const) {
1137			s->code = BPF_LD|BPF_IMM;
1138			s->k = vmap[v].const_val;
1139			done = 0;
1140		}
1141		vstore(s, &val[A_ATOM], v, alter);
1142		break;
1143
1144	case BPF_MISC|BPF_TAX:
1145		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1146		break;
1147
1148	case BPF_LDX|BPF_MEM:
1149		v = val[s->k];
1150		if (alter && vmap[v].is_const) {
1151			s->code = BPF_LDX|BPF_IMM;
1152			s->k = vmap[v].const_val;
1153			done = 0;
1154		}
1155		vstore(s, &val[X_ATOM], v, alter);
1156		break;
1157
1158	case BPF_ST:
1159		vstore(s, &val[s->k], val[A_ATOM], alter);
1160		break;
1161
1162	case BPF_STX:
1163		vstore(s, &val[s->k], val[X_ATOM], alter);
1164		break;
1165	}
1166}
1167
1168static void
1169deadstmt(s, last)
1170	register struct stmt *s;
1171	register struct stmt *last[];
1172{
1173	register int atom;
1174
1175	atom = atomuse(s);
1176	if (atom >= 0) {
1177		if (atom == AX_ATOM) {
1178			last[X_ATOM] = 0;
1179			last[A_ATOM] = 0;
1180		}
1181		else
1182			last[atom] = 0;
1183	}
1184	atom = atomdef(s);
1185	if (atom >= 0) {
1186		if (last[atom]) {
1187			done = 0;
1188			last[atom]->code = NOP;
1189		}
1190		last[atom] = s;
1191	}
1192}
1193
1194static void
1195opt_deadstores(b)
1196	register struct block *b;
1197{
1198	register struct slist *s;
1199	register int atom;
1200	struct stmt *last[N_ATOMS];
1201
1202	memset((char *)last, 0, sizeof last);
1203
1204	for (s = b->stmts; s != 0; s = s->next)
1205		deadstmt(&s->s, last);
1206	deadstmt(&b->s, last);
1207
1208	for (atom = 0; atom < N_ATOMS; ++atom)
1209		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1210			last[atom]->code = NOP;
1211			done = 0;
1212		}
1213}
1214
1215static void
1216opt_blk(b, do_stmts)
1217	struct block *b;
1218	int do_stmts;
1219{
1220	struct slist *s;
1221	struct edge *p;
1222	int i;
1223	bpf_int32 aval, xval;
1224
1225#if 0
1226	for (s = b->stmts; s && s->next; s = s->next)
1227		if (BPF_CLASS(s->s.code) == BPF_JMP) {
1228			do_stmts = 0;
1229			break;
1230		}
1231#endif
1232
1233	/*
1234	 * Initialize the atom values.
1235	 */
1236	p = b->in_edges;
1237	if (p == 0) {
1238		/*
1239		 * We have no predecessors, so everything is undefined
1240		 * upon entry to this block.
1241		 */
1242		memset((char *)b->val, 0, sizeof(b->val));
1243	} else {
1244		/*
1245		 * Inherit values from our predecessors.
1246		 *
1247		 * First, get the values from the predecessor along the
1248		 * first edge leading to this node.
1249		 */
1250		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1251		/*
1252		 * Now look at all the other nodes leading to this node.
1253		 * If, for the predecessor along that edge, a register
1254		 * has a different value from the one we have (i.e.,
1255		 * control paths are merging, and the merging paths
1256		 * assign different values to that register), give the
1257		 * register the undefined value of 0.
1258		 */
1259		while ((p = p->next) != NULL) {
1260			for (i = 0; i < N_ATOMS; ++i)
1261				if (b->val[i] != p->pred->val[i])
1262					b->val[i] = 0;
1263		}
1264	}
1265	aval = b->val[A_ATOM];
1266	xval = b->val[X_ATOM];
1267	for (s = b->stmts; s; s = s->next)
1268		opt_stmt(&s->s, b->val, do_stmts);
1269
1270	/*
1271	 * This is a special case: if we don't use anything from this
1272	 * block, and we load the accumulator or index register with a
1273	 * value that is already there, or if this block is a return,
1274	 * eliminate all the statements.
1275	 *
1276	 * XXX - what if it does a store?
1277	 *
1278	 * XXX - why does it matter whether we use anything from this
1279	 * block?  If the accumulator or index register doesn't change
1280	 * its value, isn't that OK even if we use that value?
1281	 *
1282	 * XXX - if we load the accumulator with a different value,
1283	 * and the block ends with a conditional branch, we obviously
1284	 * can't eliminate it, as the branch depends on that value.
1285	 * For the index register, the conditional branch only depends
1286	 * on the index register value if the test is against the index
1287	 * register value rather than a constant; if nothing uses the
1288	 * value we put into the index register, and we're not testing
1289	 * against the index register's value, and there aren't any
1290	 * other problems that would keep us from eliminating this
1291	 * block, can we eliminate it?
1292	 */
1293	if (do_stmts &&
1294	    ((b->out_use == 0 && aval != 0 && b->val[A_ATOM] == aval &&
1295	      xval != 0 && b->val[X_ATOM] == xval) ||
1296	     BPF_CLASS(b->s.code) == BPF_RET)) {
1297		if (b->stmts != 0) {
1298			b->stmts = 0;
1299			done = 0;
1300		}
1301	} else {
1302		opt_peep(b);
1303		opt_deadstores(b);
1304	}
1305	/*
1306	 * Set up values for branch optimizer.
1307	 */
1308	if (BPF_SRC(b->s.code) == BPF_K)
1309		b->oval = K(b->s.k);
1310	else
1311		b->oval = b->val[X_ATOM];
1312	b->et.code = b->s.code;
1313	b->ef.code = -b->s.code;
1314}
1315
1316/*
1317 * Return true if any register that is used on exit from 'succ', has
1318 * an exit value that is different from the corresponding exit value
1319 * from 'b'.
1320 */
1321static int
1322use_conflict(b, succ)
1323	struct block *b, *succ;
1324{
1325	int atom;
1326	atomset use = succ->out_use;
1327
1328	if (use == 0)
1329		return 0;
1330
1331	for (atom = 0; atom < N_ATOMS; ++atom)
1332		if (ATOMELEM(use, atom))
1333			if (b->val[atom] != succ->val[atom])
1334				return 1;
1335	return 0;
1336}
1337
1338static struct block *
1339fold_edge(child, ep)
1340	struct block *child;
1341	struct edge *ep;
1342{
1343	int sense;
1344	int aval0, aval1, oval0, oval1;
1345	int code = ep->code;
1346
1347	if (code < 0) {
1348		code = -code;
1349		sense = 0;
1350	} else
1351		sense = 1;
1352
1353	if (child->s.code != code)
1354		return 0;
1355
1356	aval0 = child->val[A_ATOM];
1357	oval0 = child->oval;
1358	aval1 = ep->pred->val[A_ATOM];
1359	oval1 = ep->pred->oval;
1360
1361	if (aval0 != aval1)
1362		return 0;
1363
1364	if (oval0 == oval1)
1365		/*
1366		 * The operands of the branch instructions are
1367		 * identical, so the result is true if a true
1368		 * branch was taken to get here, otherwise false.
1369		 */
1370		return sense ? JT(child) : JF(child);
1371
1372	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1373		/*
1374		 * At this point, we only know the comparison if we
1375		 * came down the true branch, and it was an equality
1376		 * comparison with a constant.
1377		 *
1378		 * I.e., if we came down the true branch, and the branch
1379		 * was an equality comparison with a constant, we know the
1380		 * accumulator contains that constant.  If we came down
1381		 * the false branch, or the comparison wasn't with a
1382		 * constant, we don't know what was in the accumulator.
1383		 *
1384		 * We rely on the fact that distinct constants have distinct
1385		 * value numbers.
1386		 */
1387		return JF(child);
1388
1389	return 0;
1390}
1391
1392static void
1393opt_j(ep)
1394	struct edge *ep;
1395{
1396	register int i, k;
1397	register struct block *target;
1398
1399	if (JT(ep->succ) == 0)
1400		return;
1401
1402	if (JT(ep->succ) == JF(ep->succ)) {
1403		/*
1404		 * Common branch targets can be eliminated, provided
1405		 * there is no data dependency.
1406		 */
1407		if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1408			done = 0;
1409			ep->succ = JT(ep->succ);
1410		}
1411	}
1412	/*
1413	 * For each edge dominator that matches the successor of this
1414	 * edge, promote the edge successor to the its grandchild.
1415	 *
1416	 * XXX We violate the set abstraction here in favor a reasonably
1417	 * efficient loop.
1418	 */
1419 top:
1420	for (i = 0; i < edgewords; ++i) {
1421		register bpf_u_int32 x = ep->edom[i];
1422
1423		while (x != 0) {
1424			k = ffs(x) - 1;
1425			x &=~ (1 << k);
1426			k += i * BITS_PER_WORD;
1427
1428			target = fold_edge(ep->succ, edges[k]);
1429			/*
1430			 * Check that there is no data dependency between
1431			 * nodes that will be violated if we move the edge.
1432			 */
1433			if (target != 0 && !use_conflict(ep->pred, target)) {
1434				done = 0;
1435				ep->succ = target;
1436				if (JT(target) != 0)
1437					/*
1438					 * Start over unless we hit a leaf.
1439					 */
1440					goto top;
1441				return;
1442			}
1443		}
1444	}
1445}
1446
1447
1448static void
1449or_pullup(b)
1450	struct block *b;
1451{
1452	int val, at_top;
1453	struct block *pull;
1454	struct block **diffp, **samep;
1455	struct edge *ep;
1456
1457	ep = b->in_edges;
1458	if (ep == 0)
1459		return;
1460
1461	/*
1462	 * Make sure each predecessor loads the same value.
1463	 * XXX why?
1464	 */
1465	val = ep->pred->val[A_ATOM];
1466	for (ep = ep->next; ep != 0; ep = ep->next)
1467		if (val != ep->pred->val[A_ATOM])
1468			return;
1469
1470	if (JT(b->in_edges->pred) == b)
1471		diffp = &JT(b->in_edges->pred);
1472	else
1473		diffp = &JF(b->in_edges->pred);
1474
1475	at_top = 1;
1476	while (1) {
1477		if (*diffp == 0)
1478			return;
1479
1480		if (JT(*diffp) != JT(b))
1481			return;
1482
1483		if (!SET_MEMBER((*diffp)->dom, b->id))
1484			return;
1485
1486		if ((*diffp)->val[A_ATOM] != val)
1487			break;
1488
1489		diffp = &JF(*diffp);
1490		at_top = 0;
1491	}
1492	samep = &JF(*diffp);
1493	while (1) {
1494		if (*samep == 0)
1495			return;
1496
1497		if (JT(*samep) != JT(b))
1498			return;
1499
1500		if (!SET_MEMBER((*samep)->dom, b->id))
1501			return;
1502
1503		if ((*samep)->val[A_ATOM] == val)
1504			break;
1505
1506		/* XXX Need to check that there are no data dependencies
1507		   between dp0 and dp1.  Currently, the code generator
1508		   will not produce such dependencies. */
1509		samep = &JF(*samep);
1510	}
1511#ifdef notdef
1512	/* XXX This doesn't cover everything. */
1513	for (i = 0; i < N_ATOMS; ++i)
1514		if ((*samep)->val[i] != pred->val[i])
1515			return;
1516#endif
1517	/* Pull up the node. */
1518	pull = *samep;
1519	*samep = JF(pull);
1520	JF(pull) = *diffp;
1521
1522	/*
1523	 * At the top of the chain, each predecessor needs to point at the
1524	 * pulled up node.  Inside the chain, there is only one predecessor
1525	 * to worry about.
1526	 */
1527	if (at_top) {
1528		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1529			if (JT(ep->pred) == b)
1530				JT(ep->pred) = pull;
1531			else
1532				JF(ep->pred) = pull;
1533		}
1534	}
1535	else
1536		*diffp = pull;
1537
1538	done = 0;
1539}
1540
1541static void
1542and_pullup(b)
1543	struct block *b;
1544{
1545	int val, at_top;
1546	struct block *pull;
1547	struct block **diffp, **samep;
1548	struct edge *ep;
1549
1550	ep = b->in_edges;
1551	if (ep == 0)
1552		return;
1553
1554	/*
1555	 * Make sure each predecessor loads the same value.
1556	 */
1557	val = ep->pred->val[A_ATOM];
1558	for (ep = ep->next; ep != 0; ep = ep->next)
1559		if (val != ep->pred->val[A_ATOM])
1560			return;
1561
1562	if (JT(b->in_edges->pred) == b)
1563		diffp = &JT(b->in_edges->pred);
1564	else
1565		diffp = &JF(b->in_edges->pred);
1566
1567	at_top = 1;
1568	while (1) {
1569		if (*diffp == 0)
1570			return;
1571
1572		if (JF(*diffp) != JF(b))
1573			return;
1574
1575		if (!SET_MEMBER((*diffp)->dom, b->id))
1576			return;
1577
1578		if ((*diffp)->val[A_ATOM] != val)
1579			break;
1580
1581		diffp = &JT(*diffp);
1582		at_top = 0;
1583	}
1584	samep = &JT(*diffp);
1585	while (1) {
1586		if (*samep == 0)
1587			return;
1588
1589		if (JF(*samep) != JF(b))
1590			return;
1591
1592		if (!SET_MEMBER((*samep)->dom, b->id))
1593			return;
1594
1595		if ((*samep)->val[A_ATOM] == val)
1596			break;
1597
1598		/* XXX Need to check that there are no data dependencies
1599		   between diffp and samep.  Currently, the code generator
1600		   will not produce such dependencies. */
1601		samep = &JT(*samep);
1602	}
1603#ifdef notdef
1604	/* XXX This doesn't cover everything. */
1605	for (i = 0; i < N_ATOMS; ++i)
1606		if ((*samep)->val[i] != pred->val[i])
1607			return;
1608#endif
1609	/* Pull up the node. */
1610	pull = *samep;
1611	*samep = JT(pull);
1612	JT(pull) = *diffp;
1613
1614	/*
1615	 * At the top of the chain, each predecessor needs to point at the
1616	 * pulled up node.  Inside the chain, there is only one predecessor
1617	 * to worry about.
1618	 */
1619	if (at_top) {
1620		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1621			if (JT(ep->pred) == b)
1622				JT(ep->pred) = pull;
1623			else
1624				JF(ep->pred) = pull;
1625		}
1626	}
1627	else
1628		*diffp = pull;
1629
1630	done = 0;
1631}
1632
1633static void
1634opt_blks(root, do_stmts)
1635	struct block *root;
1636	int do_stmts;
1637{
1638	int i, maxlevel;
1639	struct block *p;
1640
1641	init_val();
1642	maxlevel = root->level;
1643
1644	find_inedges(root);
1645	for (i = maxlevel; i >= 0; --i)
1646		for (p = levels[i]; p; p = p->link)
1647			opt_blk(p, do_stmts);
1648
1649	if (do_stmts)
1650		/*
1651		 * No point trying to move branches; it can't possibly
1652		 * make a difference at this point.
1653		 */
1654		return;
1655
1656	for (i = 1; i <= maxlevel; ++i) {
1657		for (p = levels[i]; p; p = p->link) {
1658			opt_j(&p->et);
1659			opt_j(&p->ef);
1660		}
1661	}
1662
1663	find_inedges(root);
1664	for (i = 1; i <= maxlevel; ++i) {
1665		for (p = levels[i]; p; p = p->link) {
1666			or_pullup(p);
1667			and_pullup(p);
1668		}
1669	}
1670}
1671
1672static inline void
1673link_inedge(parent, child)
1674	struct edge *parent;
1675	struct block *child;
1676{
1677	parent->next = child->in_edges;
1678	child->in_edges = parent;
1679}
1680
1681static void
1682find_inedges(root)
1683	struct block *root;
1684{
1685	int i;
1686	struct block *b;
1687
1688	for (i = 0; i < n_blocks; ++i)
1689		blocks[i]->in_edges = 0;
1690
1691	/*
1692	 * Traverse the graph, adding each edge to the predecessor
1693	 * list of its successors.  Skip the leaves (i.e. level 0).
1694	 */
1695	for (i = root->level; i > 0; --i) {
1696		for (b = levels[i]; b != 0; b = b->link) {
1697			link_inedge(&b->et, JT(b));
1698			link_inedge(&b->ef, JF(b));
1699		}
1700	}
1701}
1702
1703static void
1704opt_root(b)
1705	struct block **b;
1706{
1707	struct slist *tmp, *s;
1708
1709	s = (*b)->stmts;
1710	(*b)->stmts = 0;
1711	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1712		*b = JT(*b);
1713
1714	tmp = (*b)->stmts;
1715	if (tmp != 0)
1716		sappend(s, tmp);
1717	(*b)->stmts = s;
1718
1719	/*
1720	 * If the root node is a return, then there is no
1721	 * point executing any statements (since the bpf machine
1722	 * has no side effects).
1723	 */
1724	if (BPF_CLASS((*b)->s.code) == BPF_RET)
1725		(*b)->stmts = 0;
1726}
1727
1728static void
1729opt_loop(root, do_stmts)
1730	struct block *root;
1731	int do_stmts;
1732{
1733
1734#ifdef BDEBUG
1735	if (dflag > 1) {
1736		printf("opt_loop(root, %d) begin\n", do_stmts);
1737		opt_dump(root);
1738	}
1739#endif
1740	do {
1741		done = 1;
1742		find_levels(root);
1743		find_dom(root);
1744		find_closure(root);
1745		find_ud(root);
1746		find_edom(root);
1747		opt_blks(root, do_stmts);
1748#ifdef BDEBUG
1749		if (dflag > 1) {
1750			printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, done);
1751			opt_dump(root);
1752		}
1753#endif
1754	} while (!done);
1755}
1756
1757/*
1758 * Optimize the filter code in its dag representation.
1759 */
1760void
1761bpf_optimize(rootp)
1762	struct block **rootp;
1763{
1764	struct block *root;
1765
1766	root = *rootp;
1767
1768	opt_init(root);
1769	opt_loop(root, 0);
1770	opt_loop(root, 1);
1771	intern_blocks(root);
1772#ifdef BDEBUG
1773	if (dflag > 1) {
1774		printf("after intern_blocks()\n");
1775		opt_dump(root);
1776	}
1777#endif
1778	opt_root(rootp);
1779#ifdef BDEBUG
1780	if (dflag > 1) {
1781		printf("after opt_root()\n");
1782		opt_dump(root);
1783	}
1784#endif
1785	opt_cleanup();
1786}
1787
1788static void
1789make_marks(p)
1790	struct block *p;
1791{
1792	if (!isMarked(p)) {
1793		Mark(p);
1794		if (BPF_CLASS(p->s.code) != BPF_RET) {
1795			make_marks(JT(p));
1796			make_marks(JF(p));
1797		}
1798	}
1799}
1800
1801/*
1802 * Mark code array such that isMarked(i) is true
1803 * only for nodes that are alive.
1804 */
1805static void
1806mark_code(p)
1807	struct block *p;
1808{
1809	cur_mark += 1;
1810	make_marks(p);
1811}
1812
1813/*
1814 * True iff the two stmt lists load the same value from the packet into
1815 * the accumulator.
1816 */
1817static int
1818eq_slist(x, y)
1819	struct slist *x, *y;
1820{
1821	while (1) {
1822		while (x && x->s.code == NOP)
1823			x = x->next;
1824		while (y && y->s.code == NOP)
1825			y = y->next;
1826		if (x == 0)
1827			return y == 0;
1828		if (y == 0)
1829			return x == 0;
1830		if (x->s.code != y->s.code || x->s.k != y->s.k)
1831			return 0;
1832		x = x->next;
1833		y = y->next;
1834	}
1835}
1836
1837static inline int
1838eq_blk(b0, b1)
1839	struct block *b0, *b1;
1840{
1841	if (b0->s.code == b1->s.code &&
1842	    b0->s.k == b1->s.k &&
1843	    b0->et.succ == b1->et.succ &&
1844	    b0->ef.succ == b1->ef.succ)
1845		return eq_slist(b0->stmts, b1->stmts);
1846	return 0;
1847}
1848
1849static void
1850intern_blocks(root)
1851	struct block *root;
1852{
1853	struct block *p;
1854	int i, j;
1855	int done1; /* don't shadow global */
1856 top:
1857	done1 = 1;
1858	for (i = 0; i < n_blocks; ++i)
1859		blocks[i]->link = 0;
1860
1861	mark_code(root);
1862
1863	for (i = n_blocks - 1; --i >= 0; ) {
1864		if (!isMarked(blocks[i]))
1865			continue;
1866		for (j = i + 1; j < n_blocks; ++j) {
1867			if (!isMarked(blocks[j]))
1868				continue;
1869			if (eq_blk(blocks[i], blocks[j])) {
1870				blocks[i]->link = blocks[j]->link ?
1871					blocks[j]->link : blocks[j];
1872				break;
1873			}
1874		}
1875	}
1876	for (i = 0; i < n_blocks; ++i) {
1877		p = blocks[i];
1878		if (JT(p) == 0)
1879			continue;
1880		if (JT(p)->link) {
1881			done1 = 0;
1882			JT(p) = JT(p)->link;
1883		}
1884		if (JF(p)->link) {
1885			done1 = 0;
1886			JF(p) = JF(p)->link;
1887		}
1888	}
1889	if (!done1)
1890		goto top;
1891}
1892
1893static void
1894opt_cleanup()
1895{
1896	free((void *)vnode_base);
1897	free((void *)vmap);
1898	free((void *)edges);
1899	free((void *)space);
1900	free((void *)levels);
1901	free((void *)blocks);
1902}
1903
1904/*
1905 * Return the number of stmts in 's'.
1906 */
1907static u_int
1908slength(s)
1909	struct slist *s;
1910{
1911	u_int n = 0;
1912
1913	for (; s; s = s->next)
1914		if (s->s.code != NOP)
1915			++n;
1916	return n;
1917}
1918
1919/*
1920 * Return the number of nodes reachable by 'p'.
1921 * All nodes should be initially unmarked.
1922 */
1923static int
1924count_blocks(p)
1925	struct block *p;
1926{
1927	if (p == 0 || isMarked(p))
1928		return 0;
1929	Mark(p);
1930	return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
1931}
1932
1933/*
1934 * Do a depth first search on the flow graph, numbering the
1935 * the basic blocks, and entering them into the 'blocks' array.`
1936 */
1937static void
1938number_blks_r(p)
1939	struct block *p;
1940{
1941	int n;
1942
1943	if (p == 0 || isMarked(p))
1944		return;
1945
1946	Mark(p);
1947	n = n_blocks++;
1948	p->id = n;
1949	blocks[n] = p;
1950
1951	number_blks_r(JT(p));
1952	number_blks_r(JF(p));
1953}
1954
1955/*
1956 * Return the number of stmts in the flowgraph reachable by 'p'.
1957 * The nodes should be unmarked before calling.
1958 *
1959 * Note that "stmts" means "instructions", and that this includes
1960 *
1961 *	side-effect statements in 'p' (slength(p->stmts));
1962 *
1963 *	statements in the true branch from 'p' (count_stmts(JT(p)));
1964 *
1965 *	statements in the false branch from 'p' (count_stmts(JF(p)));
1966 *
1967 *	the conditional jump itself (1);
1968 *
1969 *	an extra long jump if the true branch requires it (p->longjt);
1970 *
1971 *	an extra long jump if the false branch requires it (p->longjf).
1972 */
1973static u_int
1974count_stmts(p)
1975	struct block *p;
1976{
1977	u_int n;
1978
1979	if (p == 0 || isMarked(p))
1980		return 0;
1981	Mark(p);
1982	n = count_stmts(JT(p)) + count_stmts(JF(p));
1983	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
1984}
1985
1986/*
1987 * Allocate memory.  All allocation is done before optimization
1988 * is begun.  A linear bound on the size of all data structures is computed
1989 * from the total number of blocks and/or statements.
1990 */
1991static void
1992opt_init(root)
1993	struct block *root;
1994{
1995	bpf_u_int32 *p;
1996	int i, n, max_stmts;
1997
1998	/*
1999	 * First, count the blocks, so we can malloc an array to map
2000	 * block number to block.  Then, put the blocks into the array.
2001	 */
2002	unMarkAll();
2003	n = count_blocks(root);
2004	blocks = (struct block **)calloc(n, sizeof(*blocks));
2005	if (blocks == NULL)
2006		bpf_error("malloc");
2007	unMarkAll();
2008	n_blocks = 0;
2009	number_blks_r(root);
2010
2011	n_edges = 2 * n_blocks;
2012	edges = (struct edge **)calloc(n_edges, sizeof(*edges));
2013	if (edges == NULL)
2014		bpf_error("malloc");
2015
2016	/*
2017	 * The number of levels is bounded by the number of nodes.
2018	 */
2019	levels = (struct block **)calloc(n_blocks, sizeof(*levels));
2020	if (levels == NULL)
2021		bpf_error("malloc");
2022
2023	edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
2024	nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
2025
2026	/* XXX */
2027	space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
2028				 + n_edges * edgewords * sizeof(*space));
2029	if (space == NULL)
2030		bpf_error("malloc");
2031	p = space;
2032	all_dom_sets = p;
2033	for (i = 0; i < n; ++i) {
2034		blocks[i]->dom = p;
2035		p += nodewords;
2036	}
2037	all_closure_sets = p;
2038	for (i = 0; i < n; ++i) {
2039		blocks[i]->closure = p;
2040		p += nodewords;
2041	}
2042	all_edge_sets = p;
2043	for (i = 0; i < n; ++i) {
2044		register struct block *b = blocks[i];
2045
2046		b->et.edom = p;
2047		p += edgewords;
2048		b->ef.edom = p;
2049		p += edgewords;
2050		b->et.id = i;
2051		edges[i] = &b->et;
2052		b->ef.id = n_blocks + i;
2053		edges[n_blocks + i] = &b->ef;
2054		b->et.pred = b;
2055		b->ef.pred = b;
2056	}
2057	max_stmts = 0;
2058	for (i = 0; i < n; ++i)
2059		max_stmts += slength(blocks[i]->stmts) + 1;
2060	/*
2061	 * We allocate at most 3 value numbers per statement,
2062	 * so this is an upper bound on the number of valnodes
2063	 * we'll need.
2064	 */
2065	maxval = 3 * max_stmts;
2066	vmap = (struct vmapinfo *)calloc(maxval, sizeof(*vmap));
2067	vnode_base = (struct valnode *)calloc(maxval, sizeof(*vnode_base));
2068	if (vmap == NULL || vnode_base == NULL)
2069		bpf_error("malloc");
2070}
2071
2072/*
2073 * Some pointers used to convert the basic block form of the code,
2074 * into the array form that BPF requires.  'fstart' will point to
2075 * the malloc'd array while 'ftail' is used during the recursive traversal.
2076 */
2077static struct bpf_insn *fstart;
2078static struct bpf_insn *ftail;
2079
2080#ifdef BDEBUG
2081int bids[1000];
2082#endif
2083
2084/*
2085 * Returns true if successful.  Returns false if a branch has
2086 * an offset that is too large.  If so, we have marked that
2087 * branch so that on a subsequent iteration, it will be treated
2088 * properly.
2089 */
2090static int
2091convert_code_r(p)
2092	struct block *p;
2093{
2094	struct bpf_insn *dst;
2095	struct slist *src;
2096	int slen;
2097	u_int off;
2098	int extrajmps;		/* number of extra jumps inserted */
2099	struct slist **offset = NULL;
2100
2101	if (p == 0 || isMarked(p))
2102		return (1);
2103	Mark(p);
2104
2105	if (convert_code_r(JF(p)) == 0)
2106		return (0);
2107	if (convert_code_r(JT(p)) == 0)
2108		return (0);
2109
2110	slen = slength(p->stmts);
2111	dst = ftail -= (slen + 1 + p->longjt + p->longjf);
2112		/* inflate length by any extra jumps */
2113
2114	p->offset = dst - fstart;
2115
2116	/* generate offset[] for convenience  */
2117	if (slen) {
2118		offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2119		if (!offset) {
2120			bpf_error("not enough core");
2121			/*NOTREACHED*/
2122		}
2123	}
2124	src = p->stmts;
2125	for (off = 0; off < slen && src; off++) {
2126#if 0
2127		printf("off=%d src=%x\n", off, src);
2128#endif
2129		offset[off] = src;
2130		src = src->next;
2131	}
2132
2133	off = 0;
2134	for (src = p->stmts; src; src = src->next) {
2135		if (src->s.code == NOP)
2136			continue;
2137		dst->code = (u_short)src->s.code;
2138		dst->k = src->s.k;
2139
2140		/* fill block-local relative jump */
2141		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2142#if 0
2143			if (src->s.jt || src->s.jf) {
2144				bpf_error("illegal jmp destination");
2145				/*NOTREACHED*/
2146			}
2147#endif
2148			goto filled;
2149		}
2150		if (off == slen - 2)	/*???*/
2151			goto filled;
2152
2153	    {
2154		int i;
2155		int jt, jf;
2156		const char *ljerr = "%s for block-local relative jump: off=%d";
2157
2158#if 0
2159		printf("code=%x off=%d %x %x\n", src->s.code,
2160			off, src->s.jt, src->s.jf);
2161#endif
2162
2163		if (!src->s.jt || !src->s.jf) {
2164			bpf_error(ljerr, "no jmp destination", off);
2165			/*NOTREACHED*/
2166		}
2167
2168		jt = jf = 0;
2169		for (i = 0; i < slen; i++) {
2170			if (offset[i] == src->s.jt) {
2171				if (jt) {
2172					bpf_error(ljerr, "multiple matches", off);
2173					/*NOTREACHED*/
2174				}
2175
2176				dst->jt = i - off - 1;
2177				jt++;
2178			}
2179			if (offset[i] == src->s.jf) {
2180				if (jf) {
2181					bpf_error(ljerr, "multiple matches", off);
2182					/*NOTREACHED*/
2183				}
2184				dst->jf = i - off - 1;
2185				jf++;
2186			}
2187		}
2188		if (!jt || !jf) {
2189			bpf_error(ljerr, "no destination found", off);
2190			/*NOTREACHED*/
2191		}
2192	    }
2193filled:
2194		++dst;
2195		++off;
2196	}
2197	if (offset)
2198		free(offset);
2199
2200#ifdef BDEBUG
2201	bids[dst - fstart] = p->id + 1;
2202#endif
2203	dst->code = (u_short)p->s.code;
2204	dst->k = p->s.k;
2205	if (JT(p)) {
2206		extrajmps = 0;
2207		off = JT(p)->offset - (p->offset + slen) - 1;
2208		if (off >= 256) {
2209		    /* offset too large for branch, must add a jump */
2210		    if (p->longjt == 0) {
2211		    	/* mark this instruction and retry */
2212			p->longjt++;
2213			return(0);
2214		    }
2215		    /* branch if T to following jump */
2216		    dst->jt = extrajmps;
2217		    extrajmps++;
2218		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2219		    dst[extrajmps].k = off - extrajmps;
2220		}
2221		else
2222		    dst->jt = off;
2223		off = JF(p)->offset - (p->offset + slen) - 1;
2224		if (off >= 256) {
2225		    /* offset too large for branch, must add a jump */
2226		    if (p->longjf == 0) {
2227		    	/* mark this instruction and retry */
2228			p->longjf++;
2229			return(0);
2230		    }
2231		    /* branch if F to following jump */
2232		    /* if two jumps are inserted, F goes to second one */
2233		    dst->jf = extrajmps;
2234		    extrajmps++;
2235		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2236		    dst[extrajmps].k = off - extrajmps;
2237		}
2238		else
2239		    dst->jf = off;
2240	}
2241	return (1);
2242}
2243
2244
2245/*
2246 * Convert flowgraph intermediate representation to the
2247 * BPF array representation.  Set *lenp to the number of instructions.
2248 *
2249 * This routine does *NOT* leak the memory pointed to by fp.  It *must
2250 * not* do free(fp) before returning fp; doing so would make no sense,
2251 * as the BPF array pointed to by the return value of icode_to_fcode()
2252 * must be valid - it's being returned for use in a bpf_program structure.
2253 *
2254 * If it appears that icode_to_fcode() is leaking, the problem is that
2255 * the program using pcap_compile() is failing to free the memory in
2256 * the BPF program when it's done - the leak is in the program, not in
2257 * the routine that happens to be allocating the memory.  (By analogy, if
2258 * a program calls fopen() without ever calling fclose() on the FILE *,
2259 * it will leak the FILE structure; the leak is not in fopen(), it's in
2260 * the program.)  Change the program to use pcap_freecode() when it's
2261 * done with the filter program.  See the pcap man page.
2262 */
2263struct bpf_insn *
2264icode_to_fcode(root, lenp)
2265	struct block *root;
2266	u_int *lenp;
2267{
2268	u_int n;
2269	struct bpf_insn *fp;
2270
2271	/*
2272	 * Loop doing convert_code_r() until no branches remain
2273	 * with too-large offsets.
2274	 */
2275	while (1) {
2276	    unMarkAll();
2277	    n = *lenp = count_stmts(root);
2278
2279	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2280	    if (fp == NULL)
2281		    bpf_error("malloc");
2282	    memset((char *)fp, 0, sizeof(*fp) * n);
2283	    fstart = fp;
2284	    ftail = fp + n;
2285
2286	    unMarkAll();
2287	    if (convert_code_r(root))
2288		break;
2289	    free(fp);
2290	}
2291
2292	return fp;
2293}
2294
2295/*
2296 * Make a copy of a BPF program and put it in the "fcode" member of
2297 * a "pcap_t".
2298 *
2299 * If we fail to allocate memory for the copy, fill in the "errbuf"
2300 * member of the "pcap_t" with an error message, and return -1;
2301 * otherwise, return 0.
2302 */
2303int
2304install_bpf_program(pcap_t *p, struct bpf_program *fp)
2305{
2306	size_t prog_size;
2307
2308	/*
2309	 * Validate the program.
2310	 */
2311	if (!bpf_validate(fp->bf_insns, fp->bf_len)) {
2312		snprintf(p->errbuf, sizeof(p->errbuf),
2313			"BPF program is not valid");
2314		return (-1);
2315	}
2316
2317	/*
2318	 * Free up any already installed program.
2319	 */
2320	pcap_freecode(&p->fcode);
2321
2322	prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2323	p->fcode.bf_len = fp->bf_len;
2324	p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2325	if (p->fcode.bf_insns == NULL) {
2326		snprintf(p->errbuf, sizeof(p->errbuf),
2327			 "malloc: %s", pcap_strerror(errno));
2328		return (-1);
2329	}
2330	memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2331	return (0);
2332}
2333
2334#ifdef BDEBUG
2335static void
2336opt_dump(root)
2337	struct block *root;
2338{
2339	struct bpf_program f;
2340
2341	memset(bids, 0, sizeof bids);
2342	f.bf_insns = icode_to_fcode(root, &f.bf_len);
2343	bpf_dump(&f, 1);
2344	putchar('\n');
2345	free((char *)f.bf_insns);
2346}
2347#endif
2348