1/* linker.c -- BFD linker routines
2   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3   2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4   Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
5
6   This file is part of BFD, the Binary File Descriptor library.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 2 of the License, or
11   (at your option) any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program; if not, write to the Free Software
20   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
21
22#include "bfd.h"
23#include "sysdep.h"
24#include "libbfd.h"
25#include "bfdlink.h"
26#include "genlink.h"
27
28/*
29SECTION
30	Linker Functions
31
32@cindex Linker
33	The linker uses three special entry points in the BFD target
34	vector.  It is not necessary to write special routines for
35	these entry points when creating a new BFD back end, since
36	generic versions are provided.  However, writing them can
37	speed up linking and make it use significantly less runtime
38	memory.
39
40	The first routine creates a hash table used by the other
41	routines.  The second routine adds the symbols from an object
42	file to the hash table.  The third routine takes all the
43	object files and links them together to create the output
44	file.  These routines are designed so that the linker proper
45	does not need to know anything about the symbols in the object
46	files that it is linking.  The linker merely arranges the
47	sections as directed by the linker script and lets BFD handle
48	the details of symbols and relocs.
49
50	The second routine and third routines are passed a pointer to
51	a <<struct bfd_link_info>> structure (defined in
52	<<bfdlink.h>>) which holds information relevant to the link,
53	including the linker hash table (which was created by the
54	first routine) and a set of callback functions to the linker
55	proper.
56
57	The generic linker routines are in <<linker.c>>, and use the
58	header file <<genlink.h>>.  As of this writing, the only back
59	ends which have implemented versions of these routines are
60	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
61	routines are used as examples throughout this section.
62
63@menu
64@* Creating a Linker Hash Table::
65@* Adding Symbols to the Hash Table::
66@* Performing the Final Link::
67@end menu
68
69INODE
70Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71SUBSECTION
72	Creating a linker hash table
73
74@cindex _bfd_link_hash_table_create in target vector
75@cindex target vector (_bfd_link_hash_table_create)
76	The linker routines must create a hash table, which must be
77	derived from <<struct bfd_link_hash_table>> described in
78	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
79	create a derived hash table.  This entry point is called using
80	the target vector of the linker output file.
81
82	The <<_bfd_link_hash_table_create>> entry point must allocate
83	and initialize an instance of the desired hash table.  If the
84	back end does not require any additional information to be
85	stored with the entries in the hash table, the entry point may
86	simply create a <<struct bfd_link_hash_table>>.  Most likely,
87	however, some additional information will be needed.
88
89	For example, with each entry in the hash table the a.out
90	linker keeps the index the symbol has in the final output file
91	(this index number is used so that when doing a relocatable
92	link the symbol index used in the output file can be quickly
93	filled in when copying over a reloc).  The a.out linker code
94	defines the required structures and functions for a hash table
95	derived from <<struct bfd_link_hash_table>>.  The a.out linker
96	hash table is created by the function
97	<<NAME(aout,link_hash_table_create)>>; it simply allocates
98	space for the hash table, initializes it, and returns a
99	pointer to it.
100
101	When writing the linker routines for a new back end, you will
102	generally not know exactly which fields will be required until
103	you have finished.  You should simply create a new hash table
104	which defines no additional fields, and then simply add fields
105	as they become necessary.
106
107INODE
108Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109SUBSECTION
110	Adding symbols to the hash table
111
112@cindex _bfd_link_add_symbols in target vector
113@cindex target vector (_bfd_link_add_symbols)
114	The linker proper will call the <<_bfd_link_add_symbols>>
115	entry point for each object file or archive which is to be
116	linked (typically these are the files named on the command
117	line, but some may also come from the linker script).  The
118	entry point is responsible for examining the file.  For an
119	object file, BFD must add any relevant symbol information to
120	the hash table.  For an archive, BFD must determine which
121	elements of the archive should be used and adding them to the
122	link.
123
124	The a.out version of this entry point is
125	<<NAME(aout,link_add_symbols)>>.
126
127@menu
128@* Differing file formats::
129@* Adding symbols from an object file::
130@* Adding symbols from an archive::
131@end menu
132
133INODE
134Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135SUBSUBSECTION
136	Differing file formats
137
138	Normally all the files involved in a link will be of the same
139	format, but it is also possible to link together different
140	format object files, and the back end must support that.  The
141	<<_bfd_link_add_symbols>> entry point is called via the target
142	vector of the file to be added.  This has an important
143	consequence: the function may not assume that the hash table
144	is the type created by the corresponding
145	<<_bfd_link_hash_table_create>> vector.  All the
146	<<_bfd_link_add_symbols>> function can assume about the hash
147	table is that it is derived from <<struct
148	bfd_link_hash_table>>.
149
150	Sometimes the <<_bfd_link_add_symbols>> function must store
151	some information in the hash table entry to be used by the
152	<<_bfd_final_link>> function.  In such a case the <<creator>>
153	field of the hash table must be checked to make sure that the
154	hash table was created by an object file of the same format.
155
156	The <<_bfd_final_link>> routine must be prepared to handle a
157	hash entry without any extra information added by the
158	<<_bfd_link_add_symbols>> function.  A hash entry without
159	extra information will also occur when the linker script
160	directs the linker to create a symbol.  Note that, regardless
161	of how a hash table entry is added, all the fields will be
162	initialized to some sort of null value by the hash table entry
163	initialization function.
164
165	See <<ecoff_link_add_externals>> for an example of how to
166	check the <<creator>> field before saving information (in this
167	case, the ECOFF external symbol debugging information) in a
168	hash table entry.
169
170INODE
171Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172SUBSUBSECTION
173	Adding symbols from an object file
174
175	When the <<_bfd_link_add_symbols>> routine is passed an object
176	file, it must add all externally visible symbols in that
177	object file to the hash table.  The actual work of adding the
178	symbol to the hash table is normally handled by the function
179	<<_bfd_generic_link_add_one_symbol>>.  The
180	<<_bfd_link_add_symbols>> routine is responsible for reading
181	all the symbols from the object file and passing the correct
182	information to <<_bfd_generic_link_add_one_symbol>>.
183
184	The <<_bfd_link_add_symbols>> routine should not use
185	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
186	providing this routine is to avoid the overhead of converting
187	the symbols into generic <<asymbol>> structures.
188
189@findex _bfd_generic_link_add_one_symbol
190	<<_bfd_generic_link_add_one_symbol>> handles the details of
191	combining common symbols, warning about multiple definitions,
192	and so forth.  It takes arguments which describe the symbol to
193	add, notably symbol flags, a section, and an offset.  The
194	symbol flags include such things as <<BSF_WEAK>> or
195	<<BSF_INDIRECT>>.  The section is a section in the object
196	file, or something like <<bfd_und_section_ptr>> for an undefined
197	symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199	If the <<_bfd_final_link>> routine is also going to need to
200	read the symbol information, the <<_bfd_link_add_symbols>>
201	routine should save it somewhere attached to the object file
202	BFD.  However, the information should only be saved if the
203	<<keep_memory>> field of the <<info>> argument is TRUE, so
204	that the <<-no-keep-memory>> linker switch is effective.
205
206	The a.out function which adds symbols from an object file is
207	<<aout_link_add_object_symbols>>, and most of the interesting
208	work is in <<aout_link_add_symbols>>.  The latter saves
209	pointers to the hash tables entries created by
210	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211	so that the <<_bfd_final_link>> routine does not have to call
212	the hash table lookup routine to locate the entry.
213
214INODE
215Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216SUBSUBSECTION
217	Adding symbols from an archive
218
219	When the <<_bfd_link_add_symbols>> routine is passed an
220	archive, it must look through the symbols defined by the
221	archive and decide which elements of the archive should be
222	included in the link.  For each such element it must call the
223	<<add_archive_element>> linker callback, and it must add the
224	symbols from the object file to the linker hash table.
225
226@findex _bfd_generic_link_add_archive_symbols
227	In most cases the work of looking through the symbols in the
228	archive should be done by the
229	<<_bfd_generic_link_add_archive_symbols>> function.  This
230	function builds a hash table from the archive symbol table and
231	looks through the list of undefined symbols to see which
232	elements should be included.
233	<<_bfd_generic_link_add_archive_symbols>> is passed a function
234	to call to make the final decision about adding an archive
235	element to the link and to do the actual work of adding the
236	symbols to the linker hash table.
237
238	The function passed to
239	<<_bfd_generic_link_add_archive_symbols>> must read the
240	symbols of the archive element and decide whether the archive
241	element should be included in the link.  If the element is to
242	be included, the <<add_archive_element>> linker callback
243	routine must be called with the element as an argument, and
244	the elements symbols must be added to the linker hash table
245	just as though the element had itself been passed to the
246	<<_bfd_link_add_symbols>> function.
247
248	When the a.out <<_bfd_link_add_symbols>> function receives an
249	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250	passing <<aout_link_check_archive_element>> as the function
251	argument. <<aout_link_check_archive_element>> calls
252	<<aout_link_check_ar_symbols>>.  If the latter decides to add
253	the element (an element is only added if it provides a real,
254	non-common, definition for a previously undefined or common
255	symbol) it calls the <<add_archive_element>> callback and then
256	<<aout_link_check_archive_element>> calls
257	<<aout_link_add_symbols>> to actually add the symbols to the
258	linker hash table.
259
260	The ECOFF back end is unusual in that it does not normally
261	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262	archives already contain a hash table of symbols.  The ECOFF
263	back end searches the archive itself to avoid the overhead of
264	creating a new hash table.
265
266INODE
267Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
268SUBSECTION
269	Performing the final link
270
271@cindex _bfd_link_final_link in target vector
272@cindex target vector (_bfd_final_link)
273	When all the input files have been processed, the linker calls
274	the <<_bfd_final_link>> entry point of the output BFD.  This
275	routine is responsible for producing the final output file,
276	which has several aspects.  It must relocate the contents of
277	the input sections and copy the data into the output sections.
278	It must build an output symbol table including any local
279	symbols from the input files and the global symbols from the
280	hash table.  When producing relocatable output, it must
281	modify the input relocs and write them into the output file.
282	There may also be object format dependent work to be done.
283
284	The linker will also call the <<write_object_contents>> entry
285	point when the BFD is closed.  The two entry points must work
286	together in order to produce the correct output file.
287
288	The details of how this works are inevitably dependent upon
289	the specific object file format.  The a.out
290	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
291
292@menu
293@* Information provided by the linker::
294@* Relocating the section contents::
295@* Writing the symbol table::
296@end menu
297
298INODE
299Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
300SUBSUBSECTION
301	Information provided by the linker
302
303	Before the linker calls the <<_bfd_final_link>> entry point,
304	it sets up some data structures for the function to use.
305
306	The <<input_bfds>> field of the <<bfd_link_info>> structure
307	will point to a list of all the input files included in the
308	link.  These files are linked through the <<link_next>> field
309	of the <<bfd>> structure.
310
311	Each section in the output file will have a list of
312	<<link_order>> structures attached to the <<map_head.link_order>>
313	field (the <<link_order>> structure is defined in
314	<<bfdlink.h>>).  These structures describe how to create the
315	contents of the output section in terms of the contents of
316	various input sections, fill constants, and, eventually, other
317	types of information.  They also describe relocs that must be
318	created by the BFD backend, but do not correspond to any input
319	file; this is used to support -Ur, which builds constructors
320	while generating a relocatable object file.
321
322INODE
323Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
324SUBSUBSECTION
325	Relocating the section contents
326
327	The <<_bfd_final_link>> function should look through the
328	<<link_order>> structures attached to each section of the
329	output file.  Each <<link_order>> structure should either be
330	handled specially, or it should be passed to the function
331	<<_bfd_default_link_order>> which will do the right thing
332	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
333
334	For efficiency, a <<link_order>> of type
335	<<bfd_indirect_link_order>> whose associated section belongs
336	to a BFD of the same format as the output BFD must be handled
337	specially.  This type of <<link_order>> describes part of an
338	output section in terms of a section belonging to one of the
339	input files.  The <<_bfd_final_link>> function should read the
340	contents of the section and any associated relocs, apply the
341	relocs to the section contents, and write out the modified
342	section contents.  If performing a relocatable link, the
343	relocs themselves must also be modified and written out.
344
345@findex _bfd_relocate_contents
346@findex _bfd_final_link_relocate
347	The functions <<_bfd_relocate_contents>> and
348	<<_bfd_final_link_relocate>> provide some general support for
349	performing the actual relocations, notably overflow checking.
350	Their arguments include information about the symbol the
351	relocation is against and a <<reloc_howto_type>> argument
352	which describes the relocation to perform.  These functions
353	are defined in <<reloc.c>>.
354
355	The a.out function which handles reading, relocating, and
356	writing section contents is <<aout_link_input_section>>.  The
357	actual relocation is done in <<aout_link_input_section_std>>
358	and <<aout_link_input_section_ext>>.
359
360INODE
361Writing the symbol table, , Relocating the section contents, Performing the Final Link
362SUBSUBSECTION
363	Writing the symbol table
364
365	The <<_bfd_final_link>> function must gather all the symbols
366	in the input files and write them out.  It must also write out
367	all the symbols in the global hash table.  This must be
368	controlled by the <<strip>> and <<discard>> fields of the
369	<<bfd_link_info>> structure.
370
371	The local symbols of the input files will not have been
372	entered into the linker hash table.  The <<_bfd_final_link>>
373	routine must consider each input file and include the symbols
374	in the output file.  It may be convenient to do this when
375	looking through the <<link_order>> structures, or it may be
376	done by stepping through the <<input_bfds>> list.
377
378	The <<_bfd_final_link>> routine must also traverse the global
379	hash table to gather all the externally visible symbols.  It
380	is possible that most of the externally visible symbols may be
381	written out when considering the symbols of each input file,
382	but it is still necessary to traverse the hash table since the
383	linker script may have defined some symbols that are not in
384	any of the input files.
385
386	The <<strip>> field of the <<bfd_link_info>> structure
387	controls which symbols are written out.  The possible values
388	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
389	then the <<keep_hash>> field of the <<bfd_link_info>>
390	structure is a hash table of symbols to keep; each symbol
391	should be looked up in this hash table, and only symbols which
392	are present should be included in the output file.
393
394	If the <<strip>> field of the <<bfd_link_info>> structure
395	permits local symbols to be written out, the <<discard>> field
396	is used to further controls which local symbols are included
397	in the output file.  If the value is <<discard_l>>, then all
398	local symbols which begin with a certain prefix are discarded;
399	this is controlled by the <<bfd_is_local_label_name>> entry point.
400
401	The a.out backend handles symbols by calling
402	<<aout_link_write_symbols>> on each input BFD and then
403	traversing the global hash table with the function
404	<<aout_link_write_other_symbol>>.  It builds a string table
405	while writing out the symbols, which is written to the output
406	file at the end of <<NAME(aout,final_link)>>.
407*/
408
409static bfd_boolean generic_link_add_object_symbols
410  (bfd *, struct bfd_link_info *, bfd_boolean collect);
411static bfd_boolean generic_link_add_symbols
412  (bfd *, struct bfd_link_info *, bfd_boolean);
413static bfd_boolean generic_link_check_archive_element_no_collect
414  (bfd *, struct bfd_link_info *, bfd_boolean *);
415static bfd_boolean generic_link_check_archive_element_collect
416  (bfd *, struct bfd_link_info *, bfd_boolean *);
417static bfd_boolean generic_link_check_archive_element
418  (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
419static bfd_boolean generic_link_add_symbol_list
420  (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
421   bfd_boolean);
422static bfd_boolean generic_add_output_symbol
423  (bfd *, size_t *psymalloc, asymbol *);
424static bfd_boolean default_data_link_order
425  (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
426static bfd_boolean default_indirect_link_order
427  (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
428   bfd_boolean);
429
430/* The link hash table structure is defined in bfdlink.h.  It provides
431   a base hash table which the backend specific hash tables are built
432   upon.  */
433
434/* Routine to create an entry in the link hash table.  */
435
436struct bfd_hash_entry *
437_bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
438			struct bfd_hash_table *table,
439			const char *string)
440{
441  /* Allocate the structure if it has not already been allocated by a
442     subclass.  */
443  if (entry == NULL)
444    {
445      entry = bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
446      if (entry == NULL)
447	return entry;
448    }
449
450  /* Call the allocation method of the superclass.  */
451  entry = bfd_hash_newfunc (entry, table, string);
452  if (entry)
453    {
454      struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
455
456      /* Initialize the local fields.  */
457      h->type = bfd_link_hash_new;
458      memset (&h->u.undef.next, 0,
459	      (sizeof (struct bfd_link_hash_entry)
460	       - offsetof (struct bfd_link_hash_entry, u.undef.next)));
461    }
462
463  return entry;
464}
465
466/* Initialize a link hash table.  The BFD argument is the one
467   responsible for creating this table.  */
468
469bfd_boolean
470_bfd_link_hash_table_init
471  (struct bfd_link_hash_table *table,
472   bfd *abfd,
473   struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
474				      struct bfd_hash_table *,
475				      const char *),
476   unsigned int entsize)
477{
478  table->creator = abfd->xvec;
479  table->undefs = NULL;
480  table->undefs_tail = NULL;
481  table->type = bfd_link_generic_hash_table;
482
483  return bfd_hash_table_init (&table->table, newfunc, entsize);
484}
485
486/* Look up a symbol in a link hash table.  If follow is TRUE, we
487   follow bfd_link_hash_indirect and bfd_link_hash_warning links to
488   the real symbol.  */
489
490struct bfd_link_hash_entry *
491bfd_link_hash_lookup (struct bfd_link_hash_table *table,
492		      const char *string,
493		      bfd_boolean create,
494		      bfd_boolean copy,
495		      bfd_boolean follow)
496{
497  struct bfd_link_hash_entry *ret;
498
499  ret = ((struct bfd_link_hash_entry *)
500	 bfd_hash_lookup (&table->table, string, create, copy));
501
502  if (follow && ret != NULL)
503    {
504      while (ret->type == bfd_link_hash_indirect
505	     || ret->type == bfd_link_hash_warning)
506	ret = ret->u.i.link;
507    }
508
509  return ret;
510}
511
512/* Look up a symbol in the main linker hash table if the symbol might
513   be wrapped.  This should only be used for references to an
514   undefined symbol, not for definitions of a symbol.  */
515
516struct bfd_link_hash_entry *
517bfd_wrapped_link_hash_lookup (bfd *abfd,
518			      struct bfd_link_info *info,
519			      const char *string,
520			      bfd_boolean create,
521			      bfd_boolean copy,
522			      bfd_boolean follow)
523{
524  bfd_size_type amt;
525
526  if (info->wrap_hash != NULL)
527    {
528      const char *l;
529      char prefix = '\0';
530
531      l = string;
532      if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
533	{
534	  prefix = *l;
535	  ++l;
536	}
537
538#undef WRAP
539#define WRAP "__wrap_"
540
541      if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
542	{
543	  char *n;
544	  struct bfd_link_hash_entry *h;
545
546	  /* This symbol is being wrapped.  We want to replace all
547             references to SYM with references to __wrap_SYM.  */
548
549	  amt = strlen (l) + sizeof WRAP + 1;
550	  n = bfd_malloc (amt);
551	  if (n == NULL)
552	    return NULL;
553
554	  n[0] = prefix;
555	  n[1] = '\0';
556	  strcat (n, WRAP);
557	  strcat (n, l);
558	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
559	  free (n);
560	  return h;
561	}
562
563#undef WRAP
564
565#undef  REAL
566#define REAL "__real_"
567
568      if (*l == '_'
569	  && CONST_STRNEQ (l, REAL)
570	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
571			      FALSE, FALSE) != NULL)
572	{
573	  char *n;
574	  struct bfd_link_hash_entry *h;
575
576	  /* This is a reference to __real_SYM, where SYM is being
577             wrapped.  We want to replace all references to __real_SYM
578             with references to SYM.  */
579
580	  amt = strlen (l + sizeof REAL - 1) + 2;
581	  n = bfd_malloc (amt);
582	  if (n == NULL)
583	    return NULL;
584
585	  n[0] = prefix;
586	  n[1] = '\0';
587	  strcat (n, l + sizeof REAL - 1);
588	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
589	  free (n);
590	  return h;
591	}
592
593#undef REAL
594    }
595
596  return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
597}
598
599/* Traverse a generic link hash table.  The only reason this is not a
600   macro is to do better type checking.  This code presumes that an
601   argument passed as a struct bfd_hash_entry * may be caught as a
602   struct bfd_link_hash_entry * with no explicit cast required on the
603   call.  */
604
605void
606bfd_link_hash_traverse
607  (struct bfd_link_hash_table *table,
608   bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
609   void *info)
610{
611  bfd_hash_traverse (&table->table,
612		     (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
613		     info);
614}
615
616/* Add a symbol to the linker hash table undefs list.  */
617
618void
619bfd_link_add_undef (struct bfd_link_hash_table *table,
620		    struct bfd_link_hash_entry *h)
621{
622  BFD_ASSERT (h->u.undef.next == NULL);
623  if (table->undefs_tail != NULL)
624    table->undefs_tail->u.undef.next = h;
625  if (table->undefs == NULL)
626    table->undefs = h;
627  table->undefs_tail = h;
628}
629
630/* The undefs list was designed so that in normal use we don't need to
631   remove entries.  However, if symbols on the list are changed from
632   bfd_link_hash_undefined to either bfd_link_hash_undefweak or
633   bfd_link_hash_new for some reason, then they must be removed from the
634   list.  Failure to do so might result in the linker attempting to add
635   the symbol to the list again at a later stage.  */
636
637void
638bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
639{
640  struct bfd_link_hash_entry **pun;
641
642  pun = &table->undefs;
643  while (*pun != NULL)
644    {
645      struct bfd_link_hash_entry *h = *pun;
646
647      if (h->type == bfd_link_hash_new
648	  || h->type == bfd_link_hash_undefweak)
649	{
650	  *pun = h->u.undef.next;
651	  h->u.undef.next = NULL;
652	  if (h == table->undefs_tail)
653	    {
654	      if (pun == &table->undefs)
655		table->undefs_tail = NULL;
656	      else
657		/* pun points at an u.undef.next field.  Go back to
658		   the start of the link_hash_entry.  */
659		table->undefs_tail = (struct bfd_link_hash_entry *)
660		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
661	      break;
662	    }
663	}
664      else
665	pun = &h->u.undef.next;
666    }
667}
668
669/* Routine to create an entry in a generic link hash table.  */
670
671struct bfd_hash_entry *
672_bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
673				struct bfd_hash_table *table,
674				const char *string)
675{
676  /* Allocate the structure if it has not already been allocated by a
677     subclass.  */
678  if (entry == NULL)
679    {
680      entry =
681	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
682      if (entry == NULL)
683	return entry;
684    }
685
686  /* Call the allocation method of the superclass.  */
687  entry = _bfd_link_hash_newfunc (entry, table, string);
688  if (entry)
689    {
690      struct generic_link_hash_entry *ret;
691
692      /* Set local fields.  */
693      ret = (struct generic_link_hash_entry *) entry;
694      ret->written = FALSE;
695      ret->sym = NULL;
696    }
697
698  return entry;
699}
700
701/* Create a generic link hash table.  */
702
703struct bfd_link_hash_table *
704_bfd_generic_link_hash_table_create (bfd *abfd)
705{
706  struct generic_link_hash_table *ret;
707  bfd_size_type amt = sizeof (struct generic_link_hash_table);
708
709  ret = bfd_malloc (amt);
710  if (ret == NULL)
711    return NULL;
712  if (! _bfd_link_hash_table_init (&ret->root, abfd,
713				   _bfd_generic_link_hash_newfunc,
714				   sizeof (struct generic_link_hash_entry)))
715    {
716      free (ret);
717      return NULL;
718    }
719  return &ret->root;
720}
721
722void
723_bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
724{
725  struct generic_link_hash_table *ret
726    = (struct generic_link_hash_table *) hash;
727
728  bfd_hash_table_free (&ret->root.table);
729  free (ret);
730}
731
732/* Grab the symbols for an object file when doing a generic link.  We
733   store the symbols in the outsymbols field.  We need to keep them
734   around for the entire link to ensure that we only read them once.
735   If we read them multiple times, we might wind up with relocs and
736   the hash table pointing to different instances of the symbol
737   structure.  */
738
739static bfd_boolean
740generic_link_read_symbols (bfd *abfd)
741{
742  if (bfd_get_outsymbols (abfd) == NULL)
743    {
744      long symsize;
745      long symcount;
746
747      symsize = bfd_get_symtab_upper_bound (abfd);
748      if (symsize < 0)
749	return FALSE;
750      bfd_get_outsymbols (abfd) = bfd_alloc (abfd, symsize);
751      if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
752	return FALSE;
753      symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
754      if (symcount < 0)
755	return FALSE;
756      bfd_get_symcount (abfd) = symcount;
757    }
758
759  return TRUE;
760}
761
762/* Generic function to add symbols to from an object file to the
763   global hash table.  This version does not automatically collect
764   constructors by name.  */
765
766bfd_boolean
767_bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
768{
769  return generic_link_add_symbols (abfd, info, FALSE);
770}
771
772/* Generic function to add symbols from an object file to the global
773   hash table.  This version automatically collects constructors by
774   name, as the collect2 program does.  It should be used for any
775   target which does not provide some other mechanism for setting up
776   constructors and destructors; these are approximately those targets
777   for which gcc uses collect2 and do not support stabs.  */
778
779bfd_boolean
780_bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
781{
782  return generic_link_add_symbols (abfd, info, TRUE);
783}
784
785/* Indicate that we are only retrieving symbol values from this
786   section.  We want the symbols to act as though the values in the
787   file are absolute.  */
788
789void
790_bfd_generic_link_just_syms (asection *sec,
791			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
792{
793  sec->output_section = bfd_abs_section_ptr;
794  sec->output_offset = sec->vma;
795}
796
797/* Add symbols from an object file to the global hash table.  */
798
799static bfd_boolean
800generic_link_add_symbols (bfd *abfd,
801			  struct bfd_link_info *info,
802			  bfd_boolean collect)
803{
804  bfd_boolean ret;
805
806  switch (bfd_get_format (abfd))
807    {
808    case bfd_object:
809      ret = generic_link_add_object_symbols (abfd, info, collect);
810      break;
811    case bfd_archive:
812      ret = (_bfd_generic_link_add_archive_symbols
813	     (abfd, info,
814	      (collect
815	       ? generic_link_check_archive_element_collect
816	       : generic_link_check_archive_element_no_collect)));
817      break;
818    default:
819      bfd_set_error (bfd_error_wrong_format);
820      ret = FALSE;
821    }
822
823  return ret;
824}
825
826/* Add symbols from an object file to the global hash table.  */
827
828static bfd_boolean
829generic_link_add_object_symbols (bfd *abfd,
830				 struct bfd_link_info *info,
831				 bfd_boolean collect)
832{
833  bfd_size_type symcount;
834  struct bfd_symbol **outsyms;
835
836  if (! generic_link_read_symbols (abfd))
837    return FALSE;
838  symcount = _bfd_generic_link_get_symcount (abfd);
839  outsyms = _bfd_generic_link_get_symbols (abfd);
840  return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
841}
842
843/* We build a hash table of all symbols defined in an archive.  */
844
845/* An archive symbol may be defined by multiple archive elements.
846   This linked list is used to hold the elements.  */
847
848struct archive_list
849{
850  struct archive_list *next;
851  unsigned int indx;
852};
853
854/* An entry in an archive hash table.  */
855
856struct archive_hash_entry
857{
858  struct bfd_hash_entry root;
859  /* Where the symbol is defined.  */
860  struct archive_list *defs;
861};
862
863/* An archive hash table itself.  */
864
865struct archive_hash_table
866{
867  struct bfd_hash_table table;
868};
869
870/* Create a new entry for an archive hash table.  */
871
872static struct bfd_hash_entry *
873archive_hash_newfunc (struct bfd_hash_entry *entry,
874		      struct bfd_hash_table *table,
875		      const char *string)
876{
877  struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
878
879  /* Allocate the structure if it has not already been allocated by a
880     subclass.  */
881  if (ret == NULL)
882    ret = bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
883  if (ret == NULL)
884    return NULL;
885
886  /* Call the allocation method of the superclass.  */
887  ret = ((struct archive_hash_entry *)
888	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
889
890  if (ret)
891    {
892      /* Initialize the local fields.  */
893      ret->defs = NULL;
894    }
895
896  return &ret->root;
897}
898
899/* Initialize an archive hash table.  */
900
901static bfd_boolean
902archive_hash_table_init
903  (struct archive_hash_table *table,
904   struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
905				      struct bfd_hash_table *,
906				      const char *),
907   unsigned int entsize)
908{
909  return bfd_hash_table_init (&table->table, newfunc, entsize);
910}
911
912/* Look up an entry in an archive hash table.  */
913
914#define archive_hash_lookup(t, string, create, copy) \
915  ((struct archive_hash_entry *) \
916   bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
917
918/* Allocate space in an archive hash table.  */
919
920#define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
921
922/* Free an archive hash table.  */
923
924#define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
925
926/* Generic function to add symbols from an archive file to the global
927   hash file.  This function presumes that the archive symbol table
928   has already been read in (this is normally done by the
929   bfd_check_format entry point).  It looks through the undefined and
930   common symbols and searches the archive symbol table for them.  If
931   it finds an entry, it includes the associated object file in the
932   link.
933
934   The old linker looked through the archive symbol table for
935   undefined symbols.  We do it the other way around, looking through
936   undefined symbols for symbols defined in the archive.  The
937   advantage of the newer scheme is that we only have to look through
938   the list of undefined symbols once, whereas the old method had to
939   re-search the symbol table each time a new object file was added.
940
941   The CHECKFN argument is used to see if an object file should be
942   included.  CHECKFN should set *PNEEDED to TRUE if the object file
943   should be included, and must also call the bfd_link_info
944   add_archive_element callback function and handle adding the symbols
945   to the global hash table.  CHECKFN should only return FALSE if some
946   sort of error occurs.
947
948   For some formats, such as a.out, it is possible to look through an
949   object file but not actually include it in the link.  The
950   archive_pass field in a BFD is used to avoid checking the symbols
951   of an object files too many times.  When an object is included in
952   the link, archive_pass is set to -1.  If an object is scanned but
953   not included, archive_pass is set to the pass number.  The pass
954   number is incremented each time a new object file is included.  The
955   pass number is used because when a new object file is included it
956   may create new undefined symbols which cause a previously examined
957   object file to be included.  */
958
959bfd_boolean
960_bfd_generic_link_add_archive_symbols
961  (bfd *abfd,
962   struct bfd_link_info *info,
963   bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
964{
965  carsym *arsyms;
966  carsym *arsym_end;
967  register carsym *arsym;
968  int pass;
969  struct archive_hash_table arsym_hash;
970  unsigned int indx;
971  struct bfd_link_hash_entry **pundef;
972
973  if (! bfd_has_map (abfd))
974    {
975      /* An empty archive is a special case.  */
976      if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
977	return TRUE;
978      bfd_set_error (bfd_error_no_armap);
979      return FALSE;
980    }
981
982  arsyms = bfd_ardata (abfd)->symdefs;
983  arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
984
985  /* In order to quickly determine whether an symbol is defined in
986     this archive, we build a hash table of the symbols.  */
987  if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
988				 sizeof (struct archive_hash_entry)))
989    return FALSE;
990  for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
991    {
992      struct archive_hash_entry *arh;
993      struct archive_list *l, **pp;
994
995      arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
996      if (arh == NULL)
997	goto error_return;
998      l = ((struct archive_list *)
999	   archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1000      if (l == NULL)
1001	goto error_return;
1002      l->indx = indx;
1003      for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1004	;
1005      *pp = l;
1006      l->next = NULL;
1007    }
1008
1009  /* The archive_pass field in the archive itself is used to
1010     initialize PASS, sine we may search the same archive multiple
1011     times.  */
1012  pass = abfd->archive_pass + 1;
1013
1014  /* New undefined symbols are added to the end of the list, so we
1015     only need to look through it once.  */
1016  pundef = &info->hash->undefs;
1017  while (*pundef != NULL)
1018    {
1019      struct bfd_link_hash_entry *h;
1020      struct archive_hash_entry *arh;
1021      struct archive_list *l;
1022
1023      h = *pundef;
1024
1025      /* When a symbol is defined, it is not necessarily removed from
1026	 the list.  */
1027      if (h->type != bfd_link_hash_undefined
1028	  && h->type != bfd_link_hash_common)
1029	{
1030	  /* Remove this entry from the list, for general cleanliness
1031	     and because we are going to look through the list again
1032	     if we search any more libraries.  We can't remove the
1033	     entry if it is the tail, because that would lose any
1034	     entries we add to the list later on (it would also cause
1035	     us to lose track of whether the symbol has been
1036	     referenced).  */
1037	  if (*pundef != info->hash->undefs_tail)
1038	    *pundef = (*pundef)->u.undef.next;
1039	  else
1040	    pundef = &(*pundef)->u.undef.next;
1041	  continue;
1042	}
1043
1044      /* Look for this symbol in the archive symbol map.  */
1045      arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1046      if (arh == NULL)
1047	{
1048	  /* If we haven't found the exact symbol we're looking for,
1049	     let's look for its import thunk */
1050	  if (info->pei386_auto_import)
1051	    {
1052	      bfd_size_type amt = strlen (h->root.string) + 10;
1053	      char *buf = bfd_malloc (amt);
1054	      if (buf == NULL)
1055		return FALSE;
1056
1057	      sprintf (buf, "__imp_%s", h->root.string);
1058	      arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1059	      free(buf);
1060	    }
1061	  if (arh == NULL)
1062	    {
1063	      pundef = &(*pundef)->u.undef.next;
1064	      continue;
1065	    }
1066	}
1067      /* Look at all the objects which define this symbol.  */
1068      for (l = arh->defs; l != NULL; l = l->next)
1069	{
1070	  bfd *element;
1071	  bfd_boolean needed;
1072
1073	  /* If the symbol has gotten defined along the way, quit.  */
1074	  if (h->type != bfd_link_hash_undefined
1075	      && h->type != bfd_link_hash_common)
1076	    break;
1077
1078	  element = bfd_get_elt_at_index (abfd, l->indx);
1079	  if (element == NULL)
1080	    goto error_return;
1081
1082	  /* If we've already included this element, or if we've
1083	     already checked it on this pass, continue.  */
1084	  if (element->archive_pass == -1
1085	      || element->archive_pass == pass)
1086	    continue;
1087
1088	  /* If we can't figure this element out, just ignore it.  */
1089	  if (! bfd_check_format (element, bfd_object))
1090	    {
1091	      element->archive_pass = -1;
1092	      continue;
1093	    }
1094
1095	  /* CHECKFN will see if this element should be included, and
1096	     go ahead and include it if appropriate.  */
1097	  if (! (*checkfn) (element, info, &needed))
1098	    goto error_return;
1099
1100	  if (! needed)
1101	    element->archive_pass = pass;
1102	  else
1103	    {
1104	      element->archive_pass = -1;
1105
1106	      /* Increment the pass count to show that we may need to
1107		 recheck object files which were already checked.  */
1108	      ++pass;
1109	    }
1110	}
1111
1112      pundef = &(*pundef)->u.undef.next;
1113    }
1114
1115  archive_hash_table_free (&arsym_hash);
1116
1117  /* Save PASS in case we are called again.  */
1118  abfd->archive_pass = pass;
1119
1120  return TRUE;
1121
1122 error_return:
1123  archive_hash_table_free (&arsym_hash);
1124  return FALSE;
1125}
1126
1127/* See if we should include an archive element.  This version is used
1128   when we do not want to automatically collect constructors based on
1129   the symbol name, presumably because we have some other mechanism
1130   for finding them.  */
1131
1132static bfd_boolean
1133generic_link_check_archive_element_no_collect (
1134					       bfd *abfd,
1135					       struct bfd_link_info *info,
1136					       bfd_boolean *pneeded)
1137{
1138  return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1139}
1140
1141/* See if we should include an archive element.  This version is used
1142   when we want to automatically collect constructors based on the
1143   symbol name, as collect2 does.  */
1144
1145static bfd_boolean
1146generic_link_check_archive_element_collect (bfd *abfd,
1147					    struct bfd_link_info *info,
1148					    bfd_boolean *pneeded)
1149{
1150  return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1151}
1152
1153/* See if we should include an archive element.  Optionally collect
1154   constructors.  */
1155
1156static bfd_boolean
1157generic_link_check_archive_element (bfd *abfd,
1158				    struct bfd_link_info *info,
1159				    bfd_boolean *pneeded,
1160				    bfd_boolean collect)
1161{
1162  asymbol **pp, **ppend;
1163
1164  *pneeded = FALSE;
1165
1166  if (! generic_link_read_symbols (abfd))
1167    return FALSE;
1168
1169  pp = _bfd_generic_link_get_symbols (abfd);
1170  ppend = pp + _bfd_generic_link_get_symcount (abfd);
1171  for (; pp < ppend; pp++)
1172    {
1173      asymbol *p;
1174      struct bfd_link_hash_entry *h;
1175
1176      p = *pp;
1177
1178      /* We are only interested in globally visible symbols.  */
1179      if (! bfd_is_com_section (p->section)
1180	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1181	continue;
1182
1183      /* We are only interested if we know something about this
1184	 symbol, and it is undefined or common.  An undefined weak
1185	 symbol (type bfd_link_hash_undefweak) is not considered to be
1186	 a reference when pulling files out of an archive.  See the
1187	 SVR4 ABI, p. 4-27.  */
1188      h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1189				FALSE, TRUE);
1190      if (h == NULL
1191	  || (h->type != bfd_link_hash_undefined
1192	      && h->type != bfd_link_hash_common))
1193	continue;
1194
1195      /* P is a symbol we are looking for.  */
1196
1197      if (! bfd_is_com_section (p->section))
1198	{
1199	  bfd_size_type symcount;
1200	  asymbol **symbols;
1201
1202	  /* This object file defines this symbol, so pull it in.  */
1203	  if (! (*info->callbacks->add_archive_element) (info, abfd,
1204							 bfd_asymbol_name (p)))
1205	    return FALSE;
1206	  symcount = _bfd_generic_link_get_symcount (abfd);
1207	  symbols = _bfd_generic_link_get_symbols (abfd);
1208	  if (! generic_link_add_symbol_list (abfd, info, symcount,
1209					      symbols, collect))
1210	    return FALSE;
1211	  *pneeded = TRUE;
1212	  return TRUE;
1213	}
1214
1215      /* P is a common symbol.  */
1216
1217      if (h->type == bfd_link_hash_undefined)
1218	{
1219	  bfd *symbfd;
1220	  bfd_vma size;
1221	  unsigned int power;
1222
1223	  symbfd = h->u.undef.abfd;
1224	  if (symbfd == NULL)
1225	    {
1226	      /* This symbol was created as undefined from outside
1227		 BFD.  We assume that we should link in the object
1228		 file.  This is for the -u option in the linker.  */
1229	      if (! (*info->callbacks->add_archive_element)
1230		  (info, abfd, bfd_asymbol_name (p)))
1231		return FALSE;
1232	      *pneeded = TRUE;
1233	      return TRUE;
1234	    }
1235
1236	  /* Turn the symbol into a common symbol but do not link in
1237	     the object file.  This is how a.out works.  Object
1238	     formats that require different semantics must implement
1239	     this function differently.  This symbol is already on the
1240	     undefs list.  We add the section to a common section
1241	     attached to symbfd to ensure that it is in a BFD which
1242	     will be linked in.  */
1243	  h->type = bfd_link_hash_common;
1244	  h->u.c.p =
1245	    bfd_hash_allocate (&info->hash->table,
1246			       sizeof (struct bfd_link_hash_common_entry));
1247	  if (h->u.c.p == NULL)
1248	    return FALSE;
1249
1250	  size = bfd_asymbol_value (p);
1251	  h->u.c.size = size;
1252
1253	  power = bfd_log2 (size);
1254	  if (power > 4)
1255	    power = 4;
1256	  h->u.c.p->alignment_power = power;
1257
1258	  if (p->section == bfd_com_section_ptr)
1259	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1260	  else
1261	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1262							  p->section->name);
1263	  h->u.c.p->section->flags = SEC_ALLOC;
1264	}
1265      else
1266	{
1267	  /* Adjust the size of the common symbol if necessary.  This
1268	     is how a.out works.  Object formats that require
1269	     different semantics must implement this function
1270	     differently.  */
1271	  if (bfd_asymbol_value (p) > h->u.c.size)
1272	    h->u.c.size = bfd_asymbol_value (p);
1273	}
1274    }
1275
1276  /* This archive element is not needed.  */
1277  return TRUE;
1278}
1279
1280/* Add the symbols from an object file to the global hash table.  ABFD
1281   is the object file.  INFO is the linker information.  SYMBOL_COUNT
1282   is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1283   is TRUE if constructors should be automatically collected by name
1284   as is done by collect2.  */
1285
1286static bfd_boolean
1287generic_link_add_symbol_list (bfd *abfd,
1288			      struct bfd_link_info *info,
1289			      bfd_size_type symbol_count,
1290			      asymbol **symbols,
1291			      bfd_boolean collect)
1292{
1293  asymbol **pp, **ppend;
1294
1295  pp = symbols;
1296  ppend = symbols + symbol_count;
1297  for (; pp < ppend; pp++)
1298    {
1299      asymbol *p;
1300
1301      p = *pp;
1302
1303      if ((p->flags & (BSF_INDIRECT
1304		       | BSF_WARNING
1305		       | BSF_GLOBAL
1306		       | BSF_CONSTRUCTOR
1307		       | BSF_WEAK)) != 0
1308	  || bfd_is_und_section (bfd_get_section (p))
1309	  || bfd_is_com_section (bfd_get_section (p))
1310	  || bfd_is_ind_section (bfd_get_section (p)))
1311	{
1312	  const char *name;
1313	  const char *string;
1314	  struct generic_link_hash_entry *h;
1315	  struct bfd_link_hash_entry *bh;
1316
1317	  name = bfd_asymbol_name (p);
1318	  if (((p->flags & BSF_INDIRECT) != 0
1319	       || bfd_is_ind_section (p->section))
1320	      && pp + 1 < ppend)
1321	    {
1322	      pp++;
1323	      string = bfd_asymbol_name (*pp);
1324	    }
1325	  else if ((p->flags & BSF_WARNING) != 0
1326		   && pp + 1 < ppend)
1327	    {
1328	      /* The name of P is actually the warning string, and the
1329		 next symbol is the one to warn about.  */
1330	      string = name;
1331	      pp++;
1332	      name = bfd_asymbol_name (*pp);
1333	    }
1334	  else
1335	    string = NULL;
1336
1337	  bh = NULL;
1338	  if (! (_bfd_generic_link_add_one_symbol
1339		 (info, abfd, name, p->flags, bfd_get_section (p),
1340		  p->value, string, FALSE, collect, &bh)))
1341	    return FALSE;
1342	  h = (struct generic_link_hash_entry *) bh;
1343
1344	  /* If this is a constructor symbol, and the linker didn't do
1345             anything with it, then we want to just pass the symbol
1346             through to the output file.  This will happen when
1347             linking with -r.  */
1348	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1349	      && (h == NULL || h->root.type == bfd_link_hash_new))
1350	    {
1351	      p->udata.p = NULL;
1352	      continue;
1353	    }
1354
1355	  /* Save the BFD symbol so that we don't lose any backend
1356	     specific information that may be attached to it.  We only
1357	     want this one if it gives more information than the
1358	     existing one; we don't want to replace a defined symbol
1359	     with an undefined one.  This routine may be called with a
1360	     hash table other than the generic hash table, so we only
1361	     do this if we are certain that the hash table is a
1362	     generic one.  */
1363	  if (info->hash->creator == abfd->xvec)
1364	    {
1365	      if (h->sym == NULL
1366		  || (! bfd_is_und_section (bfd_get_section (p))
1367		      && (! bfd_is_com_section (bfd_get_section (p))
1368			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1369		{
1370		  h->sym = p;
1371		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1372		     reading, and it should go away when the COFF
1373		     linker is switched to the new version.  */
1374		  if (bfd_is_com_section (bfd_get_section (p)))
1375		    p->flags |= BSF_OLD_COMMON;
1376		}
1377	    }
1378
1379	  /* Store a back pointer from the symbol to the hash
1380	     table entry for the benefit of relaxation code until
1381	     it gets rewritten to not use asymbol structures.
1382	     Setting this is also used to check whether these
1383	     symbols were set up by the generic linker.  */
1384	  p->udata.p = h;
1385	}
1386    }
1387
1388  return TRUE;
1389}
1390
1391/* We use a state table to deal with adding symbols from an object
1392   file.  The first index into the state table describes the symbol
1393   from the object file.  The second index into the state table is the
1394   type of the symbol in the hash table.  */
1395
1396/* The symbol from the object file is turned into one of these row
1397   values.  */
1398
1399enum link_row
1400{
1401  UNDEF_ROW,		/* Undefined.  */
1402  UNDEFW_ROW,		/* Weak undefined.  */
1403  DEF_ROW,		/* Defined.  */
1404  DEFW_ROW,		/* Weak defined.  */
1405  COMMON_ROW,		/* Common.  */
1406  INDR_ROW,		/* Indirect.  */
1407  WARN_ROW,		/* Warning.  */
1408  SET_ROW		/* Member of set.  */
1409};
1410
1411/* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1412#undef FAIL
1413
1414/* The actions to take in the state table.  */
1415
1416enum link_action
1417{
1418  FAIL,		/* Abort.  */
1419  UND,		/* Mark symbol undefined.  */
1420  WEAK,		/* Mark symbol weak undefined.  */
1421  DEF,		/* Mark symbol defined.  */
1422  DEFW,		/* Mark symbol weak defined.  */
1423  COM,		/* Mark symbol common.  */
1424  REF,		/* Mark defined symbol referenced.  */
1425  CREF,		/* Possibly warn about common reference to defined symbol.  */
1426  CDEF,		/* Define existing common symbol.  */
1427  NOACT,	/* No action.  */
1428  BIG,		/* Mark symbol common using largest size.  */
1429  MDEF,		/* Multiple definition error.  */
1430  MIND,		/* Multiple indirect symbols.  */
1431  IND,		/* Make indirect symbol.  */
1432  CIND,		/* Make indirect symbol from existing common symbol.  */
1433  SET,		/* Add value to set.  */
1434  MWARN,	/* Make warning symbol.  */
1435  WARN,		/* Issue warning.  */
1436  CWARN,	/* Warn if referenced, else MWARN.  */
1437  CYCLE,	/* Repeat with symbol pointed to.  */
1438  REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1439  WARNC		/* Issue warning and then CYCLE.  */
1440};
1441
1442/* The state table itself.  The first index is a link_row and the
1443   second index is a bfd_link_hash_type.  */
1444
1445static const enum link_action link_action[8][8] =
1446{
1447  /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1448  /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1449  /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1450  /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1451  /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1452  /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1453  /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1454  /* WARN_ROW   */  {MWARN, WARN,  WARN,  CWARN, CWARN, WARN,  CWARN, NOACT },
1455  /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1456};
1457
1458/* Most of the entries in the LINK_ACTION table are straightforward,
1459   but a few are somewhat subtle.
1460
1461   A reference to an indirect symbol (UNDEF_ROW/indr or
1462   UNDEFW_ROW/indr) is counted as a reference both to the indirect
1463   symbol and to the symbol the indirect symbol points to.
1464
1465   A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1466   causes the warning to be issued.
1467
1468   A common definition of an indirect symbol (COMMON_ROW/indr) is
1469   treated as a multiple definition error.  Likewise for an indirect
1470   definition of a common symbol (INDR_ROW/com).
1471
1472   An indirect definition of a warning (INDR_ROW/warn) does not cause
1473   the warning to be issued.
1474
1475   If a warning is created for an indirect symbol (WARN_ROW/indr) no
1476   warning is created for the symbol the indirect symbol points to.
1477
1478   Adding an entry to a set does not count as a reference to a set,
1479   and no warning is issued (SET_ROW/warn).  */
1480
1481/* Return the BFD in which a hash entry has been defined, if known.  */
1482
1483static bfd *
1484hash_entry_bfd (struct bfd_link_hash_entry *h)
1485{
1486  while (h->type == bfd_link_hash_warning)
1487    h = h->u.i.link;
1488  switch (h->type)
1489    {
1490    default:
1491      return NULL;
1492    case bfd_link_hash_undefined:
1493    case bfd_link_hash_undefweak:
1494      return h->u.undef.abfd;
1495    case bfd_link_hash_defined:
1496    case bfd_link_hash_defweak:
1497      return h->u.def.section->owner;
1498    case bfd_link_hash_common:
1499      return h->u.c.p->section->owner;
1500    }
1501  /*NOTREACHED*/
1502}
1503
1504/* Add a symbol to the global hash table.
1505   ABFD is the BFD the symbol comes from.
1506   NAME is the name of the symbol.
1507   FLAGS is the BSF_* bits associated with the symbol.
1508   SECTION is the section in which the symbol is defined; this may be
1509     bfd_und_section_ptr or bfd_com_section_ptr.
1510   VALUE is the value of the symbol, relative to the section.
1511   STRING is used for either an indirect symbol, in which case it is
1512     the name of the symbol to indirect to, or a warning symbol, in
1513     which case it is the warning string.
1514   COPY is TRUE if NAME or STRING must be copied into locally
1515     allocated memory if they need to be saved.
1516   COLLECT is TRUE if we should automatically collect gcc constructor
1517     or destructor names as collect2 does.
1518   HASHP, if not NULL, is a place to store the created hash table
1519     entry; if *HASHP is not NULL, the caller has already looked up
1520     the hash table entry, and stored it in *HASHP.  */
1521
1522bfd_boolean
1523_bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1524				  bfd *abfd,
1525				  const char *name,
1526				  flagword flags,
1527				  asection *section,
1528				  bfd_vma value,
1529				  const char *string,
1530				  bfd_boolean copy,
1531				  bfd_boolean collect,
1532				  struct bfd_link_hash_entry **hashp)
1533{
1534  enum link_row row;
1535  struct bfd_link_hash_entry *h;
1536  bfd_boolean cycle;
1537
1538  if (bfd_is_ind_section (section)
1539      || (flags & BSF_INDIRECT) != 0)
1540    row = INDR_ROW;
1541  else if ((flags & BSF_WARNING) != 0)
1542    row = WARN_ROW;
1543  else if ((flags & BSF_CONSTRUCTOR) != 0)
1544    row = SET_ROW;
1545  else if (bfd_is_und_section (section))
1546    {
1547      if ((flags & BSF_WEAK) != 0)
1548	row = UNDEFW_ROW;
1549      else
1550	row = UNDEF_ROW;
1551    }
1552  else if ((flags & BSF_WEAK) != 0)
1553    row = DEFW_ROW;
1554  else if (bfd_is_com_section (section))
1555    row = COMMON_ROW;
1556  else
1557    row = DEF_ROW;
1558
1559  if (hashp != NULL && *hashp != NULL)
1560    h = *hashp;
1561  else
1562    {
1563      if (row == UNDEF_ROW || row == UNDEFW_ROW)
1564	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1565      else
1566	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1567      if (h == NULL)
1568	{
1569	  if (hashp != NULL)
1570	    *hashp = NULL;
1571	  return FALSE;
1572	}
1573    }
1574
1575  if (info->notice_all
1576      || (info->notice_hash != NULL
1577	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1578    {
1579      if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1580					value))
1581	return FALSE;
1582    }
1583
1584  if (hashp != NULL)
1585    *hashp = h;
1586
1587  do
1588    {
1589      enum link_action action;
1590
1591      cycle = FALSE;
1592      action = link_action[(int) row][(int) h->type];
1593      switch (action)
1594	{
1595	case FAIL:
1596	  abort ();
1597
1598	case NOACT:
1599	  /* Do nothing.  */
1600	  break;
1601
1602	case UND:
1603	  /* Make a new undefined symbol.  */
1604	  h->type = bfd_link_hash_undefined;
1605	  h->u.undef.abfd = abfd;
1606	  bfd_link_add_undef (info->hash, h);
1607	  break;
1608
1609	case WEAK:
1610	  /* Make a new weak undefined symbol.  */
1611	  h->type = bfd_link_hash_undefweak;
1612	  h->u.undef.abfd = abfd;
1613	  h->u.undef.weak = abfd;
1614	  break;
1615
1616	case CDEF:
1617	  /* We have found a definition for a symbol which was
1618	     previously common.  */
1619	  BFD_ASSERT (h->type == bfd_link_hash_common);
1620	  if (! ((*info->callbacks->multiple_common)
1621		 (info, h->root.string,
1622		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1623		  abfd, bfd_link_hash_defined, 0)))
1624	    return FALSE;
1625	  /* Fall through.  */
1626	case DEF:
1627	case DEFW:
1628	  {
1629	    enum bfd_link_hash_type oldtype;
1630
1631	    /* Define a symbol.  */
1632	    oldtype = h->type;
1633	    if (action == DEFW)
1634	      h->type = bfd_link_hash_defweak;
1635	    else
1636	      h->type = bfd_link_hash_defined;
1637	    h->u.def.section = section;
1638	    h->u.def.value = value;
1639
1640	    /* If we have been asked to, we act like collect2 and
1641	       identify all functions that might be global
1642	       constructors and destructors and pass them up in a
1643	       callback.  We only do this for certain object file
1644	       types, since many object file types can handle this
1645	       automatically.  */
1646	    if (collect && name[0] == '_')
1647	      {
1648		const char *s;
1649
1650		/* A constructor or destructor name starts like this:
1651		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1652		   the second are the same character (we accept any
1653		   character there, in case a new object file format
1654		   comes along with even worse naming restrictions).  */
1655
1656#define CONS_PREFIX "GLOBAL_"
1657#define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1658
1659		s = name + 1;
1660		while (*s == '_')
1661		  ++s;
1662		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1663		  {
1664		    char c;
1665
1666		    c = s[CONS_PREFIX_LEN + 1];
1667		    if ((c == 'I' || c == 'D')
1668			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1669		      {
1670			/* If this is a definition of a symbol which
1671                           was previously weakly defined, we are in
1672                           trouble.  We have already added a
1673                           constructor entry for the weak defined
1674                           symbol, and now we are trying to add one
1675                           for the new symbol.  Fortunately, this case
1676                           should never arise in practice.  */
1677			if (oldtype == bfd_link_hash_defweak)
1678			  abort ();
1679
1680			if (! ((*info->callbacks->constructor)
1681			       (info, c == 'I',
1682				h->root.string, abfd, section, value)))
1683			  return FALSE;
1684		      }
1685		  }
1686	      }
1687	  }
1688
1689	  break;
1690
1691	case COM:
1692	  /* We have found a common definition for a symbol.  */
1693	  if (h->type == bfd_link_hash_new)
1694	    bfd_link_add_undef (info->hash, h);
1695	  h->type = bfd_link_hash_common;
1696	  h->u.c.p =
1697	    bfd_hash_allocate (&info->hash->table,
1698			       sizeof (struct bfd_link_hash_common_entry));
1699	  if (h->u.c.p == NULL)
1700	    return FALSE;
1701
1702	  h->u.c.size = value;
1703
1704	  /* Select a default alignment based on the size.  This may
1705             be overridden by the caller.  */
1706	  {
1707	    unsigned int power;
1708
1709	    power = bfd_log2 (value);
1710	    if (power > 4)
1711	      power = 4;
1712	    h->u.c.p->alignment_power = power;
1713	  }
1714
1715	  /* The section of a common symbol is only used if the common
1716             symbol is actually allocated.  It basically provides a
1717             hook for the linker script to decide which output section
1718             the common symbols should be put in.  In most cases, the
1719             section of a common symbol will be bfd_com_section_ptr,
1720             the code here will choose a common symbol section named
1721             "COMMON", and the linker script will contain *(COMMON) in
1722             the appropriate place.  A few targets use separate common
1723             sections for small symbols, and they require special
1724             handling.  */
1725	  if (section == bfd_com_section_ptr)
1726	    {
1727	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1728	      h->u.c.p->section->flags = SEC_ALLOC;
1729	    }
1730	  else if (section->owner != abfd)
1731	    {
1732	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1733							    section->name);
1734	      h->u.c.p->section->flags = SEC_ALLOC;
1735	    }
1736	  else
1737	    h->u.c.p->section = section;
1738	  break;
1739
1740	case REF:
1741	  /* A reference to a defined symbol.  */
1742	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1743	    h->u.undef.next = h;
1744	  break;
1745
1746	case BIG:
1747	  /* We have found a common definition for a symbol which
1748	     already had a common definition.  Use the maximum of the
1749	     two sizes, and use the section required by the larger symbol.  */
1750	  BFD_ASSERT (h->type == bfd_link_hash_common);
1751	  if (! ((*info->callbacks->multiple_common)
1752		 (info, h->root.string,
1753		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1754		  abfd, bfd_link_hash_common, value)))
1755	    return FALSE;
1756	  if (value > h->u.c.size)
1757	    {
1758	      unsigned int power;
1759
1760	      h->u.c.size = value;
1761
1762	      /* Select a default alignment based on the size.  This may
1763		 be overridden by the caller.  */
1764	      power = bfd_log2 (value);
1765	      if (power > 4)
1766		power = 4;
1767	      h->u.c.p->alignment_power = power;
1768
1769	      /* Some systems have special treatment for small commons,
1770		 hence we want to select the section used by the larger
1771		 symbol.  This makes sure the symbol does not go in a
1772		 small common section if it is now too large.  */
1773	      if (section == bfd_com_section_ptr)
1774		{
1775		  h->u.c.p->section
1776		    = bfd_make_section_old_way (abfd, "COMMON");
1777		  h->u.c.p->section->flags = SEC_ALLOC;
1778		}
1779	      else if (section->owner != abfd)
1780		{
1781		  h->u.c.p->section
1782		    = bfd_make_section_old_way (abfd, section->name);
1783		  h->u.c.p->section->flags = SEC_ALLOC;
1784		}
1785	      else
1786		h->u.c.p->section = section;
1787	    }
1788	  break;
1789
1790	case CREF:
1791	  {
1792	    bfd *obfd;
1793
1794	    /* We have found a common definition for a symbol which
1795	       was already defined.  FIXME: It would nice if we could
1796	       report the BFD which defined an indirect symbol, but we
1797	       don't have anywhere to store the information.  */
1798	    if (h->type == bfd_link_hash_defined
1799		|| h->type == bfd_link_hash_defweak)
1800	      obfd = h->u.def.section->owner;
1801	    else
1802	      obfd = NULL;
1803	    if (! ((*info->callbacks->multiple_common)
1804		   (info, h->root.string, obfd, h->type, 0,
1805		    abfd, bfd_link_hash_common, value)))
1806	      return FALSE;
1807	  }
1808	  break;
1809
1810	case MIND:
1811	  /* Multiple indirect symbols.  This is OK if they both point
1812	     to the same symbol.  */
1813	  if (strcmp (h->u.i.link->root.string, string) == 0)
1814	    break;
1815	  /* Fall through.  */
1816	case MDEF:
1817	  /* Handle a multiple definition.  */
1818	  if (!info->allow_multiple_definition)
1819	    {
1820	      asection *msec = NULL;
1821	      bfd_vma mval = 0;
1822
1823	      switch (h->type)
1824		{
1825		case bfd_link_hash_defined:
1826		  msec = h->u.def.section;
1827		  mval = h->u.def.value;
1828		  break;
1829	        case bfd_link_hash_indirect:
1830		  msec = bfd_ind_section_ptr;
1831		  mval = 0;
1832		  break;
1833		default:
1834		  abort ();
1835		}
1836
1837	      /* Ignore a redefinition of an absolute symbol to the
1838		 same value; it's harmless.  */
1839	      if (h->type == bfd_link_hash_defined
1840		  && bfd_is_abs_section (msec)
1841		  && bfd_is_abs_section (section)
1842		  && value == mval)
1843		break;
1844
1845	      if (! ((*info->callbacks->multiple_definition)
1846		     (info, h->root.string, msec->owner, msec, mval,
1847		      abfd, section, value)))
1848		return FALSE;
1849	    }
1850	  break;
1851
1852	case CIND:
1853	  /* Create an indirect symbol from an existing common symbol.  */
1854	  BFD_ASSERT (h->type == bfd_link_hash_common);
1855	  if (! ((*info->callbacks->multiple_common)
1856		 (info, h->root.string,
1857		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1858		  abfd, bfd_link_hash_indirect, 0)))
1859	    return FALSE;
1860	  /* Fall through.  */
1861	case IND:
1862	  /* Create an indirect symbol.  */
1863	  {
1864	    struct bfd_link_hash_entry *inh;
1865
1866	    /* STRING is the name of the symbol we want to indirect
1867	       to.  */
1868	    inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1869						copy, FALSE);
1870	    if (inh == NULL)
1871	      return FALSE;
1872	    if (inh->type == bfd_link_hash_indirect
1873		&& inh->u.i.link == h)
1874	      {
1875		(*_bfd_error_handler)
1876		  (_("%B: indirect symbol `%s' to `%s' is a loop"),
1877		   abfd, name, string);
1878		bfd_set_error (bfd_error_invalid_operation);
1879		return FALSE;
1880	      }
1881	    if (inh->type == bfd_link_hash_new)
1882	      {
1883		inh->type = bfd_link_hash_undefined;
1884		inh->u.undef.abfd = abfd;
1885		bfd_link_add_undef (info->hash, inh);
1886	      }
1887
1888	    /* If the indirect symbol has been referenced, we need to
1889	       push the reference down to the symbol we are
1890	       referencing.  */
1891	    if (h->type != bfd_link_hash_new)
1892	      {
1893		row = UNDEF_ROW;
1894		cycle = TRUE;
1895	      }
1896
1897	    h->type = bfd_link_hash_indirect;
1898	    h->u.i.link = inh;
1899	  }
1900	  break;
1901
1902	case SET:
1903	  /* Add an entry to a set.  */
1904	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1905						abfd, section, value))
1906	    return FALSE;
1907	  break;
1908
1909	case WARNC:
1910	  /* Issue a warning and cycle.  */
1911	  if (h->u.i.warning != NULL)
1912	    {
1913	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1914						 h->root.string, abfd,
1915						 NULL, 0))
1916		return FALSE;
1917	      /* Only issue a warning once.  */
1918	      h->u.i.warning = NULL;
1919	    }
1920	  /* Fall through.  */
1921	case CYCLE:
1922	  /* Try again with the referenced symbol.  */
1923	  h = h->u.i.link;
1924	  cycle = TRUE;
1925	  break;
1926
1927	case REFC:
1928	  /* A reference to an indirect symbol.  */
1929	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1930	    h->u.undef.next = h;
1931	  h = h->u.i.link;
1932	  cycle = TRUE;
1933	  break;
1934
1935	case WARN:
1936	  /* Issue a warning.  */
1937	  if (! (*info->callbacks->warning) (info, string, h->root.string,
1938					     hash_entry_bfd (h), NULL, 0))
1939	    return FALSE;
1940	  break;
1941
1942	case CWARN:
1943	  /* Warn if this symbol has been referenced already,
1944	     otherwise add a warning.  A symbol has been referenced if
1945	     the u.undef.next field is not NULL, or it is the tail of the
1946	     undefined symbol list.  The REF case above helps to
1947	     ensure this.  */
1948	  if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1949	    {
1950	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1951						 hash_entry_bfd (h), NULL, 0))
1952		return FALSE;
1953	      break;
1954	    }
1955	  /* Fall through.  */
1956	case MWARN:
1957	  /* Make a warning symbol.  */
1958	  {
1959	    struct bfd_link_hash_entry *sub;
1960
1961	    /* STRING is the warning to give.  */
1962	    sub = ((struct bfd_link_hash_entry *)
1963		   ((*info->hash->table.newfunc)
1964		    (NULL, &info->hash->table, h->root.string)));
1965	    if (sub == NULL)
1966	      return FALSE;
1967	    *sub = *h;
1968	    sub->type = bfd_link_hash_warning;
1969	    sub->u.i.link = h;
1970	    if (! copy)
1971	      sub->u.i.warning = string;
1972	    else
1973	      {
1974		char *w;
1975		size_t len = strlen (string) + 1;
1976
1977		w = bfd_hash_allocate (&info->hash->table, len);
1978		if (w == NULL)
1979		  return FALSE;
1980		memcpy (w, string, len);
1981		sub->u.i.warning = w;
1982	      }
1983
1984	    bfd_hash_replace (&info->hash->table,
1985			      (struct bfd_hash_entry *) h,
1986			      (struct bfd_hash_entry *) sub);
1987	    if (hashp != NULL)
1988	      *hashp = sub;
1989	  }
1990	  break;
1991	}
1992    }
1993  while (cycle);
1994
1995  return TRUE;
1996}
1997
1998/* Generic final link routine.  */
1999
2000bfd_boolean
2001_bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
2002{
2003  bfd *sub;
2004  asection *o;
2005  struct bfd_link_order *p;
2006  size_t outsymalloc;
2007  struct generic_write_global_symbol_info wginfo;
2008
2009  bfd_get_outsymbols (abfd) = NULL;
2010  bfd_get_symcount (abfd) = 0;
2011  outsymalloc = 0;
2012
2013  /* Mark all sections which will be included in the output file.  */
2014  for (o = abfd->sections; o != NULL; o = o->next)
2015    for (p = o->map_head.link_order; p != NULL; p = p->next)
2016      if (p->type == bfd_indirect_link_order)
2017	p->u.indirect.section->linker_mark = TRUE;
2018
2019  /* Build the output symbol table.  */
2020  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2021    if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2022      return FALSE;
2023
2024  /* Accumulate the global symbols.  */
2025  wginfo.info = info;
2026  wginfo.output_bfd = abfd;
2027  wginfo.psymalloc = &outsymalloc;
2028  _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2029				   _bfd_generic_link_write_global_symbol,
2030				   &wginfo);
2031
2032  /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
2033     shouldn't really need one, since we have SYMCOUNT, but some old
2034     code still expects one.  */
2035  if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2036    return FALSE;
2037
2038  if (info->relocatable)
2039    {
2040      /* Allocate space for the output relocs for each section.  */
2041      for (o = abfd->sections; o != NULL; o = o->next)
2042	{
2043	  o->reloc_count = 0;
2044	  for (p = o->map_head.link_order; p != NULL; p = p->next)
2045	    {
2046	      if (p->type == bfd_section_reloc_link_order
2047		  || p->type == bfd_symbol_reloc_link_order)
2048		++o->reloc_count;
2049	      else if (p->type == bfd_indirect_link_order)
2050		{
2051		  asection *input_section;
2052		  bfd *input_bfd;
2053		  long relsize;
2054		  arelent **relocs;
2055		  asymbol **symbols;
2056		  long reloc_count;
2057
2058		  input_section = p->u.indirect.section;
2059		  input_bfd = input_section->owner;
2060		  relsize = bfd_get_reloc_upper_bound (input_bfd,
2061						       input_section);
2062		  if (relsize < 0)
2063		    return FALSE;
2064		  relocs = bfd_malloc (relsize);
2065		  if (!relocs && relsize != 0)
2066		    return FALSE;
2067		  symbols = _bfd_generic_link_get_symbols (input_bfd);
2068		  reloc_count = bfd_canonicalize_reloc (input_bfd,
2069							input_section,
2070							relocs,
2071							symbols);
2072		  free (relocs);
2073		  if (reloc_count < 0)
2074		    return FALSE;
2075		  BFD_ASSERT ((unsigned long) reloc_count
2076			      == input_section->reloc_count);
2077		  o->reloc_count += reloc_count;
2078		}
2079	    }
2080	  if (o->reloc_count > 0)
2081	    {
2082	      bfd_size_type amt;
2083
2084	      amt = o->reloc_count;
2085	      amt *= sizeof (arelent *);
2086	      o->orelocation = bfd_alloc (abfd, amt);
2087	      if (!o->orelocation)
2088		return FALSE;
2089	      o->flags |= SEC_RELOC;
2090	      /* Reset the count so that it can be used as an index
2091		 when putting in the output relocs.  */
2092	      o->reloc_count = 0;
2093	    }
2094	}
2095    }
2096
2097  /* Handle all the link order information for the sections.  */
2098  for (o = abfd->sections; o != NULL; o = o->next)
2099    {
2100      for (p = o->map_head.link_order; p != NULL; p = p->next)
2101	{
2102	  switch (p->type)
2103	    {
2104	    case bfd_section_reloc_link_order:
2105	    case bfd_symbol_reloc_link_order:
2106	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2107		return FALSE;
2108	      break;
2109	    case bfd_indirect_link_order:
2110	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2111		return FALSE;
2112	      break;
2113	    default:
2114	      if (! _bfd_default_link_order (abfd, info, o, p))
2115		return FALSE;
2116	      break;
2117	    }
2118	}
2119    }
2120
2121  return TRUE;
2122}
2123
2124/* Add an output symbol to the output BFD.  */
2125
2126static bfd_boolean
2127generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2128{
2129  if (bfd_get_symcount (output_bfd) >= *psymalloc)
2130    {
2131      asymbol **newsyms;
2132      bfd_size_type amt;
2133
2134      if (*psymalloc == 0)
2135	*psymalloc = 124;
2136      else
2137	*psymalloc *= 2;
2138      amt = *psymalloc;
2139      amt *= sizeof (asymbol *);
2140      newsyms = bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2141      if (newsyms == NULL)
2142	return FALSE;
2143      bfd_get_outsymbols (output_bfd) = newsyms;
2144    }
2145
2146  bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2147  if (sym != NULL)
2148    ++ bfd_get_symcount (output_bfd);
2149
2150  return TRUE;
2151}
2152
2153/* Handle the symbols for an input BFD.  */
2154
2155bfd_boolean
2156_bfd_generic_link_output_symbols (bfd *output_bfd,
2157				  bfd *input_bfd,
2158				  struct bfd_link_info *info,
2159				  size_t *psymalloc)
2160{
2161  asymbol **sym_ptr;
2162  asymbol **sym_end;
2163
2164  if (! generic_link_read_symbols (input_bfd))
2165    return FALSE;
2166
2167  /* Create a filename symbol if we are supposed to.  */
2168  if (info->create_object_symbols_section != NULL)
2169    {
2170      asection *sec;
2171
2172      for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2173	{
2174	  if (sec->output_section == info->create_object_symbols_section)
2175	    {
2176	      asymbol *newsym;
2177
2178	      newsym = bfd_make_empty_symbol (input_bfd);
2179	      if (!newsym)
2180		return FALSE;
2181	      newsym->name = input_bfd->filename;
2182	      newsym->value = 0;
2183	      newsym->flags = BSF_LOCAL | BSF_FILE;
2184	      newsym->section = sec;
2185
2186	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2187					       newsym))
2188		return FALSE;
2189
2190	      break;
2191	    }
2192	}
2193    }
2194
2195  /* Adjust the values of the globally visible symbols, and write out
2196     local symbols.  */
2197  sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2198  sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2199  for (; sym_ptr < sym_end; sym_ptr++)
2200    {
2201      asymbol *sym;
2202      struct generic_link_hash_entry *h;
2203      bfd_boolean output;
2204
2205      h = NULL;
2206      sym = *sym_ptr;
2207      if ((sym->flags & (BSF_INDIRECT
2208			 | BSF_WARNING
2209			 | BSF_GLOBAL
2210			 | BSF_CONSTRUCTOR
2211			 | BSF_WEAK)) != 0
2212	  || bfd_is_und_section (bfd_get_section (sym))
2213	  || bfd_is_com_section (bfd_get_section (sym))
2214	  || bfd_is_ind_section (bfd_get_section (sym)))
2215	{
2216	  if (sym->udata.p != NULL)
2217	    h = sym->udata.p;
2218	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2219	    {
2220	      /* This case normally means that the main linker code
2221                 deliberately ignored this constructor symbol.  We
2222                 should just pass it through.  This will screw up if
2223                 the constructor symbol is from a different,
2224                 non-generic, object file format, but the case will
2225                 only arise when linking with -r, which will probably
2226                 fail anyhow, since there will be no way to represent
2227                 the relocs in the output format being used.  */
2228	      h = NULL;
2229	    }
2230	  else if (bfd_is_und_section (bfd_get_section (sym)))
2231	    h = ((struct generic_link_hash_entry *)
2232		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2233					       bfd_asymbol_name (sym),
2234					       FALSE, FALSE, TRUE));
2235	  else
2236	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2237					       bfd_asymbol_name (sym),
2238					       FALSE, FALSE, TRUE);
2239
2240	  if (h != NULL)
2241	    {
2242	      /* Force all references to this symbol to point to
2243		 the same area in memory.  It is possible that
2244		 this routine will be called with a hash table
2245		 other than a generic hash table, so we double
2246		 check that.  */
2247	      if (info->hash->creator == input_bfd->xvec)
2248		{
2249		  if (h->sym != NULL)
2250		    *sym_ptr = sym = h->sym;
2251		}
2252
2253	      switch (h->root.type)
2254		{
2255		default:
2256		case bfd_link_hash_new:
2257		  abort ();
2258		case bfd_link_hash_undefined:
2259		  break;
2260		case bfd_link_hash_undefweak:
2261		  sym->flags |= BSF_WEAK;
2262		  break;
2263		case bfd_link_hash_indirect:
2264		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2265		  /* fall through */
2266		case bfd_link_hash_defined:
2267		  sym->flags |= BSF_GLOBAL;
2268		  sym->flags &=~ BSF_CONSTRUCTOR;
2269		  sym->value = h->root.u.def.value;
2270		  sym->section = h->root.u.def.section;
2271		  break;
2272		case bfd_link_hash_defweak:
2273		  sym->flags |= BSF_WEAK;
2274		  sym->flags &=~ BSF_CONSTRUCTOR;
2275		  sym->value = h->root.u.def.value;
2276		  sym->section = h->root.u.def.section;
2277		  break;
2278		case bfd_link_hash_common:
2279		  sym->value = h->root.u.c.size;
2280		  sym->flags |= BSF_GLOBAL;
2281		  if (! bfd_is_com_section (sym->section))
2282		    {
2283		      BFD_ASSERT (bfd_is_und_section (sym->section));
2284		      sym->section = bfd_com_section_ptr;
2285		    }
2286		  /* We do not set the section of the symbol to
2287		     h->root.u.c.p->section.  That value was saved so
2288		     that we would know where to allocate the symbol
2289		     if it was defined.  In this case the type is
2290		     still bfd_link_hash_common, so we did not define
2291		     it, so we do not want to use that section.  */
2292		  break;
2293		}
2294	    }
2295	}
2296
2297      /* This switch is straight from the old code in
2298	 write_file_locals in ldsym.c.  */
2299      if (info->strip == strip_all
2300	  || (info->strip == strip_some
2301	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2302				  FALSE, FALSE) == NULL))
2303	output = FALSE;
2304      else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2305	{
2306	  /* If this symbol is marked as occurring now, rather
2307	     than at the end, output it now.  This is used for
2308	     COFF C_EXT FCN symbols.  FIXME: There must be a
2309	     better way.  */
2310	  if (bfd_asymbol_bfd (sym) == input_bfd
2311	      && (sym->flags & BSF_NOT_AT_END) != 0)
2312	    output = TRUE;
2313	  else
2314	    output = FALSE;
2315	}
2316      else if (bfd_is_ind_section (sym->section))
2317	output = FALSE;
2318      else if ((sym->flags & BSF_DEBUGGING) != 0)
2319	{
2320	  if (info->strip == strip_none)
2321	    output = TRUE;
2322	  else
2323	    output = FALSE;
2324	}
2325      else if (bfd_is_und_section (sym->section)
2326	       || bfd_is_com_section (sym->section))
2327	output = FALSE;
2328      else if ((sym->flags & BSF_LOCAL) != 0)
2329	{
2330	  if ((sym->flags & BSF_WARNING) != 0)
2331	    output = FALSE;
2332	  else
2333	    {
2334	      switch (info->discard)
2335		{
2336		default:
2337		case discard_all:
2338		  output = FALSE;
2339		  break;
2340		case discard_sec_merge:
2341		  output = TRUE;
2342		  if (info->relocatable
2343		      || ! (sym->section->flags & SEC_MERGE))
2344		    break;
2345		  /* FALLTHROUGH */
2346		case discard_l:
2347		  if (bfd_is_local_label (input_bfd, sym))
2348		    output = FALSE;
2349		  else
2350		    output = TRUE;
2351		  break;
2352		case discard_none:
2353		  output = TRUE;
2354		  break;
2355		}
2356	    }
2357	}
2358      else if ((sym->flags & BSF_CONSTRUCTOR))
2359	{
2360	  if (info->strip != strip_all)
2361	    output = TRUE;
2362	  else
2363	    output = FALSE;
2364	}
2365      else
2366	abort ();
2367
2368      /* If this symbol is in a section which is not being included
2369	 in the output file, then we don't want to output the
2370	 symbol.  */
2371      if (!bfd_is_abs_section (sym->section)
2372	  && bfd_section_removed_from_list (output_bfd,
2373					    sym->section->output_section))
2374	output = FALSE;
2375
2376      if (output)
2377	{
2378	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2379	    return FALSE;
2380	  if (h != NULL)
2381	    h->written = TRUE;
2382	}
2383    }
2384
2385  return TRUE;
2386}
2387
2388/* Set the section and value of a generic BFD symbol based on a linker
2389   hash table entry.  */
2390
2391static void
2392set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2393{
2394  switch (h->type)
2395    {
2396    default:
2397      abort ();
2398      break;
2399    case bfd_link_hash_new:
2400      /* This can happen when a constructor symbol is seen but we are
2401         not building constructors.  */
2402      if (sym->section != NULL)
2403	{
2404	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2405	}
2406      else
2407	{
2408	  sym->flags |= BSF_CONSTRUCTOR;
2409	  sym->section = bfd_abs_section_ptr;
2410	  sym->value = 0;
2411	}
2412      break;
2413    case bfd_link_hash_undefined:
2414      sym->section = bfd_und_section_ptr;
2415      sym->value = 0;
2416      break;
2417    case bfd_link_hash_undefweak:
2418      sym->section = bfd_und_section_ptr;
2419      sym->value = 0;
2420      sym->flags |= BSF_WEAK;
2421      break;
2422    case bfd_link_hash_defined:
2423      sym->section = h->u.def.section;
2424      sym->value = h->u.def.value;
2425      break;
2426    case bfd_link_hash_defweak:
2427      sym->flags |= BSF_WEAK;
2428      sym->section = h->u.def.section;
2429      sym->value = h->u.def.value;
2430      break;
2431    case bfd_link_hash_common:
2432      sym->value = h->u.c.size;
2433      if (sym->section == NULL)
2434	sym->section = bfd_com_section_ptr;
2435      else if (! bfd_is_com_section (sym->section))
2436	{
2437	  BFD_ASSERT (bfd_is_und_section (sym->section));
2438	  sym->section = bfd_com_section_ptr;
2439	}
2440      /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2441      break;
2442    case bfd_link_hash_indirect:
2443    case bfd_link_hash_warning:
2444      /* FIXME: What should we do here?  */
2445      break;
2446    }
2447}
2448
2449/* Write out a global symbol, if it hasn't already been written out.
2450   This is called for each symbol in the hash table.  */
2451
2452bfd_boolean
2453_bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2454				       void *data)
2455{
2456  struct generic_write_global_symbol_info *wginfo = data;
2457  asymbol *sym;
2458
2459  if (h->root.type == bfd_link_hash_warning)
2460    h = (struct generic_link_hash_entry *) h->root.u.i.link;
2461
2462  if (h->written)
2463    return TRUE;
2464
2465  h->written = TRUE;
2466
2467  if (wginfo->info->strip == strip_all
2468      || (wginfo->info->strip == strip_some
2469	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2470			      FALSE, FALSE) == NULL))
2471    return TRUE;
2472
2473  if (h->sym != NULL)
2474    sym = h->sym;
2475  else
2476    {
2477      sym = bfd_make_empty_symbol (wginfo->output_bfd);
2478      if (!sym)
2479	return FALSE;
2480      sym->name = h->root.root.string;
2481      sym->flags = 0;
2482    }
2483
2484  set_symbol_from_hash (sym, &h->root);
2485
2486  sym->flags |= BSF_GLOBAL;
2487
2488  if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2489				   sym))
2490    {
2491      /* FIXME: No way to return failure.  */
2492      abort ();
2493    }
2494
2495  return TRUE;
2496}
2497
2498/* Create a relocation.  */
2499
2500bfd_boolean
2501_bfd_generic_reloc_link_order (bfd *abfd,
2502			       struct bfd_link_info *info,
2503			       asection *sec,
2504			       struct bfd_link_order *link_order)
2505{
2506  arelent *r;
2507
2508  if (! info->relocatable)
2509    abort ();
2510  if (sec->orelocation == NULL)
2511    abort ();
2512
2513  r = bfd_alloc (abfd, sizeof (arelent));
2514  if (r == NULL)
2515    return FALSE;
2516
2517  r->address = link_order->offset;
2518  r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2519  if (r->howto == 0)
2520    {
2521      bfd_set_error (bfd_error_bad_value);
2522      return FALSE;
2523    }
2524
2525  /* Get the symbol to use for the relocation.  */
2526  if (link_order->type == bfd_section_reloc_link_order)
2527    r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2528  else
2529    {
2530      struct generic_link_hash_entry *h;
2531
2532      h = ((struct generic_link_hash_entry *)
2533	   bfd_wrapped_link_hash_lookup (abfd, info,
2534					 link_order->u.reloc.p->u.name,
2535					 FALSE, FALSE, TRUE));
2536      if (h == NULL
2537	  || ! h->written)
2538	{
2539	  if (! ((*info->callbacks->unattached_reloc)
2540		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2541	    return FALSE;
2542	  bfd_set_error (bfd_error_bad_value);
2543	  return FALSE;
2544	}
2545      r->sym_ptr_ptr = &h->sym;
2546    }
2547
2548  /* If this is an inplace reloc, write the addend to the object file.
2549     Otherwise, store it in the reloc addend.  */
2550  if (! r->howto->partial_inplace)
2551    r->addend = link_order->u.reloc.p->addend;
2552  else
2553    {
2554      bfd_size_type size;
2555      bfd_reloc_status_type rstat;
2556      bfd_byte *buf;
2557      bfd_boolean ok;
2558      file_ptr loc;
2559
2560      size = bfd_get_reloc_size (r->howto);
2561      buf = bfd_zmalloc (size);
2562      if (buf == NULL)
2563	return FALSE;
2564      rstat = _bfd_relocate_contents (r->howto, abfd,
2565				      (bfd_vma) link_order->u.reloc.p->addend,
2566				      buf);
2567      switch (rstat)
2568	{
2569	case bfd_reloc_ok:
2570	  break;
2571	default:
2572	case bfd_reloc_outofrange:
2573	  abort ();
2574	case bfd_reloc_overflow:
2575	  if (! ((*info->callbacks->reloc_overflow)
2576		 (info, NULL,
2577		  (link_order->type == bfd_section_reloc_link_order
2578		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2579		   : link_order->u.reloc.p->u.name),
2580		  r->howto->name, link_order->u.reloc.p->addend,
2581		  NULL, NULL, 0)))
2582	    {
2583	      free (buf);
2584	      return FALSE;
2585	    }
2586	  break;
2587	}
2588      loc = link_order->offset * bfd_octets_per_byte (abfd);
2589      ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2590      free (buf);
2591      if (! ok)
2592	return FALSE;
2593
2594      r->addend = 0;
2595    }
2596
2597  sec->orelocation[sec->reloc_count] = r;
2598  ++sec->reloc_count;
2599
2600  return TRUE;
2601}
2602
2603/* Allocate a new link_order for a section.  */
2604
2605struct bfd_link_order *
2606bfd_new_link_order (bfd *abfd, asection *section)
2607{
2608  bfd_size_type amt = sizeof (struct bfd_link_order);
2609  struct bfd_link_order *new;
2610
2611  new = bfd_zalloc (abfd, amt);
2612  if (!new)
2613    return NULL;
2614
2615  new->type = bfd_undefined_link_order;
2616
2617  if (section->map_tail.link_order != NULL)
2618    section->map_tail.link_order->next = new;
2619  else
2620    section->map_head.link_order = new;
2621  section->map_tail.link_order = new;
2622
2623  return new;
2624}
2625
2626/* Default link order processing routine.  Note that we can not handle
2627   the reloc_link_order types here, since they depend upon the details
2628   of how the particular backends generates relocs.  */
2629
2630bfd_boolean
2631_bfd_default_link_order (bfd *abfd,
2632			 struct bfd_link_info *info,
2633			 asection *sec,
2634			 struct bfd_link_order *link_order)
2635{
2636  switch (link_order->type)
2637    {
2638    case bfd_undefined_link_order:
2639    case bfd_section_reloc_link_order:
2640    case bfd_symbol_reloc_link_order:
2641    default:
2642      abort ();
2643    case bfd_indirect_link_order:
2644      return default_indirect_link_order (abfd, info, sec, link_order,
2645					  FALSE);
2646    case bfd_data_link_order:
2647      return default_data_link_order (abfd, info, sec, link_order);
2648    }
2649}
2650
2651/* Default routine to handle a bfd_data_link_order.  */
2652
2653static bfd_boolean
2654default_data_link_order (bfd *abfd,
2655			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2656			 asection *sec,
2657			 struct bfd_link_order *link_order)
2658{
2659  bfd_size_type size;
2660  size_t fill_size;
2661  bfd_byte *fill;
2662  file_ptr loc;
2663  bfd_boolean result;
2664
2665  BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2666
2667  size = link_order->size;
2668  if (size == 0)
2669    return TRUE;
2670
2671  fill = link_order->u.data.contents;
2672  fill_size = link_order->u.data.size;
2673  if (fill_size != 0 && fill_size < size)
2674    {
2675      bfd_byte *p;
2676      fill = bfd_malloc (size);
2677      if (fill == NULL)
2678	return FALSE;
2679      p = fill;
2680      if (fill_size == 1)
2681	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2682      else
2683	{
2684	  do
2685	    {
2686	      memcpy (p, link_order->u.data.contents, fill_size);
2687	      p += fill_size;
2688	      size -= fill_size;
2689	    }
2690	  while (size >= fill_size);
2691	  if (size != 0)
2692	    memcpy (p, link_order->u.data.contents, (size_t) size);
2693	  size = link_order->size;
2694	}
2695    }
2696
2697  loc = link_order->offset * bfd_octets_per_byte (abfd);
2698  result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2699
2700  if (fill != link_order->u.data.contents)
2701    free (fill);
2702  return result;
2703}
2704
2705/* Default routine to handle a bfd_indirect_link_order.  */
2706
2707static bfd_boolean
2708default_indirect_link_order (bfd *output_bfd,
2709			     struct bfd_link_info *info,
2710			     asection *output_section,
2711			     struct bfd_link_order *link_order,
2712			     bfd_boolean generic_linker)
2713{
2714  asection *input_section;
2715  bfd *input_bfd;
2716  bfd_byte *contents = NULL;
2717  bfd_byte *new_contents;
2718  bfd_size_type sec_size;
2719  file_ptr loc;
2720
2721  BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2722
2723  input_section = link_order->u.indirect.section;
2724  input_bfd = input_section->owner;
2725  if (input_section->size == 0)
2726    return TRUE;
2727
2728  BFD_ASSERT (input_section->output_section == output_section);
2729  BFD_ASSERT (input_section->output_offset == link_order->offset);
2730  BFD_ASSERT (input_section->size == link_order->size);
2731
2732  if (info->relocatable
2733      && input_section->reloc_count > 0
2734      && output_section->orelocation == NULL)
2735    {
2736      /* Space has not been allocated for the output relocations.
2737	 This can happen when we are called by a specific backend
2738	 because somebody is attempting to link together different
2739	 types of object files.  Handling this case correctly is
2740	 difficult, and sometimes impossible.  */
2741      (*_bfd_error_handler)
2742	(_("Attempt to do relocatable link with %s input and %s output"),
2743	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2744      bfd_set_error (bfd_error_wrong_format);
2745      return FALSE;
2746    }
2747
2748  if (! generic_linker)
2749    {
2750      asymbol **sympp;
2751      asymbol **symppend;
2752
2753      /* Get the canonical symbols.  The generic linker will always
2754	 have retrieved them by this point, but we are being called by
2755	 a specific linker, presumably because we are linking
2756	 different types of object files together.  */
2757      if (! generic_link_read_symbols (input_bfd))
2758	return FALSE;
2759
2760      /* Since we have been called by a specific linker, rather than
2761	 the generic linker, the values of the symbols will not be
2762	 right.  They will be the values as seen in the input file,
2763	 not the values of the final link.  We need to fix them up
2764	 before we can relocate the section.  */
2765      sympp = _bfd_generic_link_get_symbols (input_bfd);
2766      symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2767      for (; sympp < symppend; sympp++)
2768	{
2769	  asymbol *sym;
2770	  struct bfd_link_hash_entry *h;
2771
2772	  sym = *sympp;
2773
2774	  if ((sym->flags & (BSF_INDIRECT
2775			     | BSF_WARNING
2776			     | BSF_GLOBAL
2777			     | BSF_CONSTRUCTOR
2778			     | BSF_WEAK)) != 0
2779	      || bfd_is_und_section (bfd_get_section (sym))
2780	      || bfd_is_com_section (bfd_get_section (sym))
2781	      || bfd_is_ind_section (bfd_get_section (sym)))
2782	    {
2783	      /* sym->udata may have been set by
2784		 generic_link_add_symbol_list.  */
2785	      if (sym->udata.p != NULL)
2786		h = sym->udata.p;
2787	      else if (bfd_is_und_section (bfd_get_section (sym)))
2788		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2789						  bfd_asymbol_name (sym),
2790						  FALSE, FALSE, TRUE);
2791	      else
2792		h = bfd_link_hash_lookup (info->hash,
2793					  bfd_asymbol_name (sym),
2794					  FALSE, FALSE, TRUE);
2795	      if (h != NULL)
2796		set_symbol_from_hash (sym, h);
2797	    }
2798	}
2799    }
2800
2801  /* Get and relocate the section contents.  */
2802  sec_size = (input_section->rawsize > input_section->size
2803	      ? input_section->rawsize
2804	      : input_section->size);
2805  contents = bfd_malloc (sec_size);
2806  if (contents == NULL && sec_size != 0)
2807    goto error_return;
2808  new_contents = (bfd_get_relocated_section_contents
2809		  (output_bfd, info, link_order, contents, info->relocatable,
2810		   _bfd_generic_link_get_symbols (input_bfd)));
2811  if (!new_contents)
2812    goto error_return;
2813
2814  /* Output the section contents.  */
2815  loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2816  if (! bfd_set_section_contents (output_bfd, output_section,
2817				  new_contents, loc, input_section->size))
2818    goto error_return;
2819
2820  if (contents != NULL)
2821    free (contents);
2822  return TRUE;
2823
2824 error_return:
2825  if (contents != NULL)
2826    free (contents);
2827  return FALSE;
2828}
2829
2830/* A little routine to count the number of relocs in a link_order
2831   list.  */
2832
2833unsigned int
2834_bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2835{
2836  register unsigned int c;
2837  register struct bfd_link_order *l;
2838
2839  c = 0;
2840  for (l = link_order; l != NULL; l = l->next)
2841    {
2842      if (l->type == bfd_section_reloc_link_order
2843	  || l->type == bfd_symbol_reloc_link_order)
2844	++c;
2845    }
2846
2847  return c;
2848}
2849
2850/*
2851FUNCTION
2852	bfd_link_split_section
2853
2854SYNOPSIS
2855        bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2856
2857DESCRIPTION
2858	Return nonzero if @var{sec} should be split during a
2859	reloceatable or final link.
2860
2861.#define bfd_link_split_section(abfd, sec) \
2862.       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2863.
2864
2865*/
2866
2867bfd_boolean
2868_bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2869				 asection *sec ATTRIBUTE_UNUSED)
2870{
2871  return FALSE;
2872}
2873
2874/*
2875FUNCTION
2876	bfd_section_already_linked
2877
2878SYNOPSIS
2879        void bfd_section_already_linked (bfd *abfd, asection *sec,
2880					 struct bfd_link_info *info);
2881
2882DESCRIPTION
2883	Check if @var{sec} has been already linked during a reloceatable
2884	or final link.
2885
2886.#define bfd_section_already_linked(abfd, sec, info) \
2887.       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2888.
2889
2890*/
2891
2892/* Sections marked with the SEC_LINK_ONCE flag should only be linked
2893   once into the output.  This routine checks each section, and
2894   arrange to discard it if a section of the same name has already
2895   been linked.  This code assumes that all relevant sections have the
2896   SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2897   section name.  bfd_section_already_linked is called via
2898   bfd_map_over_sections.  */
2899
2900/* The hash table.  */
2901
2902static struct bfd_hash_table _bfd_section_already_linked_table;
2903
2904/* Support routines for the hash table used by section_already_linked,
2905   initialize the table, traverse, lookup, fill in an entry and remove
2906   the table.  */
2907
2908void
2909bfd_section_already_linked_table_traverse
2910  (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2911			void *), void *info)
2912{
2913  bfd_hash_traverse (&_bfd_section_already_linked_table,
2914		     (bfd_boolean (*) (struct bfd_hash_entry *,
2915				       void *)) func,
2916		     info);
2917}
2918
2919struct bfd_section_already_linked_hash_entry *
2920bfd_section_already_linked_table_lookup (const char *name)
2921{
2922  return ((struct bfd_section_already_linked_hash_entry *)
2923	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2924			   TRUE, FALSE));
2925}
2926
2927void
2928bfd_section_already_linked_table_insert
2929  (struct bfd_section_already_linked_hash_entry *already_linked_list,
2930   asection *sec)
2931{
2932  struct bfd_section_already_linked *l;
2933
2934  /* Allocate the memory from the same obstack as the hash table is
2935     kept in.  */
2936  l = bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2937  l->sec = sec;
2938  l->next = already_linked_list->entry;
2939  already_linked_list->entry = l;
2940}
2941
2942static struct bfd_hash_entry *
2943already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2944			struct bfd_hash_table *table,
2945			const char *string ATTRIBUTE_UNUSED)
2946{
2947  struct bfd_section_already_linked_hash_entry *ret =
2948    bfd_hash_allocate (table, sizeof *ret);
2949
2950  ret->entry = NULL;
2951
2952  return &ret->root;
2953}
2954
2955bfd_boolean
2956bfd_section_already_linked_table_init (void)
2957{
2958  return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2959				already_linked_newfunc,
2960				sizeof (struct bfd_section_already_linked_hash_entry),
2961				42);
2962}
2963
2964void
2965bfd_section_already_linked_table_free (void)
2966{
2967  bfd_hash_table_free (&_bfd_section_already_linked_table);
2968}
2969
2970/* This is used on non-ELF inputs.  */
2971
2972void
2973_bfd_generic_section_already_linked (bfd *abfd, asection *sec,
2974				     struct bfd_link_info *info ATTRIBUTE_UNUSED)
2975{
2976  flagword flags;
2977  const char *name;
2978  struct bfd_section_already_linked *l;
2979  struct bfd_section_already_linked_hash_entry *already_linked_list;
2980
2981  flags = sec->flags;
2982  if ((flags & SEC_LINK_ONCE) == 0)
2983    return;
2984
2985  /* FIXME: When doing a relocatable link, we may have trouble
2986     copying relocations in other sections that refer to local symbols
2987     in the section being discarded.  Those relocations will have to
2988     be converted somehow; as of this writing I'm not sure that any of
2989     the backends handle that correctly.
2990
2991     It is tempting to instead not discard link once sections when
2992     doing a relocatable link (technically, they should be discarded
2993     whenever we are building constructors).  However, that fails,
2994     because the linker winds up combining all the link once sections
2995     into a single large link once section, which defeats the purpose
2996     of having link once sections in the first place.  */
2997
2998  name = bfd_get_section_name (abfd, sec);
2999
3000  already_linked_list = bfd_section_already_linked_table_lookup (name);
3001
3002  for (l = already_linked_list->entry; l != NULL; l = l->next)
3003    {
3004      bfd_boolean skip = FALSE;
3005      struct coff_comdat_info *s_comdat
3006	= bfd_coff_get_comdat_section (abfd, sec);
3007      struct coff_comdat_info *l_comdat
3008	= bfd_coff_get_comdat_section (l->sec->owner, l->sec);
3009
3010      /* We may have 3 different sections on the list: group section,
3011	 comdat section and linkonce section. SEC may be a linkonce or
3012	 comdat section. We always ignore group section. For non-COFF
3013	 inputs, we also ignore comdat section.
3014
3015	 FIXME: Is that safe to match a linkonce section with a comdat
3016	 section for COFF inputs?  */
3017      if ((l->sec->flags & SEC_GROUP) != 0)
3018	skip = TRUE;
3019      else if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
3020	{
3021	  if (s_comdat != NULL
3022	      && l_comdat != NULL
3023	      && strcmp (s_comdat->name, l_comdat->name) != 0)
3024	    skip = TRUE;
3025	}
3026      else if (l_comdat != NULL)
3027	skip = TRUE;
3028
3029      if (!skip)
3030	{
3031	  /* The section has already been linked.  See if we should
3032             issue a warning.  */
3033	  switch (flags & SEC_LINK_DUPLICATES)
3034	    {
3035	    default:
3036	      abort ();
3037
3038	    case SEC_LINK_DUPLICATES_DISCARD:
3039	      break;
3040
3041	    case SEC_LINK_DUPLICATES_ONE_ONLY:
3042	      (*_bfd_error_handler)
3043		(_("%B: warning: ignoring duplicate section `%A'\n"),
3044		 abfd, sec);
3045	      break;
3046
3047	    case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3048	      /* FIXME: We should really dig out the contents of both
3049                 sections and memcmp them.  The COFF/PE spec says that
3050                 the Microsoft linker does not implement this
3051                 correctly, so I'm not going to bother doing it
3052                 either.  */
3053	      /* Fall through.  */
3054	    case SEC_LINK_DUPLICATES_SAME_SIZE:
3055	      if (sec->size != l->sec->size)
3056		(*_bfd_error_handler)
3057		  (_("%B: warning: duplicate section `%A' has different size\n"),
3058		   abfd, sec);
3059	      break;
3060	    }
3061
3062	  /* Set the output_section field so that lang_add_section
3063	     does not create a lang_input_section structure for this
3064	     section.  Since there might be a symbol in the section
3065	     being discarded, we must retain a pointer to the section
3066	     which we are really going to use.  */
3067	  sec->output_section = bfd_abs_section_ptr;
3068	  sec->kept_section = l->sec;
3069
3070	  return;
3071	}
3072    }
3073
3074  /* This is the first section with this name.  Record it.  */
3075  bfd_section_already_linked_table_insert (already_linked_list, sec);
3076}
3077
3078/* Convert symbols in excluded output sections to use a kept section.  */
3079
3080static bfd_boolean
3081fix_syms (struct bfd_link_hash_entry *h, void *data)
3082{
3083  bfd *obfd = (bfd *) data;
3084
3085  if (h->type == bfd_link_hash_warning)
3086    h = h->u.i.link;
3087
3088  if (h->type == bfd_link_hash_defined
3089      || h->type == bfd_link_hash_defweak)
3090    {
3091      asection *s = h->u.def.section;
3092      if (s != NULL
3093	  && s->output_section != NULL
3094	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3095	  && bfd_section_removed_from_list (obfd, s->output_section))
3096	{
3097	  asection *op, *op1;
3098
3099	  h->u.def.value += s->output_offset + s->output_section->vma;
3100
3101	  /* Find preceding kept section.  */
3102	  for (op1 = s->output_section->prev; op1 != NULL; op1 = op1->prev)
3103	    if ((op1->flags & SEC_EXCLUDE) == 0
3104		&& !bfd_section_removed_from_list (obfd, op1))
3105	      break;
3106
3107	  /* Find following kept section.  Start at prev->next because
3108	     other sections may have been added after S was removed.  */
3109	  if (s->output_section->prev != NULL)
3110	    op = s->output_section->prev->next;
3111	  else
3112	    op = s->output_section->owner->sections;
3113	  for (; op != NULL; op = op->next)
3114	    if ((op->flags & SEC_EXCLUDE) == 0
3115		&& !bfd_section_removed_from_list (obfd, op))
3116	      break;
3117
3118	  /* Choose better of two sections, based on flags.  The idea
3119	     is to choose a section that will be in the same segment
3120	     as S would have been if it was kept.  */
3121	  if (op1 == NULL)
3122	    {
3123	      if (op == NULL)
3124		op = bfd_abs_section_ptr;
3125	    }
3126	  else if (op == NULL)
3127	    op = op1;
3128	  else if (((op1->flags ^ op->flags)
3129		    & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0)
3130	    {
3131	      if (((op->flags ^ s->flags)
3132		   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0)
3133		op = op1;
3134	    }
3135	  else if (((op1->flags ^ op->flags) & SEC_READONLY) != 0)
3136	    {
3137	      if (((op->flags ^ s->flags) & SEC_READONLY) != 0)
3138		op = op1;
3139	    }
3140	  else if (((op1->flags ^ op->flags) & SEC_CODE) != 0)
3141	    {
3142	      if (((op->flags ^ s->flags) & SEC_CODE) != 0)
3143		op = op1;
3144	    }
3145	  else
3146	    {
3147	      /* Flags we care about are the same.  Prefer the following
3148		 section if that will result in a positive valued sym.  */
3149	      if (h->u.def.value < op->vma)
3150		op = op1;
3151	    }
3152
3153	  h->u.def.value -= op->vma;
3154	  h->u.def.section = op;
3155	}
3156    }
3157
3158  return TRUE;
3159}
3160
3161void
3162_bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3163{
3164  bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3165}
3166