1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
2   Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3      2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007  Free Software Foundation, Inc.
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING.  If not, write to
19the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA.  */
21
22#include <config.h>
23#include <stdio.h>
24#include <limits.h>		/* For CHAR_BIT.  */
25
26#ifdef STDC_HEADERS
27#include <stddef.h>		/* For offsetof, used by PSEUDOVECSIZE. */
28#endif
29
30#ifdef ALLOC_DEBUG
31#undef INLINE
32#endif
33
34/* Note that this declares bzero on OSF/1.  How dumb.  */
35
36#include <signal.h>
37
38#ifdef HAVE_GTK_AND_PTHREAD
39#include <pthread.h>
40#endif
41
42/* This file is part of the core Lisp implementation, and thus must
43   deal with the real data structures.  If the Lisp implementation is
44   replaced, this file likely will not be used.  */
45
46#undef HIDE_LISP_IMPLEMENTATION
47#include "lisp.h"
48#include "process.h"
49#include "intervals.h"
50#include "puresize.h"
51#include "buffer.h"
52#include "window.h"
53#include "keyboard.h"
54#include "frame.h"
55#include "blockinput.h"
56#include "charset.h"
57#include "syssignal.h"
58#include <setjmp.h>
59
60/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
61   memory.  Can do this only if using gmalloc.c.  */
62
63#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
64#undef GC_MALLOC_CHECK
65#endif
66
67#ifdef HAVE_UNISTD_H
68#include <unistd.h>
69#else
70extern POINTER_TYPE *sbrk ();
71#endif
72
73#ifdef HAVE_FCNTL_H
74#define INCLUDED_FCNTL
75#include <fcntl.h>
76#endif
77#ifndef O_WRONLY
78#define O_WRONLY 1
79#endif
80
81#ifdef WINDOWSNT
82#include <fcntl.h>
83#include "w32.h"
84#endif
85
86#ifdef DOUG_LEA_MALLOC
87
88#include <malloc.h>
89/* malloc.h #defines this as size_t, at least in glibc2.  */
90#ifndef __malloc_size_t
91#define __malloc_size_t int
92#endif
93
94/* Specify maximum number of areas to mmap.  It would be nice to use a
95   value that explicitly means "no limit".  */
96
97#define MMAP_MAX_AREAS 100000000
98
99#else /* not DOUG_LEA_MALLOC */
100
101/* The following come from gmalloc.c.  */
102
103#define	__malloc_size_t		size_t
104extern __malloc_size_t _bytes_used;
105extern __malloc_size_t __malloc_extra_blocks;
106
107#endif /* not DOUG_LEA_MALLOC */
108
109#if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
110
111/* When GTK uses the file chooser dialog, different backends can be loaded
112   dynamically.  One such a backend is the Gnome VFS backend that gets loaded
113   if you run Gnome.  That backend creates several threads and also allocates
114   memory with malloc.
115
116   If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
117   functions below are called from malloc, there is a chance that one
118   of these threads preempts the Emacs main thread and the hook variables
119   end up in an inconsistent state.  So we have a mutex to prevent that (note
120   that the backend handles concurrent access to malloc within its own threads
121   but Emacs code running in the main thread is not included in that control).
122
123   When UNBLOCK_INPUT is called, reinvoke_input_signal may be called.  If this
124   happens in one of the backend threads we will have two threads that tries
125   to run Emacs code at once, and the code is not prepared for that.
126   To prevent that, we only call BLOCK/UNBLOCK from the main thread.  */
127
128static pthread_mutex_t alloc_mutex;
129
130#define BLOCK_INPUT_ALLOC                               \
131  do                                                    \
132    {                                                   \
133      if (pthread_equal (pthread_self (), main_thread)) \
134        BLOCK_INPUT;					\
135      pthread_mutex_lock (&alloc_mutex);                \
136    }                                                   \
137  while (0)
138#define UNBLOCK_INPUT_ALLOC                             \
139  do                                                    \
140    {                                                   \
141      pthread_mutex_unlock (&alloc_mutex);              \
142      if (pthread_equal (pthread_self (), main_thread)) \
143        UNBLOCK_INPUT;					\
144    }                                                   \
145  while (0)
146
147#else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
148
149#define BLOCK_INPUT_ALLOC BLOCK_INPUT
150#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
151
152#endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
153
154/* Value of _bytes_used, when spare_memory was freed.  */
155
156static __malloc_size_t bytes_used_when_full;
157
158static __malloc_size_t bytes_used_when_reconsidered;
159
160/* Mark, unmark, query mark bit of a Lisp string.  S must be a pointer
161   to a struct Lisp_String.  */
162
163#define MARK_STRING(S)		((S)->size |= ARRAY_MARK_FLAG)
164#define UNMARK_STRING(S)	((S)->size &= ~ARRAY_MARK_FLAG)
165#define STRING_MARKED_P(S)	(((S)->size & ARRAY_MARK_FLAG) != 0)
166
167#define VECTOR_MARK(V)		((V)->size |= ARRAY_MARK_FLAG)
168#define VECTOR_UNMARK(V)	((V)->size &= ~ARRAY_MARK_FLAG)
169#define VECTOR_MARKED_P(V)	(((V)->size & ARRAY_MARK_FLAG) != 0)
170
171/* Value is the number of bytes/chars of S, a pointer to a struct
172   Lisp_String.  This must be used instead of STRING_BYTES (S) or
173   S->size during GC, because S->size contains the mark bit for
174   strings.  */
175
176#define GC_STRING_BYTES(S)	(STRING_BYTES (S))
177#define GC_STRING_CHARS(S)	((S)->size & ~ARRAY_MARK_FLAG)
178
179/* Number of bytes of consing done since the last gc.  */
180
181int consing_since_gc;
182
183/* Count the amount of consing of various sorts of space.  */
184
185EMACS_INT cons_cells_consed;
186EMACS_INT floats_consed;
187EMACS_INT vector_cells_consed;
188EMACS_INT symbols_consed;
189EMACS_INT string_chars_consed;
190EMACS_INT misc_objects_consed;
191EMACS_INT intervals_consed;
192EMACS_INT strings_consed;
193
194/* Minimum number of bytes of consing since GC before next GC. */
195
196EMACS_INT gc_cons_threshold;
197
198/* Similar minimum, computed from Vgc_cons_percentage.  */
199
200EMACS_INT gc_relative_threshold;
201
202static Lisp_Object Vgc_cons_percentage;
203
204/* Minimum number of bytes of consing since GC before next GC,
205   when memory is full.  */
206
207EMACS_INT memory_full_cons_threshold;
208
209/* Nonzero during GC.  */
210
211int gc_in_progress;
212
213/* Nonzero means abort if try to GC.
214   This is for code which is written on the assumption that
215   no GC will happen, so as to verify that assumption.  */
216
217int abort_on_gc;
218
219/* Nonzero means display messages at beginning and end of GC.  */
220
221int garbage_collection_messages;
222
223#ifndef VIRT_ADDR_VARIES
224extern
225#endif /* VIRT_ADDR_VARIES */
226int malloc_sbrk_used;
227
228#ifndef VIRT_ADDR_VARIES
229extern
230#endif /* VIRT_ADDR_VARIES */
231int malloc_sbrk_unused;
232
233/* Number of live and free conses etc.  */
234
235static int total_conses, total_markers, total_symbols, total_vector_size;
236static int total_free_conses, total_free_markers, total_free_symbols;
237static int total_free_floats, total_floats;
238
239/* Points to memory space allocated as "spare", to be freed if we run
240   out of memory.  We keep one large block, four cons-blocks, and
241   two string blocks.  */
242
243char *spare_memory[7];
244
245/* Amount of spare memory to keep in large reserve block.  */
246
247#define SPARE_MEMORY (1 << 14)
248
249/* Number of extra blocks malloc should get when it needs more core.  */
250
251static int malloc_hysteresis;
252
253/* Non-nil means defun should do purecopy on the function definition.  */
254
255Lisp_Object Vpurify_flag;
256
257/* Non-nil means we are handling a memory-full error.  */
258
259Lisp_Object Vmemory_full;
260
261#ifndef HAVE_SHM
262
263/* Initialize it to a nonzero value to force it into data space
264   (rather than bss space).  That way unexec will remap it into text
265   space (pure), on some systems.  We have not implemented the
266   remapping on more recent systems because this is less important
267   nowadays than in the days of small memories and timesharing.  */
268
269EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
270#define PUREBEG (char *) pure
271
272#else /* HAVE_SHM */
273
274#define pure PURE_SEG_BITS   /* Use shared memory segment */
275#define PUREBEG (char *)PURE_SEG_BITS
276
277#endif /* HAVE_SHM */
278
279/* Pointer to the pure area, and its size.  */
280
281static char *purebeg;
282static size_t pure_size;
283
284/* Number of bytes of pure storage used before pure storage overflowed.
285   If this is non-zero, this implies that an overflow occurred.  */
286
287static size_t pure_bytes_used_before_overflow;
288
289/* Value is non-zero if P points into pure space.  */
290
291#define PURE_POINTER_P(P)					\
292     (((PNTR_COMPARISON_TYPE) (P)				\
293       < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size))	\
294      && ((PNTR_COMPARISON_TYPE) (P)				\
295	  >= (PNTR_COMPARISON_TYPE) purebeg))
296
297/* Total number of bytes allocated in pure storage. */
298
299EMACS_INT pure_bytes_used;
300
301/* Index in pure at which next pure Lisp object will be allocated.. */
302
303static EMACS_INT pure_bytes_used_lisp;
304
305/* Number of bytes allocated for non-Lisp objects in pure storage.  */
306
307static EMACS_INT pure_bytes_used_non_lisp;
308
309/* If nonzero, this is a warning delivered by malloc and not yet
310   displayed.  */
311
312char *pending_malloc_warning;
313
314/* Pre-computed signal argument for use when memory is exhausted.  */
315
316Lisp_Object Vmemory_signal_data;
317
318/* Maximum amount of C stack to save when a GC happens.  */
319
320#ifndef MAX_SAVE_STACK
321#define MAX_SAVE_STACK 16000
322#endif
323
324/* Buffer in which we save a copy of the C stack at each GC.  */
325
326char *stack_copy;
327int stack_copy_size;
328
329/* Non-zero means ignore malloc warnings.  Set during initialization.
330   Currently not used.  */
331
332int ignore_warnings;
333
334Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
335
336/* Hook run after GC has finished.  */
337
338Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
339
340Lisp_Object Vgc_elapsed;	/* accumulated elapsed time in GC  */
341EMACS_INT gcs_done;		/* accumulated GCs  */
342
343static void mark_buffer P_ ((Lisp_Object));
344extern void mark_kboards P_ ((void));
345extern void mark_backtrace P_ ((void));
346static void gc_sweep P_ ((void));
347static void mark_glyph_matrix P_ ((struct glyph_matrix *));
348static void mark_face_cache P_ ((struct face_cache *));
349
350#ifdef HAVE_WINDOW_SYSTEM
351extern void mark_fringe_data P_ ((void));
352static void mark_image P_ ((struct image *));
353static void mark_image_cache P_ ((struct frame *));
354#endif /* HAVE_WINDOW_SYSTEM */
355
356static struct Lisp_String *allocate_string P_ ((void));
357static void compact_small_strings P_ ((void));
358static void free_large_strings P_ ((void));
359static void sweep_strings P_ ((void));
360
361extern int message_enable_multibyte;
362
363/* When scanning the C stack for live Lisp objects, Emacs keeps track
364   of what memory allocated via lisp_malloc is intended for what
365   purpose.  This enumeration specifies the type of memory.  */
366
367enum mem_type
368{
369  MEM_TYPE_NON_LISP,
370  MEM_TYPE_BUFFER,
371  MEM_TYPE_CONS,
372  MEM_TYPE_STRING,
373  MEM_TYPE_MISC,
374  MEM_TYPE_SYMBOL,
375  MEM_TYPE_FLOAT,
376  /* Keep the following vector-like types together, with
377     MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
378     first.  Or change the code of live_vector_p, for instance.  */
379  MEM_TYPE_VECTOR,
380  MEM_TYPE_PROCESS,
381  MEM_TYPE_HASH_TABLE,
382  MEM_TYPE_FRAME,
383  MEM_TYPE_WINDOW
384};
385
386static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
387static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
388void refill_memory_reserve ();
389
390
391#if GC_MARK_STACK || defined GC_MALLOC_CHECK
392
393#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
394#include <stdio.h>		/* For fprintf.  */
395#endif
396
397/* A unique object in pure space used to make some Lisp objects
398   on free lists recognizable in O(1).  */
399
400Lisp_Object Vdead;
401
402#ifdef GC_MALLOC_CHECK
403
404enum mem_type allocated_mem_type;
405int dont_register_blocks;
406
407#endif /* GC_MALLOC_CHECK */
408
409/* A node in the red-black tree describing allocated memory containing
410   Lisp data.  Each such block is recorded with its start and end
411   address when it is allocated, and removed from the tree when it
412   is freed.
413
414   A red-black tree is a balanced binary tree with the following
415   properties:
416
417   1. Every node is either red or black.
418   2. Every leaf is black.
419   3. If a node is red, then both of its children are black.
420   4. Every simple path from a node to a descendant leaf contains
421   the same number of black nodes.
422   5. The root is always black.
423
424   When nodes are inserted into the tree, or deleted from the tree,
425   the tree is "fixed" so that these properties are always true.
426
427   A red-black tree with N internal nodes has height at most 2
428   log(N+1).  Searches, insertions and deletions are done in O(log N).
429   Please see a text book about data structures for a detailed
430   description of red-black trees.  Any book worth its salt should
431   describe them.  */
432
433struct mem_node
434{
435  /* Children of this node.  These pointers are never NULL.  When there
436     is no child, the value is MEM_NIL, which points to a dummy node.  */
437  struct mem_node *left, *right;
438
439  /* The parent of this node.  In the root node, this is NULL.  */
440  struct mem_node *parent;
441
442  /* Start and end of allocated region.  */
443  void *start, *end;
444
445  /* Node color.  */
446  enum {MEM_BLACK, MEM_RED} color;
447
448  /* Memory type.  */
449  enum mem_type type;
450};
451
452/* Base address of stack.  Set in main.  */
453
454Lisp_Object *stack_base;
455
456/* Root of the tree describing allocated Lisp memory.  */
457
458static struct mem_node *mem_root;
459
460/* Lowest and highest known address in the heap.  */
461
462static void *min_heap_address, *max_heap_address;
463
464/* Sentinel node of the tree.  */
465
466static struct mem_node mem_z;
467#define MEM_NIL &mem_z
468
469static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
470static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
471static void lisp_free P_ ((POINTER_TYPE *));
472static void mark_stack P_ ((void));
473static int live_vector_p P_ ((struct mem_node *, void *));
474static int live_buffer_p P_ ((struct mem_node *, void *));
475static int live_string_p P_ ((struct mem_node *, void *));
476static int live_cons_p P_ ((struct mem_node *, void *));
477static int live_symbol_p P_ ((struct mem_node *, void *));
478static int live_float_p P_ ((struct mem_node *, void *));
479static int live_misc_p P_ ((struct mem_node *, void *));
480static void mark_maybe_object P_ ((Lisp_Object));
481static void mark_memory P_ ((void *, void *, int));
482static void mem_init P_ ((void));
483static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
484static void mem_insert_fixup P_ ((struct mem_node *));
485static void mem_rotate_left P_ ((struct mem_node *));
486static void mem_rotate_right P_ ((struct mem_node *));
487static void mem_delete P_ ((struct mem_node *));
488static void mem_delete_fixup P_ ((struct mem_node *));
489static INLINE struct mem_node *mem_find P_ ((void *));
490
491
492#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
493static void check_gcpros P_ ((void));
494#endif
495
496#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
497
498/* Recording what needs to be marked for gc.  */
499
500struct gcpro *gcprolist;
501
502/* Addresses of staticpro'd variables.  Initialize it to a nonzero
503   value; otherwise some compilers put it into BSS.  */
504
505#define NSTATICS 1280
506Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
507
508/* Index of next unused slot in staticvec.  */
509
510int staticidx = 0;
511
512static POINTER_TYPE *pure_alloc P_ ((size_t, int));
513
514
515/* Value is SZ rounded up to the next multiple of ALIGNMENT.
516   ALIGNMENT must be a power of 2.  */
517
518#define ALIGN(ptr, ALIGNMENT) \
519  ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
520		     & ~((ALIGNMENT) - 1)))
521
522
523
524/************************************************************************
525				Malloc
526 ************************************************************************/
527
528/* Function malloc calls this if it finds we are near exhausting storage.  */
529
530void
531malloc_warning (str)
532     char *str;
533{
534  pending_malloc_warning = str;
535}
536
537
538/* Display an already-pending malloc warning.  */
539
540void
541display_malloc_warning ()
542{
543  call3 (intern ("display-warning"),
544	 intern ("alloc"),
545	 build_string (pending_malloc_warning),
546	 intern ("emergency"));
547  pending_malloc_warning = 0;
548}
549
550
551#ifdef DOUG_LEA_MALLOC
552#  define BYTES_USED (mallinfo ().uordblks)
553#else
554#  define BYTES_USED _bytes_used
555#endif
556
557/* Called if we can't allocate relocatable space for a buffer.  */
558
559void
560buffer_memory_full ()
561{
562  /* If buffers use the relocating allocator, no need to free
563     spare_memory, because we may have plenty of malloc space left
564     that we could get, and if we don't, the malloc that fails will
565     itself cause spare_memory to be freed.  If buffers don't use the
566     relocating allocator, treat this like any other failing
567     malloc.  */
568
569#ifndef REL_ALLOC
570  memory_full ();
571#endif
572
573  /* This used to call error, but if we've run out of memory, we could
574     get infinite recursion trying to build the string.  */
575  xsignal (Qnil, Vmemory_signal_data);
576}
577
578
579#ifdef XMALLOC_OVERRUN_CHECK
580
581/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
582   and a 16 byte trailer around each block.
583
584   The header consists of 12 fixed bytes + a 4 byte integer contaning the
585   original block size, while the trailer consists of 16 fixed bytes.
586
587   The header is used to detect whether this block has been allocated
588   through these functions -- as it seems that some low-level libc
589   functions may bypass the malloc hooks.
590*/
591
592
593#define XMALLOC_OVERRUN_CHECK_SIZE 16
594
595static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
596  { 0x9a, 0x9b, 0xae, 0xaf,
597    0xbf, 0xbe, 0xce, 0xcf,
598    0xea, 0xeb, 0xec, 0xed };
599
600static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
601  { 0xaa, 0xab, 0xac, 0xad,
602    0xba, 0xbb, 0xbc, 0xbd,
603    0xca, 0xcb, 0xcc, 0xcd,
604    0xda, 0xdb, 0xdc, 0xdd };
605
606/* Macros to insert and extract the block size in the header.  */
607
608#define XMALLOC_PUT_SIZE(ptr, size)	\
609  (ptr[-1] = (size & 0xff),		\
610   ptr[-2] = ((size >> 8) & 0xff),	\
611   ptr[-3] = ((size >> 16) & 0xff),	\
612   ptr[-4] = ((size >> 24) & 0xff))
613
614#define XMALLOC_GET_SIZE(ptr)			\
615  (size_t)((unsigned)(ptr[-1])		|	\
616	   ((unsigned)(ptr[-2]) << 8)	|	\
617	   ((unsigned)(ptr[-3]) << 16)	|	\
618	   ((unsigned)(ptr[-4]) << 24))
619
620
621/* The call depth in overrun_check functions.  For example, this might happen:
622   xmalloc()
623     overrun_check_malloc()
624       -> malloc -> (via hook)_-> emacs_blocked_malloc
625          -> overrun_check_malloc
626             call malloc  (hooks are NULL, so real malloc is called).
627             malloc returns 10000.
628             add overhead, return 10016.
629      <- (back in overrun_check_malloc)
630      add overhead again, return 10032
631   xmalloc returns 10032.
632
633   (time passes).
634
635   xfree(10032)
636     overrun_check_free(10032)
637       decrease overhed
638       free(10016)  <-  crash, because 10000 is the original pointer.  */
639
640static int check_depth;
641
642/* Like malloc, but wraps allocated block with header and trailer.  */
643
644POINTER_TYPE *
645overrun_check_malloc (size)
646     size_t size;
647{
648  register unsigned char *val;
649  size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
650
651  val = (unsigned char *) malloc (size + overhead);
652  if (val && check_depth == 1)
653    {
654      bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
655      val += XMALLOC_OVERRUN_CHECK_SIZE;
656      XMALLOC_PUT_SIZE(val, size);
657      bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
658    }
659  --check_depth;
660  return (POINTER_TYPE *)val;
661}
662
663
664/* Like realloc, but checks old block for overrun, and wraps new block
665   with header and trailer.  */
666
667POINTER_TYPE *
668overrun_check_realloc (block, size)
669     POINTER_TYPE *block;
670     size_t size;
671{
672  register unsigned char *val = (unsigned char *)block;
673  size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
674
675  if (val
676      && check_depth == 1
677      && bcmp (xmalloc_overrun_check_header,
678	       val - XMALLOC_OVERRUN_CHECK_SIZE,
679	       XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
680    {
681      size_t osize = XMALLOC_GET_SIZE (val);
682      if (bcmp (xmalloc_overrun_check_trailer,
683		val + osize,
684		XMALLOC_OVERRUN_CHECK_SIZE))
685	abort ();
686      bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
687      val -= XMALLOC_OVERRUN_CHECK_SIZE;
688      bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
689    }
690
691  val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
692
693  if (val && check_depth == 1)
694    {
695      bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
696      val += XMALLOC_OVERRUN_CHECK_SIZE;
697      XMALLOC_PUT_SIZE(val, size);
698      bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
699    }
700  --check_depth;
701  return (POINTER_TYPE *)val;
702}
703
704/* Like free, but checks block for overrun.  */
705
706void
707overrun_check_free (block)
708     POINTER_TYPE *block;
709{
710  unsigned char *val = (unsigned char *)block;
711
712  ++check_depth;
713  if (val
714      && check_depth == 1
715      && bcmp (xmalloc_overrun_check_header,
716	       val - XMALLOC_OVERRUN_CHECK_SIZE,
717	       XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
718    {
719      size_t osize = XMALLOC_GET_SIZE (val);
720      if (bcmp (xmalloc_overrun_check_trailer,
721		val + osize,
722		XMALLOC_OVERRUN_CHECK_SIZE))
723	abort ();
724#ifdef XMALLOC_CLEAR_FREE_MEMORY
725      val -= XMALLOC_OVERRUN_CHECK_SIZE;
726      memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
727#else
728      bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
729      val -= XMALLOC_OVERRUN_CHECK_SIZE;
730      bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
731#endif
732    }
733
734  free (val);
735  --check_depth;
736}
737
738#undef malloc
739#undef realloc
740#undef free
741#define malloc overrun_check_malloc
742#define realloc overrun_check_realloc
743#define free overrun_check_free
744#endif
745
746
747/* Like malloc but check for no memory and block interrupt input..  */
748
749POINTER_TYPE *
750xmalloc (size)
751     size_t size;
752{
753  register POINTER_TYPE *val;
754
755  BLOCK_INPUT;
756  val = (POINTER_TYPE *) malloc (size);
757  UNBLOCK_INPUT;
758
759  if (!val && size)
760    memory_full ();
761  return val;
762}
763
764
765/* Like realloc but check for no memory and block interrupt input..  */
766
767POINTER_TYPE *
768xrealloc (block, size)
769     POINTER_TYPE *block;
770     size_t size;
771{
772  register POINTER_TYPE *val;
773
774  BLOCK_INPUT;
775  /* We must call malloc explicitly when BLOCK is 0, since some
776     reallocs don't do this.  */
777  if (! block)
778    val = (POINTER_TYPE *) malloc (size);
779  else
780    val = (POINTER_TYPE *) realloc (block, size);
781  UNBLOCK_INPUT;
782
783  if (!val && size) memory_full ();
784  return val;
785}
786
787
788/* Like free but block interrupt input.  */
789
790void
791xfree (block)
792     POINTER_TYPE *block;
793{
794  BLOCK_INPUT;
795  free (block);
796  UNBLOCK_INPUT;
797  /* We don't call refill_memory_reserve here
798     because that duplicates doing so in emacs_blocked_free
799     and the criterion should go there.  */
800}
801
802
803/* Like strdup, but uses xmalloc.  */
804
805char *
806xstrdup (s)
807     const char *s;
808{
809  size_t len = strlen (s) + 1;
810  char *p = (char *) xmalloc (len);
811  bcopy (s, p, len);
812  return p;
813}
814
815
816/* Unwind for SAFE_ALLOCA */
817
818Lisp_Object
819safe_alloca_unwind (arg)
820     Lisp_Object arg;
821{
822  register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
823
824  p->dogc = 0;
825  xfree (p->pointer);
826  p->pointer = 0;
827  free_misc (arg);
828  return Qnil;
829}
830
831
832/* Like malloc but used for allocating Lisp data.  NBYTES is the
833   number of bytes to allocate, TYPE describes the intended use of the
834   allcated memory block (for strings, for conses, ...).  */
835
836#ifndef USE_LSB_TAG
837static void *lisp_malloc_loser;
838#endif
839
840static POINTER_TYPE *
841lisp_malloc (nbytes, type)
842     size_t nbytes;
843     enum mem_type type;
844{
845  register void *val;
846
847  BLOCK_INPUT;
848
849#ifdef GC_MALLOC_CHECK
850  allocated_mem_type = type;
851#endif
852
853  val = (void *) malloc (nbytes);
854
855#ifndef USE_LSB_TAG
856  /* If the memory just allocated cannot be addressed thru a Lisp
857     object's pointer, and it needs to be,
858     that's equivalent to running out of memory.  */
859  if (val && type != MEM_TYPE_NON_LISP)
860    {
861      Lisp_Object tem;
862      XSETCONS (tem, (char *) val + nbytes - 1);
863      if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
864	{
865	  lisp_malloc_loser = val;
866	  free (val);
867	  val = 0;
868	}
869    }
870#endif
871
872#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
873  if (val && type != MEM_TYPE_NON_LISP)
874    mem_insert (val, (char *) val + nbytes, type);
875#endif
876
877  UNBLOCK_INPUT;
878  if (!val && nbytes)
879    memory_full ();
880  return val;
881}
882
883/* Free BLOCK.  This must be called to free memory allocated with a
884   call to lisp_malloc.  */
885
886static void
887lisp_free (block)
888     POINTER_TYPE *block;
889{
890  BLOCK_INPUT;
891  free (block);
892#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
893  mem_delete (mem_find (block));
894#endif
895  UNBLOCK_INPUT;
896}
897
898/* Allocation of aligned blocks of memory to store Lisp data.              */
899/* The entry point is lisp_align_malloc which returns blocks of at most    */
900/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary.  */
901
902/* Use posix_memalloc if the system has it and we're using the system's
903   malloc (because our gmalloc.c routines don't have posix_memalign although
904   its memalloc could be used).  */
905#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
906#define USE_POSIX_MEMALIGN 1
907#endif
908
909/* BLOCK_ALIGN has to be a power of 2.  */
910#define BLOCK_ALIGN (1 << 10)
911
912/* Padding to leave at the end of a malloc'd block.  This is to give
913   malloc a chance to minimize the amount of memory wasted to alignment.
914   It should be tuned to the particular malloc library used.
915   On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
916   posix_memalign on the other hand would ideally prefer a value of 4
917   because otherwise, there's 1020 bytes wasted between each ablocks.
918   In Emacs, testing shows that those 1020 can most of the time be
919   efficiently used by malloc to place other objects, so a value of 0 can
920   still preferable unless you have a lot of aligned blocks and virtually
921   nothing else.  */
922#define BLOCK_PADDING 0
923#define BLOCK_BYTES \
924  (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
925
926/* Internal data structures and constants.  */
927
928#define ABLOCKS_SIZE 16
929
930/* An aligned block of memory.  */
931struct ablock
932{
933  union
934  {
935    char payload[BLOCK_BYTES];
936    struct ablock *next_free;
937  } x;
938  /* `abase' is the aligned base of the ablocks.  */
939  /* It is overloaded to hold the virtual `busy' field that counts
940     the number of used ablock in the parent ablocks.
941     The first ablock has the `busy' field, the others have the `abase'
942     field.  To tell the difference, we assume that pointers will have
943     integer values larger than 2 * ABLOCKS_SIZE.  The lowest bit of `busy'
944     is used to tell whether the real base of the parent ablocks is `abase'
945     (if not, the word before the first ablock holds a pointer to the
946     real base).  */
947  struct ablocks *abase;
948  /* The padding of all but the last ablock is unused.  The padding of
949     the last ablock in an ablocks is not allocated.  */
950#if BLOCK_PADDING
951  char padding[BLOCK_PADDING];
952#endif
953};
954
955/* A bunch of consecutive aligned blocks.  */
956struct ablocks
957{
958  struct ablock blocks[ABLOCKS_SIZE];
959};
960
961/* Size of the block requested from malloc or memalign.  */
962#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
963
964#define ABLOCK_ABASE(block) \
965  (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE)   \
966   ? (struct ablocks *)(block)					\
967   : (block)->abase)
968
969/* Virtual `busy' field.  */
970#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
971
972/* Pointer to the (not necessarily aligned) malloc block.  */
973#ifdef USE_POSIX_MEMALIGN
974#define ABLOCKS_BASE(abase) (abase)
975#else
976#define ABLOCKS_BASE(abase) \
977  (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
978#endif
979
980/* The list of free ablock.   */
981static struct ablock *free_ablock;
982
983/* Allocate an aligned block of nbytes.
984   Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
985   smaller or equal to BLOCK_BYTES.  */
986static POINTER_TYPE *
987lisp_align_malloc (nbytes, type)
988     size_t nbytes;
989     enum mem_type type;
990{
991  void *base, *val;
992  struct ablocks *abase;
993
994  eassert (nbytes <= BLOCK_BYTES);
995
996  BLOCK_INPUT;
997
998#ifdef GC_MALLOC_CHECK
999  allocated_mem_type = type;
1000#endif
1001
1002  if (!free_ablock)
1003    {
1004      int i;
1005      EMACS_INT aligned; /* int gets warning casting to 64-bit pointer.  */
1006
1007#ifdef DOUG_LEA_MALLOC
1008      /* Prevent mmap'ing the chunk.  Lisp data may not be mmap'ed
1009	 because mapped region contents are not preserved in
1010	 a dumped Emacs.  */
1011      mallopt (M_MMAP_MAX, 0);
1012#endif
1013
1014#ifdef USE_POSIX_MEMALIGN
1015      {
1016	int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1017	if (err)
1018	  base = NULL;
1019	abase = base;
1020      }
1021#else
1022      base = malloc (ABLOCKS_BYTES);
1023      abase = ALIGN (base, BLOCK_ALIGN);
1024#endif
1025
1026      if (base == 0)
1027	{
1028	  UNBLOCK_INPUT;
1029	  memory_full ();
1030	}
1031
1032      aligned = (base == abase);
1033      if (!aligned)
1034	((void**)abase)[-1] = base;
1035
1036#ifdef DOUG_LEA_MALLOC
1037      /* Back to a reasonable maximum of mmap'ed areas.  */
1038      mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1039#endif
1040
1041#ifndef USE_LSB_TAG
1042      /* If the memory just allocated cannot be addressed thru a Lisp
1043	 object's pointer, and it needs to be, that's equivalent to
1044	 running out of memory.  */
1045      if (type != MEM_TYPE_NON_LISP)
1046	{
1047	  Lisp_Object tem;
1048	  char *end = (char *) base + ABLOCKS_BYTES - 1;
1049	  XSETCONS (tem, end);
1050	  if ((char *) XCONS (tem) != end)
1051	    {
1052	      lisp_malloc_loser = base;
1053	      free (base);
1054	      UNBLOCK_INPUT;
1055	      memory_full ();
1056	    }
1057	}
1058#endif
1059
1060      /* Initialize the blocks and put them on the free list.
1061	 Is `base' was not properly aligned, we can't use the last block.  */
1062      for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1063	{
1064	  abase->blocks[i].abase = abase;
1065	  abase->blocks[i].x.next_free = free_ablock;
1066	  free_ablock = &abase->blocks[i];
1067	}
1068      ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1069
1070      eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1071      eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1072      eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1073      eassert (ABLOCKS_BASE (abase) == base);
1074      eassert (aligned == (long) ABLOCKS_BUSY (abase));
1075    }
1076
1077  abase = ABLOCK_ABASE (free_ablock);
1078  ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1079  val = free_ablock;
1080  free_ablock = free_ablock->x.next_free;
1081
1082#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1083  if (val && type != MEM_TYPE_NON_LISP)
1084    mem_insert (val, (char *) val + nbytes, type);
1085#endif
1086
1087  UNBLOCK_INPUT;
1088  if (!val && nbytes)
1089    memory_full ();
1090
1091  eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1092  return val;
1093}
1094
1095static void
1096lisp_align_free (block)
1097     POINTER_TYPE *block;
1098{
1099  struct ablock *ablock = block;
1100  struct ablocks *abase = ABLOCK_ABASE (ablock);
1101
1102  BLOCK_INPUT;
1103#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1104  mem_delete (mem_find (block));
1105#endif
1106  /* Put on free list.  */
1107  ablock->x.next_free = free_ablock;
1108  free_ablock = ablock;
1109  /* Update busy count.  */
1110  ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1111
1112  if (2 > (long) ABLOCKS_BUSY (abase))
1113    { /* All the blocks are free.  */
1114      int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1115      struct ablock **tem = &free_ablock;
1116      struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1117
1118      while (*tem)
1119	{
1120	  if (*tem >= (struct ablock *) abase && *tem < atop)
1121	    {
1122	      i++;
1123	      *tem = (*tem)->x.next_free;
1124	    }
1125	  else
1126	    tem = &(*tem)->x.next_free;
1127	}
1128      eassert ((aligned & 1) == aligned);
1129      eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1130#ifdef USE_POSIX_MEMALIGN
1131      eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1132#endif
1133      free (ABLOCKS_BASE (abase));
1134    }
1135  UNBLOCK_INPUT;
1136}
1137
1138/* Return a new buffer structure allocated from the heap with
1139   a call to lisp_malloc.  */
1140
1141struct buffer *
1142allocate_buffer ()
1143{
1144  struct buffer *b
1145    = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1146				     MEM_TYPE_BUFFER);
1147  return b;
1148}
1149
1150
1151#ifndef SYSTEM_MALLOC
1152
1153/* Arranging to disable input signals while we're in malloc.
1154
1155   This only works with GNU malloc.  To help out systems which can't
1156   use GNU malloc, all the calls to malloc, realloc, and free
1157   elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1158   pair; unfortunately, we have no idea what C library functions
1159   might call malloc, so we can't really protect them unless you're
1160   using GNU malloc.  Fortunately, most of the major operating systems
1161   can use GNU malloc.  */
1162
1163#ifndef SYNC_INPUT
1164
1165#ifndef DOUG_LEA_MALLOC
1166extern void * (*__malloc_hook) P_ ((size_t, const void *));
1167extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1168extern void (*__free_hook) P_ ((void *, const void *));
1169/* Else declared in malloc.h, perhaps with an extra arg.  */
1170#endif /* DOUG_LEA_MALLOC */
1171static void * (*old_malloc_hook) P_ ((size_t, const void *));
1172static void * (*old_realloc_hook) P_ ((void *,  size_t, const void*));
1173static void (*old_free_hook) P_ ((void*, const void*));
1174
1175/* This function is used as the hook for free to call.  */
1176
1177static void
1178emacs_blocked_free (ptr, ptr2)
1179     void *ptr;
1180     const void *ptr2;
1181{
1182  EMACS_INT bytes_used_now;
1183
1184  BLOCK_INPUT_ALLOC;
1185
1186#ifdef GC_MALLOC_CHECK
1187  if (ptr)
1188    {
1189      struct mem_node *m;
1190
1191      m = mem_find (ptr);
1192      if (m == MEM_NIL || m->start != ptr)
1193	{
1194	  fprintf (stderr,
1195		   "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1196	  abort ();
1197	}
1198      else
1199	{
1200	  /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1201	  mem_delete (m);
1202	}
1203    }
1204#endif /* GC_MALLOC_CHECK */
1205
1206  __free_hook = old_free_hook;
1207  free (ptr);
1208
1209  /* If we released our reserve (due to running out of memory),
1210     and we have a fair amount free once again,
1211     try to set aside another reserve in case we run out once more.  */
1212  if (! NILP (Vmemory_full)
1213      /* Verify there is enough space that even with the malloc
1214	 hysteresis this call won't run out again.
1215	 The code here is correct as long as SPARE_MEMORY
1216	 is substantially larger than the block size malloc uses.  */
1217      && (bytes_used_when_full
1218	  > ((bytes_used_when_reconsidered = BYTES_USED)
1219	     + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1220    refill_memory_reserve ();
1221
1222  __free_hook = emacs_blocked_free;
1223  UNBLOCK_INPUT_ALLOC;
1224}
1225
1226
1227/* This function is the malloc hook that Emacs uses.  */
1228
1229static void *
1230emacs_blocked_malloc (size, ptr)
1231     size_t size;
1232     const void *ptr;
1233{
1234  void *value;
1235
1236  BLOCK_INPUT_ALLOC;
1237  __malloc_hook = old_malloc_hook;
1238#ifdef DOUG_LEA_MALLOC
1239    mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1240#else
1241    __malloc_extra_blocks = malloc_hysteresis;
1242#endif
1243
1244  value = (void *) malloc (size);
1245
1246#ifdef GC_MALLOC_CHECK
1247  {
1248    struct mem_node *m = mem_find (value);
1249    if (m != MEM_NIL)
1250      {
1251	fprintf (stderr, "Malloc returned %p which is already in use\n",
1252		 value);
1253	fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1254		 m->start, m->end, (char *) m->end - (char *) m->start,
1255		 m->type);
1256	abort ();
1257      }
1258
1259    if (!dont_register_blocks)
1260      {
1261	mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1262	allocated_mem_type = MEM_TYPE_NON_LISP;
1263      }
1264  }
1265#endif /* GC_MALLOC_CHECK */
1266
1267  __malloc_hook = emacs_blocked_malloc;
1268  UNBLOCK_INPUT_ALLOC;
1269
1270  /* fprintf (stderr, "%p malloc\n", value); */
1271  return value;
1272}
1273
1274
1275/* This function is the realloc hook that Emacs uses.  */
1276
1277static void *
1278emacs_blocked_realloc (ptr, size, ptr2)
1279     void *ptr;
1280     size_t size;
1281     const void *ptr2;
1282{
1283  void *value;
1284
1285  BLOCK_INPUT_ALLOC;
1286  __realloc_hook = old_realloc_hook;
1287
1288#ifdef GC_MALLOC_CHECK
1289  if (ptr)
1290    {
1291      struct mem_node *m = mem_find (ptr);
1292      if (m == MEM_NIL || m->start != ptr)
1293	{
1294	  fprintf (stderr,
1295		   "Realloc of %p which wasn't allocated with malloc\n",
1296		   ptr);
1297	  abort ();
1298	}
1299
1300      mem_delete (m);
1301    }
1302
1303  /* fprintf (stderr, "%p -> realloc\n", ptr); */
1304
1305  /* Prevent malloc from registering blocks.  */
1306  dont_register_blocks = 1;
1307#endif /* GC_MALLOC_CHECK */
1308
1309  value = (void *) realloc (ptr, size);
1310
1311#ifdef GC_MALLOC_CHECK
1312  dont_register_blocks = 0;
1313
1314  {
1315    struct mem_node *m = mem_find (value);
1316    if (m != MEM_NIL)
1317      {
1318	fprintf (stderr, "Realloc returns memory that is already in use\n");
1319	abort ();
1320      }
1321
1322    /* Can't handle zero size regions in the red-black tree.  */
1323    mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1324  }
1325
1326  /* fprintf (stderr, "%p <- realloc\n", value); */
1327#endif /* GC_MALLOC_CHECK */
1328
1329  __realloc_hook = emacs_blocked_realloc;
1330  UNBLOCK_INPUT_ALLOC;
1331
1332  return value;
1333}
1334
1335
1336#ifdef HAVE_GTK_AND_PTHREAD
1337/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1338   normal malloc.  Some thread implementations need this as they call
1339   malloc before main.  The pthread_self call in BLOCK_INPUT_ALLOC then
1340   calls malloc because it is the first call, and we have an endless loop.  */
1341
1342void
1343reset_malloc_hooks ()
1344{
1345  __free_hook = 0;
1346  __malloc_hook = 0;
1347  __realloc_hook = 0;
1348}
1349#endif /* HAVE_GTK_AND_PTHREAD */
1350
1351
1352/* Called from main to set up malloc to use our hooks.  */
1353
1354void
1355uninterrupt_malloc ()
1356{
1357#ifdef HAVE_GTK_AND_PTHREAD
1358  pthread_mutexattr_t attr;
1359
1360  /*  GLIBC has a faster way to do this, but lets keep it portable.
1361      This is according to the Single UNIX Specification.  */
1362  pthread_mutexattr_init (&attr);
1363  pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1364  pthread_mutex_init (&alloc_mutex, &attr);
1365#endif /* HAVE_GTK_AND_PTHREAD */
1366
1367  if (__free_hook != emacs_blocked_free)
1368    old_free_hook = __free_hook;
1369  __free_hook = emacs_blocked_free;
1370
1371  if (__malloc_hook != emacs_blocked_malloc)
1372    old_malloc_hook = __malloc_hook;
1373  __malloc_hook = emacs_blocked_malloc;
1374
1375  if (__realloc_hook != emacs_blocked_realloc)
1376    old_realloc_hook = __realloc_hook;
1377  __realloc_hook = emacs_blocked_realloc;
1378}
1379
1380#endif /* not SYNC_INPUT */
1381#endif /* not SYSTEM_MALLOC */
1382
1383
1384
1385/***********************************************************************
1386			 Interval Allocation
1387 ***********************************************************************/
1388
1389/* Number of intervals allocated in an interval_block structure.
1390   The 1020 is 1024 minus malloc overhead.  */
1391
1392#define INTERVAL_BLOCK_SIZE \
1393  ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1394
1395/* Intervals are allocated in chunks in form of an interval_block
1396   structure.  */
1397
1398struct interval_block
1399{
1400  /* Place `intervals' first, to preserve alignment.  */
1401  struct interval intervals[INTERVAL_BLOCK_SIZE];
1402  struct interval_block *next;
1403};
1404
1405/* Current interval block.  Its `next' pointer points to older
1406   blocks.  */
1407
1408struct interval_block *interval_block;
1409
1410/* Index in interval_block above of the next unused interval
1411   structure.  */
1412
1413static int interval_block_index;
1414
1415/* Number of free and live intervals.  */
1416
1417static int total_free_intervals, total_intervals;
1418
1419/* List of free intervals.  */
1420
1421INTERVAL interval_free_list;
1422
1423/* Total number of interval blocks now in use.  */
1424
1425int n_interval_blocks;
1426
1427
1428/* Initialize interval allocation.  */
1429
1430static void
1431init_intervals ()
1432{
1433  interval_block = NULL;
1434  interval_block_index = INTERVAL_BLOCK_SIZE;
1435  interval_free_list = 0;
1436  n_interval_blocks = 0;
1437}
1438
1439
1440/* Return a new interval.  */
1441
1442INTERVAL
1443make_interval ()
1444{
1445  INTERVAL val;
1446
1447  /* eassert (!handling_signal); */
1448
1449#ifndef SYNC_INPUT
1450  BLOCK_INPUT;
1451#endif
1452
1453  if (interval_free_list)
1454    {
1455      val = interval_free_list;
1456      interval_free_list = INTERVAL_PARENT (interval_free_list);
1457    }
1458  else
1459    {
1460      if (interval_block_index == INTERVAL_BLOCK_SIZE)
1461	{
1462	  register struct interval_block *newi;
1463
1464	  newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1465							MEM_TYPE_NON_LISP);
1466
1467	  newi->next = interval_block;
1468	  interval_block = newi;
1469	  interval_block_index = 0;
1470	  n_interval_blocks++;
1471	}
1472      val = &interval_block->intervals[interval_block_index++];
1473    }
1474
1475#ifndef SYNC_INPUT
1476  UNBLOCK_INPUT;
1477#endif
1478
1479  consing_since_gc += sizeof (struct interval);
1480  intervals_consed++;
1481  RESET_INTERVAL (val);
1482  val->gcmarkbit = 0;
1483  return val;
1484}
1485
1486
1487/* Mark Lisp objects in interval I. */
1488
1489static void
1490mark_interval (i, dummy)
1491     register INTERVAL i;
1492     Lisp_Object dummy;
1493{
1494  eassert (!i->gcmarkbit);		/* Intervals are never shared.  */
1495  i->gcmarkbit = 1;
1496  mark_object (i->plist);
1497}
1498
1499
1500/* Mark the interval tree rooted in TREE.  Don't call this directly;
1501   use the macro MARK_INTERVAL_TREE instead.  */
1502
1503static void
1504mark_interval_tree (tree)
1505     register INTERVAL tree;
1506{
1507  /* No need to test if this tree has been marked already; this
1508     function is always called through the MARK_INTERVAL_TREE macro,
1509     which takes care of that.  */
1510
1511  traverse_intervals_noorder (tree, mark_interval, Qnil);
1512}
1513
1514
1515/* Mark the interval tree rooted in I.  */
1516
1517#define MARK_INTERVAL_TREE(i)				\
1518  do {							\
1519    if (!NULL_INTERVAL_P (i) && !i->gcmarkbit)		\
1520      mark_interval_tree (i);				\
1521  } while (0)
1522
1523
1524#define UNMARK_BALANCE_INTERVALS(i)			\
1525  do {							\
1526   if (! NULL_INTERVAL_P (i))				\
1527     (i) = balance_intervals (i);			\
1528  } while (0)
1529
1530
1531/* Number support.  If NO_UNION_TYPE isn't in effect, we
1532   can't create number objects in macros.  */
1533#ifndef make_number
1534Lisp_Object
1535make_number (n)
1536     EMACS_INT n;
1537{
1538  Lisp_Object obj;
1539  obj.s.val = n;
1540  obj.s.type = Lisp_Int;
1541  return obj;
1542}
1543#endif
1544
1545/***********************************************************************
1546			  String Allocation
1547 ***********************************************************************/
1548
1549/* Lisp_Strings are allocated in string_block structures.  When a new
1550   string_block is allocated, all the Lisp_Strings it contains are
1551   added to a free-list string_free_list.  When a new Lisp_String is
1552   needed, it is taken from that list.  During the sweep phase of GC,
1553   string_blocks that are entirely free are freed, except two which
1554   we keep.
1555
1556   String data is allocated from sblock structures.  Strings larger
1557   than LARGE_STRING_BYTES, get their own sblock, data for smaller
1558   strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1559
1560   Sblocks consist internally of sdata structures, one for each
1561   Lisp_String.  The sdata structure points to the Lisp_String it
1562   belongs to.  The Lisp_String points back to the `u.data' member of
1563   its sdata structure.
1564
1565   When a Lisp_String is freed during GC, it is put back on
1566   string_free_list, and its `data' member and its sdata's `string'
1567   pointer is set to null.  The size of the string is recorded in the
1568   `u.nbytes' member of the sdata.  So, sdata structures that are no
1569   longer used, can be easily recognized, and it's easy to compact the
1570   sblocks of small strings which we do in compact_small_strings.  */
1571
1572/* Size in bytes of an sblock structure used for small strings.  This
1573   is 8192 minus malloc overhead.  */
1574
1575#define SBLOCK_SIZE 8188
1576
1577/* Strings larger than this are considered large strings.  String data
1578   for large strings is allocated from individual sblocks.  */
1579
1580#define LARGE_STRING_BYTES 1024
1581
1582/* Structure describing string memory sub-allocated from an sblock.
1583   This is where the contents of Lisp strings are stored.  */
1584
1585struct sdata
1586{
1587  /* Back-pointer to the string this sdata belongs to.  If null, this
1588     structure is free, and the NBYTES member of the union below
1589     contains the string's byte size (the same value that STRING_BYTES
1590     would return if STRING were non-null).  If non-null, STRING_BYTES
1591     (STRING) is the size of the data, and DATA contains the string's
1592     contents.  */
1593  struct Lisp_String *string;
1594
1595#ifdef GC_CHECK_STRING_BYTES
1596
1597  EMACS_INT nbytes;
1598  unsigned char data[1];
1599
1600#define SDATA_NBYTES(S)	(S)->nbytes
1601#define SDATA_DATA(S)	(S)->data
1602
1603#else /* not GC_CHECK_STRING_BYTES */
1604
1605  union
1606  {
1607    /* When STRING in non-null.  */
1608    unsigned char data[1];
1609
1610    /* When STRING is null.  */
1611    EMACS_INT nbytes;
1612  } u;
1613
1614
1615#define SDATA_NBYTES(S)	(S)->u.nbytes
1616#define SDATA_DATA(S)	(S)->u.data
1617
1618#endif /* not GC_CHECK_STRING_BYTES */
1619};
1620
1621
1622/* Structure describing a block of memory which is sub-allocated to
1623   obtain string data memory for strings.  Blocks for small strings
1624   are of fixed size SBLOCK_SIZE.  Blocks for large strings are made
1625   as large as needed.  */
1626
1627struct sblock
1628{
1629  /* Next in list.  */
1630  struct sblock *next;
1631
1632  /* Pointer to the next free sdata block.  This points past the end
1633     of the sblock if there isn't any space left in this block.  */
1634  struct sdata *next_free;
1635
1636  /* Start of data.  */
1637  struct sdata first_data;
1638};
1639
1640/* Number of Lisp strings in a string_block structure.  The 1020 is
1641   1024 minus malloc overhead.  */
1642
1643#define STRING_BLOCK_SIZE \
1644  ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1645
1646/* Structure describing a block from which Lisp_String structures
1647   are allocated.  */
1648
1649struct string_block
1650{
1651  /* Place `strings' first, to preserve alignment.  */
1652  struct Lisp_String strings[STRING_BLOCK_SIZE];
1653  struct string_block *next;
1654};
1655
1656/* Head and tail of the list of sblock structures holding Lisp string
1657   data.  We always allocate from current_sblock.  The NEXT pointers
1658   in the sblock structures go from oldest_sblock to current_sblock.  */
1659
1660static struct sblock *oldest_sblock, *current_sblock;
1661
1662/* List of sblocks for large strings.  */
1663
1664static struct sblock *large_sblocks;
1665
1666/* List of string_block structures, and how many there are.  */
1667
1668static struct string_block *string_blocks;
1669static int n_string_blocks;
1670
1671/* Free-list of Lisp_Strings.  */
1672
1673static struct Lisp_String *string_free_list;
1674
1675/* Number of live and free Lisp_Strings.  */
1676
1677static int total_strings, total_free_strings;
1678
1679/* Number of bytes used by live strings.  */
1680
1681static int total_string_size;
1682
1683/* Given a pointer to a Lisp_String S which is on the free-list
1684   string_free_list, return a pointer to its successor in the
1685   free-list.  */
1686
1687#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1688
1689/* Return a pointer to the sdata structure belonging to Lisp string S.
1690   S must be live, i.e. S->data must not be null.  S->data is actually
1691   a pointer to the `u.data' member of its sdata structure; the
1692   structure starts at a constant offset in front of that.  */
1693
1694#ifdef GC_CHECK_STRING_BYTES
1695
1696#define SDATA_OF_STRING(S) \
1697     ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1698			- sizeof (EMACS_INT)))
1699
1700#else /* not GC_CHECK_STRING_BYTES */
1701
1702#define SDATA_OF_STRING(S) \
1703     ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1704
1705#endif /* not GC_CHECK_STRING_BYTES */
1706
1707
1708#ifdef GC_CHECK_STRING_OVERRUN
1709
1710/* We check for overrun in string data blocks by appending a small
1711   "cookie" after each allocated string data block, and check for the
1712   presence of this cookie during GC.  */
1713
1714#define GC_STRING_OVERRUN_COOKIE_SIZE	4
1715static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1716  { 0xde, 0xad, 0xbe, 0xef };
1717
1718#else
1719#define GC_STRING_OVERRUN_COOKIE_SIZE 0
1720#endif
1721
1722/* Value is the size of an sdata structure large enough to hold NBYTES
1723   bytes of string data.  The value returned includes a terminating
1724   NUL byte, the size of the sdata structure, and padding.  */
1725
1726#ifdef GC_CHECK_STRING_BYTES
1727
1728#define SDATA_SIZE(NBYTES)			\
1729     ((sizeof (struct Lisp_String *)		\
1730       + (NBYTES) + 1				\
1731       + sizeof (EMACS_INT)			\
1732       + sizeof (EMACS_INT) - 1)		\
1733      & ~(sizeof (EMACS_INT) - 1))
1734
1735#else /* not GC_CHECK_STRING_BYTES */
1736
1737#define SDATA_SIZE(NBYTES)			\
1738     ((sizeof (struct Lisp_String *)		\
1739       + (NBYTES) + 1				\
1740       + sizeof (EMACS_INT) - 1)		\
1741      & ~(sizeof (EMACS_INT) - 1))
1742
1743#endif /* not GC_CHECK_STRING_BYTES */
1744
1745/* Extra bytes to allocate for each string.  */
1746
1747#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1748
1749/* Initialize string allocation.  Called from init_alloc_once.  */
1750
1751void
1752init_strings ()
1753{
1754  total_strings = total_free_strings = total_string_size = 0;
1755  oldest_sblock = current_sblock = large_sblocks = NULL;
1756  string_blocks = NULL;
1757  n_string_blocks = 0;
1758  string_free_list = NULL;
1759}
1760
1761
1762#ifdef GC_CHECK_STRING_BYTES
1763
1764static int check_string_bytes_count;
1765
1766void check_string_bytes P_ ((int));
1767void check_sblock P_ ((struct sblock *));
1768
1769#define CHECK_STRING_BYTES(S)	STRING_BYTES (S)
1770
1771
1772/* Like GC_STRING_BYTES, but with debugging check.  */
1773
1774int
1775string_bytes (s)
1776     struct Lisp_String *s;
1777{
1778  int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1779  if (!PURE_POINTER_P (s)
1780      && s->data
1781      && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1782    abort ();
1783  return nbytes;
1784}
1785
1786/* Check validity of Lisp strings' string_bytes member in B.  */
1787
1788void
1789check_sblock (b)
1790     struct sblock *b;
1791{
1792  struct sdata *from, *end, *from_end;
1793
1794  end = b->next_free;
1795
1796  for (from = &b->first_data; from < end; from = from_end)
1797    {
1798      /* Compute the next FROM here because copying below may
1799	 overwrite data we need to compute it.  */
1800      int nbytes;
1801
1802      /* Check that the string size recorded in the string is the
1803	 same as the one recorded in the sdata structure. */
1804      if (from->string)
1805	CHECK_STRING_BYTES (from->string);
1806
1807      if (from->string)
1808	nbytes = GC_STRING_BYTES (from->string);
1809      else
1810	nbytes = SDATA_NBYTES (from);
1811
1812      nbytes = SDATA_SIZE (nbytes);
1813      from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1814    }
1815}
1816
1817
1818/* Check validity of Lisp strings' string_bytes member.  ALL_P
1819   non-zero means check all strings, otherwise check only most
1820   recently allocated strings.  Used for hunting a bug.  */
1821
1822void
1823check_string_bytes (all_p)
1824     int all_p;
1825{
1826  if (all_p)
1827    {
1828      struct sblock *b;
1829
1830      for (b = large_sblocks; b; b = b->next)
1831	{
1832	  struct Lisp_String *s = b->first_data.string;
1833	  if (s)
1834	    CHECK_STRING_BYTES (s);
1835	}
1836
1837      for (b = oldest_sblock; b; b = b->next)
1838	check_sblock (b);
1839    }
1840  else
1841    check_sblock (current_sblock);
1842}
1843
1844#endif /* GC_CHECK_STRING_BYTES */
1845
1846#ifdef GC_CHECK_STRING_FREE_LIST
1847
1848/* Walk through the string free list looking for bogus next pointers.
1849   This may catch buffer overrun from a previous string.  */
1850
1851static void
1852check_string_free_list ()
1853{
1854  struct Lisp_String *s;
1855
1856  /* Pop a Lisp_String off the free-list.  */
1857  s = string_free_list;
1858  while (s != NULL)
1859    {
1860      if ((unsigned)s < 1024)
1861	abort();
1862      s = NEXT_FREE_LISP_STRING (s);
1863    }
1864}
1865#else
1866#define check_string_free_list()
1867#endif
1868
1869/* Return a new Lisp_String.  */
1870
1871static struct Lisp_String *
1872allocate_string ()
1873{
1874  struct Lisp_String *s;
1875
1876  /* eassert (!handling_signal); */
1877
1878#ifndef SYNC_INPUT
1879  BLOCK_INPUT;
1880#endif
1881
1882  /* If the free-list is empty, allocate a new string_block, and
1883     add all the Lisp_Strings in it to the free-list.  */
1884  if (string_free_list == NULL)
1885    {
1886      struct string_block *b;
1887      int i;
1888
1889      b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1890      bzero (b, sizeof *b);
1891      b->next = string_blocks;
1892      string_blocks = b;
1893      ++n_string_blocks;
1894
1895      for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1896	{
1897	  s = b->strings + i;
1898	  NEXT_FREE_LISP_STRING (s) = string_free_list;
1899	  string_free_list = s;
1900	}
1901
1902      total_free_strings += STRING_BLOCK_SIZE;
1903    }
1904
1905  check_string_free_list ();
1906
1907  /* Pop a Lisp_String off the free-list.  */
1908  s = string_free_list;
1909  string_free_list = NEXT_FREE_LISP_STRING (s);
1910
1911#ifndef SYNC_INPUT
1912  UNBLOCK_INPUT;
1913#endif
1914
1915  /* Probably not strictly necessary, but play it safe.  */
1916  bzero (s, sizeof *s);
1917
1918  --total_free_strings;
1919  ++total_strings;
1920  ++strings_consed;
1921  consing_since_gc += sizeof *s;
1922
1923#ifdef GC_CHECK_STRING_BYTES
1924  if (!noninteractive
1925#ifdef MAC_OS8
1926      && current_sblock
1927#endif
1928     )
1929    {
1930      if (++check_string_bytes_count == 200)
1931	{
1932	  check_string_bytes_count = 0;
1933	  check_string_bytes (1);
1934	}
1935      else
1936	check_string_bytes (0);
1937    }
1938#endif /* GC_CHECK_STRING_BYTES */
1939
1940  return s;
1941}
1942
1943
1944/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1945   plus a NUL byte at the end.  Allocate an sdata structure for S, and
1946   set S->data to its `u.data' member.  Store a NUL byte at the end of
1947   S->data.  Set S->size to NCHARS and S->size_byte to NBYTES.  Free
1948   S->data if it was initially non-null.  */
1949
1950void
1951allocate_string_data (s, nchars, nbytes)
1952     struct Lisp_String *s;
1953     int nchars, nbytes;
1954{
1955  struct sdata *data, *old_data;
1956  struct sblock *b;
1957  int needed, old_nbytes;
1958
1959  /* Determine the number of bytes needed to store NBYTES bytes
1960     of string data.  */
1961  needed = SDATA_SIZE (nbytes);
1962  old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1963  old_nbytes = GC_STRING_BYTES (s);
1964
1965#ifndef SYNC_INPUT
1966  BLOCK_INPUT;
1967#endif
1968
1969  if (nbytes > LARGE_STRING_BYTES)
1970    {
1971      size_t size = sizeof *b - sizeof (struct sdata) + needed;
1972
1973#ifdef DOUG_LEA_MALLOC
1974      /* Prevent mmap'ing the chunk.  Lisp data may not be mmap'ed
1975	 because mapped region contents are not preserved in
1976	 a dumped Emacs.
1977
1978         In case you think of allowing it in a dumped Emacs at the
1979         cost of not being able to re-dump, there's another reason:
1980         mmap'ed data typically have an address towards the top of the
1981         address space, which won't fit into an EMACS_INT (at least on
1982         32-bit systems with the current tagging scheme).  --fx  */
1983      BLOCK_INPUT;
1984      mallopt (M_MMAP_MAX, 0);
1985      UNBLOCK_INPUT;
1986#endif
1987
1988      b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1989
1990#ifdef DOUG_LEA_MALLOC
1991      /* Back to a reasonable maximum of mmap'ed areas. */
1992      BLOCK_INPUT;
1993      mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1994      UNBLOCK_INPUT;
1995#endif
1996
1997      b->next_free = &b->first_data;
1998      b->first_data.string = NULL;
1999      b->next = large_sblocks;
2000      large_sblocks = b;
2001    }
2002  else if (current_sblock == NULL
2003	   || (((char *) current_sblock + SBLOCK_SIZE
2004		- (char *) current_sblock->next_free)
2005	       < (needed + GC_STRING_EXTRA)))
2006    {
2007      /* Not enough room in the current sblock.  */
2008      b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2009      b->next_free = &b->first_data;
2010      b->first_data.string = NULL;
2011      b->next = NULL;
2012
2013      if (current_sblock)
2014	current_sblock->next = b;
2015      else
2016	oldest_sblock = b;
2017      current_sblock = b;
2018    }
2019  else
2020    b = current_sblock;
2021
2022  data = b->next_free;
2023  b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2024
2025#ifndef SYNC_INPUT
2026  UNBLOCK_INPUT;
2027#endif
2028
2029  data->string = s;
2030  s->data = SDATA_DATA (data);
2031#ifdef GC_CHECK_STRING_BYTES
2032  SDATA_NBYTES (data) = nbytes;
2033#endif
2034  s->size = nchars;
2035  s->size_byte = nbytes;
2036  s->data[nbytes] = '\0';
2037#ifdef GC_CHECK_STRING_OVERRUN
2038  bcopy (string_overrun_cookie, (char *) data + needed,
2039	 GC_STRING_OVERRUN_COOKIE_SIZE);
2040#endif
2041
2042  /* If S had already data assigned, mark that as free by setting its
2043     string back-pointer to null, and recording the size of the data
2044     in it.  */
2045  if (old_data)
2046    {
2047      SDATA_NBYTES (old_data) = old_nbytes;
2048      old_data->string = NULL;
2049    }
2050
2051  consing_since_gc += needed;
2052}
2053
2054
2055/* Sweep and compact strings.  */
2056
2057static void
2058sweep_strings ()
2059{
2060  struct string_block *b, *next;
2061  struct string_block *live_blocks = NULL;
2062
2063  string_free_list = NULL;
2064  total_strings = total_free_strings = 0;
2065  total_string_size = 0;
2066
2067  /* Scan strings_blocks, free Lisp_Strings that aren't marked.  */
2068  for (b = string_blocks; b; b = next)
2069    {
2070      int i, nfree = 0;
2071      struct Lisp_String *free_list_before = string_free_list;
2072
2073      next = b->next;
2074
2075      for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2076	{
2077	  struct Lisp_String *s = b->strings + i;
2078
2079	  if (s->data)
2080	    {
2081	      /* String was not on free-list before.  */
2082	      if (STRING_MARKED_P (s))
2083		{
2084		  /* String is live; unmark it and its intervals.  */
2085		  UNMARK_STRING (s);
2086
2087		  if (!NULL_INTERVAL_P (s->intervals))
2088		    UNMARK_BALANCE_INTERVALS (s->intervals);
2089
2090		  ++total_strings;
2091		  total_string_size += STRING_BYTES (s);
2092		}
2093	      else
2094		{
2095		  /* String is dead.  Put it on the free-list.  */
2096		  struct sdata *data = SDATA_OF_STRING (s);
2097
2098		  /* Save the size of S in its sdata so that we know
2099		     how large that is.  Reset the sdata's string
2100		     back-pointer so that we know it's free.  */
2101#ifdef GC_CHECK_STRING_BYTES
2102		  if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2103		    abort ();
2104#else
2105		  data->u.nbytes = GC_STRING_BYTES (s);
2106#endif
2107		  data->string = NULL;
2108
2109		  /* Reset the strings's `data' member so that we
2110		     know it's free.  */
2111		  s->data = NULL;
2112
2113		  /* Put the string on the free-list.  */
2114		  NEXT_FREE_LISP_STRING (s) = string_free_list;
2115		  string_free_list = s;
2116		  ++nfree;
2117		}
2118	    }
2119	  else
2120	    {
2121	      /* S was on the free-list before.  Put it there again.  */
2122	      NEXT_FREE_LISP_STRING (s) = string_free_list;
2123	      string_free_list = s;
2124	      ++nfree;
2125	    }
2126	}
2127
2128      /* Free blocks that contain free Lisp_Strings only, except
2129	 the first two of them.  */
2130      if (nfree == STRING_BLOCK_SIZE
2131	  && total_free_strings > STRING_BLOCK_SIZE)
2132	{
2133	  lisp_free (b);
2134	  --n_string_blocks;
2135	  string_free_list = free_list_before;
2136	}
2137      else
2138	{
2139	  total_free_strings += nfree;
2140	  b->next = live_blocks;
2141	  live_blocks = b;
2142	}
2143    }
2144
2145  check_string_free_list ();
2146
2147  string_blocks = live_blocks;
2148  free_large_strings ();
2149  compact_small_strings ();
2150
2151  check_string_free_list ();
2152}
2153
2154
2155/* Free dead large strings.  */
2156
2157static void
2158free_large_strings ()
2159{
2160  struct sblock *b, *next;
2161  struct sblock *live_blocks = NULL;
2162
2163  for (b = large_sblocks; b; b = next)
2164    {
2165      next = b->next;
2166
2167      if (b->first_data.string == NULL)
2168	lisp_free (b);
2169      else
2170	{
2171	  b->next = live_blocks;
2172	  live_blocks = b;
2173	}
2174    }
2175
2176  large_sblocks = live_blocks;
2177}
2178
2179
2180/* Compact data of small strings.  Free sblocks that don't contain
2181   data of live strings after compaction.  */
2182
2183static void
2184compact_small_strings ()
2185{
2186  struct sblock *b, *tb, *next;
2187  struct sdata *from, *to, *end, *tb_end;
2188  struct sdata *to_end, *from_end;
2189
2190  /* TB is the sblock we copy to, TO is the sdata within TB we copy
2191     to, and TB_END is the end of TB.  */
2192  tb = oldest_sblock;
2193  tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2194  to = &tb->first_data;
2195
2196  /* Step through the blocks from the oldest to the youngest.  We
2197     expect that old blocks will stabilize over time, so that less
2198     copying will happen this way.  */
2199  for (b = oldest_sblock; b; b = b->next)
2200    {
2201      end = b->next_free;
2202      xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2203
2204      for (from = &b->first_data; from < end; from = from_end)
2205	{
2206	  /* Compute the next FROM here because copying below may
2207	     overwrite data we need to compute it.  */
2208	  int nbytes;
2209
2210#ifdef GC_CHECK_STRING_BYTES
2211	  /* Check that the string size recorded in the string is the
2212	     same as the one recorded in the sdata structure. */
2213	  if (from->string
2214	      && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2215	    abort ();
2216#endif /* GC_CHECK_STRING_BYTES */
2217
2218	  if (from->string)
2219	    nbytes = GC_STRING_BYTES (from->string);
2220	  else
2221	    nbytes = SDATA_NBYTES (from);
2222
2223	  if (nbytes > LARGE_STRING_BYTES)
2224	    abort ();
2225
2226	  nbytes = SDATA_SIZE (nbytes);
2227	  from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2228
2229#ifdef GC_CHECK_STRING_OVERRUN
2230	  if (bcmp (string_overrun_cookie,
2231		    ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2232		    GC_STRING_OVERRUN_COOKIE_SIZE))
2233	    abort ();
2234#endif
2235
2236	  /* FROM->string non-null means it's alive.  Copy its data.  */
2237	  if (from->string)
2238	    {
2239	      /* If TB is full, proceed with the next sblock.  */
2240	      to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2241	      if (to_end > tb_end)
2242		{
2243		  tb->next_free = to;
2244		  tb = tb->next;
2245		  tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2246		  to = &tb->first_data;
2247		  to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2248		}
2249
2250	      /* Copy, and update the string's `data' pointer.  */
2251	      if (from != to)
2252		{
2253		  xassert (tb != b || to <= from);
2254		  safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2255		  to->string->data = SDATA_DATA (to);
2256		}
2257
2258	      /* Advance past the sdata we copied to.  */
2259	      to = to_end;
2260	    }
2261	}
2262    }
2263
2264  /* The rest of the sblocks following TB don't contain live data, so
2265     we can free them.  */
2266  for (b = tb->next; b; b = next)
2267    {
2268      next = b->next;
2269      lisp_free (b);
2270    }
2271
2272  tb->next_free = to;
2273  tb->next = NULL;
2274  current_sblock = tb;
2275}
2276
2277
2278DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2279       doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2280LENGTH must be an integer.
2281INIT must be an integer that represents a character.  */)
2282     (length, init)
2283     Lisp_Object length, init;
2284{
2285  register Lisp_Object val;
2286  register unsigned char *p, *end;
2287  int c, nbytes;
2288
2289  CHECK_NATNUM (length);
2290  CHECK_NUMBER (init);
2291
2292  c = XINT (init);
2293  if (SINGLE_BYTE_CHAR_P (c))
2294    {
2295      nbytes = XINT (length);
2296      val = make_uninit_string (nbytes);
2297      p = SDATA (val);
2298      end = p + SCHARS (val);
2299      while (p != end)
2300	*p++ = c;
2301    }
2302  else
2303    {
2304      unsigned char str[MAX_MULTIBYTE_LENGTH];
2305      int len = CHAR_STRING (c, str);
2306
2307      nbytes = len * XINT (length);
2308      val = make_uninit_multibyte_string (XINT (length), nbytes);
2309      p = SDATA (val);
2310      end = p + nbytes;
2311      while (p != end)
2312	{
2313	  bcopy (str, p, len);
2314	  p += len;
2315	}
2316    }
2317
2318  *p = 0;
2319  return val;
2320}
2321
2322
2323DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2324       doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2325LENGTH must be a number.  INIT matters only in whether it is t or nil.  */)
2326     (length, init)
2327     Lisp_Object length, init;
2328{
2329  register Lisp_Object val;
2330  struct Lisp_Bool_Vector *p;
2331  int real_init, i;
2332  int length_in_chars, length_in_elts, bits_per_value;
2333
2334  CHECK_NATNUM (length);
2335
2336  bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2337
2338  length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2339  length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2340		     / BOOL_VECTOR_BITS_PER_CHAR);
2341
2342  /* We must allocate one more elements than LENGTH_IN_ELTS for the
2343     slot `size' of the struct Lisp_Bool_Vector.  */
2344  val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2345  p = XBOOL_VECTOR (val);
2346
2347  /* Get rid of any bits that would cause confusion.  */
2348  p->vector_size = 0;
2349  XSETBOOL_VECTOR (val, p);
2350  p->size = XFASTINT (length);
2351
2352  real_init = (NILP (init) ? 0 : -1);
2353  for (i = 0; i < length_in_chars ; i++)
2354    p->data[i] = real_init;
2355
2356  /* Clear the extraneous bits in the last byte.  */
2357  if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2358    XBOOL_VECTOR (val)->data[length_in_chars - 1]
2359      &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2360
2361  return val;
2362}
2363
2364
2365/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2366   of characters from the contents.  This string may be unibyte or
2367   multibyte, depending on the contents.  */
2368
2369Lisp_Object
2370make_string (contents, nbytes)
2371     const char *contents;
2372     int nbytes;
2373{
2374  register Lisp_Object val;
2375  int nchars, multibyte_nbytes;
2376
2377  parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2378  if (nbytes == nchars || nbytes != multibyte_nbytes)
2379    /* CONTENTS contains no multibyte sequences or contains an invalid
2380       multibyte sequence.  We must make unibyte string.  */
2381    val = make_unibyte_string (contents, nbytes);
2382  else
2383    val = make_multibyte_string (contents, nchars, nbytes);
2384  return val;
2385}
2386
2387
2388/* Make an unibyte string from LENGTH bytes at CONTENTS.  */
2389
2390Lisp_Object
2391make_unibyte_string (contents, length)
2392     const char *contents;
2393     int length;
2394{
2395  register Lisp_Object val;
2396  val = make_uninit_string (length);
2397  bcopy (contents, SDATA (val), length);
2398  STRING_SET_UNIBYTE (val);
2399  return val;
2400}
2401
2402
2403/* Make a multibyte string from NCHARS characters occupying NBYTES
2404   bytes at CONTENTS.  */
2405
2406Lisp_Object
2407make_multibyte_string (contents, nchars, nbytes)
2408     const char *contents;
2409     int nchars, nbytes;
2410{
2411  register Lisp_Object val;
2412  val = make_uninit_multibyte_string (nchars, nbytes);
2413  bcopy (contents, SDATA (val), nbytes);
2414  return val;
2415}
2416
2417
2418/* Make a string from NCHARS characters occupying NBYTES bytes at
2419   CONTENTS.  It is a multibyte string if NBYTES != NCHARS.  */
2420
2421Lisp_Object
2422make_string_from_bytes (contents, nchars, nbytes)
2423     const char *contents;
2424     int nchars, nbytes;
2425{
2426  register Lisp_Object val;
2427  val = make_uninit_multibyte_string (nchars, nbytes);
2428  bcopy (contents, SDATA (val), nbytes);
2429  if (SBYTES (val) == SCHARS (val))
2430    STRING_SET_UNIBYTE (val);
2431  return val;
2432}
2433
2434
2435/* Make a string from NCHARS characters occupying NBYTES bytes at
2436   CONTENTS.  The argument MULTIBYTE controls whether to label the
2437   string as multibyte.  If NCHARS is negative, it counts the number of
2438   characters by itself.  */
2439
2440Lisp_Object
2441make_specified_string (contents, nchars, nbytes, multibyte)
2442     const char *contents;
2443     int nchars, nbytes;
2444     int multibyte;
2445{
2446  register Lisp_Object val;
2447
2448  if (nchars < 0)
2449    {
2450      if (multibyte)
2451	nchars = multibyte_chars_in_text (contents, nbytes);
2452      else
2453	nchars = nbytes;
2454    }
2455  val = make_uninit_multibyte_string (nchars, nbytes);
2456  bcopy (contents, SDATA (val), nbytes);
2457  if (!multibyte)
2458    STRING_SET_UNIBYTE (val);
2459  return val;
2460}
2461
2462
2463/* Make a string from the data at STR, treating it as multibyte if the
2464   data warrants.  */
2465
2466Lisp_Object
2467build_string (str)
2468     const char *str;
2469{
2470  return make_string (str, strlen (str));
2471}
2472
2473
2474/* Return an unibyte Lisp_String set up to hold LENGTH characters
2475   occupying LENGTH bytes.  */
2476
2477Lisp_Object
2478make_uninit_string (length)
2479     int length;
2480{
2481  Lisp_Object val;
2482  val = make_uninit_multibyte_string (length, length);
2483  STRING_SET_UNIBYTE (val);
2484  return val;
2485}
2486
2487
2488/* Return a multibyte Lisp_String set up to hold NCHARS characters
2489   which occupy NBYTES bytes.  */
2490
2491Lisp_Object
2492make_uninit_multibyte_string (nchars, nbytes)
2493     int nchars, nbytes;
2494{
2495  Lisp_Object string;
2496  struct Lisp_String *s;
2497
2498  if (nchars < 0)
2499    abort ();
2500
2501  s = allocate_string ();
2502  allocate_string_data (s, nchars, nbytes);
2503  XSETSTRING (string, s);
2504  string_chars_consed += nbytes;
2505  return string;
2506}
2507
2508
2509
2510/***********************************************************************
2511			   Float Allocation
2512 ***********************************************************************/
2513
2514/* We store float cells inside of float_blocks, allocating a new
2515   float_block with malloc whenever necessary.  Float cells reclaimed
2516   by GC are put on a free list to be reallocated before allocating
2517   any new float cells from the latest float_block.  */
2518
2519#define FLOAT_BLOCK_SIZE					\
2520  (((BLOCK_BYTES - sizeof (struct float_block *)		\
2521     /* The compiler might add padding at the end.  */		\
2522     - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2523   / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2524
2525#define GETMARKBIT(block,n)				\
2526  (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)]	\
2527    >> ((n) % (sizeof(int) * CHAR_BIT)))		\
2528   & 1)
2529
2530#define SETMARKBIT(block,n)				\
2531  (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)]	\
2532  |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2533
2534#define UNSETMARKBIT(block,n)				\
2535  (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)]	\
2536  &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2537
2538#define FLOAT_BLOCK(fptr) \
2539  ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2540
2541#define FLOAT_INDEX(fptr) \
2542  ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2543
2544struct float_block
2545{
2546  /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job.  */
2547  struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2548  int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2549  struct float_block *next;
2550};
2551
2552#define FLOAT_MARKED_P(fptr) \
2553  GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2554
2555#define FLOAT_MARK(fptr) \
2556  SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2557
2558#define FLOAT_UNMARK(fptr) \
2559  UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2560
2561/* Current float_block.  */
2562
2563struct float_block *float_block;
2564
2565/* Index of first unused Lisp_Float in the current float_block.  */
2566
2567int float_block_index;
2568
2569/* Total number of float blocks now in use.  */
2570
2571int n_float_blocks;
2572
2573/* Free-list of Lisp_Floats.  */
2574
2575struct Lisp_Float *float_free_list;
2576
2577
2578/* Initialize float allocation.  */
2579
2580void
2581init_float ()
2582{
2583  float_block = NULL;
2584  float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block.   */
2585  float_free_list = 0;
2586  n_float_blocks = 0;
2587}
2588
2589
2590/* Explicitly free a float cell by putting it on the free-list.  */
2591
2592void
2593free_float (ptr)
2594     struct Lisp_Float *ptr;
2595{
2596  ptr->u.chain = float_free_list;
2597  float_free_list = ptr;
2598}
2599
2600
2601/* Return a new float object with value FLOAT_VALUE.  */
2602
2603Lisp_Object
2604make_float (float_value)
2605     double float_value;
2606{
2607  register Lisp_Object val;
2608
2609  /* eassert (!handling_signal); */
2610
2611#ifndef SYNC_INPUT
2612  BLOCK_INPUT;
2613#endif
2614
2615  if (float_free_list)
2616    {
2617      /* We use the data field for chaining the free list
2618	 so that we won't use the same field that has the mark bit.  */
2619      XSETFLOAT (val, float_free_list);
2620      float_free_list = float_free_list->u.chain;
2621    }
2622  else
2623    {
2624      if (float_block_index == FLOAT_BLOCK_SIZE)
2625	{
2626	  register struct float_block *new;
2627
2628	  new = (struct float_block *) lisp_align_malloc (sizeof *new,
2629							  MEM_TYPE_FLOAT);
2630	  new->next = float_block;
2631	  bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2632	  float_block = new;
2633	  float_block_index = 0;
2634	  n_float_blocks++;
2635	}
2636      XSETFLOAT (val, &float_block->floats[float_block_index]);
2637      float_block_index++;
2638    }
2639
2640#ifndef SYNC_INPUT
2641  UNBLOCK_INPUT;
2642#endif
2643
2644  XFLOAT_DATA (val) = float_value;
2645  eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2646  consing_since_gc += sizeof (struct Lisp_Float);
2647  floats_consed++;
2648  return val;
2649}
2650
2651
2652
2653/***********************************************************************
2654			   Cons Allocation
2655 ***********************************************************************/
2656
2657/* We store cons cells inside of cons_blocks, allocating a new
2658   cons_block with malloc whenever necessary.  Cons cells reclaimed by
2659   GC are put on a free list to be reallocated before allocating
2660   any new cons cells from the latest cons_block.  */
2661
2662#define CONS_BLOCK_SIZE \
2663  (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2664   / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2665
2666#define CONS_BLOCK(fptr) \
2667  ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2668
2669#define CONS_INDEX(fptr) \
2670  ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2671
2672struct cons_block
2673{
2674  /* Place `conses' at the beginning, to ease up CONS_INDEX's job.  */
2675  struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2676  int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2677  struct cons_block *next;
2678};
2679
2680#define CONS_MARKED_P(fptr) \
2681  GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2682
2683#define CONS_MARK(fptr) \
2684  SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2685
2686#define CONS_UNMARK(fptr) \
2687  UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2688
2689/* Current cons_block.  */
2690
2691struct cons_block *cons_block;
2692
2693/* Index of first unused Lisp_Cons in the current block.  */
2694
2695int cons_block_index;
2696
2697/* Free-list of Lisp_Cons structures.  */
2698
2699struct Lisp_Cons *cons_free_list;
2700
2701/* Total number of cons blocks now in use.  */
2702
2703int n_cons_blocks;
2704
2705
2706/* Initialize cons allocation.  */
2707
2708void
2709init_cons ()
2710{
2711  cons_block = NULL;
2712  cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block.  */
2713  cons_free_list = 0;
2714  n_cons_blocks = 0;
2715}
2716
2717
2718/* Explicitly free a cons cell by putting it on the free-list.  */
2719
2720void
2721free_cons (ptr)
2722     struct Lisp_Cons *ptr;
2723{
2724  ptr->u.chain = cons_free_list;
2725#if GC_MARK_STACK
2726  ptr->car = Vdead;
2727#endif
2728  cons_free_list = ptr;
2729}
2730
2731DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2732       doc: /* Create a new cons, give it CAR and CDR as components, and return it.  */)
2733     (car, cdr)
2734     Lisp_Object car, cdr;
2735{
2736  register Lisp_Object val;
2737
2738  /* eassert (!handling_signal); */
2739
2740#ifndef SYNC_INPUT
2741  BLOCK_INPUT;
2742#endif
2743
2744  if (cons_free_list)
2745    {
2746      /* We use the cdr for chaining the free list
2747	 so that we won't use the same field that has the mark bit.  */
2748      XSETCONS (val, cons_free_list);
2749      cons_free_list = cons_free_list->u.chain;
2750    }
2751  else
2752    {
2753      if (cons_block_index == CONS_BLOCK_SIZE)
2754	{
2755	  register struct cons_block *new;
2756	  new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2757							 MEM_TYPE_CONS);
2758	  bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2759	  new->next = cons_block;
2760	  cons_block = new;
2761	  cons_block_index = 0;
2762	  n_cons_blocks++;
2763	}
2764      XSETCONS (val, &cons_block->conses[cons_block_index]);
2765      cons_block_index++;
2766    }
2767
2768#ifndef SYNC_INPUT
2769  UNBLOCK_INPUT;
2770#endif
2771
2772  XSETCAR (val, car);
2773  XSETCDR (val, cdr);
2774  eassert (!CONS_MARKED_P (XCONS (val)));
2775  consing_since_gc += sizeof (struct Lisp_Cons);
2776  cons_cells_consed++;
2777  return val;
2778}
2779
2780/* Get an error now if there's any junk in the cons free list.  */
2781void
2782check_cons_list ()
2783{
2784#ifdef GC_CHECK_CONS_LIST
2785  struct Lisp_Cons *tail = cons_free_list;
2786
2787  while (tail)
2788    tail = tail->u.chain;
2789#endif
2790}
2791
2792/* Make a list of 1, 2, 3, 4 or 5 specified objects.  */
2793
2794Lisp_Object
2795list1 (arg1)
2796     Lisp_Object arg1;
2797{
2798  return Fcons (arg1, Qnil);
2799}
2800
2801Lisp_Object
2802list2 (arg1, arg2)
2803     Lisp_Object arg1, arg2;
2804{
2805  return Fcons (arg1, Fcons (arg2, Qnil));
2806}
2807
2808
2809Lisp_Object
2810list3 (arg1, arg2, arg3)
2811     Lisp_Object arg1, arg2, arg3;
2812{
2813  return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2814}
2815
2816
2817Lisp_Object
2818list4 (arg1, arg2, arg3, arg4)
2819     Lisp_Object arg1, arg2, arg3, arg4;
2820{
2821  return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2822}
2823
2824
2825Lisp_Object
2826list5 (arg1, arg2, arg3, arg4, arg5)
2827     Lisp_Object arg1, arg2, arg3, arg4, arg5;
2828{
2829  return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2830						       Fcons (arg5, Qnil)))));
2831}
2832
2833
2834DEFUN ("list", Flist, Slist, 0, MANY, 0,
2835       doc: /* Return a newly created list with specified arguments as elements.
2836Any number of arguments, even zero arguments, are allowed.
2837usage: (list &rest OBJECTS)  */)
2838     (nargs, args)
2839     int nargs;
2840     register Lisp_Object *args;
2841{
2842  register Lisp_Object val;
2843  val = Qnil;
2844
2845  while (nargs > 0)
2846    {
2847      nargs--;
2848      val = Fcons (args[nargs], val);
2849    }
2850  return val;
2851}
2852
2853
2854DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2855       doc: /* Return a newly created list of length LENGTH, with each element being INIT.  */)
2856     (length, init)
2857     register Lisp_Object length, init;
2858{
2859  register Lisp_Object val;
2860  register int size;
2861
2862  CHECK_NATNUM (length);
2863  size = XFASTINT (length);
2864
2865  val = Qnil;
2866  while (size > 0)
2867    {
2868      val = Fcons (init, val);
2869      --size;
2870
2871      if (size > 0)
2872	{
2873	  val = Fcons (init, val);
2874	  --size;
2875
2876	  if (size > 0)
2877	    {
2878	      val = Fcons (init, val);
2879	      --size;
2880
2881	      if (size > 0)
2882		{
2883		  val = Fcons (init, val);
2884		  --size;
2885
2886		  if (size > 0)
2887		    {
2888		      val = Fcons (init, val);
2889		      --size;
2890		    }
2891		}
2892	    }
2893	}
2894
2895      QUIT;
2896    }
2897
2898  return val;
2899}
2900
2901
2902
2903/***********************************************************************
2904			   Vector Allocation
2905 ***********************************************************************/
2906
2907/* Singly-linked list of all vectors.  */
2908
2909struct Lisp_Vector *all_vectors;
2910
2911/* Total number of vector-like objects now in use.  */
2912
2913int n_vectors;
2914
2915
2916/* Value is a pointer to a newly allocated Lisp_Vector structure
2917   with room for LEN Lisp_Objects.  */
2918
2919static struct Lisp_Vector *
2920allocate_vectorlike (len, type)
2921     EMACS_INT len;
2922     enum mem_type type;
2923{
2924  struct Lisp_Vector *p;
2925  size_t nbytes;
2926
2927#ifdef DOUG_LEA_MALLOC
2928  /* Prevent mmap'ing the chunk.  Lisp data may not be mmap'ed
2929     because mapped region contents are not preserved in
2930     a dumped Emacs.  */
2931  BLOCK_INPUT;
2932  mallopt (M_MMAP_MAX, 0);
2933  UNBLOCK_INPUT;
2934#endif
2935
2936  /* This gets triggered by code which I haven't bothered to fix.  --Stef  */
2937  /* eassert (!handling_signal); */
2938
2939  nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2940  p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2941
2942#ifdef DOUG_LEA_MALLOC
2943  /* Back to a reasonable maximum of mmap'ed areas.  */
2944  BLOCK_INPUT;
2945  mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2946  UNBLOCK_INPUT;
2947#endif
2948
2949  consing_since_gc += nbytes;
2950  vector_cells_consed += len;
2951
2952#ifndef SYNC_INPUT
2953  BLOCK_INPUT;
2954#endif
2955
2956  p->next = all_vectors;
2957  all_vectors = p;
2958
2959#ifndef SYNC_INPUT
2960  UNBLOCK_INPUT;
2961#endif
2962
2963  ++n_vectors;
2964  return p;
2965}
2966
2967
2968/* Allocate a vector with NSLOTS slots.  */
2969
2970struct Lisp_Vector *
2971allocate_vector (nslots)
2972     EMACS_INT nslots;
2973{
2974  struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2975  v->size = nslots;
2976  return v;
2977}
2978
2979
2980/* Allocate other vector-like structures.  */
2981
2982struct Lisp_Hash_Table *
2983allocate_hash_table ()
2984{
2985  EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2986  struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2987  EMACS_INT i;
2988
2989  v->size = len;
2990  for (i = 0; i < len; ++i)
2991    v->contents[i] = Qnil;
2992
2993  return (struct Lisp_Hash_Table *) v;
2994}
2995
2996
2997struct window *
2998allocate_window ()
2999{
3000  EMACS_INT len = VECSIZE (struct window);
3001  struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
3002  EMACS_INT i;
3003
3004  for (i = 0; i < len; ++i)
3005    v->contents[i] = Qnil;
3006  v->size = len;
3007
3008  return (struct window *) v;
3009}
3010
3011
3012struct frame *
3013allocate_frame ()
3014{
3015  EMACS_INT len = VECSIZE (struct frame);
3016  struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
3017  EMACS_INT i;
3018
3019  for (i = 0; i < len; ++i)
3020    v->contents[i] = make_number (0);
3021  v->size = len;
3022  return (struct frame *) v;
3023}
3024
3025
3026struct Lisp_Process *
3027allocate_process ()
3028{
3029  /* Memory-footprint of the object in nb of Lisp_Object fields.  */
3030  EMACS_INT memlen = VECSIZE (struct Lisp_Process);
3031  /* Size if we only count the actual Lisp_Object fields (which need to be
3032     traced by the GC).  */
3033  EMACS_INT lisplen = PSEUDOVECSIZE (struct Lisp_Process, pid);
3034  struct Lisp_Vector *v = allocate_vectorlike (memlen, MEM_TYPE_PROCESS);
3035  EMACS_INT i;
3036
3037  for (i = 0; i < lisplen; ++i)
3038    v->contents[i] = Qnil;
3039  v->size = lisplen;
3040
3041  return (struct Lisp_Process *) v;
3042}
3043
3044
3045struct Lisp_Vector *
3046allocate_other_vector (len)
3047     EMACS_INT len;
3048{
3049  struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
3050  EMACS_INT i;
3051
3052  for (i = 0; i < len; ++i)
3053    v->contents[i] = Qnil;
3054  v->size = len;
3055
3056  return v;
3057}
3058
3059
3060DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3061       doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3062See also the function `vector'.  */)
3063     (length, init)
3064     register Lisp_Object length, init;
3065{
3066  Lisp_Object vector;
3067  register EMACS_INT sizei;
3068  register int index;
3069  register struct Lisp_Vector *p;
3070
3071  CHECK_NATNUM (length);
3072  sizei = XFASTINT (length);
3073
3074  p = allocate_vector (sizei);
3075  for (index = 0; index < sizei; index++)
3076    p->contents[index] = init;
3077
3078  XSETVECTOR (vector, p);
3079  return vector;
3080}
3081
3082
3083DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
3084       doc: /* Return a newly created char-table, with purpose PURPOSE.
3085Each element is initialized to INIT, which defaults to nil.
3086PURPOSE should be a symbol which has a `char-table-extra-slots' property.
3087The property's value should be an integer between 0 and 10.  */)
3088     (purpose, init)
3089     register Lisp_Object purpose, init;
3090{
3091  Lisp_Object vector;
3092  Lisp_Object n;
3093  CHECK_SYMBOL (purpose);
3094  n = Fget (purpose, Qchar_table_extra_slots);
3095  CHECK_NUMBER (n);
3096  if (XINT (n) < 0 || XINT (n) > 10)
3097    args_out_of_range (n, Qnil);
3098  /* Add 2 to the size for the defalt and parent slots.  */
3099  vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3100			 init);
3101  XCHAR_TABLE (vector)->top = Qt;
3102  XCHAR_TABLE (vector)->parent = Qnil;
3103  XCHAR_TABLE (vector)->purpose = purpose;
3104  XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3105  return vector;
3106}
3107
3108
3109/* Return a newly created sub char table with slots initialized by INIT.
3110   Since a sub char table does not appear as a top level Emacs Lisp
3111   object, we don't need a Lisp interface to make it.  */
3112
3113Lisp_Object
3114make_sub_char_table (init)
3115     Lisp_Object init;
3116{
3117  Lisp_Object vector
3118    = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3119  XCHAR_TABLE (vector)->top = Qnil;
3120  XCHAR_TABLE (vector)->defalt = Qnil;
3121  XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3122  return vector;
3123}
3124
3125
3126DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3127       doc: /* Return a newly created vector with specified arguments as elements.
3128Any number of arguments, even zero arguments, are allowed.
3129usage: (vector &rest OBJECTS)  */)
3130     (nargs, args)
3131     register int nargs;
3132     Lisp_Object *args;
3133{
3134  register Lisp_Object len, val;
3135  register int index;
3136  register struct Lisp_Vector *p;
3137
3138  XSETFASTINT (len, nargs);
3139  val = Fmake_vector (len, Qnil);
3140  p = XVECTOR (val);
3141  for (index = 0; index < nargs; index++)
3142    p->contents[index] = args[index];
3143  return val;
3144}
3145
3146
3147DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3148       doc: /* Create a byte-code object with specified arguments as elements.
3149The arguments should be the arglist, bytecode-string, constant vector,
3150stack size, (optional) doc string, and (optional) interactive spec.
3151The first four arguments are required; at most six have any
3152significance.
3153usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS)  */)
3154     (nargs, args)
3155     register int nargs;
3156     Lisp_Object *args;
3157{
3158  register Lisp_Object len, val;
3159  register int index;
3160  register struct Lisp_Vector *p;
3161
3162  XSETFASTINT (len, nargs);
3163  if (!NILP (Vpurify_flag))
3164    val = make_pure_vector ((EMACS_INT) nargs);
3165  else
3166    val = Fmake_vector (len, Qnil);
3167
3168  if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3169    /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3170       earlier because they produced a raw 8-bit string for byte-code
3171       and now such a byte-code string is loaded as multibyte while
3172       raw 8-bit characters converted to multibyte form.  Thus, now we
3173       must convert them back to the original unibyte form.  */
3174    args[1] = Fstring_as_unibyte (args[1]);
3175
3176  p = XVECTOR (val);
3177  for (index = 0; index < nargs; index++)
3178    {
3179      if (!NILP (Vpurify_flag))
3180	args[index] = Fpurecopy (args[index]);
3181      p->contents[index] = args[index];
3182    }
3183  XSETCOMPILED (val, p);
3184  return val;
3185}
3186
3187
3188
3189/***********************************************************************
3190			   Symbol Allocation
3191 ***********************************************************************/
3192
3193/* Each symbol_block is just under 1020 bytes long, since malloc
3194   really allocates in units of powers of two and uses 4 bytes for its
3195   own overhead. */
3196
3197#define SYMBOL_BLOCK_SIZE \
3198  ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3199
3200struct symbol_block
3201{
3202  /* Place `symbols' first, to preserve alignment.  */
3203  struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3204  struct symbol_block *next;
3205};
3206
3207/* Current symbol block and index of first unused Lisp_Symbol
3208   structure in it.  */
3209
3210struct symbol_block *symbol_block;
3211int symbol_block_index;
3212
3213/* List of free symbols.  */
3214
3215struct Lisp_Symbol *symbol_free_list;
3216
3217/* Total number of symbol blocks now in use.  */
3218
3219int n_symbol_blocks;
3220
3221
3222/* Initialize symbol allocation.  */
3223
3224void
3225init_symbol ()
3226{
3227  symbol_block = NULL;
3228  symbol_block_index = SYMBOL_BLOCK_SIZE;
3229  symbol_free_list = 0;
3230  n_symbol_blocks = 0;
3231}
3232
3233
3234DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3235       doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3236Its value and function definition are void, and its property list is nil.  */)
3237     (name)
3238     Lisp_Object name;
3239{
3240  register Lisp_Object val;
3241  register struct Lisp_Symbol *p;
3242
3243  CHECK_STRING (name);
3244
3245  /* eassert (!handling_signal); */
3246
3247#ifndef SYNC_INPUT
3248  BLOCK_INPUT;
3249#endif
3250
3251  if (symbol_free_list)
3252    {
3253      XSETSYMBOL (val, symbol_free_list);
3254      symbol_free_list = symbol_free_list->next;
3255    }
3256  else
3257    {
3258      if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3259	{
3260	  struct symbol_block *new;
3261	  new = (struct symbol_block *) lisp_malloc (sizeof *new,
3262						     MEM_TYPE_SYMBOL);
3263	  new->next = symbol_block;
3264	  symbol_block = new;
3265	  symbol_block_index = 0;
3266	  n_symbol_blocks++;
3267	}
3268      XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3269      symbol_block_index++;
3270    }
3271
3272#ifndef SYNC_INPUT
3273  UNBLOCK_INPUT;
3274#endif
3275
3276  p = XSYMBOL (val);
3277  p->xname = name;
3278  p->plist = Qnil;
3279  p->value = Qunbound;
3280  p->function = Qunbound;
3281  p->next = NULL;
3282  p->gcmarkbit = 0;
3283  p->interned = SYMBOL_UNINTERNED;
3284  p->constant = 0;
3285  p->indirect_variable = 0;
3286  consing_since_gc += sizeof (struct Lisp_Symbol);
3287  symbols_consed++;
3288  return val;
3289}
3290
3291
3292
3293/***********************************************************************
3294		       Marker (Misc) Allocation
3295 ***********************************************************************/
3296
3297/* Allocation of markers and other objects that share that structure.
3298   Works like allocation of conses. */
3299
3300#define MARKER_BLOCK_SIZE \
3301  ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3302
3303struct marker_block
3304{
3305  /* Place `markers' first, to preserve alignment.  */
3306  union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3307  struct marker_block *next;
3308};
3309
3310struct marker_block *marker_block;
3311int marker_block_index;
3312
3313union Lisp_Misc *marker_free_list;
3314
3315/* Total number of marker blocks now in use.  */
3316
3317int n_marker_blocks;
3318
3319void
3320init_marker ()
3321{
3322  marker_block = NULL;
3323  marker_block_index = MARKER_BLOCK_SIZE;
3324  marker_free_list = 0;
3325  n_marker_blocks = 0;
3326}
3327
3328/* Return a newly allocated Lisp_Misc object, with no substructure.  */
3329
3330Lisp_Object
3331allocate_misc ()
3332{
3333  Lisp_Object val;
3334
3335  /* eassert (!handling_signal); */
3336
3337#ifndef SYNC_INPUT
3338  BLOCK_INPUT;
3339#endif
3340
3341  if (marker_free_list)
3342    {
3343      XSETMISC (val, marker_free_list);
3344      marker_free_list = marker_free_list->u_free.chain;
3345    }
3346  else
3347    {
3348      if (marker_block_index == MARKER_BLOCK_SIZE)
3349	{
3350	  struct marker_block *new;
3351	  new = (struct marker_block *) lisp_malloc (sizeof *new,
3352						     MEM_TYPE_MISC);
3353	  new->next = marker_block;
3354	  marker_block = new;
3355	  marker_block_index = 0;
3356	  n_marker_blocks++;
3357	  total_free_markers += MARKER_BLOCK_SIZE;
3358	}
3359      XSETMISC (val, &marker_block->markers[marker_block_index]);
3360      marker_block_index++;
3361    }
3362
3363#ifndef SYNC_INPUT
3364  UNBLOCK_INPUT;
3365#endif
3366
3367  --total_free_markers;
3368  consing_since_gc += sizeof (union Lisp_Misc);
3369  misc_objects_consed++;
3370  XMARKER (val)->gcmarkbit = 0;
3371  return val;
3372}
3373
3374/* Free a Lisp_Misc object */
3375
3376void
3377free_misc (misc)
3378     Lisp_Object misc;
3379{
3380  XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3381  XMISC (misc)->u_free.chain = marker_free_list;
3382  marker_free_list = XMISC (misc);
3383
3384  total_free_markers++;
3385}
3386
3387/* Return a Lisp_Misc_Save_Value object containing POINTER and
3388   INTEGER.  This is used to package C values to call record_unwind_protect.
3389   The unwind function can get the C values back using XSAVE_VALUE.  */
3390
3391Lisp_Object
3392make_save_value (pointer, integer)
3393     void *pointer;
3394     int integer;
3395{
3396  register Lisp_Object val;
3397  register struct Lisp_Save_Value *p;
3398
3399  val = allocate_misc ();
3400  XMISCTYPE (val) = Lisp_Misc_Save_Value;
3401  p = XSAVE_VALUE (val);
3402  p->pointer = pointer;
3403  p->integer = integer;
3404  p->dogc = 0;
3405  return val;
3406}
3407
3408DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3409       doc: /* Return a newly allocated marker which does not point at any place.  */)
3410     ()
3411{
3412  register Lisp_Object val;
3413  register struct Lisp_Marker *p;
3414
3415  val = allocate_misc ();
3416  XMISCTYPE (val) = Lisp_Misc_Marker;
3417  p = XMARKER (val);
3418  p->buffer = 0;
3419  p->bytepos = 0;
3420  p->charpos = 0;
3421  p->next = NULL;
3422  p->insertion_type = 0;
3423  return val;
3424}
3425
3426/* Put MARKER back on the free list after using it temporarily.  */
3427
3428void
3429free_marker (marker)
3430     Lisp_Object marker;
3431{
3432  unchain_marker (XMARKER (marker));
3433  free_misc (marker);
3434}
3435
3436
3437/* Return a newly created vector or string with specified arguments as
3438   elements.  If all the arguments are characters that can fit
3439   in a string of events, make a string; otherwise, make a vector.
3440
3441   Any number of arguments, even zero arguments, are allowed.  */
3442
3443Lisp_Object
3444make_event_array (nargs, args)
3445     register int nargs;
3446     Lisp_Object *args;
3447{
3448  int i;
3449
3450  for (i = 0; i < nargs; i++)
3451    /* The things that fit in a string
3452       are characters that are in 0...127,
3453       after discarding the meta bit and all the bits above it.  */
3454    if (!INTEGERP (args[i])
3455	|| (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3456      return Fvector (nargs, args);
3457
3458  /* Since the loop exited, we know that all the things in it are
3459     characters, so we can make a string.  */
3460  {
3461    Lisp_Object result;
3462
3463    result = Fmake_string (make_number (nargs), make_number (0));
3464    for (i = 0; i < nargs; i++)
3465      {
3466	SSET (result, i, XINT (args[i]));
3467	/* Move the meta bit to the right place for a string char.  */
3468	if (XINT (args[i]) & CHAR_META)
3469	  SSET (result, i, SREF (result, i) | 0x80);
3470      }
3471
3472    return result;
3473  }
3474}
3475
3476
3477
3478/************************************************************************
3479			   Memory Full Handling
3480 ************************************************************************/
3481
3482
3483/* Called if malloc returns zero.  */
3484
3485void
3486memory_full ()
3487{
3488  int i;
3489
3490  Vmemory_full = Qt;
3491
3492  memory_full_cons_threshold = sizeof (struct cons_block);
3493
3494  /* The first time we get here, free the spare memory.  */
3495  for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3496    if (spare_memory[i])
3497      {
3498	if (i == 0)
3499	  free (spare_memory[i]);
3500	else if (i >= 1 && i <= 4)
3501	  lisp_align_free (spare_memory[i]);
3502	else
3503	  lisp_free (spare_memory[i]);
3504	spare_memory[i] = 0;
3505      }
3506
3507  /* Record the space now used.  When it decreases substantially,
3508     we can refill the memory reserve.  */
3509#ifndef SYSTEM_MALLOC
3510  bytes_used_when_full = BYTES_USED;
3511#endif
3512
3513  /* This used to call error, but if we've run out of memory, we could
3514     get infinite recursion trying to build the string.  */
3515  xsignal (Qnil, Vmemory_signal_data);
3516}
3517
3518/* If we released our reserve (due to running out of memory),
3519   and we have a fair amount free once again,
3520   try to set aside another reserve in case we run out once more.
3521
3522   This is called when a relocatable block is freed in ralloc.c,
3523   and also directly from this file, in case we're not using ralloc.c.  */
3524
3525void
3526refill_memory_reserve ()
3527{
3528#ifndef SYSTEM_MALLOC
3529  if (spare_memory[0] == 0)
3530    spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3531  if (spare_memory[1] == 0)
3532    spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3533						  MEM_TYPE_CONS);
3534  if (spare_memory[2] == 0)
3535    spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3536						  MEM_TYPE_CONS);
3537  if (spare_memory[3] == 0)
3538    spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3539						  MEM_TYPE_CONS);
3540  if (spare_memory[4] == 0)
3541    spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3542						  MEM_TYPE_CONS);
3543  if (spare_memory[5] == 0)
3544    spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3545					    MEM_TYPE_STRING);
3546  if (spare_memory[6] == 0)
3547    spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3548					    MEM_TYPE_STRING);
3549  if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3550    Vmemory_full = Qnil;
3551#endif
3552}
3553
3554/************************************************************************
3555			   C Stack Marking
3556 ************************************************************************/
3557
3558#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3559
3560/* Conservative C stack marking requires a method to identify possibly
3561   live Lisp objects given a pointer value.  We do this by keeping
3562   track of blocks of Lisp data that are allocated in a red-black tree
3563   (see also the comment of mem_node which is the type of nodes in
3564   that tree).  Function lisp_malloc adds information for an allocated
3565   block to the red-black tree with calls to mem_insert, and function
3566   lisp_free removes it with mem_delete.  Functions live_string_p etc
3567   call mem_find to lookup information about a given pointer in the
3568   tree, and use that to determine if the pointer points to a Lisp
3569   object or not.  */
3570
3571/* Initialize this part of alloc.c.  */
3572
3573static void
3574mem_init ()
3575{
3576  mem_z.left = mem_z.right = MEM_NIL;
3577  mem_z.parent = NULL;
3578  mem_z.color = MEM_BLACK;
3579  mem_z.start = mem_z.end = NULL;
3580  mem_root = MEM_NIL;
3581}
3582
3583
3584/* Value is a pointer to the mem_node containing START.  Value is
3585   MEM_NIL if there is no node in the tree containing START.  */
3586
3587static INLINE struct mem_node *
3588mem_find (start)
3589     void *start;
3590{
3591  struct mem_node *p;
3592
3593  if (start < min_heap_address || start > max_heap_address)
3594    return MEM_NIL;
3595
3596  /* Make the search always successful to speed up the loop below.  */
3597  mem_z.start = start;
3598  mem_z.end = (char *) start + 1;
3599
3600  p = mem_root;
3601  while (start < p->start || start >= p->end)
3602    p = start < p->start ? p->left : p->right;
3603  return p;
3604}
3605
3606
3607/* Insert a new node into the tree for a block of memory with start
3608   address START, end address END, and type TYPE.  Value is a
3609   pointer to the node that was inserted.  */
3610
3611static struct mem_node *
3612mem_insert (start, end, type)
3613     void *start, *end;
3614     enum mem_type type;
3615{
3616  struct mem_node *c, *parent, *x;
3617
3618  if (min_heap_address == NULL || start < min_heap_address)
3619    min_heap_address = start;
3620  if (max_heap_address == NULL || end > max_heap_address)
3621    max_heap_address = end;
3622
3623  /* See where in the tree a node for START belongs.  In this
3624     particular application, it shouldn't happen that a node is already
3625     present.  For debugging purposes, let's check that.  */
3626  c = mem_root;
3627  parent = NULL;
3628
3629#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3630
3631  while (c != MEM_NIL)
3632    {
3633      if (start >= c->start && start < c->end)
3634	abort ();
3635      parent = c;
3636      c = start < c->start ? c->left : c->right;
3637    }
3638
3639#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3640
3641  while (c != MEM_NIL)
3642    {
3643      parent = c;
3644      c = start < c->start ? c->left : c->right;
3645    }
3646
3647#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3648
3649  /* Create a new node.  */
3650#ifdef GC_MALLOC_CHECK
3651  x = (struct mem_node *) _malloc_internal (sizeof *x);
3652  if (x == NULL)
3653    abort ();
3654#else
3655  x = (struct mem_node *) xmalloc (sizeof *x);
3656#endif
3657  x->start = start;
3658  x->end = end;
3659  x->type = type;
3660  x->parent = parent;
3661  x->left = x->right = MEM_NIL;
3662  x->color = MEM_RED;
3663
3664  /* Insert it as child of PARENT or install it as root.  */
3665  if (parent)
3666    {
3667      if (start < parent->start)
3668	parent->left = x;
3669      else
3670	parent->right = x;
3671    }
3672  else
3673    mem_root = x;
3674
3675  /* Re-establish red-black tree properties.  */
3676  mem_insert_fixup (x);
3677
3678  return x;
3679}
3680
3681
3682/* Re-establish the red-black properties of the tree, and thereby
3683   balance the tree, after node X has been inserted; X is always red.  */
3684
3685static void
3686mem_insert_fixup (x)
3687     struct mem_node *x;
3688{
3689  while (x != mem_root && x->parent->color == MEM_RED)
3690    {
3691      /* X is red and its parent is red.  This is a violation of
3692	 red-black tree property #3.  */
3693
3694      if (x->parent == x->parent->parent->left)
3695	{
3696	  /* We're on the left side of our grandparent, and Y is our
3697	     "uncle".  */
3698	  struct mem_node *y = x->parent->parent->right;
3699
3700	  if (y->color == MEM_RED)
3701	    {
3702	      /* Uncle and parent are red but should be black because
3703		 X is red.  Change the colors accordingly and proceed
3704		 with the grandparent.  */
3705	      x->parent->color = MEM_BLACK;
3706	      y->color = MEM_BLACK;
3707	      x->parent->parent->color = MEM_RED;
3708	      x = x->parent->parent;
3709            }
3710	  else
3711	    {
3712	      /* Parent and uncle have different colors; parent is
3713		 red, uncle is black.  */
3714	      if (x == x->parent->right)
3715		{
3716		  x = x->parent;
3717		  mem_rotate_left (x);
3718                }
3719
3720	      x->parent->color = MEM_BLACK;
3721	      x->parent->parent->color = MEM_RED;
3722	      mem_rotate_right (x->parent->parent);
3723            }
3724        }
3725      else
3726	{
3727	  /* This is the symmetrical case of above.  */
3728	  struct mem_node *y = x->parent->parent->left;
3729
3730	  if (y->color == MEM_RED)
3731	    {
3732	      x->parent->color = MEM_BLACK;
3733	      y->color = MEM_BLACK;
3734	      x->parent->parent->color = MEM_RED;
3735	      x = x->parent->parent;
3736            }
3737	  else
3738	    {
3739	      if (x == x->parent->left)
3740		{
3741		  x = x->parent;
3742		  mem_rotate_right (x);
3743		}
3744
3745	      x->parent->color = MEM_BLACK;
3746	      x->parent->parent->color = MEM_RED;
3747	      mem_rotate_left (x->parent->parent);
3748            }
3749        }
3750    }
3751
3752  /* The root may have been changed to red due to the algorithm.  Set
3753     it to black so that property #5 is satisfied.  */
3754  mem_root->color = MEM_BLACK;
3755}
3756
3757
3758/*   (x)                   (y)
3759     / \                   / \
3760    a   (y)      ===>    (x)  c
3761        / \              / \
3762       b   c            a   b  */
3763
3764static void
3765mem_rotate_left (x)
3766     struct mem_node *x;
3767{
3768  struct mem_node *y;
3769
3770  /* Turn y's left sub-tree into x's right sub-tree.  */
3771  y = x->right;
3772  x->right = y->left;
3773  if (y->left != MEM_NIL)
3774    y->left->parent = x;
3775
3776  /* Y's parent was x's parent.  */
3777  if (y != MEM_NIL)
3778    y->parent = x->parent;
3779
3780  /* Get the parent to point to y instead of x.  */
3781  if (x->parent)
3782    {
3783      if (x == x->parent->left)
3784	x->parent->left = y;
3785      else
3786	x->parent->right = y;
3787    }
3788  else
3789    mem_root = y;
3790
3791  /* Put x on y's left.  */
3792  y->left = x;
3793  if (x != MEM_NIL)
3794    x->parent = y;
3795}
3796
3797
3798/*     (x)                (Y)
3799       / \                / \
3800     (y)  c      ===>    a  (x)
3801     / \                    / \
3802    a   b                  b   c  */
3803
3804static void
3805mem_rotate_right (x)
3806     struct mem_node *x;
3807{
3808  struct mem_node *y = x->left;
3809
3810  x->left = y->right;
3811  if (y->right != MEM_NIL)
3812    y->right->parent = x;
3813
3814  if (y != MEM_NIL)
3815    y->parent = x->parent;
3816  if (x->parent)
3817    {
3818      if (x == x->parent->right)
3819	x->parent->right = y;
3820      else
3821	x->parent->left = y;
3822    }
3823  else
3824    mem_root = y;
3825
3826  y->right = x;
3827  if (x != MEM_NIL)
3828    x->parent = y;
3829}
3830
3831
3832/* Delete node Z from the tree.  If Z is null or MEM_NIL, do nothing.  */
3833
3834static void
3835mem_delete (z)
3836     struct mem_node *z;
3837{
3838  struct mem_node *x, *y;
3839
3840  if (!z || z == MEM_NIL)
3841    return;
3842
3843  if (z->left == MEM_NIL || z->right == MEM_NIL)
3844    y = z;
3845  else
3846    {
3847      y = z->right;
3848      while (y->left != MEM_NIL)
3849	y = y->left;
3850    }
3851
3852  if (y->left != MEM_NIL)
3853    x = y->left;
3854  else
3855    x = y->right;
3856
3857  x->parent = y->parent;
3858  if (y->parent)
3859    {
3860      if (y == y->parent->left)
3861	y->parent->left = x;
3862      else
3863	y->parent->right = x;
3864    }
3865  else
3866    mem_root = x;
3867
3868  if (y != z)
3869    {
3870      z->start = y->start;
3871      z->end = y->end;
3872      z->type = y->type;
3873    }
3874
3875  if (y->color == MEM_BLACK)
3876    mem_delete_fixup (x);
3877
3878#ifdef GC_MALLOC_CHECK
3879  _free_internal (y);
3880#else
3881  xfree (y);
3882#endif
3883}
3884
3885
3886/* Re-establish the red-black properties of the tree, after a
3887   deletion.  */
3888
3889static void
3890mem_delete_fixup (x)
3891     struct mem_node *x;
3892{
3893  while (x != mem_root && x->color == MEM_BLACK)
3894    {
3895      if (x == x->parent->left)
3896	{
3897	  struct mem_node *w = x->parent->right;
3898
3899	  if (w->color == MEM_RED)
3900	    {
3901	      w->color = MEM_BLACK;
3902	      x->parent->color = MEM_RED;
3903	      mem_rotate_left (x->parent);
3904	      w = x->parent->right;
3905            }
3906
3907	  if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3908	    {
3909	      w->color = MEM_RED;
3910	      x = x->parent;
3911            }
3912	  else
3913	    {
3914	      if (w->right->color == MEM_BLACK)
3915		{
3916		  w->left->color = MEM_BLACK;
3917		  w->color = MEM_RED;
3918		  mem_rotate_right (w);
3919		  w = x->parent->right;
3920                }
3921	      w->color = x->parent->color;
3922	      x->parent->color = MEM_BLACK;
3923	      w->right->color = MEM_BLACK;
3924	      mem_rotate_left (x->parent);
3925	      x = mem_root;
3926            }
3927        }
3928      else
3929	{
3930	  struct mem_node *w = x->parent->left;
3931
3932	  if (w->color == MEM_RED)
3933	    {
3934	      w->color = MEM_BLACK;
3935	      x->parent->color = MEM_RED;
3936	      mem_rotate_right (x->parent);
3937	      w = x->parent->left;
3938            }
3939
3940	  if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3941	    {
3942	      w->color = MEM_RED;
3943	      x = x->parent;
3944            }
3945	  else
3946	    {
3947	      if (w->left->color == MEM_BLACK)
3948		{
3949		  w->right->color = MEM_BLACK;
3950		  w->color = MEM_RED;
3951		  mem_rotate_left (w);
3952		  w = x->parent->left;
3953                }
3954
3955	      w->color = x->parent->color;
3956	      x->parent->color = MEM_BLACK;
3957	      w->left->color = MEM_BLACK;
3958	      mem_rotate_right (x->parent);
3959	      x = mem_root;
3960            }
3961        }
3962    }
3963
3964  x->color = MEM_BLACK;
3965}
3966
3967
3968/* Value is non-zero if P is a pointer to a live Lisp string on
3969   the heap.  M is a pointer to the mem_block for P.  */
3970
3971static INLINE int
3972live_string_p (m, p)
3973     struct mem_node *m;
3974     void *p;
3975{
3976  if (m->type == MEM_TYPE_STRING)
3977    {
3978      struct string_block *b = (struct string_block *) m->start;
3979      int offset = (char *) p - (char *) &b->strings[0];
3980
3981      /* P must point to the start of a Lisp_String structure, and it
3982	 must not be on the free-list.  */
3983      return (offset >= 0
3984	      && offset % sizeof b->strings[0] == 0
3985	      && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3986	      && ((struct Lisp_String *) p)->data != NULL);
3987    }
3988  else
3989    return 0;
3990}
3991
3992
3993/* Value is non-zero if P is a pointer to a live Lisp cons on
3994   the heap.  M is a pointer to the mem_block for P.  */
3995
3996static INLINE int
3997live_cons_p (m, p)
3998     struct mem_node *m;
3999     void *p;
4000{
4001  if (m->type == MEM_TYPE_CONS)
4002    {
4003      struct cons_block *b = (struct cons_block *) m->start;
4004      int offset = (char *) p - (char *) &b->conses[0];
4005
4006      /* P must point to the start of a Lisp_Cons, not be
4007	 one of the unused cells in the current cons block,
4008	 and not be on the free-list.  */
4009      return (offset >= 0
4010	      && offset % sizeof b->conses[0] == 0
4011	      && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4012	      && (b != cons_block
4013		  || offset / sizeof b->conses[0] < cons_block_index)
4014	      && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4015    }
4016  else
4017    return 0;
4018}
4019
4020
4021/* Value is non-zero if P is a pointer to a live Lisp symbol on
4022   the heap.  M is a pointer to the mem_block for P.  */
4023
4024static INLINE int
4025live_symbol_p (m, p)
4026     struct mem_node *m;
4027     void *p;
4028{
4029  if (m->type == MEM_TYPE_SYMBOL)
4030    {
4031      struct symbol_block *b = (struct symbol_block *) m->start;
4032      int offset = (char *) p - (char *) &b->symbols[0];
4033
4034      /* P must point to the start of a Lisp_Symbol, not be
4035	 one of the unused cells in the current symbol block,
4036	 and not be on the free-list.  */
4037      return (offset >= 0
4038	      && offset % sizeof b->symbols[0] == 0
4039	      && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4040	      && (b != symbol_block
4041		  || offset / sizeof b->symbols[0] < symbol_block_index)
4042	      && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4043    }
4044  else
4045    return 0;
4046}
4047
4048
4049/* Value is non-zero if P is a pointer to a live Lisp float on
4050   the heap.  M is a pointer to the mem_block for P.  */
4051
4052static INLINE int
4053live_float_p (m, p)
4054     struct mem_node *m;
4055     void *p;
4056{
4057  if (m->type == MEM_TYPE_FLOAT)
4058    {
4059      struct float_block *b = (struct float_block *) m->start;
4060      int offset = (char *) p - (char *) &b->floats[0];
4061
4062      /* P must point to the start of a Lisp_Float and not be
4063	 one of the unused cells in the current float block.  */
4064      return (offset >= 0
4065	      && offset % sizeof b->floats[0] == 0
4066	      && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4067	      && (b != float_block
4068		  || offset / sizeof b->floats[0] < float_block_index));
4069    }
4070  else
4071    return 0;
4072}
4073
4074
4075/* Value is non-zero if P is a pointer to a live Lisp Misc on
4076   the heap.  M is a pointer to the mem_block for P.  */
4077
4078static INLINE int
4079live_misc_p (m, p)
4080     struct mem_node *m;
4081     void *p;
4082{
4083  if (m->type == MEM_TYPE_MISC)
4084    {
4085      struct marker_block *b = (struct marker_block *) m->start;
4086      int offset = (char *) p - (char *) &b->markers[0];
4087
4088      /* P must point to the start of a Lisp_Misc, not be
4089	 one of the unused cells in the current misc block,
4090	 and not be on the free-list.  */
4091      return (offset >= 0
4092	      && offset % sizeof b->markers[0] == 0
4093	      && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4094	      && (b != marker_block
4095		  || offset / sizeof b->markers[0] < marker_block_index)
4096	      && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
4097    }
4098  else
4099    return 0;
4100}
4101
4102
4103/* Value is non-zero if P is a pointer to a live vector-like object.
4104   M is a pointer to the mem_block for P.  */
4105
4106static INLINE int
4107live_vector_p (m, p)
4108     struct mem_node *m;
4109     void *p;
4110{
4111  return (p == m->start
4112	  && m->type >= MEM_TYPE_VECTOR
4113	  && m->type <= MEM_TYPE_WINDOW);
4114}
4115
4116
4117/* Value is non-zero if P is a pointer to a live buffer.  M is a
4118   pointer to the mem_block for P.  */
4119
4120static INLINE int
4121live_buffer_p (m, p)
4122     struct mem_node *m;
4123     void *p;
4124{
4125  /* P must point to the start of the block, and the buffer
4126     must not have been killed.  */
4127  return (m->type == MEM_TYPE_BUFFER
4128	  && p == m->start
4129	  && !NILP (((struct buffer *) p)->name));
4130}
4131
4132#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4133
4134#if GC_MARK_STACK
4135
4136#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4137
4138/* Array of objects that are kept alive because the C stack contains
4139   a pattern that looks like a reference to them .  */
4140
4141#define MAX_ZOMBIES 10
4142static Lisp_Object zombies[MAX_ZOMBIES];
4143
4144/* Number of zombie objects.  */
4145
4146static int nzombies;
4147
4148/* Number of garbage collections.  */
4149
4150static int ngcs;
4151
4152/* Average percentage of zombies per collection.  */
4153
4154static double avg_zombies;
4155
4156/* Max. number of live and zombie objects.  */
4157
4158static int max_live, max_zombies;
4159
4160/* Average number of live objects per GC.  */
4161
4162static double avg_live;
4163
4164DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4165       doc: /* Show information about live and zombie objects.  */)
4166     ()
4167{
4168  Lisp_Object args[8], zombie_list = Qnil;
4169  int i;
4170  for (i = 0; i < nzombies; i++)
4171    zombie_list = Fcons (zombies[i], zombie_list);
4172  args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4173  args[1] = make_number (ngcs);
4174  args[2] = make_float (avg_live);
4175  args[3] = make_float (avg_zombies);
4176  args[4] = make_float (avg_zombies / avg_live / 100);
4177  args[5] = make_number (max_live);
4178  args[6] = make_number (max_zombies);
4179  args[7] = zombie_list;
4180  return Fmessage (8, args);
4181}
4182
4183#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4184
4185
4186/* Mark OBJ if we can prove it's a Lisp_Object.  */
4187
4188static INLINE void
4189mark_maybe_object (obj)
4190     Lisp_Object obj;
4191{
4192  void *po = (void *) XPNTR (obj);
4193  struct mem_node *m = mem_find (po);
4194
4195  if (m != MEM_NIL)
4196    {
4197      int mark_p = 0;
4198
4199      switch (XGCTYPE (obj))
4200	{
4201	case Lisp_String:
4202	  mark_p = (live_string_p (m, po)
4203		    && !STRING_MARKED_P ((struct Lisp_String *) po));
4204	  break;
4205
4206	case Lisp_Cons:
4207	  mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4208	  break;
4209
4210	case Lisp_Symbol:
4211	  mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4212	  break;
4213
4214	case Lisp_Float:
4215	  mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4216	  break;
4217
4218	case Lisp_Vectorlike:
4219	  /* Note: can't check GC_BUFFERP before we know it's a
4220	     buffer because checking that dereferences the pointer
4221	     PO which might point anywhere.  */
4222	  if (live_vector_p (m, po))
4223	    mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4224	  else if (live_buffer_p (m, po))
4225	    mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4226	  break;
4227
4228	case Lisp_Misc:
4229	  mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4230	  break;
4231
4232	case Lisp_Int:
4233	case Lisp_Type_Limit:
4234	  break;
4235	}
4236
4237      if (mark_p)
4238	{
4239#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4240	  if (nzombies < MAX_ZOMBIES)
4241	    zombies[nzombies] = obj;
4242	  ++nzombies;
4243#endif
4244	  mark_object (obj);
4245	}
4246    }
4247}
4248
4249
4250/* If P points to Lisp data, mark that as live if it isn't already
4251   marked.  */
4252
4253static INLINE void
4254mark_maybe_pointer (p)
4255     void *p;
4256{
4257  struct mem_node *m;
4258
4259  /* Quickly rule out some values which can't point to Lisp data.  We
4260     assume that Lisp data is aligned on even addresses.  */
4261  if ((EMACS_INT) p & 1)
4262    return;
4263
4264  m = mem_find (p);
4265  if (m != MEM_NIL)
4266    {
4267      Lisp_Object obj = Qnil;
4268
4269      switch (m->type)
4270	{
4271	case MEM_TYPE_NON_LISP:
4272	  /* Nothing to do; not a pointer to Lisp memory.  */
4273	  break;
4274
4275	case MEM_TYPE_BUFFER:
4276	  if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4277	    XSETVECTOR (obj, p);
4278	  break;
4279
4280	case MEM_TYPE_CONS:
4281	  if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4282	    XSETCONS (obj, p);
4283	  break;
4284
4285	case MEM_TYPE_STRING:
4286	  if (live_string_p (m, p)
4287	      && !STRING_MARKED_P ((struct Lisp_String *) p))
4288	    XSETSTRING (obj, p);
4289	  break;
4290
4291	case MEM_TYPE_MISC:
4292	  if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4293	    XSETMISC (obj, p);
4294	  break;
4295
4296	case MEM_TYPE_SYMBOL:
4297	  if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4298	    XSETSYMBOL (obj, p);
4299	  break;
4300
4301	case MEM_TYPE_FLOAT:
4302	  if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4303	    XSETFLOAT (obj, p);
4304	  break;
4305
4306	case MEM_TYPE_VECTOR:
4307	case MEM_TYPE_PROCESS:
4308	case MEM_TYPE_HASH_TABLE:
4309	case MEM_TYPE_FRAME:
4310	case MEM_TYPE_WINDOW:
4311	  if (live_vector_p (m, p))
4312	    {
4313	      Lisp_Object tem;
4314	      XSETVECTOR (tem, p);
4315	      if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4316		obj = tem;
4317	    }
4318	  break;
4319
4320	default:
4321	  abort ();
4322	}
4323
4324      if (!GC_NILP (obj))
4325	mark_object (obj);
4326    }
4327}
4328
4329
4330/* Mark Lisp objects referenced from the address range START+OFFSET..END
4331   or END+OFFSET..START. */
4332
4333static void
4334mark_memory (start, end, offset)
4335     void *start, *end;
4336     int offset;
4337{
4338  Lisp_Object *p;
4339  void **pp;
4340
4341#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4342  nzombies = 0;
4343#endif
4344
4345  /* Make START the pointer to the start of the memory region,
4346     if it isn't already.  */
4347  if (end < start)
4348    {
4349      void *tem = start;
4350      start = end;
4351      end = tem;
4352    }
4353
4354  /* Mark Lisp_Objects.  */
4355  for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4356    mark_maybe_object (*p);
4357
4358  /* Mark Lisp data pointed to.  This is necessary because, in some
4359     situations, the C compiler optimizes Lisp objects away, so that
4360     only a pointer to them remains.  Example:
4361
4362     DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4363     ()
4364     {
4365       Lisp_Object obj = build_string ("test");
4366       struct Lisp_String *s = XSTRING (obj);
4367       Fgarbage_collect ();
4368       fprintf (stderr, "test `%s'\n", s->data);
4369       return Qnil;
4370     }
4371
4372     Here, `obj' isn't really used, and the compiler optimizes it
4373     away.  The only reference to the life string is through the
4374     pointer `s'.  */
4375
4376  for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4377    mark_maybe_pointer (*pp);
4378}
4379
4380/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4381   the GCC system configuration.  In gcc 3.2, the only systems for
4382   which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4383   by others?) and ns32k-pc532-min.  */
4384
4385#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4386
4387static int setjmp_tested_p, longjmps_done;
4388
4389#define SETJMP_WILL_LIKELY_WORK "\
4390\n\
4391Emacs garbage collector has been changed to use conservative stack\n\
4392marking.  Emacs has determined that the method it uses to do the\n\
4393marking will likely work on your system, but this isn't sure.\n\
4394\n\
4395If you are a system-programmer, or can get the help of a local wizard\n\
4396who is, please take a look at the function mark_stack in alloc.c, and\n\
4397verify that the methods used are appropriate for your system.\n\
4398\n\
4399Please mail the result to <emacs-devel@gnu.org>.\n\
4400"
4401
4402#define SETJMP_WILL_NOT_WORK "\
4403\n\
4404Emacs garbage collector has been changed to use conservative stack\n\
4405marking.  Emacs has determined that the default method it uses to do the\n\
4406marking will not work on your system.  We will need a system-dependent\n\
4407solution for your system.\n\
4408\n\
4409Please take a look at the function mark_stack in alloc.c, and\n\
4410try to find a way to make it work on your system.\n\
4411\n\
4412Note that you may get false negatives, depending on the compiler.\n\
4413In particular, you need to use -O with GCC for this test.\n\
4414\n\
4415Please mail the result to <emacs-devel@gnu.org>.\n\
4416"
4417
4418
4419/* Perform a quick check if it looks like setjmp saves registers in a
4420   jmp_buf.  Print a message to stderr saying so.  When this test
4421   succeeds, this is _not_ a proof that setjmp is sufficient for
4422   conservative stack marking.  Only the sources or a disassembly
4423   can prove that.  */
4424
4425static void
4426test_setjmp ()
4427{
4428  char buf[10];
4429  register int x;
4430  jmp_buf jbuf;
4431  int result = 0;
4432
4433  /* Arrange for X to be put in a register.  */
4434  sprintf (buf, "1");
4435  x = strlen (buf);
4436  x = 2 * x - 1;
4437
4438  setjmp (jbuf);
4439  if (longjmps_done == 1)
4440    {
4441      /* Came here after the longjmp at the end of the function.
4442
4443         If x == 1, the longjmp has restored the register to its
4444         value before the setjmp, and we can hope that setjmp
4445         saves all such registers in the jmp_buf, although that
4446	 isn't sure.
4447
4448         For other values of X, either something really strange is
4449         taking place, or the setjmp just didn't save the register.  */
4450
4451      if (x == 1)
4452	fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4453      else
4454	{
4455	  fprintf (stderr, SETJMP_WILL_NOT_WORK);
4456	  exit (1);
4457	}
4458    }
4459
4460  ++longjmps_done;
4461  x = 2;
4462  if (longjmps_done == 1)
4463    longjmp (jbuf, 1);
4464}
4465
4466#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4467
4468
4469#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4470
4471/* Abort if anything GCPRO'd doesn't survive the GC.  */
4472
4473static void
4474check_gcpros ()
4475{
4476  struct gcpro *p;
4477  int i;
4478
4479  for (p = gcprolist; p; p = p->next)
4480    for (i = 0; i < p->nvars; ++i)
4481      if (!survives_gc_p (p->var[i]))
4482	/* FIXME: It's not necessarily a bug.  It might just be that the
4483	   GCPRO is unnecessary or should release the object sooner.  */
4484	abort ();
4485}
4486
4487#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4488
4489static void
4490dump_zombies ()
4491{
4492  int i;
4493
4494  fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4495  for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4496    {
4497      fprintf (stderr, "  %d = ", i);
4498      debug_print (zombies[i]);
4499    }
4500}
4501
4502#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4503
4504
4505/* Mark live Lisp objects on the C stack.
4506
4507   There are several system-dependent problems to consider when
4508   porting this to new architectures:
4509
4510   Processor Registers
4511
4512   We have to mark Lisp objects in CPU registers that can hold local
4513   variables or are used to pass parameters.
4514
4515   If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4516   something that either saves relevant registers on the stack, or
4517   calls mark_maybe_object passing it each register's contents.
4518
4519   If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4520   implementation assumes that calling setjmp saves registers we need
4521   to see in a jmp_buf which itself lies on the stack.  This doesn't
4522   have to be true!  It must be verified for each system, possibly
4523   by taking a look at the source code of setjmp.
4524
4525   Stack Layout
4526
4527   Architectures differ in the way their processor stack is organized.
4528   For example, the stack might look like this
4529
4530     +----------------+
4531     |  Lisp_Object   |  size = 4
4532     +----------------+
4533     | something else |  size = 2
4534     +----------------+
4535     |  Lisp_Object   |  size = 4
4536     +----------------+
4537     |	...	      |
4538
4539   In such a case, not every Lisp_Object will be aligned equally.  To
4540   find all Lisp_Object on the stack it won't be sufficient to walk
4541   the stack in steps of 4 bytes.  Instead, two passes will be
4542   necessary, one starting at the start of the stack, and a second
4543   pass starting at the start of the stack + 2.  Likewise, if the
4544   minimal alignment of Lisp_Objects on the stack is 1, four passes
4545   would be necessary, each one starting with one byte more offset
4546   from the stack start.
4547
4548   The current code assumes by default that Lisp_Objects are aligned
4549   equally on the stack.  */
4550
4551static void
4552mark_stack ()
4553{
4554  int i;
4555  /* jmp_buf may not be aligned enough on darwin-ppc64 */
4556  union aligned_jmpbuf {
4557    Lisp_Object o;
4558    jmp_buf j;
4559  } j;
4560  volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4561  void *end;
4562
4563  /* This trick flushes the register windows so that all the state of
4564     the process is contained in the stack.  */
4565  /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4566     needed on ia64 too.  See mach_dep.c, where it also says inline
4567     assembler doesn't work with relevant proprietary compilers.  */
4568#ifdef sparc
4569  asm ("ta 3");
4570#endif
4571
4572  /* Save registers that we need to see on the stack.  We need to see
4573     registers used to hold register variables and registers used to
4574     pass parameters.  */
4575#ifdef GC_SAVE_REGISTERS_ON_STACK
4576  GC_SAVE_REGISTERS_ON_STACK (end);
4577#else /* not GC_SAVE_REGISTERS_ON_STACK */
4578
4579#ifndef GC_SETJMP_WORKS  /* If it hasn't been checked yet that
4580			    setjmp will definitely work, test it
4581			    and print a message with the result
4582			    of the test.  */
4583  if (!setjmp_tested_p)
4584    {
4585      setjmp_tested_p = 1;
4586      test_setjmp ();
4587    }
4588#endif /* GC_SETJMP_WORKS */
4589
4590  setjmp (j.j);
4591  end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4592#endif /* not GC_SAVE_REGISTERS_ON_STACK */
4593
4594  /* This assumes that the stack is a contiguous region in memory.  If
4595     that's not the case, something has to be done here to iterate
4596     over the stack segments.  */
4597#ifndef GC_LISP_OBJECT_ALIGNMENT
4598#ifdef __GNUC__
4599#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4600#else
4601#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4602#endif
4603#endif
4604  for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4605    mark_memory (stack_base, end, i);
4606  /* Allow for marking a secondary stack, like the register stack on the
4607     ia64.  */
4608#ifdef GC_MARK_SECONDARY_STACK
4609  GC_MARK_SECONDARY_STACK ();
4610#endif
4611
4612#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4613  check_gcpros ();
4614#endif
4615}
4616
4617#endif /* GC_MARK_STACK != 0 */
4618
4619
4620/* Determine whether it is safe to access memory at address P.  */
4621int
4622valid_pointer_p (p)
4623     void *p;
4624{
4625#ifdef WINDOWSNT
4626  return w32_valid_pointer_p (p, 16);
4627#else
4628  int fd;
4629
4630  /* Obviously, we cannot just access it (we would SEGV trying), so we
4631     trick the o/s to tell us whether p is a valid pointer.
4632     Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4633     not validate p in that case.  */
4634
4635  if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4636    {
4637      int valid = (emacs_write (fd, (char *)p, 16) == 16);
4638      emacs_close (fd);
4639      unlink ("__Valid__Lisp__Object__");
4640      return valid;
4641    }
4642
4643    return -1;
4644#endif
4645}
4646
4647/* Return 1 if OBJ is a valid lisp object.
4648   Return 0 if OBJ is NOT a valid lisp object.
4649   Return -1 if we cannot validate OBJ.
4650   This function can be quite slow,
4651   so it should only be used in code for manual debugging.  */
4652
4653int
4654valid_lisp_object_p (obj)
4655     Lisp_Object obj;
4656{
4657  void *p;
4658#if GC_MARK_STACK
4659  struct mem_node *m;
4660#endif
4661
4662  if (INTEGERP (obj))
4663    return 1;
4664
4665  p = (void *) XPNTR (obj);
4666  if (PURE_POINTER_P (p))
4667    return 1;
4668
4669#if !GC_MARK_STACK
4670  return valid_pointer_p (p);
4671#else
4672
4673  m = mem_find (p);
4674
4675  if (m == MEM_NIL)
4676    {
4677      int valid = valid_pointer_p (p);
4678      if (valid <= 0)
4679	return valid;
4680
4681      if (SUBRP (obj))
4682	return 1;
4683
4684      return 0;
4685    }
4686
4687  switch (m->type)
4688    {
4689    case MEM_TYPE_NON_LISP:
4690      return 0;
4691
4692    case MEM_TYPE_BUFFER:
4693      return live_buffer_p (m, p);
4694
4695    case MEM_TYPE_CONS:
4696      return live_cons_p (m, p);
4697
4698    case MEM_TYPE_STRING:
4699      return live_string_p (m, p);
4700
4701    case MEM_TYPE_MISC:
4702      return live_misc_p (m, p);
4703
4704    case MEM_TYPE_SYMBOL:
4705      return live_symbol_p (m, p);
4706
4707    case MEM_TYPE_FLOAT:
4708      return live_float_p (m, p);
4709
4710    case MEM_TYPE_VECTOR:
4711    case MEM_TYPE_PROCESS:
4712    case MEM_TYPE_HASH_TABLE:
4713    case MEM_TYPE_FRAME:
4714    case MEM_TYPE_WINDOW:
4715      return live_vector_p (m, p);
4716
4717    default:
4718      break;
4719    }
4720
4721  return 0;
4722#endif
4723}
4724
4725
4726
4727
4728/***********************************************************************
4729		       Pure Storage Management
4730 ***********************************************************************/
4731
4732/* Allocate room for SIZE bytes from pure Lisp storage and return a
4733   pointer to it.  TYPE is the Lisp type for which the memory is
4734   allocated.  TYPE < 0 means it's not used for a Lisp object.  */
4735
4736static POINTER_TYPE *
4737pure_alloc (size, type)
4738     size_t size;
4739     int type;
4740{
4741  POINTER_TYPE *result;
4742#ifdef USE_LSB_TAG
4743  size_t alignment = (1 << GCTYPEBITS);
4744#else
4745  size_t alignment = sizeof (EMACS_INT);
4746
4747  /* Give Lisp_Floats an extra alignment.  */
4748  if (type == Lisp_Float)
4749    {
4750#if defined __GNUC__ && __GNUC__ >= 2
4751      alignment = __alignof (struct Lisp_Float);
4752#else
4753      alignment = sizeof (struct Lisp_Float);
4754#endif
4755    }
4756#endif
4757
4758 again:
4759  if (type >= 0)
4760    {
4761      /* Allocate space for a Lisp object from the beginning of the free
4762	 space with taking account of alignment.  */
4763      result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4764      pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4765    }
4766  else
4767    {
4768      /* Allocate space for a non-Lisp object from the end of the free
4769	 space.  */
4770      pure_bytes_used_non_lisp += size;
4771      result = purebeg + pure_size - pure_bytes_used_non_lisp;
4772    }
4773  pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4774
4775  if (pure_bytes_used <= pure_size)
4776    return result;
4777
4778  /* Don't allocate a large amount here,
4779     because it might get mmap'd and then its address
4780     might not be usable.  */
4781  purebeg = (char *) xmalloc (10000);
4782  pure_size = 10000;
4783  pure_bytes_used_before_overflow += pure_bytes_used - size;
4784  pure_bytes_used = 0;
4785  pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4786  goto again;
4787}
4788
4789
4790/* Print a warning if PURESIZE is too small.  */
4791
4792void
4793check_pure_size ()
4794{
4795  if (pure_bytes_used_before_overflow)
4796    message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4797	     (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4798}
4799
4800
4801/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4802   the non-Lisp data pool of the pure storage, and return its start
4803   address.  Return NULL if not found.  */
4804
4805static char *
4806find_string_data_in_pure (data, nbytes)
4807     char *data;
4808     int nbytes;
4809{
4810  int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4811  unsigned char *p;
4812  char *non_lisp_beg;
4813
4814  if (pure_bytes_used_non_lisp < nbytes + 1)
4815    return NULL;
4816
4817  /* Set up the Boyer-Moore table.  */
4818  skip = nbytes + 1;
4819  for (i = 0; i < 256; i++)
4820    bm_skip[i] = skip;
4821
4822  p = (unsigned char *) data;
4823  while (--skip > 0)
4824    bm_skip[*p++] = skip;
4825
4826  last_char_skip = bm_skip['\0'];
4827
4828  non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4829  start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4830
4831  /* See the comments in the function `boyer_moore' (search.c) for the
4832     use of `infinity'.  */
4833  infinity = pure_bytes_used_non_lisp + 1;
4834  bm_skip['\0'] = infinity;
4835
4836  p = (unsigned char *) non_lisp_beg + nbytes;
4837  start = 0;
4838  do
4839    {
4840      /* Check the last character (== '\0').  */
4841      do
4842	{
4843	  start += bm_skip[*(p + start)];
4844	}
4845      while (start <= start_max);
4846
4847      if (start < infinity)
4848	/* Couldn't find the last character.  */
4849	return NULL;
4850
4851      /* No less than `infinity' means we could find the last
4852	 character at `p[start - infinity]'.  */
4853      start -= infinity;
4854
4855      /* Check the remaining characters.  */
4856      if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4857	/* Found.  */
4858	return non_lisp_beg + start;
4859
4860      start += last_char_skip;
4861    }
4862  while (start <= start_max);
4863
4864  return NULL;
4865}
4866
4867
4868/* Return a string allocated in pure space.  DATA is a buffer holding
4869   NCHARS characters, and NBYTES bytes of string data.  MULTIBYTE
4870   non-zero means make the result string multibyte.
4871
4872   Must get an error if pure storage is full, since if it cannot hold
4873   a large string it may be able to hold conses that point to that
4874   string; then the string is not protected from gc.  */
4875
4876Lisp_Object
4877make_pure_string (data, nchars, nbytes, multibyte)
4878     char *data;
4879     int nchars, nbytes;
4880     int multibyte;
4881{
4882  Lisp_Object string;
4883  struct Lisp_String *s;
4884
4885  s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4886  s->data = find_string_data_in_pure (data, nbytes);
4887  if (s->data == NULL)
4888    {
4889      s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4890      bcopy (data, s->data, nbytes);
4891      s->data[nbytes] = '\0';
4892    }
4893  s->size = nchars;
4894  s->size_byte = multibyte ? nbytes : -1;
4895  s->intervals = NULL_INTERVAL;
4896  XSETSTRING (string, s);
4897  return string;
4898}
4899
4900
4901/* Return a cons allocated from pure space.  Give it pure copies
4902   of CAR as car and CDR as cdr.  */
4903
4904Lisp_Object
4905pure_cons (car, cdr)
4906     Lisp_Object car, cdr;
4907{
4908  register Lisp_Object new;
4909  struct Lisp_Cons *p;
4910
4911  p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4912  XSETCONS (new, p);
4913  XSETCAR (new, Fpurecopy (car));
4914  XSETCDR (new, Fpurecopy (cdr));
4915  return new;
4916}
4917
4918
4919/* Value is a float object with value NUM allocated from pure space.  */
4920
4921Lisp_Object
4922make_pure_float (num)
4923     double num;
4924{
4925  register Lisp_Object new;
4926  struct Lisp_Float *p;
4927
4928  p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4929  XSETFLOAT (new, p);
4930  XFLOAT_DATA (new) = num;
4931  return new;
4932}
4933
4934
4935/* Return a vector with room for LEN Lisp_Objects allocated from
4936   pure space.  */
4937
4938Lisp_Object
4939make_pure_vector (len)
4940     EMACS_INT len;
4941{
4942  Lisp_Object new;
4943  struct Lisp_Vector *p;
4944  size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4945
4946  p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4947  XSETVECTOR (new, p);
4948  XVECTOR (new)->size = len;
4949  return new;
4950}
4951
4952
4953DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4954       doc: /* Make a copy of object OBJ in pure storage.
4955Recursively copies contents of vectors and cons cells.
4956Does not copy symbols.  Copies strings without text properties.  */)
4957     (obj)
4958     register Lisp_Object obj;
4959{
4960  if (NILP (Vpurify_flag))
4961    return obj;
4962
4963  if (PURE_POINTER_P (XPNTR (obj)))
4964    return obj;
4965
4966  if (CONSP (obj))
4967    return pure_cons (XCAR (obj), XCDR (obj));
4968  else if (FLOATP (obj))
4969    return make_pure_float (XFLOAT_DATA (obj));
4970  else if (STRINGP (obj))
4971    return make_pure_string (SDATA (obj), SCHARS (obj),
4972			     SBYTES (obj),
4973			     STRING_MULTIBYTE (obj));
4974  else if (COMPILEDP (obj) || VECTORP (obj))
4975    {
4976      register struct Lisp_Vector *vec;
4977      register int i;
4978      EMACS_INT size;
4979
4980      size = XVECTOR (obj)->size;
4981      if (size & PSEUDOVECTOR_FLAG)
4982	size &= PSEUDOVECTOR_SIZE_MASK;
4983      vec = XVECTOR (make_pure_vector (size));
4984      for (i = 0; i < size; i++)
4985	vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4986      if (COMPILEDP (obj))
4987	XSETCOMPILED (obj, vec);
4988      else
4989	XSETVECTOR (obj, vec);
4990      return obj;
4991    }
4992  else if (MARKERP (obj))
4993    error ("Attempt to copy a marker to pure storage");
4994
4995  return obj;
4996}
4997
4998
4999
5000/***********************************************************************
5001			  Protection from GC
5002 ***********************************************************************/
5003
5004/* Put an entry in staticvec, pointing at the variable with address
5005   VARADDRESS.  */
5006
5007void
5008staticpro (varaddress)
5009     Lisp_Object *varaddress;
5010{
5011  staticvec[staticidx++] = varaddress;
5012  if (staticidx >= NSTATICS)
5013    abort ();
5014}
5015
5016struct catchtag
5017{
5018    Lisp_Object tag;
5019    Lisp_Object val;
5020    struct catchtag *next;
5021};
5022
5023
5024/***********************************************************************
5025			  Protection from GC
5026 ***********************************************************************/
5027
5028/* Temporarily prevent garbage collection.  */
5029
5030int
5031inhibit_garbage_collection ()
5032{
5033  int count = SPECPDL_INDEX ();
5034  int nbits = min (VALBITS, BITS_PER_INT);
5035
5036  specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
5037  return count;
5038}
5039
5040
5041DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5042       doc: /* Reclaim storage for Lisp objects no longer needed.
5043Garbage collection happens automatically if you cons more than
5044`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5045`garbage-collect' normally returns a list with info on amount of space in use:
5046 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5047  (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
5048  (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5049  (USED-STRINGS . FREE-STRINGS))
5050However, if there was overflow in pure space, `garbage-collect'
5051returns nil, because real GC can't be done.  */)
5052     ()
5053{
5054  register struct specbinding *bind;
5055  struct catchtag *catch;
5056  struct handler *handler;
5057  char stack_top_variable;
5058  register int i;
5059  int message_p;
5060  Lisp_Object total[8];
5061  int count = SPECPDL_INDEX ();
5062  EMACS_TIME t1, t2, t3;
5063
5064  if (abort_on_gc)
5065    abort ();
5066
5067  /* Can't GC if pure storage overflowed because we can't determine
5068     if something is a pure object or not.  */
5069  if (pure_bytes_used_before_overflow)
5070    return Qnil;
5071
5072  CHECK_CONS_LIST ();
5073
5074  /* Don't keep undo information around forever.
5075     Do this early on, so it is no problem if the user quits.  */
5076  {
5077    register struct buffer *nextb = all_buffers;
5078
5079    while (nextb)
5080      {
5081	/* If a buffer's undo list is Qt, that means that undo is
5082	   turned off in that buffer.  Calling truncate_undo_list on
5083	   Qt tends to return NULL, which effectively turns undo back on.
5084	   So don't call truncate_undo_list if undo_list is Qt.  */
5085	if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5086	  truncate_undo_list (nextb);
5087
5088	/* Shrink buffer gaps, but skip indirect and dead buffers.  */
5089	if (nextb->base_buffer == 0 && !NILP (nextb->name))
5090	  {
5091	    /* If a buffer's gap size is more than 10% of the buffer
5092	       size, or larger than 2000 bytes, then shrink it
5093	       accordingly.  Keep a minimum size of 20 bytes.  */
5094	    int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5095
5096	    if (nextb->text->gap_size > size)
5097	      {
5098		struct buffer *save_current = current_buffer;
5099		current_buffer = nextb;
5100		make_gap (-(nextb->text->gap_size - size));
5101		current_buffer = save_current;
5102	      }
5103	  }
5104
5105	nextb = nextb->next;
5106      }
5107  }
5108
5109  EMACS_GET_TIME (t1);
5110
5111  /* In case user calls debug_print during GC,
5112     don't let that cause a recursive GC.  */
5113  consing_since_gc = 0;
5114
5115  /* Save what's currently displayed in the echo area.  */
5116  message_p = push_message ();
5117  record_unwind_protect (pop_message_unwind, Qnil);
5118
5119  /* Save a copy of the contents of the stack, for debugging.  */
5120#if MAX_SAVE_STACK > 0
5121  if (NILP (Vpurify_flag))
5122    {
5123      i = &stack_top_variable - stack_bottom;
5124      if (i < 0) i = -i;
5125      if (i < MAX_SAVE_STACK)
5126	{
5127	  if (stack_copy == 0)
5128	    stack_copy = (char *) xmalloc (stack_copy_size = i);
5129	  else if (stack_copy_size < i)
5130	    stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5131	  if (stack_copy)
5132	    {
5133	      if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5134		bcopy (stack_bottom, stack_copy, i);
5135	      else
5136		bcopy (&stack_top_variable, stack_copy, i);
5137	    }
5138	}
5139    }
5140#endif /* MAX_SAVE_STACK > 0 */
5141
5142  if (garbage_collection_messages)
5143    message1_nolog ("Garbage collecting...");
5144
5145  BLOCK_INPUT;
5146
5147  shrink_regexp_cache ();
5148
5149  gc_in_progress = 1;
5150
5151  /* clear_marks (); */
5152
5153  /* Mark all the special slots that serve as the roots of accessibility.  */
5154
5155  for (i = 0; i < staticidx; i++)
5156    mark_object (*staticvec[i]);
5157
5158  for (bind = specpdl; bind != specpdl_ptr; bind++)
5159    {
5160      mark_object (bind->symbol);
5161      mark_object (bind->old_value);
5162    }
5163  mark_kboards ();
5164
5165#ifdef USE_GTK
5166  {
5167    extern void xg_mark_data ();
5168    xg_mark_data ();
5169  }
5170#endif
5171
5172#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5173     || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5174  mark_stack ();
5175#else
5176  {
5177    register struct gcpro *tail;
5178    for (tail = gcprolist; tail; tail = tail->next)
5179      for (i = 0; i < tail->nvars; i++)
5180	mark_object (tail->var[i]);
5181  }
5182#endif
5183
5184  mark_byte_stack ();
5185  for (catch = catchlist; catch; catch = catch->next)
5186    {
5187      mark_object (catch->tag);
5188      mark_object (catch->val);
5189    }
5190  for (handler = handlerlist; handler; handler = handler->next)
5191    {
5192      mark_object (handler->handler);
5193      mark_object (handler->var);
5194    }
5195  mark_backtrace ();
5196
5197#ifdef HAVE_WINDOW_SYSTEM
5198  mark_fringe_data ();
5199#endif
5200
5201#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5202  mark_stack ();
5203#endif
5204
5205  /* Everything is now marked, except for the things that require special
5206     finalization, i.e. the undo_list.
5207     Look thru every buffer's undo list
5208     for elements that update markers that were not marked,
5209     and delete them.  */
5210  {
5211    register struct buffer *nextb = all_buffers;
5212
5213    while (nextb)
5214      {
5215	/* If a buffer's undo list is Qt, that means that undo is
5216	   turned off in that buffer.  Calling truncate_undo_list on
5217	   Qt tends to return NULL, which effectively turns undo back on.
5218	   So don't call truncate_undo_list if undo_list is Qt.  */
5219	if (! EQ (nextb->undo_list, Qt))
5220	  {
5221	    Lisp_Object tail, prev;
5222	    tail = nextb->undo_list;
5223	    prev = Qnil;
5224	    while (CONSP (tail))
5225	      {
5226		if (GC_CONSP (XCAR (tail))
5227		    && GC_MARKERP (XCAR (XCAR (tail)))
5228		    && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5229		  {
5230		    if (NILP (prev))
5231		      nextb->undo_list = tail = XCDR (tail);
5232		    else
5233		      {
5234			tail = XCDR (tail);
5235			XSETCDR (prev, tail);
5236		      }
5237		  }
5238		else
5239		  {
5240		    prev = tail;
5241		    tail = XCDR (tail);
5242		  }
5243	      }
5244	  }
5245	/* Now that we have stripped the elements that need not be in the
5246	   undo_list any more, we can finally mark the list.  */
5247	mark_object (nextb->undo_list);
5248
5249	nextb = nextb->next;
5250      }
5251  }
5252
5253  gc_sweep ();
5254
5255  /* Clear the mark bits that we set in certain root slots.  */
5256
5257  unmark_byte_stack ();
5258  VECTOR_UNMARK (&buffer_defaults);
5259  VECTOR_UNMARK (&buffer_local_symbols);
5260
5261#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5262  dump_zombies ();
5263#endif
5264
5265  UNBLOCK_INPUT;
5266
5267  CHECK_CONS_LIST ();
5268
5269  /* clear_marks (); */
5270  gc_in_progress = 0;
5271
5272  consing_since_gc = 0;
5273  if (gc_cons_threshold < 10000)
5274    gc_cons_threshold = 10000;
5275
5276  if (FLOATP (Vgc_cons_percentage))
5277    { /* Set gc_cons_combined_threshold.  */
5278      EMACS_INT total = 0;
5279
5280      total += total_conses  * sizeof (struct Lisp_Cons);
5281      total += total_symbols * sizeof (struct Lisp_Symbol);
5282      total += total_markers * sizeof (union Lisp_Misc);
5283      total += total_string_size;
5284      total += total_vector_size * sizeof (Lisp_Object);
5285      total += total_floats  * sizeof (struct Lisp_Float);
5286      total += total_intervals * sizeof (struct interval);
5287      total += total_strings * sizeof (struct Lisp_String);
5288
5289      gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5290    }
5291  else
5292    gc_relative_threshold = 0;
5293
5294  if (garbage_collection_messages)
5295    {
5296      if (message_p || minibuf_level > 0)
5297	restore_message ();
5298      else
5299	message1_nolog ("Garbage collecting...done");
5300    }
5301
5302  unbind_to (count, Qnil);
5303
5304  total[0] = Fcons (make_number (total_conses),
5305		    make_number (total_free_conses));
5306  total[1] = Fcons (make_number (total_symbols),
5307		    make_number (total_free_symbols));
5308  total[2] = Fcons (make_number (total_markers),
5309		    make_number (total_free_markers));
5310  total[3] = make_number (total_string_size);
5311  total[4] = make_number (total_vector_size);
5312  total[5] = Fcons (make_number (total_floats),
5313		    make_number (total_free_floats));
5314  total[6] = Fcons (make_number (total_intervals),
5315		    make_number (total_free_intervals));
5316  total[7] = Fcons (make_number (total_strings),
5317		    make_number (total_free_strings));
5318
5319#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5320  {
5321    /* Compute average percentage of zombies.  */
5322    double nlive = 0;
5323
5324    for (i = 0; i < 7; ++i)
5325      if (CONSP (total[i]))
5326	nlive += XFASTINT (XCAR (total[i]));
5327
5328    avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5329    max_live = max (nlive, max_live);
5330    avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5331    max_zombies = max (nzombies, max_zombies);
5332    ++ngcs;
5333    }
5334#endif
5335
5336  if (!NILP (Vpost_gc_hook))
5337    {
5338      int count = inhibit_garbage_collection ();
5339      safe_run_hooks (Qpost_gc_hook);
5340      unbind_to (count, Qnil);
5341    }
5342
5343  /* Accumulate statistics.  */
5344  EMACS_GET_TIME (t2);
5345  EMACS_SUB_TIME (t3, t2, t1);
5346  if (FLOATP (Vgc_elapsed))
5347    Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5348			      EMACS_SECS (t3) +
5349			      EMACS_USECS (t3) * 1.0e-6);
5350  gcs_done++;
5351
5352  return Flist (sizeof total / sizeof *total, total);
5353}
5354
5355
5356/* Mark Lisp objects in glyph matrix MATRIX.  Currently the
5357   only interesting objects referenced from glyphs are strings.  */
5358
5359static void
5360mark_glyph_matrix (matrix)
5361     struct glyph_matrix *matrix;
5362{
5363  struct glyph_row *row = matrix->rows;
5364  struct glyph_row *end = row + matrix->nrows;
5365
5366  for (; row < end; ++row)
5367    if (row->enabled_p)
5368      {
5369	int area;
5370	for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5371	  {
5372	    struct glyph *glyph = row->glyphs[area];
5373	    struct glyph *end_glyph = glyph + row->used[area];
5374
5375	    for (; glyph < end_glyph; ++glyph)
5376	      if (GC_STRINGP (glyph->object)
5377		  && !STRING_MARKED_P (XSTRING (glyph->object)))
5378		mark_object (glyph->object);
5379	  }
5380      }
5381}
5382
5383
5384/* Mark Lisp faces in the face cache C.  */
5385
5386static void
5387mark_face_cache (c)
5388     struct face_cache *c;
5389{
5390  if (c)
5391    {
5392      int i, j;
5393      for (i = 0; i < c->used; ++i)
5394	{
5395	  struct face *face = FACE_FROM_ID (c->f, i);
5396
5397	  if (face)
5398	    {
5399	      for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5400		mark_object (face->lface[j]);
5401	    }
5402	}
5403    }
5404}
5405
5406
5407#ifdef HAVE_WINDOW_SYSTEM
5408
5409/* Mark Lisp objects in image IMG.  */
5410
5411static void
5412mark_image (img)
5413     struct image *img;
5414{
5415  mark_object (img->spec);
5416
5417  if (!NILP (img->data.lisp_val))
5418    mark_object (img->data.lisp_val);
5419}
5420
5421
5422/* Mark Lisp objects in image cache of frame F.  It's done this way so
5423   that we don't have to include xterm.h here.  */
5424
5425static void
5426mark_image_cache (f)
5427     struct frame *f;
5428{
5429  forall_images_in_image_cache (f, mark_image);
5430}
5431
5432#endif /* HAVE_X_WINDOWS */
5433
5434
5435
5436/* Mark reference to a Lisp_Object.
5437   If the object referred to has not been seen yet, recursively mark
5438   all the references contained in it.  */
5439
5440#define LAST_MARKED_SIZE 500
5441Lisp_Object last_marked[LAST_MARKED_SIZE];
5442int last_marked_index;
5443
5444/* For debugging--call abort when we cdr down this many
5445   links of a list, in mark_object.  In debugging,
5446   the call to abort will hit a breakpoint.
5447   Normally this is zero and the check never goes off.  */
5448int mark_object_loop_halt;
5449
5450void
5451mark_object (arg)
5452     Lisp_Object arg;
5453{
5454  register Lisp_Object obj = arg;
5455#ifdef GC_CHECK_MARKED_OBJECTS
5456  void *po;
5457  struct mem_node *m;
5458#endif
5459  int cdr_count = 0;
5460
5461 loop:
5462
5463  if (PURE_POINTER_P (XPNTR (obj)))
5464    return;
5465
5466  last_marked[last_marked_index++] = obj;
5467  if (last_marked_index == LAST_MARKED_SIZE)
5468    last_marked_index = 0;
5469
5470  /* Perform some sanity checks on the objects marked here.  Abort if
5471     we encounter an object we know is bogus.  This increases GC time
5472     by ~80%, and requires compilation with GC_MARK_STACK != 0.  */
5473#ifdef GC_CHECK_MARKED_OBJECTS
5474
5475  po = (void *) XPNTR (obj);
5476
5477  /* Check that the object pointed to by PO is known to be a Lisp
5478     structure allocated from the heap.  */
5479#define CHECK_ALLOCATED()			\
5480  do {						\
5481    m = mem_find (po);				\
5482    if (m == MEM_NIL)				\
5483      abort ();					\
5484  } while (0)
5485
5486  /* Check that the object pointed to by PO is live, using predicate
5487     function LIVEP.  */
5488#define CHECK_LIVE(LIVEP)			\
5489  do {						\
5490    if (!LIVEP (m, po))				\
5491      abort ();					\
5492  } while (0)
5493
5494  /* Check both of the above conditions.  */
5495#define CHECK_ALLOCATED_AND_LIVE(LIVEP)		\
5496  do {						\
5497    CHECK_ALLOCATED ();				\
5498    CHECK_LIVE (LIVEP);				\
5499  } while (0)					\
5500
5501#else /* not GC_CHECK_MARKED_OBJECTS */
5502
5503#define CHECK_ALLOCATED()		(void) 0
5504#define CHECK_LIVE(LIVEP)		(void) 0
5505#define CHECK_ALLOCATED_AND_LIVE(LIVEP)	(void) 0
5506
5507#endif /* not GC_CHECK_MARKED_OBJECTS */
5508
5509  switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5510    {
5511    case Lisp_String:
5512      {
5513	register struct Lisp_String *ptr = XSTRING (obj);
5514	CHECK_ALLOCATED_AND_LIVE (live_string_p);
5515	MARK_INTERVAL_TREE (ptr->intervals);
5516	MARK_STRING (ptr);
5517#ifdef GC_CHECK_STRING_BYTES
5518	/* Check that the string size recorded in the string is the
5519	   same as the one recorded in the sdata structure. */
5520	CHECK_STRING_BYTES (ptr);
5521#endif /* GC_CHECK_STRING_BYTES */
5522      }
5523      break;
5524
5525    case Lisp_Vectorlike:
5526#ifdef GC_CHECK_MARKED_OBJECTS
5527      m = mem_find (po);
5528      if (m == MEM_NIL && !GC_SUBRP (obj)
5529	  && po != &buffer_defaults
5530	  && po != &buffer_local_symbols)
5531	abort ();
5532#endif /* GC_CHECK_MARKED_OBJECTS */
5533
5534      if (GC_BUFFERP (obj))
5535	{
5536	  if (!VECTOR_MARKED_P (XBUFFER (obj)))
5537	    {
5538#ifdef GC_CHECK_MARKED_OBJECTS
5539	      if (po != &buffer_defaults && po != &buffer_local_symbols)
5540		{
5541		  struct buffer *b;
5542		  for (b = all_buffers; b && b != po; b = b->next)
5543		    ;
5544		  if (b == NULL)
5545		    abort ();
5546		}
5547#endif /* GC_CHECK_MARKED_OBJECTS */
5548	      mark_buffer (obj);
5549	    }
5550	}
5551      else if (GC_SUBRP (obj))
5552	break;
5553      else if (GC_COMPILEDP (obj))
5554	/* We could treat this just like a vector, but it is better to
5555	   save the COMPILED_CONSTANTS element for last and avoid
5556	   recursion there.  */
5557	{
5558	  register struct Lisp_Vector *ptr = XVECTOR (obj);
5559	  register EMACS_INT size = ptr->size;
5560	  register int i;
5561
5562	  if (VECTOR_MARKED_P (ptr))
5563	    break;   /* Already marked */
5564
5565	  CHECK_LIVE (live_vector_p);
5566	  VECTOR_MARK (ptr);	/* Else mark it */
5567	  size &= PSEUDOVECTOR_SIZE_MASK;
5568	  for (i = 0; i < size; i++) /* and then mark its elements */
5569	    {
5570	      if (i != COMPILED_CONSTANTS)
5571		mark_object (ptr->contents[i]);
5572	    }
5573	  obj = ptr->contents[COMPILED_CONSTANTS];
5574	  goto loop;
5575	}
5576      else if (GC_FRAMEP (obj))
5577	{
5578	  register struct frame *ptr = XFRAME (obj);
5579
5580	  if (VECTOR_MARKED_P (ptr)) break;   /* Already marked */
5581	  VECTOR_MARK (ptr);		      /* Else mark it */
5582
5583	  CHECK_LIVE (live_vector_p);
5584	  mark_object (ptr->name);
5585	  mark_object (ptr->icon_name);
5586	  mark_object (ptr->title);
5587	  mark_object (ptr->focus_frame);
5588	  mark_object (ptr->selected_window);
5589	  mark_object (ptr->minibuffer_window);
5590	  mark_object (ptr->param_alist);
5591	  mark_object (ptr->scroll_bars);
5592	  mark_object (ptr->condemned_scroll_bars);
5593	  mark_object (ptr->menu_bar_items);
5594	  mark_object (ptr->face_alist);
5595	  mark_object (ptr->menu_bar_vector);
5596	  mark_object (ptr->buffer_predicate);
5597	  mark_object (ptr->buffer_list);
5598	  mark_object (ptr->menu_bar_window);
5599	  mark_object (ptr->tool_bar_window);
5600	  mark_face_cache (ptr->face_cache);
5601#ifdef HAVE_WINDOW_SYSTEM
5602	  mark_image_cache (ptr);
5603	  mark_object (ptr->tool_bar_items);
5604	  mark_object (ptr->desired_tool_bar_string);
5605	  mark_object (ptr->current_tool_bar_string);
5606#endif /* HAVE_WINDOW_SYSTEM */
5607	}
5608      else if (GC_BOOL_VECTOR_P (obj))
5609	{
5610	  register struct Lisp_Vector *ptr = XVECTOR (obj);
5611
5612	  if (VECTOR_MARKED_P (ptr))
5613	    break;   /* Already marked */
5614	  CHECK_LIVE (live_vector_p);
5615	  VECTOR_MARK (ptr);	/* Else mark it */
5616	}
5617      else if (GC_WINDOWP (obj))
5618	{
5619	  register struct Lisp_Vector *ptr = XVECTOR (obj);
5620	  struct window *w = XWINDOW (obj);
5621	  register int i;
5622
5623	  /* Stop if already marked.  */
5624	  if (VECTOR_MARKED_P (ptr))
5625	    break;
5626
5627	  /* Mark it.  */
5628	  CHECK_LIVE (live_vector_p);
5629	  VECTOR_MARK (ptr);
5630
5631	  /* There is no Lisp data above The member CURRENT_MATRIX in
5632	     struct WINDOW.  Stop marking when that slot is reached.  */
5633	  for (i = 0;
5634	       (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5635	       i++)
5636	    mark_object (ptr->contents[i]);
5637
5638	  /* Mark glyphs for leaf windows.  Marking window matrices is
5639	     sufficient because frame matrices use the same glyph
5640	     memory.  */
5641	  if (NILP (w->hchild)
5642	      && NILP (w->vchild)
5643	      && w->current_matrix)
5644	    {
5645	      mark_glyph_matrix (w->current_matrix);
5646	      mark_glyph_matrix (w->desired_matrix);
5647	    }
5648	}
5649      else if (GC_HASH_TABLE_P (obj))
5650	{
5651	  struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5652
5653	  /* Stop if already marked.  */
5654	  if (VECTOR_MARKED_P (h))
5655	    break;
5656
5657	  /* Mark it.  */
5658	  CHECK_LIVE (live_vector_p);
5659	  VECTOR_MARK (h);
5660
5661	  /* Mark contents.  */
5662	  /* Do not mark next_free or next_weak.
5663	     Being in the next_weak chain
5664	     should not keep the hash table alive.
5665	     No need to mark `count' since it is an integer.  */
5666	  mark_object (h->test);
5667	  mark_object (h->weak);
5668	  mark_object (h->rehash_size);
5669	  mark_object (h->rehash_threshold);
5670	  mark_object (h->hash);
5671	  mark_object (h->next);
5672	  mark_object (h->index);
5673	  mark_object (h->user_hash_function);
5674	  mark_object (h->user_cmp_function);
5675
5676	  /* If hash table is not weak, mark all keys and values.
5677	     For weak tables, mark only the vector.  */
5678	  if (GC_NILP (h->weak))
5679	    mark_object (h->key_and_value);
5680	  else
5681	    VECTOR_MARK (XVECTOR (h->key_and_value));
5682	}
5683      else
5684	{
5685	  register struct Lisp_Vector *ptr = XVECTOR (obj);
5686	  register EMACS_INT size = ptr->size;
5687	  register int i;
5688
5689	  if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5690	  CHECK_LIVE (live_vector_p);
5691	  VECTOR_MARK (ptr);	/* Else mark it */
5692	  if (size & PSEUDOVECTOR_FLAG)
5693	    size &= PSEUDOVECTOR_SIZE_MASK;
5694
5695	  /* Note that this size is not the memory-footprint size, but only
5696	     the number of Lisp_Object fields that we should trace.
5697	     The distinction is used e.g. by Lisp_Process which places extra
5698	     non-Lisp_Object fields at the end of the structure.  */
5699	  for (i = 0; i < size; i++) /* and then mark its elements */
5700	    mark_object (ptr->contents[i]);
5701	}
5702      break;
5703
5704    case Lisp_Symbol:
5705      {
5706	register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5707	struct Lisp_Symbol *ptrx;
5708
5709	if (ptr->gcmarkbit) break;
5710	CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5711	ptr->gcmarkbit = 1;
5712	mark_object (ptr->value);
5713	mark_object (ptr->function);
5714	mark_object (ptr->plist);
5715
5716	if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5717	  MARK_STRING (XSTRING (ptr->xname));
5718	MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5719
5720	/* Note that we do not mark the obarray of the symbol.
5721	   It is safe not to do so because nothing accesses that
5722	   slot except to check whether it is nil.  */
5723	ptr = ptr->next;
5724	if (ptr)
5725	  {
5726	    ptrx = ptr;		/* Use of ptrx avoids compiler bug on Sun */
5727	    XSETSYMBOL (obj, ptrx);
5728	    goto loop;
5729	  }
5730      }
5731      break;
5732
5733    case Lisp_Misc:
5734      CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5735      if (XMARKER (obj)->gcmarkbit)
5736	break;
5737      XMARKER (obj)->gcmarkbit = 1;
5738
5739      switch (XMISCTYPE (obj))
5740	{
5741	case Lisp_Misc_Buffer_Local_Value:
5742	case Lisp_Misc_Some_Buffer_Local_Value:
5743	  {
5744	    register struct Lisp_Buffer_Local_Value *ptr
5745	      = XBUFFER_LOCAL_VALUE (obj);
5746	    /* If the cdr is nil, avoid recursion for the car.  */
5747	    if (EQ (ptr->cdr, Qnil))
5748	      {
5749		obj = ptr->realvalue;
5750		goto loop;
5751	      }
5752	    mark_object (ptr->realvalue);
5753	    mark_object (ptr->buffer);
5754	    mark_object (ptr->frame);
5755	    obj = ptr->cdr;
5756	    goto loop;
5757	  }
5758
5759	case Lisp_Misc_Marker:
5760	  /* DO NOT mark thru the marker's chain.
5761	     The buffer's markers chain does not preserve markers from gc;
5762	     instead, markers are removed from the chain when freed by gc.  */
5763	  break;
5764
5765	case Lisp_Misc_Intfwd:
5766	case Lisp_Misc_Boolfwd:
5767	case Lisp_Misc_Objfwd:
5768	case Lisp_Misc_Buffer_Objfwd:
5769	case Lisp_Misc_Kboard_Objfwd:
5770	  /* Don't bother with Lisp_Buffer_Objfwd,
5771	     since all markable slots in current buffer marked anyway.  */
5772	  /* Don't need to do Lisp_Objfwd, since the places they point
5773	     are protected with staticpro.  */
5774	  break;
5775
5776	case Lisp_Misc_Save_Value:
5777#if GC_MARK_STACK
5778	  {
5779	    register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5780	    /* If DOGC is set, POINTER is the address of a memory
5781	       area containing INTEGER potential Lisp_Objects.  */
5782	    if (ptr->dogc)
5783	      {
5784		Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5785		int nelt;
5786		for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5787		  mark_maybe_object (*p);
5788	      }
5789	  }
5790#endif
5791	  break;
5792
5793	case Lisp_Misc_Overlay:
5794	  {
5795	    struct Lisp_Overlay *ptr = XOVERLAY (obj);
5796	    mark_object (ptr->start);
5797	    mark_object (ptr->end);
5798	    mark_object (ptr->plist);
5799	    if (ptr->next)
5800	      {
5801		XSETMISC (obj, ptr->next);
5802		goto loop;
5803	      }
5804	  }
5805	  break;
5806
5807	default:
5808	  abort ();
5809	}
5810      break;
5811
5812    case Lisp_Cons:
5813      {
5814	register struct Lisp_Cons *ptr = XCONS (obj);
5815	if (CONS_MARKED_P (ptr)) break;
5816	CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5817	CONS_MARK (ptr);
5818	/* If the cdr is nil, avoid recursion for the car.  */
5819	if (EQ (ptr->u.cdr, Qnil))
5820	  {
5821	    obj = ptr->car;
5822	    cdr_count = 0;
5823	    goto loop;
5824	  }
5825	mark_object (ptr->car);
5826	obj = ptr->u.cdr;
5827	cdr_count++;
5828	if (cdr_count == mark_object_loop_halt)
5829	  abort ();
5830	goto loop;
5831      }
5832
5833    case Lisp_Float:
5834      CHECK_ALLOCATED_AND_LIVE (live_float_p);
5835      FLOAT_MARK (XFLOAT (obj));
5836      break;
5837
5838    case Lisp_Int:
5839      break;
5840
5841    default:
5842      abort ();
5843    }
5844
5845#undef CHECK_LIVE
5846#undef CHECK_ALLOCATED
5847#undef CHECK_ALLOCATED_AND_LIVE
5848}
5849
5850/* Mark the pointers in a buffer structure.  */
5851
5852static void
5853mark_buffer (buf)
5854     Lisp_Object buf;
5855{
5856  register struct buffer *buffer = XBUFFER (buf);
5857  register Lisp_Object *ptr, tmp;
5858  Lisp_Object base_buffer;
5859
5860  VECTOR_MARK (buffer);
5861
5862  MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5863
5864  /* For now, we just don't mark the undo_list.  It's done later in
5865     a special way just before the sweep phase, and after stripping
5866     some of its elements that are not needed any more.  */
5867
5868  if (buffer->overlays_before)
5869    {
5870      XSETMISC (tmp, buffer->overlays_before);
5871      mark_object (tmp);
5872    }
5873  if (buffer->overlays_after)
5874    {
5875      XSETMISC (tmp, buffer->overlays_after);
5876      mark_object (tmp);
5877    }
5878
5879  for (ptr = &buffer->name;
5880       (char *)ptr < (char *)buffer + sizeof (struct buffer);
5881       ptr++)
5882    mark_object (*ptr);
5883
5884  /* If this is an indirect buffer, mark its base buffer.  */
5885  if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5886    {
5887      XSETBUFFER (base_buffer, buffer->base_buffer);
5888      mark_buffer (base_buffer);
5889    }
5890}
5891
5892
5893/* Value is non-zero if OBJ will survive the current GC because it's
5894   either marked or does not need to be marked to survive.  */
5895
5896int
5897survives_gc_p (obj)
5898     Lisp_Object obj;
5899{
5900  int survives_p;
5901
5902  switch (XGCTYPE (obj))
5903    {
5904    case Lisp_Int:
5905      survives_p = 1;
5906      break;
5907
5908    case Lisp_Symbol:
5909      survives_p = XSYMBOL (obj)->gcmarkbit;
5910      break;
5911
5912    case Lisp_Misc:
5913      survives_p = XMARKER (obj)->gcmarkbit;
5914      break;
5915
5916    case Lisp_String:
5917      survives_p = STRING_MARKED_P (XSTRING (obj));
5918      break;
5919
5920    case Lisp_Vectorlike:
5921      survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5922      break;
5923
5924    case Lisp_Cons:
5925      survives_p = CONS_MARKED_P (XCONS (obj));
5926      break;
5927
5928    case Lisp_Float:
5929      survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5930      break;
5931
5932    default:
5933      abort ();
5934    }
5935
5936  return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5937}
5938
5939
5940
5941/* Sweep: find all structures not marked, and free them. */
5942
5943static void
5944gc_sweep ()
5945{
5946  /* Remove or mark entries in weak hash tables.
5947     This must be done before any object is unmarked.  */
5948  sweep_weak_hash_tables ();
5949
5950  sweep_strings ();
5951#ifdef GC_CHECK_STRING_BYTES
5952  if (!noninteractive)
5953    check_string_bytes (1);
5954#endif
5955
5956  /* Put all unmarked conses on free list */
5957  {
5958    register struct cons_block *cblk;
5959    struct cons_block **cprev = &cons_block;
5960    register int lim = cons_block_index;
5961    register int num_free = 0, num_used = 0;
5962
5963    cons_free_list = 0;
5964
5965    for (cblk = cons_block; cblk; cblk = *cprev)
5966      {
5967	register int i;
5968	int this_free = 0;
5969	for (i = 0; i < lim; i++)
5970	  if (!CONS_MARKED_P (&cblk->conses[i]))
5971	    {
5972	      this_free++;
5973	      cblk->conses[i].u.chain = cons_free_list;
5974	      cons_free_list = &cblk->conses[i];
5975#if GC_MARK_STACK
5976	      cons_free_list->car = Vdead;
5977#endif
5978	    }
5979	  else
5980	    {
5981	      num_used++;
5982	      CONS_UNMARK (&cblk->conses[i]);
5983	    }
5984	lim = CONS_BLOCK_SIZE;
5985	/* If this block contains only free conses and we have already
5986	   seen more than two blocks worth of free conses then deallocate
5987	   this block.  */
5988	if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5989	  {
5990	    *cprev = cblk->next;
5991	    /* Unhook from the free list.  */
5992	    cons_free_list = cblk->conses[0].u.chain;
5993	    lisp_align_free (cblk);
5994	    n_cons_blocks--;
5995	  }
5996	else
5997	  {
5998	    num_free += this_free;
5999	    cprev = &cblk->next;
6000	  }
6001      }
6002    total_conses = num_used;
6003    total_free_conses = num_free;
6004  }
6005
6006  /* Put all unmarked floats on free list */
6007  {
6008    register struct float_block *fblk;
6009    struct float_block **fprev = &float_block;
6010    register int lim = float_block_index;
6011    register int num_free = 0, num_used = 0;
6012
6013    float_free_list = 0;
6014
6015    for (fblk = float_block; fblk; fblk = *fprev)
6016      {
6017	register int i;
6018	int this_free = 0;
6019	for (i = 0; i < lim; i++)
6020	  if (!FLOAT_MARKED_P (&fblk->floats[i]))
6021	    {
6022	      this_free++;
6023	      fblk->floats[i].u.chain = float_free_list;
6024	      float_free_list = &fblk->floats[i];
6025	    }
6026	  else
6027	    {
6028	      num_used++;
6029	      FLOAT_UNMARK (&fblk->floats[i]);
6030	    }
6031	lim = FLOAT_BLOCK_SIZE;
6032	/* If this block contains only free floats and we have already
6033	   seen more than two blocks worth of free floats then deallocate
6034	   this block.  */
6035	if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6036	  {
6037	    *fprev = fblk->next;
6038	    /* Unhook from the free list.  */
6039	    float_free_list = fblk->floats[0].u.chain;
6040	    lisp_align_free (fblk);
6041	    n_float_blocks--;
6042	  }
6043	else
6044	  {
6045	    num_free += this_free;
6046	    fprev = &fblk->next;
6047	  }
6048      }
6049    total_floats = num_used;
6050    total_free_floats = num_free;
6051  }
6052
6053  /* Put all unmarked intervals on free list */
6054  {
6055    register struct interval_block *iblk;
6056    struct interval_block **iprev = &interval_block;
6057    register int lim = interval_block_index;
6058    register int num_free = 0, num_used = 0;
6059
6060    interval_free_list = 0;
6061
6062    for (iblk = interval_block; iblk; iblk = *iprev)
6063      {
6064	register int i;
6065	int this_free = 0;
6066
6067	for (i = 0; i < lim; i++)
6068	  {
6069	    if (!iblk->intervals[i].gcmarkbit)
6070	      {
6071		SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6072		interval_free_list = &iblk->intervals[i];
6073		this_free++;
6074	      }
6075	    else
6076	      {
6077		num_used++;
6078		iblk->intervals[i].gcmarkbit = 0;
6079	      }
6080	  }
6081	lim = INTERVAL_BLOCK_SIZE;
6082	/* If this block contains only free intervals and we have already
6083	   seen more than two blocks worth of free intervals then
6084	   deallocate this block.  */
6085	if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6086	  {
6087	    *iprev = iblk->next;
6088	    /* Unhook from the free list.  */
6089	    interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6090	    lisp_free (iblk);
6091	    n_interval_blocks--;
6092	  }
6093	else
6094	  {
6095	    num_free += this_free;
6096	    iprev = &iblk->next;
6097	  }
6098      }
6099    total_intervals = num_used;
6100    total_free_intervals = num_free;
6101  }
6102
6103  /* Put all unmarked symbols on free list */
6104  {
6105    register struct symbol_block *sblk;
6106    struct symbol_block **sprev = &symbol_block;
6107    register int lim = symbol_block_index;
6108    register int num_free = 0, num_used = 0;
6109
6110    symbol_free_list = NULL;
6111
6112    for (sblk = symbol_block; sblk; sblk = *sprev)
6113      {
6114	int this_free = 0;
6115	struct Lisp_Symbol *sym = sblk->symbols;
6116	struct Lisp_Symbol *end = sym + lim;
6117
6118	for (; sym < end; ++sym)
6119	  {
6120	    /* Check if the symbol was created during loadup.  In such a case
6121	       it might be pointed to by pure bytecode which we don't trace,
6122	       so we conservatively assume that it is live.  */
6123	    int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6124
6125	    if (!sym->gcmarkbit && !pure_p)
6126	      {
6127		sym->next = symbol_free_list;
6128		symbol_free_list = sym;
6129#if GC_MARK_STACK
6130		symbol_free_list->function = Vdead;
6131#endif
6132		++this_free;
6133	      }
6134	    else
6135	      {
6136		++num_used;
6137		if (!pure_p)
6138		  UNMARK_STRING (XSTRING (sym->xname));
6139		sym->gcmarkbit = 0;
6140	      }
6141	  }
6142
6143	lim = SYMBOL_BLOCK_SIZE;
6144	/* If this block contains only free symbols and we have already
6145	   seen more than two blocks worth of free symbols then deallocate
6146	   this block.  */
6147	if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6148	  {
6149	    *sprev = sblk->next;
6150	    /* Unhook from the free list.  */
6151	    symbol_free_list = sblk->symbols[0].next;
6152	    lisp_free (sblk);
6153	    n_symbol_blocks--;
6154	  }
6155	else
6156	  {
6157	    num_free += this_free;
6158	    sprev = &sblk->next;
6159	  }
6160      }
6161    total_symbols = num_used;
6162    total_free_symbols = num_free;
6163  }
6164
6165  /* Put all unmarked misc's on free list.
6166     For a marker, first unchain it from the buffer it points into.  */
6167  {
6168    register struct marker_block *mblk;
6169    struct marker_block **mprev = &marker_block;
6170    register int lim = marker_block_index;
6171    register int num_free = 0, num_used = 0;
6172
6173    marker_free_list = 0;
6174
6175    for (mblk = marker_block; mblk; mblk = *mprev)
6176      {
6177	register int i;
6178	int this_free = 0;
6179
6180	for (i = 0; i < lim; i++)
6181	  {
6182	    if (!mblk->markers[i].u_marker.gcmarkbit)
6183	      {
6184		if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
6185		  unchain_marker (&mblk->markers[i].u_marker);
6186		/* Set the type of the freed object to Lisp_Misc_Free.
6187		   We could leave the type alone, since nobody checks it,
6188		   but this might catch bugs faster.  */
6189		mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6190		mblk->markers[i].u_free.chain = marker_free_list;
6191		marker_free_list = &mblk->markers[i];
6192		this_free++;
6193	      }
6194	    else
6195	      {
6196		num_used++;
6197		mblk->markers[i].u_marker.gcmarkbit = 0;
6198	      }
6199	  }
6200	lim = MARKER_BLOCK_SIZE;
6201	/* If this block contains only free markers and we have already
6202	   seen more than two blocks worth of free markers then deallocate
6203	   this block.  */
6204	if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6205	  {
6206	    *mprev = mblk->next;
6207	    /* Unhook from the free list.  */
6208	    marker_free_list = mblk->markers[0].u_free.chain;
6209	    lisp_free (mblk);
6210	    n_marker_blocks--;
6211	  }
6212	else
6213	  {
6214	    num_free += this_free;
6215	    mprev = &mblk->next;
6216	  }
6217      }
6218
6219    total_markers = num_used;
6220    total_free_markers = num_free;
6221  }
6222
6223  /* Free all unmarked buffers */
6224  {
6225    register struct buffer *buffer = all_buffers, *prev = 0, *next;
6226
6227    while (buffer)
6228      if (!VECTOR_MARKED_P (buffer))
6229	{
6230	  if (prev)
6231	    prev->next = buffer->next;
6232	  else
6233	    all_buffers = buffer->next;
6234	  next = buffer->next;
6235	  lisp_free (buffer);
6236	  buffer = next;
6237	}
6238      else
6239	{
6240	  VECTOR_UNMARK (buffer);
6241	  UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6242	  prev = buffer, buffer = buffer->next;
6243	}
6244  }
6245
6246  /* Free all unmarked vectors */
6247  {
6248    register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6249    total_vector_size = 0;
6250
6251    while (vector)
6252      if (!VECTOR_MARKED_P (vector))
6253	{
6254	  if (prev)
6255	    prev->next = vector->next;
6256	  else
6257	    all_vectors = vector->next;
6258	  next = vector->next;
6259	  lisp_free (vector);
6260	  n_vectors--;
6261	  vector = next;
6262
6263	}
6264      else
6265	{
6266	  VECTOR_UNMARK (vector);
6267	  if (vector->size & PSEUDOVECTOR_FLAG)
6268	    total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6269	  else
6270	    total_vector_size += vector->size;
6271	  prev = vector, vector = vector->next;
6272	}
6273  }
6274
6275#ifdef GC_CHECK_STRING_BYTES
6276  if (!noninteractive)
6277    check_string_bytes (1);
6278#endif
6279}
6280
6281
6282
6283
6284/* Debugging aids.  */
6285
6286DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6287       doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6288This may be helpful in debugging Emacs's memory usage.
6289We divide the value by 1024 to make sure it fits in a Lisp integer.  */)
6290     ()
6291{
6292  Lisp_Object end;
6293
6294  XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6295
6296  return end;
6297}
6298
6299DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6300       doc: /* Return a list of counters that measure how much consing there has been.
6301Each of these counters increments for a certain kind of object.
6302The counters wrap around from the largest positive integer to zero.
6303Garbage collection does not decrease them.
6304The elements of the value are as follows:
6305  (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6306All are in units of 1 = one object consed
6307except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6308objects consed.
6309MISCS include overlays, markers, and some internal types.
6310Frames, windows, buffers, and subprocesses count as vectors
6311  (but the contents of a buffer's text do not count here).  */)
6312     ()
6313{
6314  Lisp_Object consed[8];
6315
6316  consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6317  consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6318  consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6319  consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6320  consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6321  consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6322  consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6323  consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6324
6325  return Flist (8, consed);
6326}
6327
6328int suppress_checking;
6329void
6330die (msg, file, line)
6331     const char *msg;
6332     const char *file;
6333     int line;
6334{
6335  fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
6336	   file, line, msg);
6337  abort ();
6338}
6339
6340/* Initialization */
6341
6342void
6343init_alloc_once ()
6344{
6345  /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet!  */
6346  purebeg = PUREBEG;
6347  pure_size = PURESIZE;
6348  pure_bytes_used = 0;
6349  pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6350  pure_bytes_used_before_overflow = 0;
6351
6352  /* Initialize the list of free aligned blocks.  */
6353  free_ablock = NULL;
6354
6355#if GC_MARK_STACK || defined GC_MALLOC_CHECK
6356  mem_init ();
6357  Vdead = make_pure_string ("DEAD", 4, 4, 0);
6358#endif
6359
6360  all_vectors = 0;
6361  ignore_warnings = 1;
6362#ifdef DOUG_LEA_MALLOC
6363  mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6364  mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6365  mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6366#endif
6367  init_strings ();
6368  init_cons ();
6369  init_symbol ();
6370  init_marker ();
6371  init_float ();
6372  init_intervals ();
6373
6374#ifdef REL_ALLOC
6375  malloc_hysteresis = 32;
6376#else
6377  malloc_hysteresis = 0;
6378#endif
6379
6380  refill_memory_reserve ();
6381
6382  ignore_warnings = 0;
6383  gcprolist = 0;
6384  byte_stack_list = 0;
6385  staticidx = 0;
6386  consing_since_gc = 0;
6387  gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6388  gc_relative_threshold = 0;
6389
6390#ifdef VIRT_ADDR_VARIES
6391  malloc_sbrk_unused = 1<<22;	/* A large number */
6392  malloc_sbrk_used = 100000;	/* as reasonable as any number */
6393#endif /* VIRT_ADDR_VARIES */
6394}
6395
6396void
6397init_alloc ()
6398{
6399  gcprolist = 0;
6400  byte_stack_list = 0;
6401#if GC_MARK_STACK
6402#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6403  setjmp_tested_p = longjmps_done = 0;
6404#endif
6405#endif
6406  Vgc_elapsed = make_float (0.0);
6407  gcs_done = 0;
6408}
6409
6410void
6411syms_of_alloc ()
6412{
6413  DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6414	      doc: /* *Number of bytes of consing between garbage collections.
6415Garbage collection can happen automatically once this many bytes have been
6416allocated since the last garbage collection.  All data types count.
6417
6418Garbage collection happens automatically only when `eval' is called.
6419
6420By binding this temporarily to a large number, you can effectively
6421prevent garbage collection during a part of the program.
6422See also `gc-cons-percentage'.  */);
6423
6424  DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6425	       doc: /* *Portion of the heap used for allocation.
6426Garbage collection can happen automatically once this portion of the heap
6427has been allocated since the last garbage collection.
6428If this portion is smaller than `gc-cons-threshold', this is ignored.  */);
6429  Vgc_cons_percentage = make_float (0.1);
6430
6431  DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6432	      doc: /* Number of bytes of sharable Lisp data allocated so far.  */);
6433
6434  DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6435	      doc: /* Number of cons cells that have been consed so far.  */);
6436
6437  DEFVAR_INT ("floats-consed", &floats_consed,
6438	      doc: /* Number of floats that have been consed so far.  */);
6439
6440  DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6441	      doc: /* Number of vector cells that have been consed so far.  */);
6442
6443  DEFVAR_INT ("symbols-consed", &symbols_consed,
6444	      doc: /* Number of symbols that have been consed so far.  */);
6445
6446  DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6447	      doc: /* Number of string characters that have been consed so far.  */);
6448
6449  DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6450	      doc: /* Number of miscellaneous objects that have been consed so far.  */);
6451
6452  DEFVAR_INT ("intervals-consed", &intervals_consed,
6453	      doc: /* Number of intervals that have been consed so far.  */);
6454
6455  DEFVAR_INT ("strings-consed", &strings_consed,
6456	      doc: /* Number of strings that have been consed so far.  */);
6457
6458  DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6459	       doc: /* Non-nil means loading Lisp code in order to dump an executable.
6460This means that certain objects should be allocated in shared (pure) space.  */);
6461
6462  DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6463	       doc: /* Non-nil means display messages at start and end of garbage collection.  */);
6464  garbage_collection_messages = 0;
6465
6466  DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6467	       doc: /* Hook run after garbage collection has finished.  */);
6468  Vpost_gc_hook = Qnil;
6469  Qpost_gc_hook = intern ("post-gc-hook");
6470  staticpro (&Qpost_gc_hook);
6471
6472  DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6473	       doc: /* Precomputed `signal' argument for memory-full error.  */);
6474  /* We build this in advance because if we wait until we need it, we might
6475     not be able to allocate the memory to hold it.  */
6476  Vmemory_signal_data
6477    = list2 (Qerror,
6478	     build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6479
6480  DEFVAR_LISP ("memory-full", &Vmemory_full,
6481	       doc: /* Non-nil means Emacs cannot get much more Lisp memory.  */);
6482  Vmemory_full = Qnil;
6483
6484  staticpro (&Qgc_cons_threshold);
6485  Qgc_cons_threshold = intern ("gc-cons-threshold");
6486
6487  staticpro (&Qchar_table_extra_slots);
6488  Qchar_table_extra_slots = intern ("char-table-extra-slots");
6489
6490  DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6491	       doc: /* Accumulated time elapsed in garbage collections.
6492The time is in seconds as a floating point value.  */);
6493  DEFVAR_INT ("gcs-done", &gcs_done,
6494	      doc: /* Accumulated number of garbage collections done.  */);
6495
6496  defsubr (&Scons);
6497  defsubr (&Slist);
6498  defsubr (&Svector);
6499  defsubr (&Smake_byte_code);
6500  defsubr (&Smake_list);
6501  defsubr (&Smake_vector);
6502  defsubr (&Smake_char_table);
6503  defsubr (&Smake_string);
6504  defsubr (&Smake_bool_vector);
6505  defsubr (&Smake_symbol);
6506  defsubr (&Smake_marker);
6507  defsubr (&Spurecopy);
6508  defsubr (&Sgarbage_collect);
6509  defsubr (&Smemory_limit);
6510  defsubr (&Smemory_use_counts);
6511
6512#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6513  defsubr (&Sgc_status);
6514#endif
6515}
6516
6517/* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6518   (do not change this comment) */
6519