1/*
2**********************************************************************
3*   Copyright (C) 2000-2011, International Business Machines
4*   Corporation and others.  All Rights Reserved.
5**********************************************************************
6*   file name:  ucnv_lmb.cpp
7*   encoding:   US-ASCII
8*   tab size:   4 (not used)
9*   indentation:4
10*
11*   created on: 2000feb09
12*   created by: Brendan Murray
13*   extensively hacked up by: Jim Snyder-Grant
14*
15* Modification History:
16*
17*   Date        Name             Description
18*
19*   06/20/2000  helena           OS/400 port changes; mostly typecast.
20*   06/27/2000  Jim Snyder-Grant Deal with partial characters and small buffers.
21*                                Add comments to document LMBCS format and implementation
22*                                restructured order & breakdown of functions
23*   06/28/2000  helena           Major rewrite for the callback API changes.
24*/
25
26#include "unicode/utypes.h"
27
28#if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
29
30#include "unicode/ucnv_err.h"
31#include "unicode/ucnv.h"
32#include "unicode/uset.h"
33#include "cmemory.h"
34#include "cstring.h"
35#include "uassert.h"
36#include "ucnv_imp.h"
37#include "ucnv_bld.h"
38#include "ucnv_cnv.h"
39
40#ifdef EBCDIC_RTL
41    #include "ascii_a.h"
42#endif
43
44#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
45
46/*
47  LMBCS
48
49  (Lotus Multi-Byte Character Set)
50
51  LMBCS was invented in the late 1980's and is primarily used in Lotus Notes
52  databases and in Lotus 1-2-3 files. Programmers who work with the APIs
53  into these products will sometimes need to deal with strings in this format.
54
55  The code in this file provides an implementation for an ICU converter of
56  LMBCS to and from Unicode.
57
58  Since the LMBCS character set is only sparsely documented in existing
59  printed or online material, we have added  extensive annotation to this
60  file to serve as a guide to understanding LMBCS.
61
62  LMBCS was originally designed with these four sometimes-competing design goals:
63
64  -Provide encodings for the characters in 12 existing national standards
65   (plus a few other characters)
66  -Minimal memory footprint
67  -Maximal speed of conversion into the existing national character sets
68  -No need to track a changing state as you interpret a string.
69
70
71  All of the national character sets LMBCS was trying to encode are 'ANSI'
72  based, in that the bytes from 0x20 - 0x7F are almost exactly the
73  same common Latin unaccented characters and symbols in all character sets.
74
75  So, in order to help meet the speed & memory design goals, the common ANSI
76  bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.
77
78  The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
79  follows:
80
81  [G] D1 [D2]
82
83  That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
84  data bytes. The maximum size of a LMBCS chjaracter is 3 bytes:
85*/
86#define ULMBCS_CHARSIZE_MAX      3
87/*
88  The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
89  We often have to figure out if byte values are below or above this, so we
90  use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control
91  characters just above & below the common lower-ANSI  range */
92#define ULMBCS_C0END           0x1F
93#define ULMBCS_C1START         0x80
94/*
95  Since LMBCS is always dealing in byte units. we create a local type here for
96  dealing with these units of LMBCS code units:
97
98*/
99typedef uint8_t ulmbcs_byte_t;
100
101/*
102   Most of the values less than 0x20 are reserved in LMBCS to announce
103   which national  character standard is being used for the 'D' bytes.
104   In the comments we show the common name and the IBM character-set ID
105   for these character-set announcers:
106*/
107
108#define ULMBCS_GRP_L1         0x01   /* Latin-1    :ibm-850  */
109#define ULMBCS_GRP_GR         0x02   /* Greek      :ibm-851  */
110#define ULMBCS_GRP_HE         0x03   /* Hebrew     :ibm-1255 */
111#define ULMBCS_GRP_AR         0x04   /* Arabic     :ibm-1256 */
112#define ULMBCS_GRP_RU         0x05   /* Cyrillic   :ibm-1251 */
113#define ULMBCS_GRP_L2         0x06   /* Latin-2    :ibm-852  */
114#define ULMBCS_GRP_TR         0x08   /* Turkish    :ibm-1254 */
115#define ULMBCS_GRP_TH         0x0B   /* Thai       :ibm-874  */
116#define ULMBCS_GRP_JA         0x10   /* Japanese   :ibm-943  */
117#define ULMBCS_GRP_KO         0x11   /* Korean     :ibm-1261 */
118#define ULMBCS_GRP_TW         0x12   /* Chinese SC :ibm-950  */
119#define ULMBCS_GRP_CN         0x13   /* Chinese TC :ibm-1386 */
120
121/*
122   So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS
123   character is one of those 12 values, you can interpret the remaining bytes of
124   that character as coming from one of those character sets. Since the lower
125   ANSI bytes already are represented in single bytes, using one of the character
126   set announcers is used to announce a character that starts with a byte of
127   0x80 or greater.
128
129   The character sets are  arranged so that the single byte sets all appear
130   before the multi-byte character sets. When we need to tell whether a
131   group byte is for a single byte char set or not we use this define: */
132
133#define ULMBCS_DOUBLEOPTGROUP_START  0x10
134
135/*
136However, to fully understand LMBCS, you must also understand a series of
137exceptions & optimizations made in service of the design goals.
138
139First, those of you who are character set mavens may have noticed that
140the 'double-byte' character sets are actually multi-byte character sets
141that can have 1 or two bytes, even in the upper-ascii range. To force
142each group byte to introduce a fixed-width encoding (to make it faster to
143count characters), we use a convention of doubling up on the group byte
144to introduce any single-byte character > 0x80 in an otherwise double-byte
145character set. So, for example, the LMBCS sequence x10 x10 xAE is the
146same as '0xAE' in the Japanese code page 943.
147
148Next, you will notice that the list of group bytes has some gaps.
149These are used in various ways.
150
151We reserve a few special single byte values for common control
152characters. These are in the same place as their ANSI eqivalents for speed.
153*/
154
155#define ULMBCS_HT    0x09   /* Fixed control char - Horizontal Tab */
156#define ULMBCS_LF    0x0A   /* Fixed control char - Line Feed */
157#define ULMBCS_CR    0x0D   /* Fixed control char - Carriage Return */
158
159/* Then, 1-2-3 reserved a special single-byte character to put at the
160beginning of internal 'system' range names: */
161
162#define ULMBCS_123SYSTEMRANGE  0x19
163
164/* Then we needed a place to put all the other ansi control characters
165that must be moved to different values because LMBCS reserves those
166values for other purposes. To represent the control characters, we start
167with a first byte of 0xF & add the control chaarcter value as the
168second byte */
169#define ULMBCS_GRP_CTRL       0x0F
170
171/* For the C0 controls (less than 0x20), we add 0x20 to preserve the
172useful doctrine that any byte less than 0x20 in a LMBCS char must be
173the first byte of a character:*/
174#define ULMBCS_CTRLOFFSET      0x20
175
176/*
177Where to put the characters that aren't part of any of the 12 national
178character sets? The first thing that was done, in the earlier years of
179LMBCS, was to use up the spaces of the form
180
181  [G] D1,
182
183 where  'G' was one of the single-byte character groups, and
184 D1 was less than 0x80. These sequences are gathered together
185 into a Lotus-invented doublebyte character set to represent a
186 lot of stray values. Internally, in this implementation, we track this
187 as group '0', as a place to tuck this exceptions list.*/
188
189#define ULMBCS_GRP_EXCEPT     0x00
190/*
191 Finally, as the durability and usefulness of UNICODE became clear,
192 LOTUS added a new group 0x14 to hold Unicode values not otherwise
193 represented in LMBCS: */
194#define ULMBCS_GRP_UNICODE    0x14
195/* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE
196(Big-Endian) characters. The exception comes when the UTF16
197representation would have a zero as the second byte. In that case,
198'F6' is used in its place, and the bytes are swapped. (This prevents
199LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
2000xF6xx is in the middle of the Private Use Area.)*/
201#define ULMBCS_UNICOMPATZERO   0xF6
202
203/* It is also useful in our code to have a constant for the size of
204a LMBCS char that holds a literal Unicode value */
205#define ULMBCS_UNICODE_SIZE      3
206
207/*
208To squish the LMBCS representations down even further, and to make
209translations even faster,sometimes the optimization group byte can be dropped
210from a LMBCS character. This is decided on a process-by-process basis. The
211group byte that is dropped is called the 'optimization group'.
212
213For Notes, the optimzation group is always 0x1.*/
214#define ULMBCS_DEFAULTOPTGROUP 0x1
215/* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3
216file.
217
218 In any case, when using ICU, you either pass in the
219optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,
220etc.). Using plain 'LMBCS' as the name of the converter will give you
221LMBCS-1.
222
223
224*** Implementation strategy ***
225
226
227Because of the extensive use of other character sets, the LMBCS converter
228keeps a mapping between optimization groups and IBM character sets, so that
229ICU converters can be created and used as needed. */
230
231/* As you can see, even though any byte below 0x20 could be an optimization
232byte, only those at 0x13 or below can map to an actual converter. To limit
233some loops and searches, we define a value for that last group converter:*/
234
235#define ULMBCS_GRP_LAST       0x13   /* last LMBCS group that has a converter */
236
237static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = {
238   /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
239   /* 0x0001 */ "ibm-850",
240   /* 0x0002 */ "ibm-851",
241   /* 0x0003 */ "windows-1255",
242   /* 0x0004 */ "windows-1256",
243   /* 0x0005 */ "windows-1251",
244   /* 0x0006 */ "ibm-852",
245   /* 0x0007 */ NULL,      /* Unused */
246   /* 0x0008 */ "windows-1254",
247   /* 0x0009 */ NULL,      /* Control char HT */
248   /* 0x000A */ NULL,      /* Control char LF */
249   /* 0x000B */ "windows-874",
250   /* 0x000C */ NULL,      /* Unused */
251   /* 0x000D */ NULL,      /* Control char CR */
252   /* 0x000E */ NULL,      /* Unused */
253   /* 0x000F */ NULL,      /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
254   /* 0x0010 */ "windows-932",
255   /* 0x0011 */ "windows-949",
256   /* 0x0012 */ "windows-950",
257   /* 0x0013 */ "windows-936"
258
259   /* The rest are null, including the 0x0014 Unicode compatibility region
260   and 0x0019, the 1-2-3 system range control char */
261};
262
263
264/* That's approximately all the data that's needed for translating
265  LMBCS to Unicode.
266
267
268However, to translate Unicode to LMBCS, we need some more support.
269
270That's because there are often more than one possible mappings from a Unicode
271code point back into LMBCS. The first thing we do is look up into a table
272to figure out if there are more than one possible mappings. This table,
273arranged by Unicode values (including ranges) either lists which group
274to use, or says that it could go into one or more of the SBCS sets, or
275into one or more of the DBCS sets.  (If the character exists in both DBCS &
276SBCS, the table will place it in the SBCS sets, to make the LMBCS code point
277length as small as possible. Here's the two special markers we use to indicate
278ambiguous mappings: */
279
280#define ULMBCS_AMBIGUOUS_SBCS   0x80   /* could fit in more than one
281                                          LMBCS sbcs native encoding
282                                          (example: most accented latin) */
283#define ULMBCS_AMBIGUOUS_MBCS   0x81   /* could fit in more than one
284                                          LMBCS mbcs native encoding
285                                          (example: Unihan) */
286#define ULMBCS_AMBIGUOUS_ALL   0x82
287/* And here's a simple way to see if a group falls in an appropriate range */
288#define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \
289                  ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \
290                  (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \
291                  (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \
292                  (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) || \
293                  ((agroup) == ULMBCS_AMBIGUOUS_ALL)
294
295
296/* The table & some code to use it: */
297
298
299static const struct _UniLMBCSGrpMap
300{
301   const UChar uniStartRange;
302   const UChar uniEndRange;
303   const ulmbcs_byte_t  GrpType;
304} UniLMBCSGrpMap[]
305=
306{
307
308    {0x0001, 0x001F,  ULMBCS_GRP_CTRL},
309    {0x0080, 0x009F,  ULMBCS_GRP_CTRL},
310    {0x00A0, 0x00A6,  ULMBCS_AMBIGUOUS_SBCS},
311    {0x00A7, 0x00A8,  ULMBCS_AMBIGUOUS_ALL},
312    {0x00A9, 0x00AF,  ULMBCS_AMBIGUOUS_SBCS},
313    {0x00B0, 0x00B1,  ULMBCS_AMBIGUOUS_ALL},
314    {0x00B2, 0x00B3,  ULMBCS_AMBIGUOUS_SBCS},
315    {0x00B4, 0x00B4,  ULMBCS_AMBIGUOUS_ALL},
316    {0x00B5, 0x00B5,  ULMBCS_AMBIGUOUS_SBCS},
317    {0x00B6, 0x00B6,  ULMBCS_AMBIGUOUS_ALL},
318    {0x00B7, 0x00D6,  ULMBCS_AMBIGUOUS_SBCS},
319    {0x00D7, 0x00D7,  ULMBCS_AMBIGUOUS_ALL},
320    {0x00D8, 0x00F6,  ULMBCS_AMBIGUOUS_SBCS},
321    {0x00F7, 0x00F7,  ULMBCS_AMBIGUOUS_ALL},
322    {0x00F8, 0x01CD,  ULMBCS_AMBIGUOUS_SBCS},
323    {0x01CE, 0x01CE,  ULMBCS_GRP_TW },
324    {0x01CF, 0x02B9,  ULMBCS_AMBIGUOUS_SBCS},
325    {0x02BA, 0x02BA,  ULMBCS_GRP_CN},
326    {0x02BC, 0x02C8,  ULMBCS_AMBIGUOUS_SBCS},
327    {0x02C9, 0x02D0,  ULMBCS_AMBIGUOUS_MBCS},
328    {0x02D8, 0x02DD,  ULMBCS_AMBIGUOUS_SBCS},
329    {0x0384, 0x0390,  ULMBCS_AMBIGUOUS_SBCS},
330    {0x0391, 0x03A9,  ULMBCS_AMBIGUOUS_ALL},
331    {0x03AA, 0x03B0,  ULMBCS_AMBIGUOUS_SBCS},
332    {0x03B1, 0x03C9,  ULMBCS_AMBIGUOUS_ALL},
333    {0x03CA, 0x03CE,  ULMBCS_AMBIGUOUS_SBCS},
334    {0x0400, 0x0400,  ULMBCS_GRP_RU},
335    {0x0401, 0x0401,  ULMBCS_AMBIGUOUS_ALL},
336    {0x0402, 0x040F,  ULMBCS_GRP_RU},
337    {0x0410, 0x0431,  ULMBCS_AMBIGUOUS_ALL},
338    {0x0432, 0x044E,  ULMBCS_GRP_RU},
339    {0x044F, 0x044F,  ULMBCS_AMBIGUOUS_ALL},
340    {0x0450, 0x0491,  ULMBCS_GRP_RU},
341    {0x05B0, 0x05F2,  ULMBCS_GRP_HE},
342    {0x060C, 0x06AF,  ULMBCS_GRP_AR},
343    {0x0E01, 0x0E5B,  ULMBCS_GRP_TH},
344    {0x200C, 0x200F,  ULMBCS_AMBIGUOUS_SBCS},
345    {0x2010, 0x2010,  ULMBCS_AMBIGUOUS_MBCS},
346    {0x2013, 0x2014,  ULMBCS_AMBIGUOUS_SBCS},
347    {0x2015, 0x2015,  ULMBCS_AMBIGUOUS_MBCS},
348    {0x2016, 0x2016,  ULMBCS_AMBIGUOUS_MBCS},
349    {0x2017, 0x2017,  ULMBCS_AMBIGUOUS_SBCS},
350    {0x2018, 0x2019,  ULMBCS_AMBIGUOUS_ALL},
351    {0x201A, 0x201B,  ULMBCS_AMBIGUOUS_SBCS},
352    {0x201C, 0x201D,  ULMBCS_AMBIGUOUS_ALL},
353    {0x201E, 0x201F,  ULMBCS_AMBIGUOUS_SBCS},
354    {0x2020, 0x2021,  ULMBCS_AMBIGUOUS_ALL},
355    {0x2022, 0x2024,  ULMBCS_AMBIGUOUS_SBCS},
356    {0x2025, 0x2025,  ULMBCS_AMBIGUOUS_MBCS},
357    {0x2026, 0x2026,  ULMBCS_AMBIGUOUS_ALL},
358    {0x2027, 0x2027,  ULMBCS_GRP_TW},
359    {0x2030, 0x2030,  ULMBCS_AMBIGUOUS_ALL},
360    {0x2031, 0x2031,  ULMBCS_AMBIGUOUS_SBCS},
361    {0x2032, 0x2033,  ULMBCS_AMBIGUOUS_MBCS},
362    {0x2035, 0x2035,  ULMBCS_AMBIGUOUS_MBCS},
363    {0x2039, 0x203A,  ULMBCS_AMBIGUOUS_SBCS},
364    {0x203B, 0x203B,  ULMBCS_AMBIGUOUS_MBCS},
365    {0x203C, 0x203C,  ULMBCS_GRP_EXCEPT},
366    {0x2074, 0x2074,  ULMBCS_GRP_KO},
367    {0x207F, 0x207F,  ULMBCS_GRP_EXCEPT},
368    {0x2081, 0x2084,  ULMBCS_GRP_KO},
369    {0x20A4, 0x20AC,  ULMBCS_AMBIGUOUS_SBCS},
370    {0x2103, 0x2109,  ULMBCS_AMBIGUOUS_MBCS},
371    {0x2111, 0x2120,  ULMBCS_AMBIGUOUS_SBCS},
372    /*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/
373    {0x2121, 0x2121,  ULMBCS_AMBIGUOUS_MBCS},
374    {0x2122, 0x2126,  ULMBCS_AMBIGUOUS_SBCS},
375    {0x212B, 0x212B,  ULMBCS_AMBIGUOUS_MBCS},
376    {0x2135, 0x2135,  ULMBCS_AMBIGUOUS_SBCS},
377    {0x2153, 0x2154,  ULMBCS_GRP_KO},
378    {0x215B, 0x215E,  ULMBCS_GRP_EXCEPT},
379    {0x2160, 0x2179,  ULMBCS_AMBIGUOUS_MBCS},
380    {0x2190, 0x2193,  ULMBCS_AMBIGUOUS_ALL},
381    {0x2194, 0x2195,  ULMBCS_GRP_EXCEPT},
382    {0x2196, 0x2199,  ULMBCS_AMBIGUOUS_MBCS},
383    {0x21A8, 0x21A8,  ULMBCS_GRP_EXCEPT},
384    {0x21B8, 0x21B9,  ULMBCS_GRP_CN},
385    {0x21D0, 0x21D1,  ULMBCS_GRP_EXCEPT},
386    {0x21D2, 0x21D2,  ULMBCS_AMBIGUOUS_MBCS},
387    {0x21D3, 0x21D3,  ULMBCS_GRP_EXCEPT},
388    {0x21D4, 0x21D4,  ULMBCS_AMBIGUOUS_MBCS},
389    {0x21D5, 0x21D5,  ULMBCS_GRP_EXCEPT},
390    {0x21E7, 0x21E7,  ULMBCS_GRP_CN},
391    {0x2200, 0x2200,  ULMBCS_AMBIGUOUS_MBCS},
392    {0x2201, 0x2201,  ULMBCS_GRP_EXCEPT},
393    {0x2202, 0x2202,  ULMBCS_AMBIGUOUS_MBCS},
394    {0x2203, 0x2203,  ULMBCS_AMBIGUOUS_MBCS},
395    {0x2204, 0x2206,  ULMBCS_GRP_EXCEPT},
396    {0x2207, 0x2208,  ULMBCS_AMBIGUOUS_MBCS},
397    {0x2209, 0x220A,  ULMBCS_GRP_EXCEPT},
398    {0x220B, 0x220B,  ULMBCS_AMBIGUOUS_MBCS},
399    {0x220F, 0x2215,  ULMBCS_AMBIGUOUS_MBCS},
400    {0x2219, 0x2219,  ULMBCS_GRP_EXCEPT},
401    {0x221A, 0x221A,  ULMBCS_AMBIGUOUS_MBCS},
402    {0x221B, 0x221C,  ULMBCS_GRP_EXCEPT},
403    {0x221D, 0x221E,  ULMBCS_AMBIGUOUS_MBCS},
404    {0x221F, 0x221F,  ULMBCS_GRP_EXCEPT},
405    {0x2220, 0x2220,  ULMBCS_AMBIGUOUS_MBCS},
406    {0x2223, 0x222A,  ULMBCS_AMBIGUOUS_MBCS},
407    {0x222B, 0x223D,  ULMBCS_AMBIGUOUS_MBCS},
408    {0x2245, 0x2248,  ULMBCS_GRP_EXCEPT},
409    {0x224C, 0x224C,  ULMBCS_GRP_TW},
410    {0x2252, 0x2252,  ULMBCS_AMBIGUOUS_MBCS},
411    {0x2260, 0x2261,  ULMBCS_AMBIGUOUS_MBCS},
412    {0x2262, 0x2265,  ULMBCS_GRP_EXCEPT},
413    {0x2266, 0x226F,  ULMBCS_AMBIGUOUS_MBCS},
414    {0x2282, 0x2283,  ULMBCS_AMBIGUOUS_MBCS},
415    {0x2284, 0x2285,  ULMBCS_GRP_EXCEPT},
416    {0x2286, 0x2287,  ULMBCS_AMBIGUOUS_MBCS},
417    {0x2288, 0x2297,  ULMBCS_GRP_EXCEPT},
418    {0x2299, 0x22BF,  ULMBCS_AMBIGUOUS_MBCS},
419    {0x22C0, 0x22C0,  ULMBCS_GRP_EXCEPT},
420    {0x2310, 0x2310,  ULMBCS_GRP_EXCEPT},
421    {0x2312, 0x2312,  ULMBCS_AMBIGUOUS_MBCS},
422    {0x2318, 0x2321,  ULMBCS_GRP_EXCEPT},
423    {0x2318, 0x2321,  ULMBCS_GRP_CN},
424    {0x2460, 0x24E9,  ULMBCS_AMBIGUOUS_MBCS},
425    {0x2500, 0x2500,  ULMBCS_AMBIGUOUS_SBCS},
426    {0x2501, 0x2501,  ULMBCS_AMBIGUOUS_MBCS},
427    {0x2502, 0x2502,  ULMBCS_AMBIGUOUS_ALL},
428    {0x2503, 0x2503,  ULMBCS_AMBIGUOUS_MBCS},
429    {0x2504, 0x2505,  ULMBCS_GRP_TW},
430    {0x2506, 0x2665,  ULMBCS_AMBIGUOUS_ALL},
431    {0x2666, 0x2666,  ULMBCS_GRP_EXCEPT},
432    {0x2667, 0x2669,  ULMBCS_AMBIGUOUS_SBCS},
433    {0x266A, 0x266A,  ULMBCS_AMBIGUOUS_ALL},
434    {0x266B, 0x266C,  ULMBCS_AMBIGUOUS_SBCS},
435    {0x266D, 0x266D,  ULMBCS_AMBIGUOUS_MBCS},
436    {0x266E, 0x266E,  ULMBCS_AMBIGUOUS_SBCS},
437    {0x266F, 0x266F,  ULMBCS_GRP_JA},
438    {0x2670, 0x2E7F,  ULMBCS_AMBIGUOUS_SBCS},
439    {0x2E80, 0xF861,  ULMBCS_AMBIGUOUS_MBCS},
440    {0xF862, 0xF8FF,  ULMBCS_GRP_EXCEPT},
441    {0xF900, 0xFA2D,  ULMBCS_AMBIGUOUS_MBCS},
442    {0xFB00, 0xFEFF,  ULMBCS_AMBIGUOUS_SBCS},
443    {0xFF01, 0xFFEE,  ULMBCS_AMBIGUOUS_MBCS},
444    {0xFFFF, 0xFFFF,  ULMBCS_GRP_UNICODE}
445};
446
447static ulmbcs_byte_t
448FindLMBCSUniRange(UChar uniChar)
449{
450   const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap;
451
452   while (uniChar > pTable->uniEndRange)
453   {
454      pTable++;
455   }
456
457   if (uniChar >= pTable->uniStartRange)
458   {
459      return pTable->GrpType;
460   }
461   return ULMBCS_GRP_UNICODE;
462}
463
464/*
465We also ask the creator of a converter to send in a preferred locale
466that we can use in resolving ambiguous mappings. They send the locale
467in as a string, and we map it, if possible, to one of the
468LMBCS groups. We use this table, and the associated code, to
469do the lookup: */
470
471/**************************************************
472  This table maps locale ID's to LMBCS opt groups.
473  The default return is group 0x01. Note that for
474  performance reasons, the table is sorted in
475  increasing alphabetic order, with the notable
476  exception of zhTW. This is to force the check
477  for Traditonal Chinese before dropping back to
478  Simplified.
479
480  Note too that the Latin-1 groups have been
481  commented out because it's the default, and
482  this shortens the table, allowing a serial
483  search to go quickly.
484 *************************************************/
485
486static const struct _LocaleLMBCSGrpMap
487{
488   const char    *LocaleID;
489   const ulmbcs_byte_t OptGroup;
490} LocaleLMBCSGrpMap[] =
491{
492    {"ar", ULMBCS_GRP_AR},
493    {"be", ULMBCS_GRP_RU},
494    {"bg", ULMBCS_GRP_L2},
495   /* {"ca", ULMBCS_GRP_L1}, */
496    {"cs", ULMBCS_GRP_L2},
497   /* {"da", ULMBCS_GRP_L1}, */
498   /* {"de", ULMBCS_GRP_L1}, */
499    {"el", ULMBCS_GRP_GR},
500   /* {"en", ULMBCS_GRP_L1}, */
501   /* {"es", ULMBCS_GRP_L1}, */
502   /* {"et", ULMBCS_GRP_L1}, */
503   /* {"fi", ULMBCS_GRP_L1}, */
504   /* {"fr", ULMBCS_GRP_L1}, */
505    {"he", ULMBCS_GRP_HE},
506    {"hu", ULMBCS_GRP_L2},
507   /* {"is", ULMBCS_GRP_L1}, */
508   /* {"it", ULMBCS_GRP_L1}, */
509    {"iw", ULMBCS_GRP_HE},
510    {"ja", ULMBCS_GRP_JA},
511    {"ko", ULMBCS_GRP_KO},
512   /* {"lt", ULMBCS_GRP_L1}, */
513   /* {"lv", ULMBCS_GRP_L1}, */
514    {"mk", ULMBCS_GRP_RU},
515   /* {"nl", ULMBCS_GRP_L1}, */
516   /* {"no", ULMBCS_GRP_L1}, */
517    {"pl", ULMBCS_GRP_L2},
518   /* {"pt", ULMBCS_GRP_L1}, */
519    {"ro", ULMBCS_GRP_L2},
520    {"ru", ULMBCS_GRP_RU},
521    {"sh", ULMBCS_GRP_L2},
522    {"sk", ULMBCS_GRP_L2},
523    {"sl", ULMBCS_GRP_L2},
524    {"sq", ULMBCS_GRP_L2},
525    {"sr", ULMBCS_GRP_RU},
526   /* {"sv", ULMBCS_GRP_L1}, */
527    {"th", ULMBCS_GRP_TH},
528    {"tr", ULMBCS_GRP_TR},
529    {"uk", ULMBCS_GRP_RU},
530   /* {"vi", ULMBCS_GRP_L1}, */
531    {"zhTW", ULMBCS_GRP_TW},
532    {"zh", ULMBCS_GRP_CN},
533    {NULL, ULMBCS_GRP_L1}
534};
535
536
537static ulmbcs_byte_t
538FindLMBCSLocale(const char *LocaleID)
539{
540   const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap;
541
542   if ((!LocaleID) || (!*LocaleID))
543   {
544      return 0;
545   }
546
547   while (pTable->LocaleID)
548   {
549      if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */
550      {
551         /* First char matches - check whole name, for entry-length */
552         if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0)
553            return pTable->OptGroup;
554      }
555      else
556      if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */
557         break;
558      pTable++;
559   }
560   return ULMBCS_GRP_L1;
561}
562
563
564/*
565  Before we get to the main body of code, here's how we hook up to the rest
566  of ICU. ICU converters are required to define a structure that includes
567  some function pointers, and some common data, in the style of a C++
568  vtable. There is also room in there for converter-specific data. LMBCS
569  uses that converter-specific data to keep track of the 12 subconverters
570  we use, the optimization group, and the group (if any) that matches the
571  locale. We have one structure instantiated for each of the 12 possible
572  optimization groups. To avoid typos & to avoid boring the reader, we
573  put the declarations of these structures and functions into macros. To see
574  the definitions of these structures, see unicode\ucnv_bld.h
575*/
576
577typedef struct
578  {
579    UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1];    /* Converter per Opt. grp. */
580    uint8_t    OptGroup;                  /* default Opt. grp. for this LMBCS session */
581    uint8_t    localeConverterIndex;      /* reasonable locale match for index */
582  }
583UConverterDataLMBCS;
584
585static void _LMBCSClose(UConverter * _this);
586
587#define DECLARE_LMBCS_DATA(n) \
588static const UConverterImpl _LMBCSImpl##n={\
589    UCNV_LMBCS_##n,\
590    NULL,NULL,\
591    _LMBCSOpen##n,\
592    _LMBCSClose,\
593    NULL,\
594    _LMBCSToUnicodeWithOffsets,\
595    _LMBCSToUnicodeWithOffsets,\
596    _LMBCSFromUnicode,\
597    _LMBCSFromUnicode,\
598    NULL,\
599    NULL,\
600    NULL,\
601    NULL,\
602    _LMBCSSafeClone,\
603    ucnv_getCompleteUnicodeSet\
604};\
605static const UConverterStaticData _LMBCSStaticData##n={\
606  sizeof(UConverterStaticData),\
607 "LMBCS-"  #n,\
608    0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\
609    { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \
610};\
611const UConverterSharedData _LMBCSData##n={\
612    sizeof(UConverterSharedData), ~((uint32_t) 0),\
613    NULL, NULL, &_LMBCSStaticData##n, FALSE, &_LMBCSImpl##n, \
614    0 \
615};
616
617 /* The only function we needed to duplicate 12 times was the 'open'
618function, which will do basically the same thing except set a  different
619optimization group. So, we put the common stuff into a worker function,
620and set up another macro to stamp out the 12 open functions:*/
621#define DEFINE_LMBCS_OPEN(n) \
622static void \
623   _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \
624{ _LMBCSOpenWorker(_this, pArgs, err, n); }
625
626
627
628/* Here's the open worker & the common close function */
629static void
630_LMBCSOpenWorker(UConverter*  _this,
631                 UConverterLoadArgs *pArgs,
632                 UErrorCode*  err,
633                 ulmbcs_byte_t OptGroup)
634{
635    UConverterDataLMBCS * extraInfo = _this->extraInfo =
636        (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS));
637    if(extraInfo != NULL)
638    {
639        UConverterNamePieces stackPieces;
640        UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) };
641        ulmbcs_byte_t i;
642
643        uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS));
644
645        stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable;
646
647        for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++)
648        {
649            if(OptGroupByteToCPName[i] != NULL) {
650                extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], &stackPieces, &stackArgs, err);
651            }
652        }
653
654        if(U_FAILURE(*err) || pArgs->onlyTestIsLoadable) {
655            _LMBCSClose(_this);
656            return;
657        }
658        extraInfo->OptGroup = OptGroup;
659        extraInfo->localeConverterIndex = FindLMBCSLocale(pArgs->locale);
660    }
661    else
662    {
663        *err = U_MEMORY_ALLOCATION_ERROR;
664    }
665}
666
667static void
668_LMBCSClose(UConverter *   _this)
669{
670    if (_this->extraInfo != NULL)
671    {
672        ulmbcs_byte_t Ix;
673        UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo;
674
675        for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++)
676        {
677           if (extraInfo->OptGrpConverter[Ix] != NULL)
678              ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]);
679        }
680        if (!_this->isExtraLocal) {
681            uprv_free (_this->extraInfo);
682            _this->extraInfo = NULL;
683        }
684    }
685}
686
687typedef struct LMBCSClone {
688    UConverter cnv;
689    UConverterDataLMBCS lmbcs;
690} LMBCSClone;
691
692static UConverter *
693_LMBCSSafeClone(const UConverter *cnv,
694                void *stackBuffer,
695                int32_t *pBufferSize,
696                UErrorCode *status) {
697    LMBCSClone *newLMBCS;
698    UConverterDataLMBCS *extraInfo;
699    int32_t i;
700
701    if(*pBufferSize<=0) {
702        *pBufferSize=(int32_t)sizeof(LMBCSClone);
703        return NULL;
704    }
705
706    extraInfo=(UConverterDataLMBCS *)cnv->extraInfo;
707    newLMBCS=(LMBCSClone *)stackBuffer;
708
709    /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
710
711    uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS));
712
713    /* share the subconverters */
714    for(i = 0; i <= ULMBCS_GRP_LAST; ++i) {
715        if(extraInfo->OptGrpConverter[i] != NULL) {
716            ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]);
717        }
718    }
719
720    newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs;
721    newLMBCS->cnv.isExtraLocal = TRUE;
722    return &newLMBCS->cnv;
723}
724
725/*
726 * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117)
727 * which added all code points except for U+F6xx
728 * because those cannot be represented in the Unicode group.
729 * However, it turns out that windows-950 has roundtrips for all of U+F6xx
730 * which means that LMBCS can convert all Unicode code points after all.
731 * We now simply use ucnv_getCompleteUnicodeSet().
732 *
733 * This may need to be looked at again as Lotus uses _LMBCSGetUnicodeSet(). (091216)
734 */
735
736/*
737   Here's the basic helper function that we use when converting from
738   Unicode to LMBCS, and we suspect that a Unicode character will fit into
739   one of the 12 groups. The return value is the number of bytes written
740   starting at pStartLMBCS (if any).
741*/
742
743static size_t
744LMBCSConversionWorker (
745   UConverterDataLMBCS * extraInfo,    /* subconverters, opt & locale groups */
746   ulmbcs_byte_t group,                /* The group to try */
747   ulmbcs_byte_t  * pStartLMBCS,              /* where to put the results */
748   UChar * pUniChar,                   /* The input unicode character */
749   ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */
750   UBool * groups_tried                /* output: track any unsuccessful groups */
751)
752{
753   ulmbcs_byte_t  * pLMBCS = pStartLMBCS;
754   UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group];
755
756   int bytesConverted;
757   uint32_t value;
758   ulmbcs_byte_t firstByte;
759
760   U_ASSERT(xcnv);
761   U_ASSERT(group<ULMBCS_GRP_UNICODE);
762
763   bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, FALSE);
764
765   /* get the first result byte */
766   if(bytesConverted > 0) {
767      firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8));
768   } else {
769      /* most common failure mode is an unassigned character */
770      groups_tried[group] = TRUE;
771      return 0;
772   }
773
774   *lastConverterIndex = group;
775
776   /* All initial byte values in lower ascii range should have been caught by now,
777      except with the exception group.
778    */
779   U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT));
780
781   /* use converted data: first write 0, 1 or two group bytes */
782   if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group)
783   {
784      *pLMBCS++ = group;
785      if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START)
786      {
787         *pLMBCS++ = group;
788      }
789   }
790
791  /* don't emit control chars */
792   if ( bytesConverted == 1 && firstByte < 0x20 )
793      return 0;
794
795
796   /* then move over the converted data */
797   switch(bytesConverted)
798   {
799   case 4:
800      *pLMBCS++ = (ulmbcs_byte_t)(value >> 24);
801   case 3: /*fall through*/
802      *pLMBCS++ = (ulmbcs_byte_t)(value >> 16);
803   case 2: /*fall through*/
804      *pLMBCS++ = (ulmbcs_byte_t)(value >> 8);
805   case 1: /*fall through*/
806      *pLMBCS++ = (ulmbcs_byte_t)value;
807   default:
808      /* will never occur */
809      break;
810   }
811
812   return (pLMBCS - pStartLMBCS);
813}
814
815
816/* This is a much simpler version of above, when we
817know we are writing LMBCS using the Unicode group
818*/
819static size_t
820LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar)
821{
822     /* encode into LMBCS Unicode range */
823   uint8_t LowCh =   (uint8_t)(uniChar & 0x00FF);
824   uint8_t HighCh  = (uint8_t)(uniChar >> 8);
825
826   *pLMBCS++ = ULMBCS_GRP_UNICODE;
827
828   if (LowCh == 0)
829   {
830      *pLMBCS++ = ULMBCS_UNICOMPATZERO;
831      *pLMBCS++ = HighCh;
832   }
833   else
834   {
835      *pLMBCS++ = HighCh;
836      *pLMBCS++ = LowCh;
837   }
838   return ULMBCS_UNICODE_SIZE;
839}
840
841
842
843/* The main Unicode to LMBCS conversion function */
844static void
845_LMBCSFromUnicode(UConverterFromUnicodeArgs*     args,
846                  UErrorCode*     err)
847{
848   ulmbcs_byte_t lastConverterIndex = 0;
849   UChar uniChar;
850   ulmbcs_byte_t  LMBCS[ULMBCS_CHARSIZE_MAX];
851   ulmbcs_byte_t  * pLMBCS;
852   int32_t bytes_written;
853   UBool groups_tried[ULMBCS_GRP_LAST+1];
854   UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
855   int sourceIndex = 0;
856
857   /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
858      If that succeeds, see if it will all fit into the target & copy it over
859      if it does.
860
861      We try conversions in the following order:
862
863      1. Single-byte ascii & special fixed control chars (&null)
864      2. Look up group in table & try that (could be
865            A) Unicode group
866            B) control group,
867            C) national encoding,
868               or ambiguous SBCS or MBCS group (on to step 4...)
869
870      3. If its ambiguous, try this order:
871         A) The optimization group
872         B) The locale group
873         C) The last group that succeeded with this string.
874         D) every other group that's relevent (single or double)
875         E) If its single-byte ambiguous, try the exceptions group
876
877      4. And as a grand fallback: Unicode
878   */
879
880    /*Fix for SPR#DJOE66JFN3 (Lotus)*/
881    ulmbcs_byte_t OldConverterIndex = 0;
882
883   while (args->source < args->sourceLimit && !U_FAILURE(*err))
884   {
885      /*Fix for SPR#DJOE66JFN3 (Lotus)*/
886      OldConverterIndex = extraInfo->localeConverterIndex;
887
888      if (args->target >= args->targetLimit)
889      {
890         *err = U_BUFFER_OVERFLOW_ERROR;
891         break;
892      }
893      uniChar = *(args->source);
894      bytes_written = 0;
895      pLMBCS = LMBCS;
896
897      /* check cases in rough order of how common they are, for speed */
898
899      /* single byte matches: strategy 1 */
900      /*Fix for SPR#DJOE66JFN3 (Lotus)*/
901      if((uniChar>=0x80) && (uniChar<=0xff)
902      /*Fix for SPR#JUYA6XAERU and TSAO7GL5NK (Lotus)*/ &&(uniChar!=0xB1) &&(uniChar!=0xD7) &&(uniChar!=0xF7)
903        &&(uniChar!=0xB0) &&(uniChar!=0xB4) &&(uniChar!=0xB6) &&(uniChar!=0xA7) &&(uniChar!=0xA8))
904      {
905            extraInfo->localeConverterIndex = ULMBCS_GRP_L1;
906      }
907      if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) ||
908          uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR ||
909          uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE
910          )
911      {
912         *pLMBCS++ = (ulmbcs_byte_t ) uniChar;
913         bytes_written = 1;
914      }
915
916
917      if (!bytes_written)
918      {
919         /* Check by UNICODE range (Strategy 2) */
920         ulmbcs_byte_t group = FindLMBCSUniRange(uniChar);
921
922         if (group == ULMBCS_GRP_UNICODE)  /* (Strategy 2A) */
923         {
924            pLMBCS += LMBCSConvertUni(pLMBCS,uniChar);
925
926            bytes_written = (int32_t)(pLMBCS - LMBCS);
927         }
928         else if (group == ULMBCS_GRP_CTRL)  /* (Strategy 2B) */
929         {
930            /* Handle control characters here */
931            if (uniChar <= ULMBCS_C0END)
932            {
933               *pLMBCS++ = ULMBCS_GRP_CTRL;
934               *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar);
935            }
936            else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET)
937            {
938               *pLMBCS++ = ULMBCS_GRP_CTRL;
939               *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF);
940            }
941            bytes_written = (int32_t)(pLMBCS - LMBCS);
942         }
943         else if (group < ULMBCS_GRP_UNICODE)  /* (Strategy 2C) */
944         {
945            /* a specific converter has been identified - use it */
946            bytes_written = (int32_t)LMBCSConversionWorker (
947                              extraInfo, group, pLMBCS, &uniChar,
948                              &lastConverterIndex, groups_tried);
949         }
950         if (!bytes_written)    /* the ambiguous group cases  (Strategy 3) */
951         {
952            uprv_memset(groups_tried, 0, sizeof(groups_tried));
953
954            /* check for non-default optimization group (Strategy 3A )*/
955            if ((extraInfo->OptGroup != 1) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup)))
956            {
957                /*zhujin: upgrade, merge #39299 here (Lotus) */
958                /*To make R5 compatible translation, look for exceptional group first for non-DBCS*/
959
960                if(extraInfo->localeConverterIndex < ULMBCS_DOUBLEOPTGROUP_START)
961                {
962                  bytes_written = LMBCSConversionWorker (extraInfo,
963                     ULMBCS_GRP_L1, pLMBCS, &uniChar,
964                     &lastConverterIndex, groups_tried);
965
966                  if(!bytes_written)
967                  {
968                     bytes_written = LMBCSConversionWorker (extraInfo,
969                         ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
970                         &lastConverterIndex, groups_tried);
971                  }
972                  if(!bytes_written)
973                  {
974                      bytes_written = LMBCSConversionWorker (extraInfo,
975                          extraInfo->localeConverterIndex, pLMBCS, &uniChar,
976                          &lastConverterIndex, groups_tried);
977                  }
978                }
979                else
980                {
981                     bytes_written = LMBCSConversionWorker (extraInfo,
982                         extraInfo->localeConverterIndex, pLMBCS, &uniChar,
983                         &lastConverterIndex, groups_tried);
984                }
985            }
986            /* check for locale optimization group (Strategy 3B) */
987            if (!bytes_written && (extraInfo->localeConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex)))
988            {
989                bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
990                        extraInfo->localeConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
991            }
992            /* check for last optimization group used for this string (Strategy 3C) */
993            if (!bytes_written && (lastConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex)))
994            {
995                bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
996                        lastConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
997            }
998            if (!bytes_written)
999            {
1000               /* just check every possible matching converter (Strategy 3D) */
1001               ulmbcs_byte_t grp_start;
1002               ulmbcs_byte_t grp_end;
1003               ulmbcs_byte_t grp_ix;
1004               grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1005                        ? ULMBCS_DOUBLEOPTGROUP_START
1006                        :  ULMBCS_GRP_L1);
1007               grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1008                        ? ULMBCS_GRP_LAST
1009                        :  ULMBCS_GRP_TH);
1010               if(group == ULMBCS_AMBIGUOUS_ALL)
1011               {
1012                   grp_start = ULMBCS_GRP_L1;
1013                   grp_end = ULMBCS_GRP_LAST;
1014               }
1015               for (grp_ix = grp_start;
1016                   grp_ix <= grp_end && !bytes_written;
1017                    grp_ix++)
1018               {
1019                  if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix])
1020                  {
1021                     bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1022                       grp_ix, pLMBCS, &uniChar,
1023                       &lastConverterIndex, groups_tried);
1024                  }
1025               }
1026                /* a final conversion fallback to the exceptions group if its likely
1027                     to be single byte  (Strategy 3E) */
1028               if (!bytes_written && grp_start == ULMBCS_GRP_L1)
1029               {
1030                  bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1031                     ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
1032                     &lastConverterIndex, groups_tried);
1033               }
1034            }
1035            /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/
1036            if (!bytes_written)
1037            {
1038
1039               pLMBCS += LMBCSConvertUni(pLMBCS, uniChar);
1040               bytes_written = (int32_t)(pLMBCS - LMBCS);
1041            }
1042         }
1043      }
1044
1045      /* we have a translation. increment source and write as much as posible to target */
1046      args->source++;
1047      pLMBCS = LMBCS;
1048      while (args->target < args->targetLimit && bytes_written--)
1049      {
1050         *(args->target)++ = *pLMBCS++;
1051         if (args->offsets)
1052         {
1053            *(args->offsets)++ = sourceIndex;
1054         }
1055      }
1056      sourceIndex++;
1057      if (bytes_written > 0)
1058      {
1059         /* write any bytes that didn't fit in target to the error buffer,
1060            common code will move this to target if we get called back with
1061            enough target room
1062         */
1063         uint8_t * pErrorBuffer = args->converter->charErrorBuffer;
1064         *err = U_BUFFER_OVERFLOW_ERROR;
1065         args->converter->charErrorBufferLength = (int8_t)bytes_written;
1066         while (bytes_written--)
1067         {
1068            *pErrorBuffer++ = *pLMBCS++;
1069         }
1070      }
1071      /*Fix for SPR#DJOE66JFN3 (Lotus)*/
1072      extraInfo->localeConverterIndex = OldConverterIndex;
1073   }
1074}
1075
1076
1077/* Now, the Unicode from LMBCS section */
1078
1079
1080/* A function to call when we are looking at the Unicode group byte in LMBCS */
1081static UChar
1082GetUniFromLMBCSUni(char const ** ppLMBCSin)  /* Called with LMBCS-style Unicode byte stream */
1083{
1084   uint8_t  HighCh = *(*ppLMBCSin)++;  /* Big-endian Unicode in LMBCS compatibility group*/
1085   uint8_t  LowCh  = *(*ppLMBCSin)++;
1086
1087   if (HighCh == ULMBCS_UNICOMPATZERO )
1088   {
1089      HighCh = LowCh;
1090      LowCh = 0; /* zero-byte in LSB special character */
1091   }
1092   return (UChar)((HighCh << 8) | LowCh);
1093}
1094
1095
1096
1097/* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index'
1098   bytes left in source up to  sourceLimit.Errors appropriately if not.
1099   If we reach the limit, then update the source pointer to there to consume
1100   all input as required by ICU converter semantics.
1101*/
1102
1103#define CHECK_SOURCE_LIMIT(index) \
1104     if (args->source+index > args->sourceLimit){\
1105         *err = U_TRUNCATED_CHAR_FOUND;\
1106         args->source = args->sourceLimit;\
1107         return 0xffff;}
1108
1109/* Return the Unicode representation for the current LMBCS character */
1110
1111static UChar32
1112_LMBCSGetNextUCharWorker(UConverterToUnicodeArgs*   args,
1113                         UErrorCode*   err)
1114{
1115    UChar32 uniChar = 0;    /* an output UNICODE char */
1116    ulmbcs_byte_t   CurByte; /* A byte from the input stream */
1117
1118    /* error check */
1119    if (args->source >= args->sourceLimit)
1120    {
1121        *err = U_ILLEGAL_ARGUMENT_ERROR;
1122        return 0xffff;
1123    }
1124    /* Grab first byte & save address for error recovery */
1125    CurByte = *((ulmbcs_byte_t  *) (args->source++));
1126
1127    /*
1128    * at entry of each if clause:
1129    * 1. 'CurByte' points at the first byte of a LMBCS character
1130    * 2. '*source'points to the next byte of the source stream after 'CurByte'
1131    *
1132    * the job of each if clause is:
1133    * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte)
1134    * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
1135    */
1136
1137    /* First lets check the simple fixed values. */
1138
1139    if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */
1140    ||  (CurByte == 0)
1141    ||  CurByte == ULMBCS_HT || CurByte == ULMBCS_CR
1142    ||  CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE)
1143    {
1144        uniChar = CurByte;
1145    }
1146    else
1147    {
1148        UConverterDataLMBCS * extraInfo;
1149        ulmbcs_byte_t group;
1150        UConverterSharedData *cnv;
1151
1152        if (CurByte == ULMBCS_GRP_CTRL)  /* Control character group - no opt group update */
1153        {
1154            ulmbcs_byte_t  C0C1byte;
1155            CHECK_SOURCE_LIMIT(1);
1156            C0C1byte = *(args->source)++;
1157            uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte;
1158        }
1159        else
1160        if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */
1161        {
1162            CHECK_SOURCE_LIMIT(2);
1163
1164            /* don't check for error indicators fffe/ffff below */
1165            return GetUniFromLMBCSUni(&(args->source));
1166        }
1167        else if (CurByte <= ULMBCS_CTRLOFFSET)
1168        {
1169            group = CurByte;                   /* group byte is in the source */
1170            extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1171            if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == NULL)
1172            {
1173                /* this is not a valid group byte - no converter*/
1174                *err = U_INVALID_CHAR_FOUND;
1175            }
1176            else if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */
1177            {
1178
1179                CHECK_SOURCE_LIMIT(2);
1180
1181                /* check for LMBCS doubled-group-byte case */
1182                if (*args->source == group) {
1183                    /* single byte */
1184                    ++args->source;
1185                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, FALSE);
1186                    ++args->source;
1187                } else {
1188                    /* double byte */
1189                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, FALSE);
1190                    args->source += 2;
1191                }
1192            }
1193            else {                                  /* single byte conversion */
1194                CHECK_SOURCE_LIMIT(1);
1195                CurByte = *(args->source)++;
1196
1197                if (CurByte >= ULMBCS_C1START)
1198                {
1199                    uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1200                }
1201                else
1202                {
1203                    /* The non-optimizable oddballs where there is an explicit byte
1204                    * AND the second byte is not in the upper ascii range
1205                    */
1206                    char bytes[2];
1207
1208                    extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1209                    cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT];
1210
1211                    /* Lookup value must include opt group */
1212                    bytes[0] = group;
1213                    bytes[1] = CurByte;
1214                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, FALSE);
1215                }
1216            }
1217        }
1218        else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */
1219        {
1220            extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1221            group = extraInfo->OptGroup;
1222            cnv = extraInfo->OptGrpConverter[group];
1223            if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */
1224            {
1225                if (!ucnv_MBCSIsLeadByte(cnv, CurByte))
1226                {
1227                    CHECK_SOURCE_LIMIT(0);
1228
1229                    /* let the MBCS conversion consume CurByte again */
1230                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, FALSE);
1231                }
1232                else
1233                {
1234                    CHECK_SOURCE_LIMIT(1);
1235                    /* let the MBCS conversion consume CurByte again */
1236                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, FALSE);
1237                    ++args->source;
1238                }
1239            }
1240            else                                   /* single byte conversion */
1241            {
1242                uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1243            }
1244        }
1245    }
1246    return uniChar;
1247}
1248
1249
1250/* The exported function that converts lmbcs to one or more
1251   UChars - currently UTF-16
1252*/
1253static void
1254_LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs*    args,
1255                     UErrorCode*    err)
1256{
1257   char LMBCS [ULMBCS_CHARSIZE_MAX];
1258   UChar uniChar;    /* one output UNICODE char */
1259   const char * saveSource; /* beginning of current code point */
1260   const char * pStartLMBCS = args->source;  /* beginning of whole string */
1261   const char * errSource = NULL; /* pointer to actual input in case an error occurs */
1262   int8_t savebytes = 0;
1263
1264   /* Process from source to limit, or until error */
1265   while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target)
1266   {
1267      saveSource = args->source; /* beginning of current code point */
1268
1269      if (args->converter->toULength) /* reassemble char from previous call */
1270      {
1271        const char *saveSourceLimit;
1272        size_t size_old = args->converter->toULength;
1273
1274         /* limit from source is either remainder of temp buffer, or user limit on source */
1275        size_t size_new_maybe_1 = sizeof(LMBCS) - size_old;
1276        size_t size_new_maybe_2 = args->sourceLimit - args->source;
1277        size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2;
1278
1279
1280        uprv_memcpy(LMBCS, args->converter->toUBytes, size_old);
1281        uprv_memcpy(LMBCS + size_old, args->source, size_new);
1282        saveSourceLimit = args->sourceLimit;
1283        args->source = errSource = LMBCS;
1284        args->sourceLimit = LMBCS+size_old+size_new;
1285        savebytes = (int8_t)(size_old+size_new);
1286        uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1287        args->source = saveSource + ((args->source - LMBCS) - size_old);
1288        args->sourceLimit = saveSourceLimit;
1289
1290        if (*err == U_TRUNCATED_CHAR_FOUND)
1291        {
1292            /* evil special case: source buffers so small a char spans more than 2 buffers */
1293            args->converter->toULength = savebytes;
1294            uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes);
1295            args->source = args->sourceLimit;
1296            *err = U_ZERO_ERROR;
1297            return;
1298         }
1299         else
1300         {
1301            /* clear the partial-char marker */
1302            args->converter->toULength = 0;
1303         }
1304      }
1305      else
1306      {
1307         errSource = saveSource;
1308         uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1309         savebytes = (int8_t)(args->source - saveSource);
1310      }
1311      if (U_SUCCESS(*err))
1312      {
1313         if (uniChar < 0xfffe)
1314         {
1315            *(args->target)++ = uniChar;
1316            if(args->offsets)
1317            {
1318               *(args->offsets)++ = (int32_t)(saveSource - pStartLMBCS);
1319            }
1320         }
1321         else if (uniChar == 0xfffe)
1322         {
1323            *err = U_INVALID_CHAR_FOUND;
1324         }
1325         else /* if (uniChar == 0xffff) */
1326         {
1327            *err = U_ILLEGAL_CHAR_FOUND;
1328         }
1329      }
1330   }
1331   /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */
1332   if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target)
1333   {
1334      *err = U_BUFFER_OVERFLOW_ERROR;
1335   }
1336   else if (U_FAILURE(*err))
1337   {
1338      /* If character incomplete or unmappable/illegal, store it in toUBytes[] */
1339      args->converter->toULength = savebytes;
1340      if (savebytes > 0) {
1341         uprv_memcpy(args->converter->toUBytes, errSource, savebytes);
1342      }
1343      if (*err == U_TRUNCATED_CHAR_FOUND) {
1344         *err = U_ZERO_ERROR;
1345      }
1346   }
1347}
1348
1349/* And now, the macroized declarations of data & functions: */
1350DEFINE_LMBCS_OPEN(1)
1351DEFINE_LMBCS_OPEN(2)
1352DEFINE_LMBCS_OPEN(3)
1353DEFINE_LMBCS_OPEN(4)
1354DEFINE_LMBCS_OPEN(5)
1355DEFINE_LMBCS_OPEN(6)
1356DEFINE_LMBCS_OPEN(8)
1357DEFINE_LMBCS_OPEN(11)
1358DEFINE_LMBCS_OPEN(16)
1359DEFINE_LMBCS_OPEN(17)
1360DEFINE_LMBCS_OPEN(18)
1361DEFINE_LMBCS_OPEN(19)
1362
1363
1364DECLARE_LMBCS_DATA(1)
1365DECLARE_LMBCS_DATA(2)
1366DECLARE_LMBCS_DATA(3)
1367DECLARE_LMBCS_DATA(4)
1368DECLARE_LMBCS_DATA(5)
1369DECLARE_LMBCS_DATA(6)
1370DECLARE_LMBCS_DATA(8)
1371DECLARE_LMBCS_DATA(11)
1372DECLARE_LMBCS_DATA(16)
1373DECLARE_LMBCS_DATA(17)
1374DECLARE_LMBCS_DATA(18)
1375DECLARE_LMBCS_DATA(19)
1376
1377#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
1378