1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
3@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2001,
4@c   2002, 2003, 2004, 2005, 2006, 2007  Free Software Foundation, Inc.
5@c See the file elisp.texi for copying conditions.
6@setfilename ../info/numbers
7@node Numbers, Strings and Characters, Lisp Data Types, Top
8@chapter Numbers
9@cindex integers
10@cindex numbers
11
12  GNU Emacs supports two numeric data types: @dfn{integers} and
13@dfn{floating point numbers}.  Integers are whole numbers such as
14@minus{}3, 0, 7, 13, and 511.  Their values are exact.  Floating point
15numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
162.71828.  They can also be expressed in exponential notation: 1.5e2
17equals 150; in this example, @samp{e2} stands for ten to the second
18power, and that is multiplied by 1.5.  Floating point values are not
19exact; they have a fixed, limited amount of precision.
20
21@menu
22* Integer Basics::            Representation and range of integers.
23* Float Basics::	      Representation and range of floating point.
24* Predicates on Numbers::     Testing for numbers.
25* Comparison of Numbers::     Equality and inequality predicates.
26* Numeric Conversions::	      Converting float to integer and vice versa.
27* Arithmetic Operations::     How to add, subtract, multiply and divide.
28* Rounding Operations::       Explicitly rounding floating point numbers.
29* Bitwise Operations::        Logical and, or, not, shifting.
30* Math Functions::            Trig, exponential and logarithmic functions.
31* Random Numbers::            Obtaining random integers, predictable or not.
32@end menu
33
34@node Integer Basics
35@comment  node-name,  next,  previous,  up
36@section Integer Basics
37
38  The range of values for an integer depends on the machine.  The
39minimum range is @minus{}268435456 to 268435455 (29 bits; i.e.,
40@ifnottex
41-2**28
42@end ifnottex
43@tex
44@math{-2^{28}}
45@end tex
46to
47@ifnottex
482**28 - 1),
49@end ifnottex
50@tex
51@math{2^{28}-1}),
52@end tex
53but some machines may provide a wider range.  Many examples in this
54chapter assume an integer has 29 bits.
55@cindex overflow
56
57  The Lisp reader reads an integer as a sequence of digits with optional
58initial sign and optional final period.
59
60@example
61 1               ; @r{The integer 1.}
62 1.              ; @r{The integer 1.}
63+1               ; @r{Also the integer 1.}
64-1               ; @r{The integer @minus{}1.}
65 536870913       ; @r{Also the integer 1, due to overflow.}
66 0               ; @r{The integer 0.}
67-0               ; @r{The integer 0.}
68@end example
69
70@cindex integers in specific radix
71@cindex radix for reading an integer
72@cindex base for reading an integer
73@cindex hex numbers
74@cindex octal numbers
75@cindex reading numbers in hex, octal, and binary
76  The syntax for integers in bases other than 10 uses @samp{#}
77followed by a letter that specifies the radix: @samp{b} for binary,
78@samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
79specify radix @var{radix}.  Case is not significant for the letter
80that specifies the radix.  Thus, @samp{#b@var{integer}} reads
81@var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
82@var{integer} in radix @var{radix}.  Allowed values of @var{radix} run
83from 2 to 36.  For example:
84
85@example
86#b101100 @result{} 44
87#o54 @result{} 44
88#x2c @result{} 44
89#24r1k @result{} 44
90@end example
91
92  To understand how various functions work on integers, especially the
93bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
94view the numbers in their binary form.
95
96  In 29-bit binary, the decimal integer 5 looks like this:
97
98@example
990 0000  0000 0000  0000 0000  0000 0101
100@end example
101
102@noindent
103(We have inserted spaces between groups of 4 bits, and two spaces
104between groups of 8 bits, to make the binary integer easier to read.)
105
106  The integer @minus{}1 looks like this:
107
108@example
1091 1111  1111 1111  1111 1111  1111 1111
110@end example
111
112@noindent
113@cindex two's complement
114@minus{}1 is represented as 29 ones.  (This is called @dfn{two's
115complement} notation.)
116
117  The negative integer, @minus{}5, is creating by subtracting 4 from
118@minus{}1.  In binary, the decimal integer 4 is 100.  Consequently,
119@minus{}5 looks like this:
120
121@example
1221 1111  1111 1111  1111 1111  1111 1011
123@end example
124
125  In this implementation, the largest 29-bit binary integer value is
126268,435,455 in decimal.  In binary, it looks like this:
127
128@example
1290 1111  1111 1111  1111 1111  1111 1111
130@end example
131
132  Since the arithmetic functions do not check whether integers go
133outside their range, when you add 1 to 268,435,455, the value is the
134negative integer @minus{}268,435,456:
135
136@example
137(+ 1 268435455)
138     @result{} -268435456
139     @result{} 1 0000  0000 0000  0000 0000  0000 0000
140@end example
141
142  Many of the functions described in this chapter accept markers for
143arguments in place of numbers.  (@xref{Markers}.)  Since the actual
144arguments to such functions may be either numbers or markers, we often
145give these arguments the name @var{number-or-marker}.  When the argument
146value is a marker, its position value is used and its buffer is ignored.
147
148@defvar most-positive-fixnum
149The value of this variable is the largest integer that Emacs Lisp
150can handle.
151@end defvar
152
153@defvar most-negative-fixnum
154The value of this variable is the smallest integer that Emacs Lisp can
155handle.  It is negative.
156@end defvar
157
158@node Float Basics
159@section Floating Point Basics
160
161  Floating point numbers are useful for representing numbers that are
162not integral.  The precise range of floating point numbers is
163machine-specific; it is the same as the range of the C data type
164@code{double} on the machine you are using.
165
166  The read-syntax for floating point numbers requires either a decimal
167point (with at least one digit following), an exponent, or both.  For
168example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
169@samp{.15e4} are five ways of writing a floating point number whose
170value is 1500.  They are all equivalent.  You can also use a minus sign
171to write negative floating point numbers, as in @samp{-1.0}.
172
173@cindex @acronym{IEEE} floating point
174@cindex positive infinity
175@cindex negative infinity
176@cindex infinity
177@cindex NaN
178  Most modern computers support the @acronym{IEEE} floating point standard,
179which provides for positive infinity and negative infinity as floating point
180values.  It also provides for a class of values called NaN or
181``not-a-number''; numerical functions return such values in cases where
182there is no correct answer.  For example, @code{(/ 0.0 0.0)} returns a
183NaN.  For practical purposes, there's no significant difference between
184different NaN values in Emacs Lisp, and there's no rule for precisely
185which NaN value should be used in a particular case, so Emacs Lisp
186doesn't try to distinguish them (but it does report the sign, if you
187print it).  Here are the read syntaxes for these special floating
188point values:
189
190@table @asis
191@item positive infinity
192@samp{1.0e+INF}
193@item negative infinity
194@samp{-1.0e+INF}
195@item Not-a-number 
196@samp{0.0e+NaN} or @samp{-0.0e+NaN}.
197@end table
198
199  To test whether a floating point value is a NaN, compare it with
200itself using @code{=}.  That returns @code{nil} for a NaN, and
201@code{t} for any other floating point value.
202
203  The value @code{-0.0} is distinguishable from ordinary zero in
204@acronym{IEEE} floating point, but Emacs Lisp @code{equal} and
205@code{=} consider them equal values.
206
207  You can use @code{logb} to extract the binary exponent of a floating
208point number (or estimate the logarithm of an integer):
209
210@defun logb number
211This function returns the binary exponent of @var{number}.  More
212precisely, the value is the logarithm of @var{number} base 2, rounded
213down to an integer.
214
215@example
216(logb 10)
217     @result{} 3
218(logb 10.0e20)
219     @result{} 69
220@end example
221@end defun
222
223@node Predicates on Numbers
224@section Type Predicates for Numbers
225@cindex predicates for numbers
226
227  The functions in this section test for numbers, or for a specific
228type of number.  The functions @code{integerp} and @code{floatp} can
229take any type of Lisp object as argument (they would not be of much
230use otherwise), but the @code{zerop} predicate requires a number as
231its argument.  See also @code{integer-or-marker-p} and
232@code{number-or-marker-p}, in @ref{Predicates on Markers}.
233
234@defun floatp object
235This predicate tests whether its argument is a floating point
236number and returns @code{t} if so, @code{nil} otherwise.
237
238@code{floatp} does not exist in Emacs versions 18 and earlier.
239@end defun
240
241@defun integerp object
242This predicate tests whether its argument is an integer, and returns
243@code{t} if so, @code{nil} otherwise.
244@end defun
245
246@defun numberp object
247This predicate tests whether its argument is a number (either integer or
248floating point), and returns @code{t} if so, @code{nil} otherwise.
249@end defun
250
251@defun wholenump object
252@cindex natural numbers
253The @code{wholenump} predicate (whose name comes from the phrase
254``whole-number-p'') tests to see whether its argument is a nonnegative
255integer, and returns @code{t} if so, @code{nil} otherwise.  0 is
256considered non-negative.
257
258@findex natnump
259@code{natnump} is an obsolete synonym for @code{wholenump}.
260@end defun
261
262@defun zerop number
263This predicate tests whether its argument is zero, and returns @code{t}
264if so, @code{nil} otherwise.  The argument must be a number.
265
266@code{(zerop x)} is equivalent to @code{(= x 0)}.
267@end defun
268
269@node Comparison of Numbers
270@section Comparison of Numbers
271@cindex number comparison
272@cindex comparing numbers
273
274  To test numbers for numerical equality, you should normally use
275@code{=}, not @code{eq}.  There can be many distinct floating point
276number objects with the same numeric value.  If you use @code{eq} to
277compare them, then you test whether two values are the same
278@emph{object}.  By contrast, @code{=} compares only the numeric values
279of the objects.
280
281  At present, each integer value has a unique Lisp object in Emacs Lisp.
282Therefore, @code{eq} is equivalent to @code{=} where integers are
283concerned.  It is sometimes convenient to use @code{eq} for comparing an
284unknown value with an integer, because @code{eq} does not report an
285error if the unknown value is not a number---it accepts arguments of any
286type.  By contrast, @code{=} signals an error if the arguments are not
287numbers or markers.  However, it is a good idea to use @code{=} if you
288can, even for comparing integers, just in case we change the
289representation of integers in a future Emacs version.
290
291  Sometimes it is useful to compare numbers with @code{equal}; it
292treats two numbers as equal if they have the same data type (both
293integers, or both floating point) and the same value.  By contrast,
294@code{=} can treat an integer and a floating point number as equal.
295@xref{Equality Predicates}.
296
297  There is another wrinkle: because floating point arithmetic is not
298exact, it is often a bad idea to check for equality of two floating
299point values.  Usually it is better to test for approximate equality.
300Here's a function to do this:
301
302@example
303(defvar fuzz-factor 1.0e-6)
304(defun approx-equal (x y)
305  (or (and (= x 0) (= y 0))
306      (< (/ (abs (- x y))
307            (max (abs x) (abs y)))
308         fuzz-factor)))
309@end example
310
311@cindex CL note---integers vrs @code{eq}
312@quotation
313@b{Common Lisp note:} Comparing numbers in Common Lisp always requires
314@code{=} because Common Lisp implements multi-word integers, and two
315distinct integer objects can have the same numeric value.  Emacs Lisp
316can have just one integer object for any given value because it has a
317limited range of integer values.
318@end quotation
319
320@defun = number-or-marker1 number-or-marker2
321This function tests whether its arguments are numerically equal, and
322returns @code{t} if so, @code{nil} otherwise.
323@end defun
324
325@defun eql value1 value2
326This function acts like @code{eq} except when both arguments are
327numbers.  It compares numbers by type and numeric value, so that
328@code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
329@code{(eql 1 1)} both return @code{t}.
330@end defun
331
332@defun /= number-or-marker1 number-or-marker2
333This function tests whether its arguments are numerically equal, and
334returns @code{t} if they are not, and @code{nil} if they are.
335@end defun
336
337@defun <  number-or-marker1 number-or-marker2
338This function tests whether its first argument is strictly less than
339its second argument.  It returns @code{t} if so, @code{nil} otherwise.
340@end defun
341
342@defun <=  number-or-marker1 number-or-marker2
343This function tests whether its first argument is less than or equal
344to its second argument.  It returns @code{t} if so, @code{nil}
345otherwise.
346@end defun
347
348@defun >  number-or-marker1 number-or-marker2
349This function tests whether its first argument is strictly greater
350than its second argument.  It returns @code{t} if so, @code{nil}
351otherwise.
352@end defun
353
354@defun >=  number-or-marker1 number-or-marker2
355This function tests whether its first argument is greater than or
356equal to its second argument.  It returns @code{t} if so, @code{nil}
357otherwise.
358@end defun
359
360@defun max number-or-marker &rest numbers-or-markers
361This function returns the largest of its arguments.
362If any of the arguments is floating-point, the value is returned
363as floating point, even if it was given as an integer.
364
365@example
366(max 20)
367     @result{} 20
368(max 1 2.5)
369     @result{} 2.5
370(max 1 3 2.5)
371     @result{} 3.0
372@end example
373@end defun
374
375@defun min number-or-marker &rest numbers-or-markers
376This function returns the smallest of its arguments.
377If any of the arguments is floating-point, the value is returned
378as floating point, even if it was given as an integer.
379
380@example
381(min -4 1)
382     @result{} -4
383@end example
384@end defun
385
386@defun abs number
387This function returns the absolute value of @var{number}.
388@end defun
389
390@node Numeric Conversions
391@section Numeric Conversions
392@cindex rounding in conversions
393@cindex number conversions
394@cindex converting numbers
395
396To convert an integer to floating point, use the function @code{float}.
397
398@defun float number
399This returns @var{number} converted to floating point.
400If @var{number} is already a floating point number, @code{float} returns
401it unchanged.
402@end defun
403
404There are four functions to convert floating point numbers to integers;
405they differ in how they round.  All accept an argument @var{number}
406and an optional argument @var{divisor}.  Both arguments may be
407integers or floating point numbers.  @var{divisor} may also be
408@code{nil}.  If @var{divisor} is @code{nil} or omitted, these
409functions convert @var{number} to an integer, or return it unchanged
410if it already is an integer.  If @var{divisor} is non-@code{nil}, they
411divide @var{number} by @var{divisor} and convert the result to an
412integer.  An @code{arith-error} results if @var{divisor} is 0.
413
414@defun truncate number &optional divisor
415This returns @var{number}, converted to an integer by rounding towards
416zero.
417
418@example
419(truncate 1.2)
420     @result{} 1
421(truncate 1.7)
422     @result{} 1
423(truncate -1.2)
424     @result{} -1
425(truncate -1.7)
426     @result{} -1
427@end example
428@end defun
429
430@defun floor number &optional divisor
431This returns @var{number}, converted to an integer by rounding downward
432(towards negative infinity).
433
434If @var{divisor} is specified, this uses the kind of division
435operation that corresponds to @code{mod}, rounding downward.
436
437@example
438(floor 1.2)
439     @result{} 1
440(floor 1.7)
441     @result{} 1
442(floor -1.2)
443     @result{} -2
444(floor -1.7)
445     @result{} -2
446(floor 5.99 3)
447     @result{} 1
448@end example
449@end defun
450
451@defun ceiling number &optional divisor
452This returns @var{number}, converted to an integer by rounding upward
453(towards positive infinity).
454
455@example
456(ceiling 1.2)
457     @result{} 2
458(ceiling 1.7)
459     @result{} 2
460(ceiling -1.2)
461     @result{} -1
462(ceiling -1.7)
463     @result{} -1
464@end example
465@end defun
466
467@defun round number &optional divisor
468This returns @var{number}, converted to an integer by rounding towards the
469nearest integer.  Rounding a value equidistant between two integers
470may choose the integer closer to zero, or it may prefer an even integer,
471depending on your machine.
472
473@example
474(round 1.2)
475     @result{} 1
476(round 1.7)
477     @result{} 2
478(round -1.2)
479     @result{} -1
480(round -1.7)
481     @result{} -2
482@end example
483@end defun
484
485@node Arithmetic Operations
486@section Arithmetic Operations
487@cindex arithmetic operations
488
489  Emacs Lisp provides the traditional four arithmetic operations:
490addition, subtraction, multiplication, and division.  Remainder and modulus
491functions supplement the division functions.  The functions to
492add or subtract 1 are provided because they are traditional in Lisp and
493commonly used.
494
495  All of these functions except @code{%} return a floating point value
496if any argument is floating.
497
498  It is important to note that in Emacs Lisp, arithmetic functions
499do not check for overflow.  Thus @code{(1+ 268435455)} may evaluate to
500@minus{}268435456, depending on your hardware.
501
502@defun 1+ number-or-marker
503This function returns @var{number-or-marker} plus 1.
504For example,
505
506@example
507(setq foo 4)
508     @result{} 4
509(1+ foo)
510     @result{} 5
511@end example
512
513This function is not analogous to the C operator @code{++}---it does not
514increment a variable.  It just computes a sum.  Thus, if we continue,
515
516@example
517foo
518     @result{} 4
519@end example
520
521If you want to increment the variable, you must use @code{setq},
522like this:
523
524@example
525(setq foo (1+ foo))
526     @result{} 5
527@end example
528@end defun
529
530@defun 1- number-or-marker
531This function returns @var{number-or-marker} minus 1.
532@end defun
533
534@defun + &rest numbers-or-markers
535This function adds its arguments together.  When given no arguments,
536@code{+} returns 0.
537
538@example
539(+)
540     @result{} 0
541(+ 1)
542     @result{} 1
543(+ 1 2 3 4)
544     @result{} 10
545@end example
546@end defun
547
548@defun - &optional number-or-marker &rest more-numbers-or-markers
549The @code{-} function serves two purposes: negation and subtraction.
550When @code{-} has a single argument, the value is the negative of the
551argument.  When there are multiple arguments, @code{-} subtracts each of
552the @var{more-numbers-or-markers} from @var{number-or-marker},
553cumulatively.  If there are no arguments, the result is 0.
554
555@example
556(- 10 1 2 3 4)
557     @result{} 0
558(- 10)
559     @result{} -10
560(-)
561     @result{} 0
562@end example
563@end defun
564
565@defun * &rest numbers-or-markers
566This function multiplies its arguments together, and returns the
567product.  When given no arguments, @code{*} returns 1.
568
569@example
570(*)
571     @result{} 1
572(* 1)
573     @result{} 1
574(* 1 2 3 4)
575     @result{} 24
576@end example
577@end defun
578
579@defun / dividend divisor &rest divisors
580This function divides @var{dividend} by @var{divisor} and returns the
581quotient.  If there are additional arguments @var{divisors}, then it
582divides @var{dividend} by each divisor in turn.  Each argument may be a
583number or a marker.
584
585If all the arguments are integers, then the result is an integer too.
586This means the result has to be rounded.  On most machines, the result
587is rounded towards zero after each division, but some machines may round
588differently with negative arguments.  This is because the Lisp function
589@code{/} is implemented using the C division operator, which also
590permits machine-dependent rounding.  As a practical matter, all known
591machines round in the standard fashion.
592
593@cindex @code{arith-error} in division
594If you divide an integer by 0, an @code{arith-error} error is signaled.
595(@xref{Errors}.)  Floating point division by zero returns either
596infinity or a NaN if your machine supports @acronym{IEEE} floating point;
597otherwise, it signals an @code{arith-error} error.
598
599@example
600@group
601(/ 6 2)
602     @result{} 3
603@end group
604(/ 5 2)
605     @result{} 2
606(/ 5.0 2)
607     @result{} 2.5
608(/ 5 2.0)
609     @result{} 2.5
610(/ 5.0 2.0)
611     @result{} 2.5
612(/ 25 3 2)
613     @result{} 4
614@group
615(/ -17 6)
616     @result{} -2   @r{(could in theory be @minus{}3 on some machines)}
617@end group
618@end example
619@end defun
620
621@defun % dividend divisor
622@cindex remainder
623This function returns the integer remainder after division of @var{dividend}
624by @var{divisor}.  The arguments must be integers or markers.
625
626For negative arguments, the remainder is in principle machine-dependent
627since the quotient is; but in practice, all known machines behave alike.
628
629An @code{arith-error} results if @var{divisor} is 0.
630
631@example
632(% 9 4)
633     @result{} 1
634(% -9 4)
635     @result{} -1
636(% 9 -4)
637     @result{} 1
638(% -9 -4)
639     @result{} -1
640@end example
641
642For any two integers @var{dividend} and @var{divisor},
643
644@example
645@group
646(+ (% @var{dividend} @var{divisor})
647   (* (/ @var{dividend} @var{divisor}) @var{divisor}))
648@end group
649@end example
650
651@noindent
652always equals @var{dividend}.
653@end defun
654
655@defun mod dividend divisor
656@cindex modulus
657This function returns the value of @var{dividend} modulo @var{divisor};
658in other words, the remainder after division of @var{dividend}
659by @var{divisor}, but with the same sign as @var{divisor}.
660The arguments must be numbers or markers.
661
662Unlike @code{%}, @code{mod} returns a well-defined result for negative
663arguments.  It also permits floating point arguments; it rounds the
664quotient downward (towards minus infinity) to an integer, and uses that
665quotient to compute the remainder.
666
667An @code{arith-error} results if @var{divisor} is 0.
668
669@example
670@group
671(mod 9 4)
672     @result{} 1
673@end group
674@group
675(mod -9 4)
676     @result{} 3
677@end group
678@group
679(mod 9 -4)
680     @result{} -3
681@end group
682@group
683(mod -9 -4)
684     @result{} -1
685@end group
686@group
687(mod 5.5 2.5)
688     @result{} .5
689@end group
690@end example
691
692For any two numbers @var{dividend} and @var{divisor},
693
694@example
695@group
696(+ (mod @var{dividend} @var{divisor})
697   (* (floor @var{dividend} @var{divisor}) @var{divisor}))
698@end group
699@end example
700
701@noindent
702always equals @var{dividend}, subject to rounding error if either
703argument is floating point.  For @code{floor}, see @ref{Numeric
704Conversions}.
705@end defun
706
707@node Rounding Operations
708@section Rounding Operations
709@cindex rounding without conversion
710
711The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
712@code{ftruncate} take a floating point argument and return a floating
713point result whose value is a nearby integer.  @code{ffloor} returns the
714nearest integer below; @code{fceiling}, the nearest integer above;
715@code{ftruncate}, the nearest integer in the direction towards zero;
716@code{fround}, the nearest integer.
717
718@defun ffloor float
719This function rounds @var{float} to the next lower integral value, and
720returns that value as a floating point number.
721@end defun
722
723@defun fceiling float
724This function rounds @var{float} to the next higher integral value, and
725returns that value as a floating point number.
726@end defun
727
728@defun ftruncate float
729This function rounds @var{float} towards zero to an integral value, and
730returns that value as a floating point number.
731@end defun
732
733@defun fround float
734This function rounds @var{float} to the nearest integral value,
735and returns that value as a floating point number.
736@end defun
737
738@node Bitwise Operations
739@section Bitwise Operations on Integers
740@cindex bitwise arithmetic
741@cindex logical arithmetic
742
743  In a computer, an integer is represented as a binary number, a
744sequence of @dfn{bits} (digits which are either zero or one).  A bitwise
745operation acts on the individual bits of such a sequence.  For example,
746@dfn{shifting} moves the whole sequence left or right one or more places,
747reproducing the same pattern ``moved over.''
748
749  The bitwise operations in Emacs Lisp apply only to integers.
750
751@defun lsh integer1 count
752@cindex logical shift
753@code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
754bits in @var{integer1} to the left @var{count} places, or to the right
755if @var{count} is negative, bringing zeros into the vacated bits.  If
756@var{count} is negative, @code{lsh} shifts zeros into the leftmost
757(most-significant) bit, producing a positive result even if
758@var{integer1} is negative.  Contrast this with @code{ash}, below.
759
760Here are two examples of @code{lsh}, shifting a pattern of bits one
761place to the left.  We show only the low-order eight bits of the binary
762pattern; the rest are all zero.
763
764@example
765@group
766(lsh 5 1)
767     @result{} 10
768;; @r{Decimal 5 becomes decimal 10.}
76900000101 @result{} 00001010
770
771(lsh 7 1)
772     @result{} 14
773;; @r{Decimal 7 becomes decimal 14.}
77400000111 @result{} 00001110
775@end group
776@end example
777
778@noindent
779As the examples illustrate, shifting the pattern of bits one place to
780the left produces a number that is twice the value of the previous
781number.
782
783Shifting a pattern of bits two places to the left produces results
784like this (with 8-bit binary numbers):
785
786@example
787@group
788(lsh 3 2)
789     @result{} 12
790;; @r{Decimal 3 becomes decimal 12.}
79100000011 @result{} 00001100
792@end group
793@end example
794
795On the other hand, shifting one place to the right looks like this:
796
797@example
798@group
799(lsh 6 -1)
800     @result{} 3
801;; @r{Decimal 6 becomes decimal 3.}
80200000110 @result{} 00000011
803@end group
804
805@group
806(lsh 5 -1)
807     @result{} 2
808;; @r{Decimal 5 becomes decimal 2.}
80900000101 @result{} 00000010
810@end group
811@end example
812
813@noindent
814As the example illustrates, shifting one place to the right divides the
815value of a positive integer by two, rounding downward.
816
817The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
818not check for overflow, so shifting left can discard significant bits
819and change the sign of the number.  For example, left shifting
820268,435,455 produces @minus{}2 on a 29-bit machine:
821
822@example
823(lsh 268435455 1)          ; @r{left shift}
824     @result{} -2
825@end example
826
827In binary, in the 29-bit implementation, the argument looks like this:
828
829@example
830@group
831;; @r{Decimal 268,435,455}
8320 1111  1111 1111  1111 1111  1111 1111
833@end group
834@end example
835
836@noindent
837which becomes the following when left shifted:
838
839@example
840@group
841;; @r{Decimal @minus{}2}
8421 1111  1111 1111  1111 1111  1111 1110
843@end group
844@end example
845@end defun
846
847@defun ash integer1 count
848@cindex arithmetic shift
849@code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
850to the left @var{count} places, or to the right if @var{count}
851is negative.
852
853@code{ash} gives the same results as @code{lsh} except when
854@var{integer1} and @var{count} are both negative.  In that case,
855@code{ash} puts ones in the empty bit positions on the left, while
856@code{lsh} puts zeros in those bit positions.
857
858Thus, with @code{ash}, shifting the pattern of bits one place to the right
859looks like this:
860
861@example
862@group
863(ash -6 -1) @result{} -3
864;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
8651 1111  1111 1111  1111 1111  1111 1010
866     @result{}
8671 1111  1111 1111  1111 1111  1111 1101
868@end group
869@end example
870
871In contrast, shifting the pattern of bits one place to the right with
872@code{lsh} looks like this:
873
874@example
875@group
876(lsh -6 -1) @result{} 268435453
877;; @r{Decimal @minus{}6 becomes decimal 268,435,453.}
8781 1111  1111 1111  1111 1111  1111 1010
879     @result{}
8800 1111  1111 1111  1111 1111  1111 1101
881@end group
882@end example
883
884Here are other examples:
885
886@c !!! Check if lined up in smallbook format!  XDVI shows problem
887@c     with smallbook but not with regular book! --rjc 16mar92
888@smallexample
889@group
890                   ;  @r{             29-bit binary values}
891
892(lsh 5 2)          ;   5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
893     @result{} 20         ;      =  @r{0 0000  0000 0000  0000 0000  0001 0100}
894@end group
895@group
896(ash 5 2)
897     @result{} 20
898(lsh -5 2)         ;  -5  =  @r{1 1111  1111 1111  1111 1111  1111 1011}
899     @result{} -20        ;      =  @r{1 1111  1111 1111  1111 1111  1110 1100}
900(ash -5 2)
901     @result{} -20
902@end group
903@group
904(lsh 5 -2)         ;   5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
905     @result{} 1          ;      =  @r{0 0000  0000 0000  0000 0000  0000 0001}
906@end group
907@group
908(ash 5 -2)
909     @result{} 1
910@end group
911@group
912(lsh -5 -2)        ;  -5  =  @r{1 1111  1111 1111  1111 1111  1111 1011}
913     @result{} 134217726  ;      =  @r{0 0111  1111 1111  1111 1111  1111 1110}
914@end group
915@group
916(ash -5 -2)        ;  -5  =  @r{1 1111  1111 1111  1111 1111  1111 1011}
917     @result{} -2         ;      =  @r{1 1111  1111 1111  1111 1111  1111 1110}
918@end group
919@end smallexample
920@end defun
921
922@defun logand &rest ints-or-markers
923This function returns the ``logical and'' of the arguments: the
924@var{n}th bit is set in the result if, and only if, the @var{n}th bit is
925set in all the arguments.  (``Set'' means that the value of the bit is 1
926rather than 0.)
927
928For example, using 4-bit binary numbers, the ``logical and'' of 13 and
92912 is 12: 1101 combined with 1100 produces 1100.
930In both the binary numbers, the leftmost two bits are set (i.e., they
931are 1's), so the leftmost two bits of the returned value are set.
932However, for the rightmost two bits, each is zero in at least one of
933the arguments, so the rightmost two bits of the returned value are 0's.
934
935@noindent
936Therefore,
937
938@example
939@group
940(logand 13 12)
941     @result{} 12
942@end group
943@end example
944
945If @code{logand} is not passed any argument, it returns a value of
946@minus{}1.  This number is an identity element for @code{logand}
947because its binary representation consists entirely of ones.  If
948@code{logand} is passed just one argument, it returns that argument.
949
950@smallexample
951@group
952                   ; @r{               29-bit binary values}
953
954(logand 14 13)     ; 14  =  @r{0 0000  0000 0000  0000 0000  0000 1110}
955                   ; 13  =  @r{0 0000  0000 0000  0000 0000  0000 1101}
956     @result{} 12         ; 12  =  @r{0 0000  0000 0000  0000 0000  0000 1100}
957@end group
958
959@group
960(logand 14 13 4)   ; 14  =  @r{0 0000  0000 0000  0000 0000  0000 1110}
961                   ; 13  =  @r{0 0000  0000 0000  0000 0000  0000 1101}
962                   ;  4  =  @r{0 0000  0000 0000  0000 0000  0000 0100}
963     @result{} 4          ;  4  =  @r{0 0000  0000 0000  0000 0000  0000 0100}
964@end group
965
966@group
967(logand)
968     @result{} -1         ; -1  =  @r{1 1111  1111 1111  1111 1111  1111 1111}
969@end group
970@end smallexample
971@end defun
972
973@defun logior &rest ints-or-markers
974This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
975is set in the result if, and only if, the @var{n}th bit is set in at least
976one of the arguments.  If there are no arguments, the result is zero,
977which is an identity element for this operation.  If @code{logior} is
978passed just one argument, it returns that argument.
979
980@smallexample
981@group
982                   ; @r{              29-bit binary values}
983
984(logior 12 5)      ; 12  =  @r{0 0000  0000 0000  0000 0000  0000 1100}
985                   ;  5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
986     @result{} 13         ; 13  =  @r{0 0000  0000 0000  0000 0000  0000 1101}
987@end group
988
989@group
990(logior 12 5 7)    ; 12  =  @r{0 0000  0000 0000  0000 0000  0000 1100}
991                   ;  5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
992                   ;  7  =  @r{0 0000  0000 0000  0000 0000  0000 0111}
993     @result{} 15         ; 15  =  @r{0 0000  0000 0000  0000 0000  0000 1111}
994@end group
995@end smallexample
996@end defun
997
998@defun logxor &rest ints-or-markers
999This function returns the ``exclusive or'' of its arguments: the
1000@var{n}th bit is set in the result if, and only if, the @var{n}th bit is
1001set in an odd number of the arguments.  If there are no arguments, the
1002result is 0, which is an identity element for this operation.  If
1003@code{logxor} is passed just one argument, it returns that argument.
1004
1005@smallexample
1006@group
1007                   ; @r{              29-bit binary values}
1008
1009(logxor 12 5)      ; 12  =  @r{0 0000  0000 0000  0000 0000  0000 1100}
1010                   ;  5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
1011     @result{} 9          ;  9  =  @r{0 0000  0000 0000  0000 0000  0000 1001}
1012@end group
1013
1014@group
1015(logxor 12 5 7)    ; 12  =  @r{0 0000  0000 0000  0000 0000  0000 1100}
1016                   ;  5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
1017                   ;  7  =  @r{0 0000  0000 0000  0000 0000  0000 0111}
1018     @result{} 14         ; 14  =  @r{0 0000  0000 0000  0000 0000  0000 1110}
1019@end group
1020@end smallexample
1021@end defun
1022
1023@defun lognot integer
1024This function returns the logical complement of its argument: the @var{n}th
1025bit is one in the result if, and only if, the @var{n}th bit is zero in
1026@var{integer}, and vice-versa.
1027
1028@example
1029(lognot 5)
1030     @result{} -6
1031;;  5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
1032;; @r{becomes}
1033;; -6  =  @r{1 1111  1111 1111  1111 1111  1111 1010}
1034@end example
1035@end defun
1036
1037@node Math Functions
1038@section Standard Mathematical Functions
1039@cindex transcendental functions
1040@cindex mathematical functions
1041@cindex floating-point functions
1042
1043  These mathematical functions allow integers as well as floating point
1044numbers as arguments.
1045
1046@defun sin arg
1047@defunx cos arg
1048@defunx tan arg
1049These are the ordinary trigonometric functions, with argument measured
1050in radians.
1051@end defun
1052
1053@defun asin arg
1054The value of @code{(asin @var{arg})} is a number between
1055@ifnottex
1056@minus{}pi/2
1057@end ifnottex
1058@tex
1059@math{-\pi/2}
1060@end tex
1061and
1062@ifnottex
1063pi/2
1064@end ifnottex
1065@tex
1066@math{\pi/2}
1067@end tex
1068(inclusive) whose sine is @var{arg}; if, however, @var{arg} is out of
1069range (outside [@minus{}1, 1]), it signals a @code{domain-error} error.
1070@end defun
1071
1072@defun acos arg
1073The value of @code{(acos @var{arg})} is a number between 0 and
1074@ifnottex
1075pi
1076@end ifnottex
1077@tex
1078@math{\pi}
1079@end tex
1080(inclusive) whose cosine is @var{arg}; if, however, @var{arg} is out
1081of range (outside [@minus{}1, 1]), it signals a @code{domain-error} error.
1082@end defun
1083
1084@defun atan y &optional x
1085The value of @code{(atan @var{y})} is a number between
1086@ifnottex
1087@minus{}pi/2
1088@end ifnottex
1089@tex
1090@math{-\pi/2}
1091@end tex
1092and
1093@ifnottex
1094pi/2
1095@end ifnottex
1096@tex
1097@math{\pi/2}
1098@end tex
1099(exclusive) whose tangent is @var{y}.  If the optional second
1100argument @var{x} is given, the value of @code{(atan y x)} is the
1101angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1102@code{X} axis.
1103@end defun
1104
1105@defun exp arg
1106This is the exponential function; it returns
1107@tex
1108@math{e}
1109@end tex
1110@ifnottex
1111@i{e}
1112@end ifnottex
1113to the power @var{arg}.
1114@tex
1115@math{e}
1116@end tex
1117@ifnottex
1118@i{e}
1119@end ifnottex
1120is a fundamental mathematical constant also called the base of natural
1121logarithms.
1122@end defun
1123
1124@defun log arg &optional base
1125This function returns the logarithm of @var{arg}, with base @var{base}.
1126If you don't specify @var{base}, the base
1127@tex
1128@math{e}
1129@end tex
1130@ifnottex
1131@i{e}
1132@end ifnottex
1133is used.  If @var{arg} is negative, it signals a @code{domain-error}
1134error.
1135@end defun
1136
1137@ignore
1138@defun expm1 arg
1139This function returns @code{(1- (exp @var{arg}))}, but it is more
1140accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
1141is close to 1.
1142@end defun
1143
1144@defun log1p arg
1145This function returns @code{(log (1+ @var{arg}))}, but it is more
1146accurate than that when @var{arg} is so small that adding 1 to it would
1147lose accuracy.
1148@end defun
1149@end ignore
1150
1151@defun log10 arg
1152This function returns the logarithm of @var{arg}, with base 10.  If
1153@var{arg} is negative, it signals a @code{domain-error} error.
1154@code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}, at least
1155approximately.
1156@end defun
1157
1158@defun expt x y
1159This function returns @var{x} raised to power @var{y}.  If both
1160arguments are integers and @var{y} is positive, the result is an
1161integer; in this case, overflow causes truncation, so watch out.
1162@end defun
1163
1164@defun sqrt arg
1165This returns the square root of @var{arg}.  If @var{arg} is negative,
1166it signals a @code{domain-error} error.
1167@end defun
1168
1169@node Random Numbers
1170@section Random Numbers
1171@cindex random numbers
1172
1173A deterministic computer program cannot generate true random numbers.
1174For most purposes, @dfn{pseudo-random numbers} suffice.  A series of
1175pseudo-random numbers is generated in a deterministic fashion.  The
1176numbers are not truly random, but they have certain properties that
1177mimic a random series.  For example, all possible values occur equally
1178often in a pseudo-random series.
1179
1180In Emacs, pseudo-random numbers are generated from a ``seed'' number.
1181Starting from any given seed, the @code{random} function always
1182generates the same sequence of numbers.  Emacs always starts with the
1183same seed value, so the sequence of values of @code{random} is actually
1184the same in each Emacs run!  For example, in one operating system, the
1185first call to @code{(random)} after you start Emacs always returns
1186@minus{}1457731, and the second one always returns @minus{}7692030.  This
1187repeatability is helpful for debugging.
1188
1189If you want random numbers that don't always come out the same, execute
1190@code{(random t)}.  This chooses a new seed based on the current time of
1191day and on Emacs's process @acronym{ID} number.
1192
1193@defun random &optional limit
1194This function returns a pseudo-random integer.  Repeated calls return a
1195series of pseudo-random integers.
1196
1197If @var{limit} is a positive integer, the value is chosen to be
1198nonnegative and less than @var{limit}.
1199
1200If @var{limit} is @code{t}, it means to choose a new seed based on the
1201current time of day and on Emacs's process @acronym{ID} number.
1202@c "Emacs'" is incorrect usage!
1203
1204On some machines, any integer representable in Lisp may be the result
1205of @code{random}.  On other machines, the result can never be larger
1206than a certain maximum or less than a certain (negative) minimum.
1207@end defun
1208
1209@ignore
1210   arch-tag: 574e8dd2-d513-4616-9844-c9a27869782e
1211@end ignore
1212