1;;; cl-extra.el --- Common Lisp features, part 2 -*-byte-compile-dynamic: t;-*-
2
3;; Copyright (C) 1993, 2000, 2001, 2002, 2003, 2004,
4;;   2005, 2006, 2007 Free Software Foundation, Inc.
5
6;; Author: Dave Gillespie <daveg@synaptics.com>
7;; Keywords: extensions
8
9;; This file is part of GNU Emacs.
10
11;; GNU Emacs is free software; you can redistribute it and/or modify
12;; it under the terms of the GNU General Public License as published by
13;; the Free Software Foundation; either version 2, or (at your option)
14;; any later version.
15
16;; GNU Emacs is distributed in the hope that it will be useful,
17;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19;; GNU General Public License for more details.
20
21;; You should have received a copy of the GNU General Public License
22;; along with GNU Emacs; see the file COPYING.  If not, write to the
23;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
24;; Boston, MA 02110-1301, USA.
25
26;;; Commentary:
27
28;; These are extensions to Emacs Lisp that provide a degree of
29;; Common Lisp compatibility, beyond what is already built-in
30;; in Emacs Lisp.
31;;
32;; This package was written by Dave Gillespie; it is a complete
33;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
34;;
35;; Bug reports, comments, and suggestions are welcome!
36
37;; This file contains portions of the Common Lisp extensions
38;; package which are autoloaded since they are relatively obscure.
39
40;;; Code:
41
42(require 'cl)
43
44;;; Type coercion.
45
46(defun coerce (x type)
47  "Coerce OBJECT to type TYPE.
48TYPE is a Common Lisp type specifier.
49\n(fn OBJECT TYPE)"
50  (cond ((eq type 'list) (if (listp x) x (append x nil)))
51	((eq type 'vector) (if (vectorp x) x (vconcat x)))
52	((eq type 'string) (if (stringp x) x (concat x)))
53	((eq type 'array) (if (arrayp x) x (vconcat x)))
54	((and (eq type 'character) (stringp x) (= (length x) 1)) (aref x 0))
55	((and (eq type 'character) (symbolp x)) (coerce (symbol-name x) type))
56	((eq type 'float) (float x))
57	((typep x type) x)
58	(t (error "Can't coerce %s to type %s" x type))))
59
60
61;;; Predicates.
62
63(defun equalp (x y)
64  "Return t if two Lisp objects have similar structures and contents.
65This is like `equal', except that it accepts numerically equal
66numbers of different types (float vs. integer), and also compares
67strings case-insensitively."
68  (cond ((eq x y) t)
69	((stringp x)
70	 (and (stringp y) (= (length x) (length y))
71	      (or (string-equal x y)
72		  (string-equal (downcase x) (downcase y)))))   ; lazy but simple!
73	((numberp x)
74	 (and (numberp y) (= x y)))
75	((consp x)
76	 (while (and (consp x) (consp y) (equalp (car x) (car y)))
77	   (setq x (cdr x) y (cdr y)))
78	 (and (not (consp x)) (equalp x y)))
79	((vectorp x)
80	 (and (vectorp y) (= (length x) (length y))
81	      (let ((i (length x)))
82		(while (and (>= (setq i (1- i)) 0)
83			    (equalp (aref x i) (aref y i))))
84		(< i 0))))
85	(t (equal x y))))
86
87
88;;; Control structures.
89
90(defun cl-mapcar-many (cl-func cl-seqs)
91  (if (cdr (cdr cl-seqs))
92      (let* ((cl-res nil)
93	     (cl-n (apply 'min (mapcar 'length cl-seqs)))
94	     (cl-i 0)
95	     (cl-args (copy-sequence cl-seqs))
96	     cl-p1 cl-p2)
97	(setq cl-seqs (copy-sequence cl-seqs))
98	(while (< cl-i cl-n)
99	  (setq cl-p1 cl-seqs cl-p2 cl-args)
100	  (while cl-p1
101	    (setcar cl-p2
102		    (if (consp (car cl-p1))
103			(prog1 (car (car cl-p1))
104			  (setcar cl-p1 (cdr (car cl-p1))))
105		      (aref (car cl-p1) cl-i)))
106	    (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)))
107	  (push (apply cl-func cl-args) cl-res)
108	  (setq cl-i (1+ cl-i)))
109	(nreverse cl-res))
110    (let ((cl-res nil)
111	  (cl-x (car cl-seqs))
112	  (cl-y (nth 1 cl-seqs)))
113      (let ((cl-n (min (length cl-x) (length cl-y)))
114	    (cl-i -1))
115	(while (< (setq cl-i (1+ cl-i)) cl-n)
116	  (push (funcall cl-func
117			    (if (consp cl-x) (pop cl-x) (aref cl-x cl-i))
118			    (if (consp cl-y) (pop cl-y) (aref cl-y cl-i)))
119		   cl-res)))
120      (nreverse cl-res))))
121
122(defun map (cl-type cl-func cl-seq &rest cl-rest)
123  "Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
124TYPE is the sequence type to return.
125\n(fn TYPE FUNCTION SEQUENCE...)"
126  (let ((cl-res (apply 'mapcar* cl-func cl-seq cl-rest)))
127    (and cl-type (coerce cl-res cl-type))))
128
129(defun maplist (cl-func cl-list &rest cl-rest)
130  "Map FUNCTION to each sublist of LIST or LISTs.
131Like `mapcar', except applies to lists and their cdr's rather than to
132the elements themselves.
133\n(fn FUNCTION LIST...)"
134  (if cl-rest
135      (let ((cl-res nil)
136	    (cl-args (cons cl-list (copy-sequence cl-rest)))
137	    cl-p)
138	(while (not (memq nil cl-args))
139	  (push (apply cl-func cl-args) cl-res)
140	  (setq cl-p cl-args)
141	  (while cl-p (setcar cl-p (cdr (pop cl-p)) )))
142	(nreverse cl-res))
143    (let ((cl-res nil))
144      (while cl-list
145	(push (funcall cl-func cl-list) cl-res)
146	(setq cl-list (cdr cl-list)))
147      (nreverse cl-res))))
148
149(defun cl-mapc (cl-func cl-seq &rest cl-rest)
150  "Like `mapcar', but does not accumulate values returned by the function.
151\n(fn FUNCTION SEQUENCE...)"
152  (if cl-rest
153      (progn (apply 'map nil cl-func cl-seq cl-rest)
154	     cl-seq)
155    (mapc cl-func cl-seq)))
156
157(defun mapl (cl-func cl-list &rest cl-rest)
158  "Like `maplist', but does not accumulate values returned by the function.
159\n(fn FUNCTION LIST...)"
160  (if cl-rest
161      (apply 'maplist cl-func cl-list cl-rest)
162    (let ((cl-p cl-list))
163      (while cl-p (funcall cl-func cl-p) (setq cl-p (cdr cl-p)))))
164  cl-list)
165
166(defun mapcan (cl-func cl-seq &rest cl-rest)
167  "Like `mapcar', but nconc's together the values returned by the function.
168\n(fn FUNCTION SEQUENCE...)"
169  (apply 'nconc (apply 'mapcar* cl-func cl-seq cl-rest)))
170
171(defun mapcon (cl-func cl-list &rest cl-rest)
172  "Like `maplist', but nconc's together the values returned by the function.
173\n(fn FUNCTION LIST...)"
174  (apply 'nconc (apply 'maplist cl-func cl-list cl-rest)))
175
176(defun some (cl-pred cl-seq &rest cl-rest)
177  "Return true if PREDICATE is true of any element of SEQ or SEQs.
178If so, return the true (non-nil) value returned by PREDICATE.
179\n(fn PREDICATE SEQ...)"
180  (if (or cl-rest (nlistp cl-seq))
181      (catch 'cl-some
182	(apply 'map nil
183	       (function (lambda (&rest cl-x)
184			   (let ((cl-res (apply cl-pred cl-x)))
185			     (if cl-res (throw 'cl-some cl-res)))))
186	       cl-seq cl-rest) nil)
187    (let ((cl-x nil))
188      (while (and cl-seq (not (setq cl-x (funcall cl-pred (pop cl-seq))))))
189      cl-x)))
190
191(defun every (cl-pred cl-seq &rest cl-rest)
192  "Return true if PREDICATE is true of every element of SEQ or SEQs.
193\n(fn PREDICATE SEQ...)"
194  (if (or cl-rest (nlistp cl-seq))
195      (catch 'cl-every
196	(apply 'map nil
197	       (function (lambda (&rest cl-x)
198			   (or (apply cl-pred cl-x) (throw 'cl-every nil))))
199	       cl-seq cl-rest) t)
200    (while (and cl-seq (funcall cl-pred (car cl-seq)))
201      (setq cl-seq (cdr cl-seq)))
202    (null cl-seq)))
203
204(defun notany (cl-pred cl-seq &rest cl-rest)
205  "Return true if PREDICATE is false of every element of SEQ or SEQs.
206\n(fn PREDICATE SEQ...)"
207  (not (apply 'some cl-pred cl-seq cl-rest)))
208
209(defun notevery (cl-pred cl-seq &rest cl-rest)
210  "Return true if PREDICATE is false of some element of SEQ or SEQs.
211\n(fn PREDICATE SEQ...)"
212  (not (apply 'every cl-pred cl-seq cl-rest)))
213
214;;; Support for `loop'.
215(defalias 'cl-map-keymap 'map-keymap)
216
217(defun cl-map-keymap-recursively (cl-func-rec cl-map &optional cl-base)
218  (or cl-base
219      (setq cl-base (copy-sequence [0])))
220  (map-keymap
221   (function
222    (lambda (cl-key cl-bind)
223      (aset cl-base (1- (length cl-base)) cl-key)
224      (if (keymapp cl-bind)
225	  (cl-map-keymap-recursively
226	   cl-func-rec cl-bind
227	   (vconcat cl-base (list 0)))
228	(funcall cl-func-rec cl-base cl-bind))))
229   cl-map))
230
231(defun cl-map-intervals (cl-func &optional cl-what cl-prop cl-start cl-end)
232  (or cl-what (setq cl-what (current-buffer)))
233  (if (bufferp cl-what)
234      (let (cl-mark cl-mark2 (cl-next t) cl-next2)
235	(with-current-buffer cl-what
236	  (setq cl-mark (copy-marker (or cl-start (point-min))))
237	  (setq cl-mark2 (and cl-end (copy-marker cl-end))))
238	(while (and cl-next (or (not cl-mark2) (< cl-mark cl-mark2)))
239	  (setq cl-next (if cl-prop (next-single-property-change
240				     cl-mark cl-prop cl-what)
241			  (next-property-change cl-mark cl-what))
242		cl-next2 (or cl-next (with-current-buffer cl-what
243				       (point-max))))
244	  (funcall cl-func (prog1 (marker-position cl-mark)
245			     (set-marker cl-mark cl-next2))
246		   (if cl-mark2 (min cl-next2 cl-mark2) cl-next2)))
247	(set-marker cl-mark nil) (if cl-mark2 (set-marker cl-mark2 nil)))
248    (or cl-start (setq cl-start 0))
249    (or cl-end (setq cl-end (length cl-what)))
250    (while (< cl-start cl-end)
251      (let ((cl-next (or (if cl-prop (next-single-property-change
252				      cl-start cl-prop cl-what)
253			   (next-property-change cl-start cl-what))
254			 cl-end)))
255	(funcall cl-func cl-start (min cl-next cl-end))
256	(setq cl-start cl-next)))))
257
258(defun cl-map-overlays (cl-func &optional cl-buffer cl-start cl-end cl-arg)
259  (or cl-buffer (setq cl-buffer (current-buffer)))
260  (if (fboundp 'overlay-lists)
261
262      ;; This is the preferred algorithm, though overlay-lists is undocumented.
263      (let (cl-ovl)
264	(with-current-buffer cl-buffer
265	  (setq cl-ovl (overlay-lists))
266	  (if cl-start (setq cl-start (copy-marker cl-start)))
267	  (if cl-end (setq cl-end (copy-marker cl-end))))
268	(setq cl-ovl (nconc (car cl-ovl) (cdr cl-ovl)))
269	(while (and cl-ovl
270		    (or (not (overlay-start (car cl-ovl)))
271			(and cl-end (>= (overlay-start (car cl-ovl)) cl-end))
272			(and cl-start (<= (overlay-end (car cl-ovl)) cl-start))
273			(not (funcall cl-func (car cl-ovl) cl-arg))))
274	  (setq cl-ovl (cdr cl-ovl)))
275	(if cl-start (set-marker cl-start nil))
276	(if cl-end (set-marker cl-end nil)))
277
278    ;; This alternate algorithm fails to find zero-length overlays.
279    (let ((cl-mark (with-current-buffer cl-buffer
280		     (copy-marker (or cl-start (point-min)))))
281	  (cl-mark2 (and cl-end (with-current-buffer cl-buffer
282				  (copy-marker cl-end))))
283	  cl-pos cl-ovl)
284      (while (save-excursion
285	       (and (setq cl-pos (marker-position cl-mark))
286		    (< cl-pos (or cl-mark2 (point-max)))
287		    (progn
288		      (set-buffer cl-buffer)
289		      (setq cl-ovl (overlays-at cl-pos))
290		      (set-marker cl-mark (next-overlay-change cl-pos)))))
291	(while (and cl-ovl
292		    (or (/= (overlay-start (car cl-ovl)) cl-pos)
293			(not (and (funcall cl-func (car cl-ovl) cl-arg)
294				  (set-marker cl-mark nil)))))
295	  (setq cl-ovl (cdr cl-ovl))))
296      (set-marker cl-mark nil) (if cl-mark2 (set-marker cl-mark2 nil)))))
297
298;;; Support for `setf'.
299(defun cl-set-frame-visible-p (frame val)
300  (cond ((null val) (make-frame-invisible frame))
301	((eq val 'icon) (iconify-frame frame))
302	(t (make-frame-visible frame)))
303  val)
304
305;;; Support for `progv'.
306(defvar cl-progv-save)
307(defun cl-progv-before (syms values)
308  (while syms
309    (push (if (boundp (car syms))
310		 (cons (car syms) (symbol-value (car syms)))
311	       (car syms)) cl-progv-save)
312    (if values
313	(set (pop syms) (pop values))
314      (makunbound (pop syms)))))
315
316(defun cl-progv-after ()
317  (while cl-progv-save
318    (if (consp (car cl-progv-save))
319	(set (car (car cl-progv-save)) (cdr (car cl-progv-save)))
320      (makunbound (car cl-progv-save)))
321    (pop cl-progv-save)))
322
323
324;;; Numbers.
325
326(defun gcd (&rest args)
327  "Return the greatest common divisor of the arguments."
328  (let ((a (abs (or (pop args) 0))))
329    (while args
330      (let ((b (abs (pop args))))
331	(while (> b 0) (setq b (% a (setq a b))))))
332    a))
333
334(defun lcm (&rest args)
335  "Return the least common multiple of the arguments."
336  (if (memq 0 args)
337      0
338    (let ((a (abs (or (pop args) 1))))
339      (while args
340	(let ((b (abs (pop args))))
341	  (setq a (* (/ a (gcd a b)) b))))
342      a)))
343
344(defun isqrt (x)
345  "Return the integer square root of the argument."
346  (if (and (integerp x) (> x 0))
347      (let ((g (cond ((<= x 100) 10) ((<= x 10000) 100)
348		     ((<= x 1000000) 1000) (t x)))
349	    g2)
350	(while (< (setq g2 (/ (+ g (/ x g)) 2)) g)
351	  (setq g g2))
352	g)
353    (if (eq x 0) 0 (signal 'arith-error nil))))
354
355(defun floor* (x &optional y)
356  "Return a list of the floor of X and the fractional part of X.
357With two arguments, return floor and remainder of their quotient."
358  (let ((q (floor x y)))
359    (list q (- x (if y (* y q) q)))))
360
361(defun ceiling* (x &optional y)
362  "Return a list of the ceiling of X and the fractional part of X.
363With two arguments, return ceiling and remainder of their quotient."
364  (let ((res (floor* x y)))
365    (if (= (car (cdr res)) 0) res
366      (list (1+ (car res)) (- (car (cdr res)) (or y 1))))))
367
368(defun truncate* (x &optional y)
369  "Return a list of the integer part of X and the fractional part of X.
370With two arguments, return truncation and remainder of their quotient."
371  (if (eq (>= x 0) (or (null y) (>= y 0)))
372      (floor* x y) (ceiling* x y)))
373
374(defun round* (x &optional y)
375  "Return a list of X rounded to the nearest integer and the remainder.
376With two arguments, return rounding and remainder of their quotient."
377  (if y
378      (if (and (integerp x) (integerp y))
379	  (let* ((hy (/ y 2))
380		 (res (floor* (+ x hy) y)))
381	    (if (and (= (car (cdr res)) 0)
382		     (= (+ hy hy) y)
383		     (/= (% (car res) 2) 0))
384		(list (1- (car res)) hy)
385	      (list (car res) (- (car (cdr res)) hy))))
386	(let ((q (round (/ x y))))
387	  (list q (- x (* q y)))))
388    (if (integerp x) (list x 0)
389      (let ((q (round x)))
390	(list q (- x q))))))
391
392(defun mod* (x y)
393  "The remainder of X divided by Y, with the same sign as Y."
394  (nth 1 (floor* x y)))
395
396(defun rem* (x y)
397  "The remainder of X divided by Y, with the same sign as X."
398  (nth 1 (truncate* x y)))
399
400(defun signum (x)
401  "Return 1 if X is positive, -1 if negative, 0 if zero."
402  (cond ((> x 0) 1) ((< x 0) -1) (t 0)))
403
404
405;; Random numbers.
406
407(defvar *random-state*)
408(defun random* (lim &optional state)
409  "Return a random nonnegative number less than LIM, an integer or float.
410Optional second arg STATE is a random-state object."
411  (or state (setq state *random-state*))
412  ;; Inspired by "ran3" from Numerical Recipes.  Additive congruential method.
413  (let ((vec (aref state 3)))
414    (if (integerp vec)
415	(let ((i 0) (j (- 1357335 (% (abs vec) 1357333))) (k 1) ii)
416	  (aset state 3 (setq vec (make-vector 55 nil)))
417	  (aset vec 0 j)
418	  (while (> (setq i (% (+ i 21) 55)) 0)
419	    (aset vec i (setq j (prog1 k (setq k (- j k))))))
420	  (while (< (setq i (1+ i)) 200) (random* 2 state))))
421    (let* ((i (aset state 1 (% (1+ (aref state 1)) 55)))
422	   (j (aset state 2 (% (1+ (aref state 2)) 55)))
423	   (n (logand 8388607 (aset vec i (- (aref vec i) (aref vec j))))))
424      (if (integerp lim)
425	  (if (<= lim 512) (% n lim)
426	    (if (> lim 8388607) (setq n (+ (lsh n 9) (random* 512 state))))
427	    (let ((mask 1023))
428	      (while (< mask (1- lim)) (setq mask (1+ (+ mask mask))))
429	      (if (< (setq n (logand n mask)) lim) n (random* lim state))))
430	(* (/ n '8388608e0) lim)))))
431
432(defun make-random-state (&optional state)
433  "Return a copy of random-state STATE, or of `*random-state*' if omitted.
434If STATE is t, return a new state object seeded from the time of day."
435  (cond ((null state) (make-random-state *random-state*))
436	((vectorp state) (cl-copy-tree state t))
437	((integerp state) (vector 'cl-random-state-tag -1 30 state))
438	(t (make-random-state (cl-random-time)))))
439
440(defun random-state-p (object)
441  "Return t if OBJECT is a random-state object."
442  (and (vectorp object) (= (length object) 4)
443       (eq (aref object 0) 'cl-random-state-tag)))
444
445
446;; Implementation limits.
447
448(defun cl-finite-do (func a b)
449  (condition-case err
450      (let ((res (funcall func a b)))   ; check for IEEE infinity
451	(and (numberp res) (/= res (/ res 2)) res))
452    (arith-error nil)))
453
454(defvar most-positive-float)
455(defvar most-negative-float)
456(defvar least-positive-float)
457(defvar least-negative-float)
458(defvar least-positive-normalized-float)
459(defvar least-negative-normalized-float)
460(defvar float-epsilon)
461(defvar float-negative-epsilon)
462
463(defun cl-float-limits ()
464  (or most-positive-float (not (numberp '2e1))
465      (let ((x '2e0) y z)
466	;; Find maximum exponent (first two loops are optimizations)
467	(while (cl-finite-do '* x x) (setq x (* x x)))
468	(while (cl-finite-do '* x (/ x 2)) (setq x (* x (/ x 2))))
469	(while (cl-finite-do '+ x x) (setq x (+ x x)))
470	(setq z x y (/ x 2))
471	;; Now fill in 1's in the mantissa.
472	(while (and (cl-finite-do '+ x y) (/= (+ x y) x))
473	  (setq x (+ x y) y (/ y 2)))
474	(setq most-positive-float x
475	      most-negative-float (- x))
476	;; Divide down until mantissa starts rounding.
477	(setq x (/ x z) y (/ 16 z) x (* x y))
478	(while (condition-case err (and (= x (* (/ x 2) 2)) (> (/ y 2) 0))
479		 (arith-error nil))
480	  (setq x (/ x 2) y (/ y 2)))
481	(setq least-positive-normalized-float y
482	      least-negative-normalized-float (- y))
483	;; Divide down until value underflows to zero.
484	(setq x (/ 1 z) y x)
485	(while (condition-case err (> (/ x 2) 0) (arith-error nil))
486	  (setq x (/ x 2)))
487	(setq least-positive-float x
488	      least-negative-float (- x))
489	(setq x '1e0)
490	(while (/= (+ '1e0 x) '1e0) (setq x (/ x 2)))
491	(setq float-epsilon (* x 2))
492	(setq x '1e0)
493	(while (/= (- '1e0 x) '1e0) (setq x (/ x 2)))
494	(setq float-negative-epsilon (* x 2))))
495  nil)
496
497
498;;; Sequence functions.
499
500(defun subseq (seq start &optional end)
501  "Return the subsequence of SEQ from START to END.
502If END is omitted, it defaults to the length of the sequence.
503If START or END is negative, it counts from the end."
504  (if (stringp seq) (substring seq start end)
505    (let (len)
506      (and end (< end 0) (setq end (+ end (setq len (length seq)))))
507      (if (< start 0) (setq start (+ start (or len (setq len (length seq))))))
508      (cond ((listp seq)
509	     (if (> start 0) (setq seq (nthcdr start seq)))
510	     (if end
511		 (let ((res nil))
512		   (while (>= (setq end (1- end)) start)
513		     (push (pop seq) res))
514		   (nreverse res))
515	       (copy-sequence seq)))
516	    (t
517	     (or end (setq end (or len (length seq))))
518	     (let ((res (make-vector (max (- end start) 0) nil))
519		   (i 0))
520	       (while (< start end)
521		 (aset res i (aref seq start))
522		 (setq i (1+ i) start (1+ start)))
523	       res))))))
524
525(defun concatenate (type &rest seqs)
526  "Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
527\n(fn TYPE SEQUENCE...)"
528  (cond ((eq type 'vector) (apply 'vconcat seqs))
529	((eq type 'string) (apply 'concat seqs))
530	((eq type 'list) (apply 'append (append seqs '(nil))))
531	(t (error "Not a sequence type name: %s" type))))
532
533
534;;; List functions.
535
536(defun revappend (x y)
537  "Equivalent to (append (reverse X) Y)."
538  (nconc (reverse x) y))
539
540(defun nreconc (x y)
541  "Equivalent to (nconc (nreverse X) Y)."
542  (nconc (nreverse x) y))
543
544(defun list-length (x)
545  "Return the length of list X.  Return nil if list is circular."
546  (let ((n 0) (fast x) (slow x))
547    (while (and (cdr fast) (not (and (eq fast slow) (> n 0))))
548      (setq n (+ n 2) fast (cdr (cdr fast)) slow (cdr slow)))
549    (if fast (if (cdr fast) nil (1+ n)) n)))
550
551(defun tailp (sublist list)
552  "Return true if SUBLIST is a tail of LIST."
553  (while (and (consp list) (not (eq sublist list)))
554    (setq list (cdr list)))
555  (if (numberp sublist) (equal sublist list) (eq sublist list)))
556
557(defalias 'cl-copy-tree 'copy-tree)
558
559
560;;; Property lists.
561
562(defun get* (sym tag &optional def)    ; See compiler macro in cl-macs.el
563  "Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
564\n(fn SYMBOL PROPNAME &optional DEFAULT)"
565  (or (get sym tag)
566      (and def
567	   (let ((plist (symbol-plist sym)))
568	     (while (and plist (not (eq (car plist) tag)))
569	       (setq plist (cdr (cdr plist))))
570	     (if plist (car (cdr plist)) def)))))
571
572(defun getf (plist tag &optional def)
573  "Search PROPLIST for property PROPNAME; return its value or DEFAULT.
574PROPLIST is a list of the sort returned by `symbol-plist'.
575\n(fn PROPLIST PROPNAME &optional DEFAULT)"
576  (setplist '--cl-getf-symbol-- plist)
577  (or (get '--cl-getf-symbol-- tag)
578      ;; Originally we called get* here,
579      ;; but that fails, because get* has a compiler macro
580      ;; definition that uses getf!
581      (when def
582	(while (and plist (not (eq (car plist) tag)))
583	  (setq plist (cdr (cdr plist))))
584	(if plist (car (cdr plist)) def))))
585
586(defun cl-set-getf (plist tag val)
587  (let ((p plist))
588    (while (and p (not (eq (car p) tag))) (setq p (cdr (cdr p))))
589    (if p (progn (setcar (cdr p) val) plist) (list* tag val plist))))
590
591(defun cl-do-remf (plist tag)
592  (let ((p (cdr plist)))
593    (while (and (cdr p) (not (eq (car (cdr p)) tag))) (setq p (cdr (cdr p))))
594    (and (cdr p) (progn (setcdr p (cdr (cdr (cdr p)))) t))))
595
596(defun cl-remprop (sym tag)
597  "Remove from SYMBOL's plist the property PROPNAME and its value.
598\n(fn SYMBOL PROPNAME)"
599  (let ((plist (symbol-plist sym)))
600    (if (and plist (eq tag (car plist)))
601	(progn (setplist sym (cdr (cdr plist))) t)
602      (cl-do-remf plist tag))))
603(defalias 'remprop 'cl-remprop)
604
605
606
607;;; Hash tables.
608;; This is just kept for compatibility with code byte-compiled by Emacs-20.
609
610;; No idea if this might still be needed.
611(defun cl-not-hash-table (x &optional y &rest z)
612  (signal 'wrong-type-argument (list 'cl-hash-table-p (or y x))))
613
614(defvar cl-builtin-gethash (symbol-function 'gethash))
615(defvar cl-builtin-remhash (symbol-function 'remhash))
616(defvar cl-builtin-clrhash (symbol-function 'clrhash))
617(defvar cl-builtin-maphash (symbol-function 'maphash))
618
619(defalias 'cl-gethash 'gethash)
620(defalias 'cl-puthash 'puthash)
621(defalias 'cl-remhash 'remhash)
622(defalias 'cl-clrhash 'clrhash)
623(defalias 'cl-maphash 'maphash)
624;; These three actually didn't exist in Emacs-20.
625(defalias 'cl-make-hash-table 'make-hash-table)
626(defalias 'cl-hash-table-p 'hash-table-p)
627(defalias 'cl-hash-table-count 'hash-table-count)
628
629;;; Some debugging aids.
630
631(defun cl-prettyprint (form)
632  "Insert a pretty-printed rendition of a Lisp FORM in current buffer."
633  (let ((pt (point)) last)
634    (insert "\n" (prin1-to-string form) "\n")
635    (setq last (point))
636    (goto-char (1+ pt))
637    (while (search-forward "(quote " last t)
638      (delete-backward-char 7)
639      (insert "'")
640      (forward-sexp)
641      (delete-char 1))
642    (goto-char (1+ pt))
643    (cl-do-prettyprint)))
644
645(defun cl-do-prettyprint ()
646  (skip-chars-forward " ")
647  (if (looking-at "(")
648      (let ((skip (or (looking-at "((") (looking-at "(prog")
649		      (looking-at "(unwind-protect ")
650		      (looking-at "(function (")
651		      (looking-at "(cl-block-wrapper ")))
652	    (two (or (looking-at "(defun ") (looking-at "(defmacro ")))
653	    (let (or (looking-at "(let\\*? ") (looking-at "(while ")))
654	    (set (looking-at "(p?set[qf] ")))
655	(if (or skip let
656		(progn
657		  (forward-sexp)
658		  (and (>= (current-column) 78) (progn (backward-sexp) t))))
659	    (let ((nl t))
660	      (forward-char 1)
661	      (cl-do-prettyprint)
662	      (or skip (looking-at ")") (cl-do-prettyprint))
663	      (or (not two) (looking-at ")") (cl-do-prettyprint))
664	      (while (not (looking-at ")"))
665		(if set (setq nl (not nl)))
666		(if nl (insert "\n"))
667		(lisp-indent-line)
668		(cl-do-prettyprint))
669	      (forward-char 1))))
670    (forward-sexp)))
671
672(defvar cl-macroexpand-cmacs nil)
673(defvar cl-closure-vars nil)
674
675(defun cl-macroexpand-all (form &optional env)
676  "Expand all macro calls through a Lisp FORM.
677This also does some trivial optimizations to make the form prettier."
678  (while (or (not (eq form (setq form (macroexpand form env))))
679	     (and cl-macroexpand-cmacs
680		  (not (eq form (setq form (compiler-macroexpand form)))))))
681  (cond ((not (consp form)) form)
682	((memq (car form) '(let let*))
683	 (if (null (nth 1 form))
684	     (cl-macroexpand-all (cons 'progn (cddr form)) env)
685	   (let ((letf nil) (res nil) (lets (cadr form)))
686	     (while lets
687	       (push (if (consp (car lets))
688			    (let ((exp (cl-macroexpand-all (caar lets) env)))
689			      (or (symbolp exp) (setq letf t))
690			      (cons exp (cl-macroexpand-body (cdar lets) env)))
691			  (let ((exp (cl-macroexpand-all (car lets) env)))
692			    (if (symbolp exp) exp
693			      (setq letf t) (list exp nil)))) res)
694	       (setq lets (cdr lets)))
695	     (list* (if letf (if (eq (car form) 'let) 'letf 'letf*) (car form))
696		    (nreverse res) (cl-macroexpand-body (cddr form) env)))))
697	((eq (car form) 'cond)
698	 (cons (car form)
699	       (mapcar (function (lambda (x) (cl-macroexpand-body x env)))
700		       (cdr form))))
701	((eq (car form) 'condition-case)
702	 (list* (car form) (nth 1 form) (cl-macroexpand-all (nth 2 form) env)
703		(mapcar (function
704			 (lambda (x)
705			   (cons (car x) (cl-macroexpand-body (cdr x) env))))
706			(cdddr form))))
707	((memq (car form) '(quote function))
708	 (if (eq (car-safe (nth 1 form)) 'lambda)
709	     (let ((body (cl-macroexpand-body (cddadr form) env)))
710	       (if (and cl-closure-vars (eq (car form) 'function)
711			(cl-expr-contains-any body cl-closure-vars))
712		   (let* ((new (mapcar 'gensym cl-closure-vars))
713			  (sub (pairlis cl-closure-vars new)) (decls nil))
714		     (while (or (stringp (car body))
715				(eq (car-safe (car body)) 'interactive))
716		       (push (list 'quote (pop body)) decls))
717		     (put (car (last cl-closure-vars)) 'used t)
718		     (append
719		      (list 'list '(quote lambda) '(quote (&rest --cl-rest--)))
720		      (sublis sub (nreverse decls))
721		      (list
722		       (list* 'list '(quote apply)
723			      (list 'function
724				    (list* 'lambda
725					   (append new (cadadr form))
726					   (sublis sub body)))
727			      (nconc (mapcar (function
728					      (lambda (x)
729						(list 'list '(quote quote) x)))
730					     cl-closure-vars)
731				     '((quote --cl-rest--)))))))
732		 (list (car form) (list* 'lambda (cadadr form) body))))
733	   (let ((found (assq (cadr form) env)))
734	     (if (and found (ignore-errors
735			      (eq (cadr (caddr found)) 'cl-labels-args)))
736		 (cl-macroexpand-all (cadr (caddr (cadddr found))) env)
737	       form))))
738	((memq (car form) '(defun defmacro))
739	 (list* (car form) (nth 1 form) (cl-macroexpand-body (cddr form) env)))
740	((and (eq (car form) 'progn) (not (cddr form)))
741	 (cl-macroexpand-all (nth 1 form) env))
742	((eq (car form) 'setq)
743	 (let* ((args (cl-macroexpand-body (cdr form) env)) (p args))
744	   (while (and p (symbolp (car p))) (setq p (cddr p)))
745	   (if p (cl-macroexpand-all (cons 'setf args)) (cons 'setq args))))
746        ((consp (car form))
747         (cl-macroexpand-all (list* 'funcall
748                                    (list 'function (car form))
749                                    (cdr form))
750                             env))
751	(t (cons (car form) (cl-macroexpand-body (cdr form) env)))))
752
753(defun cl-macroexpand-body (body &optional env)
754  (mapcar (function (lambda (x) (cl-macroexpand-all x env))) body))
755
756(defun cl-prettyexpand (form &optional full)
757  (message "Expanding...")
758  (let ((cl-macroexpand-cmacs full) (cl-compiling-file full)
759	(byte-compile-macro-environment nil))
760    (setq form (cl-macroexpand-all form
761				   (and (not full) '((block) (eval-when)))))
762    (message "Formatting...")
763    (prog1 (cl-prettyprint form)
764      (message ""))))
765
766
767
768(run-hooks 'cl-extra-load-hook)
769
770;; arch-tag: bcd03437-0871-43fb-a8f1-ad0e0b5427ed
771;;; cl-extra.el ends here
772