1/*
2 * Copyright (c) 2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23
24#include <mach/mach_types.h>
25#include <vm/vm_page.h>
26#include <vm/vm_kern.h>		/* kmem_alloc */
27#include <vm/vm_purgeable_internal.h>
28#include <sys/kdebug.h>
29#include <kern/sched_prim.h>
30
31struct token {
32	token_cnt_t     count;
33	token_idx_t     next;
34};
35
36struct token	*tokens;
37token_idx_t	token_q_max_cnt = 0;
38vm_size_t	token_q_cur_size = 0;
39
40token_idx_t     token_free_idx = 0;		/* head of free queue */
41token_idx_t     token_init_idx = 1;		/* token 0 is reserved!! */
42int32_t		token_new_pagecount = 0;	/* count of pages that will
43						 * be added onto token queue */
44
45int             available_for_purge = 0;	/* increase when ripe token
46						 * added, decrease when ripe
47						 * token removed protect with
48						 * page_queue_lock */
49
50static int token_q_allocating = 0;		/* flag to singlethread allocator */
51
52struct purgeable_q purgeable_queues[PURGEABLE_Q_TYPE_MAX];
53
54#define TOKEN_ADD           0x40/* 0x100 */
55#define TOKEN_DELETE        0x41/* 0x104 */
56#define TOKEN_QUEUE_ADVANCE 0x42/* 0x108 actually means "token ripened" */
57#define TOKEN_OBJECT_PURGED 0x43/* 0x10c */
58#define OBJECT_ADDED        0x50/* 0x140 */
59#define OBJECT_REMOVED      0x51/* 0x144 */
60
61static token_idx_t vm_purgeable_token_remove_first(purgeable_q_t queue);
62
63#if MACH_ASSERT
64static void
65vm_purgeable_token_check_queue(purgeable_q_t queue)
66{
67	int             token_cnt = 0, page_cnt = 0;
68	token_idx_t     token = queue->token_q_head;
69	token_idx_t     unripe = 0;
70	int             our_inactive_count;
71
72	while (token) {
73		if (tokens[token].count != 0) {
74			assert(queue->token_q_unripe);
75			if (unripe == 0) {
76				assert(token == queue->token_q_unripe);
77				unripe = token;
78			}
79			page_cnt += tokens[token].count;
80		}
81		if (tokens[token].next == 0)
82			assert(queue->token_q_tail == token);
83
84		token_cnt++;
85		token = tokens[token].next;
86	}
87
88	if (unripe)
89		assert(queue->token_q_unripe == unripe);
90	assert(token_cnt == queue->debug_count_tokens);
91
92	/* obsolete queue doesn't maintain token counts */
93	if(queue->type != PURGEABLE_Q_TYPE_OBSOLETE)
94	{
95		our_inactive_count = page_cnt + queue->new_pages + token_new_pagecount;
96		assert(our_inactive_count >= 0);
97		assert((uint32_t) our_inactive_count == vm_page_inactive_count);
98	}
99}
100#endif
101
102kern_return_t
103vm_purgeable_token_add(purgeable_q_t queue)
104{
105	/* new token */
106	token_idx_t     token;
107	enum purgeable_q_type i;
108
109find_available_token:
110
111	if (token_free_idx) {				/* unused tokens available */
112		token = token_free_idx;
113		token_free_idx = tokens[token_free_idx].next;
114	} else if (token_init_idx < token_q_max_cnt) {	/* lazy token array init */
115		token = token_init_idx;
116		token_init_idx++;
117	} else {					/* allocate more memory */
118		/* Wait if another thread is inside the memory alloc section */
119		while(token_q_allocating) {
120			wait_result_t res = thread_sleep_mutex((event_t)&token_q_allocating,
121							       &vm_page_queue_lock,
122							       THREAD_UNINT);
123			if(res != THREAD_AWAKENED) return KERN_ABORTED;
124		};
125
126		/* Check whether memory is still maxed out */
127		if(token_init_idx < token_q_max_cnt)
128			goto find_available_token;
129
130		/* Still no memory. Allocate some. */
131		token_q_allocating = 1;
132
133		/* Drop page queue lock so we can allocate */
134		vm_page_unlock_queues();
135
136		struct token *new_loc;
137		vm_size_t alloc_size = token_q_cur_size + PAGE_SIZE;
138		kern_return_t result;
139
140		if (token_q_cur_size) {
141			result=kmem_realloc(kernel_map, (vm_offset_t)tokens, token_q_cur_size,
142					    (vm_offset_t*)&new_loc, alloc_size);
143		} else {
144			result=kmem_alloc(kernel_map, (vm_offset_t*)&new_loc, alloc_size);
145		}
146
147		vm_page_lock_queues();
148
149		if (result) {
150			/* Unblock waiting threads */
151			token_q_allocating = 0;
152			thread_wakeup((event_t)&token_q_allocating);
153			return result;
154		}
155
156		/* If we get here, we allocated new memory. Update pointers and
157		 * dealloc old range */
158		struct token *old_tokens=tokens;
159		tokens=new_loc;
160		vm_size_t old_token_q_cur_size=token_q_cur_size;
161		token_q_cur_size=alloc_size;
162		token_q_max_cnt = token_q_cur_size / sizeof(struct token);
163		assert (token_init_idx < token_q_max_cnt);	/* We must have a free token now */
164
165		if (old_token_q_cur_size) {	/* clean up old mapping */
166			vm_page_unlock_queues();
167			/* kmem_realloc leaves the old region mapped. Get rid of it. */
168			kmem_free(kernel_map, (vm_offset_t)old_tokens, old_token_q_cur_size);
169			vm_page_lock_queues();
170		}
171
172		/* Unblock waiting threads */
173		token_q_allocating = 0;
174		thread_wakeup((event_t)&token_q_allocating);
175
176		goto find_available_token;
177	}
178
179	assert (token);
180
181	/*
182	 * the new pagecount we got need to be applied to all queues except
183	 * obsolete
184	 */
185	for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) {
186		int64_t pages = purgeable_queues[i].new_pages += token_new_pagecount;
187		assert(pages >= 0);
188		assert(pages <= TOKEN_COUNT_MAX);
189		purgeable_queues[i].new_pages=pages;
190	}
191	token_new_pagecount = 0;
192
193	/* set token counter value */
194	if (queue->type != PURGEABLE_Q_TYPE_OBSOLETE)
195		tokens[token].count = queue->new_pages;
196	else
197		tokens[token].count = 0;	/* all obsolete items are
198						 * ripe immediately */
199	queue->new_pages = 0;
200
201	/* put token on token counter list */
202	tokens[token].next = 0;
203	if (queue->token_q_tail == 0) {
204		assert(queue->token_q_head == 0 && queue->token_q_unripe == 0);
205		queue->token_q_head = token;
206	} else {
207		tokens[queue->token_q_tail].next = token;
208	}
209	if (queue->token_q_unripe == 0) {	/* only ripe tokens (token
210						 * count == 0) in queue */
211		if (tokens[token].count > 0)
212			queue->token_q_unripe = token;	/* first unripe token */
213		else
214			available_for_purge++;	/* added a ripe token?
215						 * increase available count */
216	}
217	queue->token_q_tail = token;
218
219#if MACH_ASSERT
220	queue->debug_count_tokens++;
221	/* Check both queues, since we modified the new_pages count on each */
222	vm_purgeable_token_check_queue(&purgeable_queues[PURGEABLE_Q_TYPE_FIFO]);
223	vm_purgeable_token_check_queue(&purgeable_queues[PURGEABLE_Q_TYPE_LIFO]);
224
225	KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_ADD)),
226			      queue->type,
227			      tokens[token].count,	/* num pages on token
228							 * (last token) */
229			      queue->debug_count_tokens,
230			      0,
231			      0);
232#endif
233
234	return KERN_SUCCESS;
235}
236
237/*
238 * Remove first token from queue and return its index. Add its count to the
239 * count of the next token.
240 */
241static token_idx_t
242vm_purgeable_token_remove_first(purgeable_q_t queue)
243{
244	token_idx_t     token;
245	token = queue->token_q_head;
246
247	assert(token);
248
249	if (token) {
250		assert(queue->token_q_tail);
251		if (queue->token_q_head == queue->token_q_unripe) {
252			/* no ripe tokens... must move unripe pointer */
253			queue->token_q_unripe = tokens[token].next;
254		} else {
255			/* we're removing a ripe token. decrease count */
256			available_for_purge--;
257			assert(available_for_purge >= 0);
258		}
259
260		if (queue->token_q_tail == queue->token_q_head)
261			assert(tokens[token].next == 0);
262
263		queue->token_q_head = tokens[token].next;
264		if (queue->token_q_head) {
265			tokens[queue->token_q_head].count += tokens[token].count;
266		} else {
267			/* currently no other tokens in the queue */
268			/*
269			 * the page count must be added to the next newly
270			 * created token
271			 */
272			queue->new_pages += tokens[token].count;
273			/* if head is zero, tail is too */
274			queue->token_q_tail = 0;
275		}
276
277#if MACH_ASSERT
278		queue->debug_count_tokens--;
279		vm_purgeable_token_check_queue(queue);
280
281		KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_DELETE)),
282				      queue->type,
283				      tokens[queue->token_q_head].count,	/* num pages on new
284										 * first token */
285				      token_new_pagecount,	/* num pages waiting for
286								 * next token */
287				      available_for_purge,
288				      0);
289#endif
290	}
291	return token;
292}
293
294/* Delete first token from queue. Return token to token queue. */
295void
296vm_purgeable_token_delete_first(purgeable_q_t queue)
297{
298	token_idx_t     token = vm_purgeable_token_remove_first(queue);
299
300	if (token) {
301		/* stick removed token on free queue */
302		tokens[token].next = token_free_idx;
303		token_free_idx = token;
304	}
305}
306
307
308void
309vm_purgeable_q_advance_all()
310{
311	/* check queue counters - if they get really large, scale them back.
312	 * They tend to get that large when there is no purgeable queue action */
313	int i;
314	if(token_new_pagecount > (TOKEN_NEW_PAGECOUNT_MAX >> 1))	/* a system idling years might get there */
315	{
316		for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) {
317			int64_t pages = purgeable_queues[i].new_pages += token_new_pagecount;
318			assert(pages >= 0);
319			assert(pages <= TOKEN_COUNT_MAX);
320			purgeable_queues[i].new_pages=pages;
321		}
322		token_new_pagecount = 0;
323	}
324
325	/*
326	 * Decrement token counters. A token counter can be zero, this means the
327	 * object is ripe to be purged. It is not purged immediately, because that
328	 * could cause several objects to be purged even if purging one would satisfy
329	 * the memory needs. Instead, the pageout thread purges one after the other
330	 * by calling vm_purgeable_object_purge_one and then rechecking the memory
331	 * balance.
332	 *
333	 * No need to advance obsolete queue - all items are ripe there,
334	 * always
335	 */
336	for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) {
337		purgeable_q_t queue = &purgeable_queues[i];
338		uint32_t num_pages = 1;
339
340		/* Iterate over tokens as long as there are unripe tokens. */
341		while (queue->token_q_unripe) {
342			if (tokens[queue->token_q_unripe].count && num_pages)
343			{
344				tokens[queue->token_q_unripe].count -= 1;
345				num_pages -= 1;
346			}
347
348			if (tokens[queue->token_q_unripe].count == 0) {
349				queue->token_q_unripe = tokens[queue->token_q_unripe].next;
350				available_for_purge++;
351				KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_QUEUE_ADVANCE)),
352						      queue->type,
353						      tokens[queue->token_q_head].count,	/* num pages on new
354											 * first token */
355						      0,
356						      available_for_purge,
357						      0);
358				continue;	/* One token ripened. Make sure to
359						 * check the next. */
360			}
361			if (num_pages == 0)
362				break;	/* Current token not ripe and no more pages.
363					 * Work done. */
364		}
365
366		/*
367		 * if there are no unripe tokens in the queue, decrement the
368		 * new_pages counter instead new_pages can be negative, but must be
369		 * canceled out by token_new_pagecount -- since inactive queue as a
370		 * whole always contains a nonnegative number of pages
371		 */
372		if (!queue->token_q_unripe) {
373			queue->new_pages -= num_pages;
374			assert((int32_t) token_new_pagecount + queue->new_pages >= 0);
375		}
376#if MACH_ASSERT
377		vm_purgeable_token_check_queue(queue);
378#endif
379	}
380}
381
382/*
383 * grab any ripe object and purge it obsolete queue first. then, go through
384 * each volatile group. Select a queue with a ripe token.
385 * Start with first group (0)
386 * 1. Look at queue. Is there an object?
387 *   Yes - purge it. Remove token.
388 *   No - check other queue. Is there an object?
389 *     No - increment group, then go to (1)
390 *     Yes - purge it. Remove token. If there is no ripe token, remove ripe
391 *      token from other queue and migrate unripe token from this
392 *      queue to other queue.
393 */
394static void
395vm_purgeable_token_remove_ripe(purgeable_q_t queue)
396{
397	assert(queue->token_q_head && tokens[queue->token_q_head].count == 0);
398	/* return token to free list. advance token list. */
399	token_idx_t     new_head = tokens[queue->token_q_head].next;
400	tokens[queue->token_q_head].next = token_free_idx;
401	token_free_idx = queue->token_q_head;
402	queue->token_q_head = new_head;
403	if (new_head == 0)
404		queue->token_q_tail = 0;
405
406#if MACH_ASSERT
407	queue->debug_count_tokens--;
408	vm_purgeable_token_check_queue(queue);
409#endif
410
411	available_for_purge--;
412	assert(available_for_purge >= 0);
413}
414
415/*
416 * Delete a ripe token from the given queue. If there are no ripe tokens on
417 * that queue, delete a ripe token from queue2, and migrate an unripe token
418 * from queue to queue2
419 */
420static void
421vm_purgeable_token_choose_and_delete_ripe(purgeable_q_t queue, purgeable_q_t queue2)
422{
423	assert(queue->token_q_head);
424
425	if (tokens[queue->token_q_head].count == 0) {
426		/* This queue has a ripe token. Remove. */
427		vm_purgeable_token_remove_ripe(queue);
428	} else {
429		assert(queue2);
430		/*
431		 * queue2 must have a ripe token. Remove, and migrate one
432		 * from queue to queue2.
433		 */
434		vm_purgeable_token_remove_ripe(queue2);
435		/* migrate unripe token */
436		token_idx_t     token;
437		token_cnt_t     count;
438
439		/* remove token from queue1 */
440		assert(queue->token_q_unripe == queue->token_q_head);	/* queue1 had no unripe
441									 * tokens, remember? */
442		token = vm_purgeable_token_remove_first(queue);
443		assert(token);
444
445		count = tokens[token].count;
446
447		/* migrate to queue2 */
448		/* go to migration target loc */
449		token_idx_t    *token_in_queue2 = &queue2->token_q_head;
450		while (*token_in_queue2 && count > tokens[*token_in_queue2].count) {
451			count -= tokens[*token_in_queue2].count;
452			token_in_queue2 = &tokens[*token_in_queue2].next;
453		}
454
455		if ((*token_in_queue2 == queue2->token_q_unripe) ||	/* becomes the first
456									 * unripe token */
457		    (queue2->token_q_unripe == 0))
458			queue2->token_q_unripe = token;	/* must update unripe
459							 * pointer */
460
461		/* insert token */
462		tokens[token].count = count;
463		tokens[token].next = *token_in_queue2;
464
465		/*
466		 * if inserting at end, reduce new_pages by that value if
467		 * inserting before token, reduce counter of that token
468		 */
469		if (*token_in_queue2 == 0) {	/* insertion at end of queue2 */
470			queue2->token_q_tail = token;	/* must update tail
471							 * pointer */
472			assert(queue2->new_pages >= (int32_t) count);
473			queue2->new_pages -= count;
474		} else {
475			assert(tokens[*token_in_queue2].count >= count);
476			tokens[*token_in_queue2].count -= count;
477		}
478		*token_in_queue2 = token;
479
480#if MACH_ASSERT
481		queue2->debug_count_tokens++;
482		vm_purgeable_token_check_queue(queue2);
483#endif
484	}
485}
486
487/* Find an object that can be locked. Returns locked object. */
488static          vm_object_t
489vm_purgeable_object_find_and_lock(purgeable_q_t queue, int group)
490{
491	/*
492	 * Usually we would pick the first element from a queue. However, we
493	 * might not be able to get a lock on it, in which case we try the
494	 * remaining elements in order.
495	 */
496
497	vm_object_t     object;
498	for (object = (vm_object_t) queue_first(&queue->objq[group]);
499	     !queue_end(&queue->objq[group], (queue_entry_t) object);
500	     object = (vm_object_t) queue_next(&object->objq)) {
501		if (vm_object_lock_try(object)) {
502			/* Locked. Great. We'll take it. Remove and return. */
503			queue_remove(&queue->objq[group], object,
504				     vm_object_t, objq);
505			object->objq.next = 0;
506			object->objq.prev = 0;
507#if MACH_ASSERT
508			queue->debug_count_objects--;
509#endif
510			return object;
511		}
512	}
513
514	return 0;
515}
516
517void
518vm_purgeable_object_purge_one(void)
519{
520	enum purgeable_q_type i;
521	int             group;
522	vm_object_t     object = 0;
523	purgeable_q_t   queue, queue2;
524
525	mutex_lock(&vm_purgeable_queue_lock);
526	/* Cycle through all queues */
527	for (i = PURGEABLE_Q_TYPE_OBSOLETE; i < PURGEABLE_Q_TYPE_MAX; i++) {
528		queue = &purgeable_queues[i];
529
530		/*
531		 * Are there any ripe tokens on this queue? If yes, we'll
532		 * find an object to purge there
533		 */
534		if (!(queue->token_q_head && tokens[queue->token_q_head].count == 0))
535			continue;	/* no token? Look at next purgeable
536					 * queue */
537
538		/*
539		 * Now look through all groups, starting from the lowest. If
540		 * we find an object in that group, try to lock it (this can
541		 * fail). If locking is successful, we can drop the queue
542		 * lock, remove a token and then purge the object.
543		 */
544		for (group = 0; group < NUM_VOLATILE_GROUPS; group++) {
545			if (!queue_empty(&queue->objq[group]) &&
546			    (object = vm_purgeable_object_find_and_lock(queue, group))) {
547				mutex_unlock(&vm_purgeable_queue_lock);
548				vm_purgeable_token_choose_and_delete_ripe(queue, 0);
549				goto purge_now;
550			}
551			if (i != PURGEABLE_Q_TYPE_OBSOLETE) {
552				/* This is the token migration case, and it works between
553				 * FIFO and LIFO only */
554				queue2 = &purgeable_queues[i != PURGEABLE_Q_TYPE_FIFO ?
555							   PURGEABLE_Q_TYPE_FIFO :
556							   PURGEABLE_Q_TYPE_LIFO];
557
558				if (!queue_empty(&queue2->objq[group]) &&
559				    (object = vm_purgeable_object_find_and_lock(queue2, group))) {
560					mutex_unlock(&vm_purgeable_queue_lock);
561					vm_purgeable_token_choose_and_delete_ripe(queue2, queue);
562					goto purge_now;
563				}
564			}
565			assert(queue->debug_count_objects >= 0);
566		}
567	}
568	/*
569         * because we have to do a try_lock on the objects which could fail,
570         * we could end up with no object to purge at this time, even though
571         * we have objects in a purgeable state
572         */
573	mutex_unlock(&vm_purgeable_queue_lock);
574	return;
575
576purge_now:
577
578	assert(object);
579	(void) vm_object_purge(object);
580	vm_object_unlock(object);
581
582	KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_OBJECT_PURGED)),
583			      (unsigned int) object,	/* purged object */
584			      0,
585			      available_for_purge,
586			      0,
587			      0);
588}
589
590void
591vm_purgeable_object_add(vm_object_t object, purgeable_q_t queue, int group)
592{
593	mutex_lock(&vm_purgeable_queue_lock);
594
595	if (queue->type == PURGEABLE_Q_TYPE_OBSOLETE)
596		group = 0;
597	if (queue->type != PURGEABLE_Q_TYPE_LIFO)	/* fifo and obsolete are
598							 * fifo-queued */
599		queue_enter(&queue->objq[group], object, vm_object_t, objq);	/* last to die */
600	else
601		queue_enter_first(&queue->objq[group], object, vm_object_t, objq);	/* first to die */
602
603#if MACH_ASSERT
604	queue->debug_count_objects++;
605	KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_ADDED)),
606			      0,
607			      tokens[queue->token_q_head].count,
608			      queue->type,
609			      group,
610			      0);
611#endif
612
613	mutex_unlock(&vm_purgeable_queue_lock);
614}
615
616/* Look for object. If found, remove from purgeable queue. */
617purgeable_q_t
618vm_purgeable_object_remove(vm_object_t object)
619{
620	enum purgeable_q_type i;
621	int             group;
622
623	mutex_lock(&vm_purgeable_queue_lock);
624	for (i = PURGEABLE_Q_TYPE_OBSOLETE; i < PURGEABLE_Q_TYPE_MAX; i++) {
625		purgeable_q_t   queue = &purgeable_queues[i];
626		for (group = 0; group < NUM_VOLATILE_GROUPS; group++) {
627			vm_object_t     o;
628			for (o = (vm_object_t) queue_first(&queue->objq[group]);
629			 !queue_end(&queue->objq[group], (queue_entry_t) o);
630			     o = (vm_object_t) queue_next(&o->objq)) {
631				if (o == object) {
632					queue_remove(&queue->objq[group], object,
633						     vm_object_t, objq);
634#if MACH_ASSERT
635					queue->debug_count_objects--;
636					KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_REMOVED)),
637							      0,
638					  tokens[queue->token_q_head].count,
639							      queue->type,
640							      group,
641							      0);
642#endif
643					mutex_unlock(&vm_purgeable_queue_lock);
644					object->objq.next = 0;
645					object->objq.prev = 0;
646					return &purgeable_queues[i];
647				}
648			}
649		}
650	}
651	mutex_unlock(&vm_purgeable_queue_lock);
652	return 0;
653}
654