1/*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
49 *  School of Computer Science
50 *  Carnegie Mellon University
51 *  Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57/*
58 */
59
60#include <kern/cpu_number.h>
61#include <kern/kalloc.h>
62#include <kern/cpu_data.h>
63#include <mach/mach_types.h>
64#include <mach/machine.h>
65#include <mach/vm_map.h>
66#include <vm/vm_kern.h>
67#include <vm/vm_map.h>
68
69#include <i386/mp_desc.h>
70#include <i386/lock.h>
71#include <i386/misc_protos.h>
72#include <i386/mp.h>
73#include <i386/pmap.h>
74#include <i386/machine_check.h>
75
76#include <kern/misc_protos.h>
77
78#include <mach_kdb.h>
79
80/*
81 * The i386 needs an interrupt stack to keep the PCB stack from being
82 * overrun by interrupts.  All interrupt stacks MUST lie at lower addresses
83 * than any thread`s kernel stack.
84 */
85
86/*
87 * First cpu`s interrupt stack.
88 */
89extern uint32_t		low_intstack[];	/* bottom */
90extern uint32_t		low_eintstack[];	/* top */
91
92/*
93 * Per-cpu data area pointers.
94 * The master cpu (cpu 0) has its data area statically allocated;
95 * others are allocated dynamically and this array is updated at runtime.
96 */
97cpu_data_t	cpu_data_master = {
98			.cpu_this = &cpu_data_master,
99			.cpu_nanotime = &rtc_nanotime_info,
100			.cpu_is64bit = FALSE,
101			.cpu_int_stack_top = (vm_offset_t) low_eintstack,
102		};
103cpu_data_t	*cpu_data_ptr[MAX_CPUS] = { [0] &cpu_data_master };
104
105decl_simple_lock_data(,cpu_lock);	/* protects real_ncpus */
106unsigned int	real_ncpus = 1;
107unsigned int	max_ncpus = MAX_CPUS;
108
109extern void *hi_remap_text;
110#define HI_TEXT(lo_text)	\
111	(((uint32_t)&lo_text - (uint32_t)&hi_remap_text) + HIGH_MEM_BASE)
112
113extern void hi_sysenter(void);
114extern void hi64_sysenter(void);
115extern void hi64_syscall(void);
116
117/*
118 * Multiprocessor i386/i486 systems use a separate copy of the
119 * GDT, IDT, LDT, and kernel TSS per processor.  The first three
120 * are separate to avoid lock contention: the i386 uses locked
121 * memory cycles to access the descriptor tables.  The TSS is
122 * separate since each processor needs its own kernel stack,
123 * and since using a TSS marks it busy.
124 */
125
126/*
127 * Allocate and initialize the per-processor descriptor tables.
128 */
129
130struct fake_descriptor ldt_desc_pattern = {
131	(unsigned int) 0,
132	LDTSZ_MIN * sizeof(struct fake_descriptor) - 1,
133	0,
134	ACC_P|ACC_PL_K|ACC_LDT
135};
136
137struct fake_descriptor tss_desc_pattern = {
138	(unsigned int) 0,
139	sizeof(struct i386_tss) - 1,
140	0,
141	ACC_P|ACC_PL_K|ACC_TSS
142};
143
144struct fake_descriptor cpudata_desc_pattern = {
145	(unsigned int) 0,
146	sizeof(cpu_data_t)-1,
147	SZ_32,
148	ACC_P|ACC_PL_K|ACC_DATA_W
149};
150
151struct fake_descriptor userwindow_desc_pattern = {
152	(unsigned int) 0,
153	((NBPDE * NCOPY_WINDOWS) / PAGE_SIZE) - 1,
154	SZ_32 | SZ_G,
155	ACC_P|ACC_PL_U|ACC_DATA_W
156};
157
158struct fake_descriptor physwindow_desc_pattern = {
159	(unsigned int) 0,
160	PAGE_SIZE - 1,
161	SZ_32,
162	ACC_P|ACC_PL_K|ACC_DATA_W
163};
164
165/*
166 * This is the expanded, 64-bit variant of the kernel LDT descriptor.
167 * When switching to 64-bit mode this replaces KERNEL_LDT entry
168 * and the following empty slot. This enables the LDT to be referenced
169 * in the uber-space remapping window on the kernel.
170 */
171struct fake_descriptor64 kernel_ldt_desc64 = {
172	FAKE_UBER64(&master_ldt),
173	LDTSZ_MIN*sizeof(struct fake_descriptor)-1,
174	0,
175	ACC_P|ACC_PL_K|ACC_LDT,
176	0
177};
178
179/*
180 * This is the expanded, 64-bit variant of the kernel TSS descriptor.
181 * It is follows pattern of the KERNEL_LDT.
182 */
183struct fake_descriptor64 kernel_tss_desc64 = {
184	FAKE_UBER64(&master_ktss64),
185	sizeof(struct x86_64_tss)-1,
186	0,
187	ACC_P|ACC_PL_K|ACC_TSS,
188	0
189};
190
191void
192cpu_desc_init(
193	cpu_data_t	*cdp,
194	boolean_t	is_boot_cpu)
195{
196	cpu_desc_table_t	*cdt = cdp->cpu_desc_tablep;
197	cpu_desc_index_t	*cdi = &cdp->cpu_desc_index;
198
199	if (is_boot_cpu) {
200	    /*
201	     * Master CPU uses the tables built at boot time.
202	     * Just set the index pointers to the high shared-mapping space.
203	     * Note that the sysenter stack uses empty space above the ktss
204	     * in the HIGH_FIXED_KTSS page. In this case we don't map the
205	     * the real master_sstk in low memory.
206	     */
207	    cdi->cdi_ktss = (struct i386_tss *)
208				pmap_index_to_virt(HIGH_FIXED_KTSS) ;
209	    cdi->cdi_sstk  = (vm_offset_t) (cdi->cdi_ktss + 1) +
210				(vm_offset_t) &master_sstk.top -
211				(vm_offset_t) &master_sstk;
212#if	MACH_KDB
213	    cdi->cdi_dbtss = (struct i386_tss *)
214				pmap_index_to_virt(HIGH_FIXED_DBTSS);
215#endif	/* MACH_KDB */
216	    cdi->cdi_gdt = (struct fake_descriptor *)
217				pmap_index_to_virt(HIGH_FIXED_GDT);
218	    cdi->cdi_idt = (struct fake_descriptor *)
219				pmap_index_to_virt(HIGH_FIXED_IDT);
220	    cdi->cdi_ldt = (struct fake_descriptor *)
221				pmap_index_to_virt(HIGH_FIXED_LDT_BEGIN);
222	} else {
223
224	    vm_offset_t	cpu_hi_desc;
225
226	    cpu_hi_desc = pmap_cpu_high_shared_remap(cdp->cpu_number,
227						     HIGH_CPU_DESC,
228						     (vm_offset_t) cdt, 1);
229
230	    /*
231	     * Per-cpu GDT, IDT, LDT, KTSS descriptors are allocated in one
232	     * block (cpu_desc_table) and double-mapped into high shared space
233	     * in one page window.
234	     * Also, a transient stack for the fast sysenter path. The top of
235	     * which is set at context switch time to point to the PCB using
236	     * the high address.
237	     */
238	    cdi->cdi_gdt  = (struct fake_descriptor *) (cpu_hi_desc +
239				offsetof(cpu_desc_table_t, gdt[0]));
240	    cdi->cdi_idt  = (struct fake_descriptor *) (cpu_hi_desc +
241				offsetof(cpu_desc_table_t, idt[0]));
242	    cdi->cdi_ktss = (struct i386_tss *) (cpu_hi_desc +
243				offsetof(cpu_desc_table_t, ktss));
244	    cdi->cdi_sstk = cpu_hi_desc +
245				offsetof(cpu_desc_table_t, sstk.top);
246
247	    /*
248	     * LDT descriptors are mapped into a seperate area.
249	     */
250	    cdi->cdi_ldt  = (struct fake_descriptor *)
251				pmap_cpu_high_shared_remap(
252				cdp->cpu_number,
253				HIGH_CPU_LDT_BEGIN,
254				(vm_offset_t) cdp->cpu_ldtp,
255				HIGH_CPU_LDT_END - HIGH_CPU_LDT_BEGIN + 1);
256
257	    /*
258	     * Copy the tables
259	     */
260	    bcopy((char *)master_idt,
261		  (char *)cdt->idt,
262		  sizeof(master_idt));
263	    bcopy((char *)master_gdt,
264		  (char *)cdt->gdt,
265		  sizeof(master_gdt));
266	    bcopy((char *)master_ldt,
267		  (char *)cdp->cpu_ldtp,
268		  sizeof(master_ldt));
269	    bzero((char *)&cdt->ktss,
270		  sizeof(struct i386_tss));
271
272#if	MACH_KDB
273	    cdi->cdi_dbtss = (struct i386_tss *) (cpu_hi_desc +
274				offsetof(cpu_desc_table_t, dbtss));
275	    bcopy((char *)&master_dbtss,
276		  (char *)&cdt->dbtss,
277		  sizeof(struct i386_tss));
278#endif	/* MACH_KDB */
279
280	    /*
281	     * Fix up the entries in the GDT to point to
282	     * this LDT and this TSS.
283	     */
284	    cdt->gdt[sel_idx(KERNEL_LDT)] = ldt_desc_pattern;
285	    cdt->gdt[sel_idx(KERNEL_LDT)].offset = (vm_offset_t) cdi->cdi_ldt;
286	    fix_desc(&cdt->gdt[sel_idx(KERNEL_LDT)], 1);
287
288	    cdt->gdt[sel_idx(USER_LDT)] = ldt_desc_pattern;
289	    cdt->gdt[sel_idx(USER_LDT)].offset = (vm_offset_t) cdi->cdi_ldt;
290	    fix_desc(&cdt->gdt[sel_idx(USER_LDT)], 1);
291
292	    cdt->gdt[sel_idx(KERNEL_TSS)] = tss_desc_pattern;
293	    cdt->gdt[sel_idx(KERNEL_TSS)].offset = (vm_offset_t) cdi->cdi_ktss;
294	    fix_desc(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
295
296	    cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern;
297	    cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp;
298	    fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1);
299
300#if	MACH_KDB
301	    cdt->gdt[sel_idx(DEBUG_TSS)] = tss_desc_pattern;
302	    cdt->gdt[sel_idx(DEBUG_TSS)].offset = (vm_offset_t) cdi->cdi_dbtss;
303	    fix_desc(&cdt->gdt[sel_idx(DEBUG_TSS)], 1);
304
305	    cdt->dbtss.esp0 = (int)(db_task_stack_store +
306		    (INTSTACK_SIZE * (cdp->cpu_number)) - sizeof (natural_t));
307	    cdt->dbtss.esp = cdt->dbtss.esp0;
308	    cdt->dbtss.eip = (int)&db_task_start;
309#endif	/* MACH_KDB */
310
311	    cdt->ktss.ss0 = KERNEL_DS;
312	    cdt->ktss.io_bit_map_offset = 0x0FFF;	/* no IO bitmap */
313
314	    cpu_userwindow_init(cdp->cpu_number);
315	    cpu_physwindow_init(cdp->cpu_number);
316
317	}
318
319}
320
321void
322cpu_desc_init64(
323	cpu_data_t	*cdp,
324	boolean_t	is_boot_cpu)
325{
326	cpu_desc_table64_t	*cdt = (cpu_desc_table64_t *)
327					cdp->cpu_desc_tablep;
328	cpu_desc_index_t	*cdi = &cdp->cpu_desc_index;
329
330	if (is_boot_cpu) {
331		/*
332		 * Master CPU uses the tables built at boot time.
333		 * Just set the index pointers to the low memory space.
334		 * Note that in 64-bit mode these are addressed in the
335		 * double-mapped window (uber-space).
336		 */
337		cdi->cdi_ktss = (struct i386_tss *) &master_ktss64;
338		cdi->cdi_sstk = (vm_offset_t) &master_sstk.top;
339		cdi->cdi_gdt  = master_gdt;
340		cdi->cdi_idt  = (struct fake_descriptor *) &master_idt64;
341		cdi->cdi_ldt  = (struct fake_descriptor *) &master_ldt;
342
343		/* Replace the expanded LDT and TSS slots in the GDT: */
344		*(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] =
345			kernel_ldt_desc64;
346		*(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] =
347			kernel_tss_desc64;
348
349		/*
350		 * Fix up the expanded descriptors for 64-bit.
351		 */
352		fix_desc64((void *) &master_idt64, IDTSZ);
353		fix_desc64((void *) &master_gdt[sel_idx(KERNEL_LDT)], 1);
354		fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1);
355
356		/*
357		 * Set the double-fault stack as IST1 in the 64-bit TSS
358		 */
359		master_ktss64.ist1 = UBER64(df_task_stack_end);
360
361	} else {
362		/*
363		 * Per-cpu GDT, IDT, KTSS descriptors are allocated in kernel
364		 * heap (cpu_desc_table) and double-mapped in uber-space
365		 * (over 4GB).
366		 * LDT descriptors are mapped into a separate area.
367		 */
368		cdi->cdi_gdt  = (struct fake_descriptor *)cdt->gdt;
369		cdi->cdi_idt  = (struct fake_descriptor *)cdt->idt;
370		cdi->cdi_ktss = (struct i386_tss *)&cdt->ktss;
371		cdi->cdi_sstk = (vm_offset_t)&cdt->sstk.top;
372		cdi->cdi_ldt  = cdp->cpu_ldtp;
373
374		/*
375		 * Copy the tables
376		 */
377		bcopy((char *)master_idt64,
378				(char *)cdt->idt,
379				sizeof(master_idt64));
380		bcopy((char *)master_gdt,
381				(char *)cdt->gdt,
382				sizeof(master_gdt));
383		bcopy((char *)master_ldt,
384				(char *)cdp->cpu_ldtp,
385				sizeof(master_ldt));
386		bcopy((char *)&master_ktss64,
387				(char *)&cdt->ktss,
388				sizeof(struct x86_64_tss));
389
390		/*
391		 * Fix up the entries in the GDT to point to
392		 * this LDT and this TSS.
393		 */
394		kernel_ldt_desc64.offset[0] = (vm_offset_t) cdi->cdi_ldt;
395		*(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] =
396			kernel_ldt_desc64;
397		fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1);
398
399		kernel_ldt_desc64.offset[0] = (vm_offset_t) cdi->cdi_ldt;
400		*(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] =
401			kernel_ldt_desc64;
402		fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1);
403
404		kernel_tss_desc64.offset[0] = (vm_offset_t) cdi->cdi_ktss;
405		*(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] =
406			kernel_tss_desc64;
407		fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
408
409		cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern;
410		cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp;
411		fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1);
412
413		/* Set double-fault stack as IST1 */
414		cdt->ktss.ist1 = UBER64((unsigned long)cdt->dfstk
415					 + sizeof(cdt->dfstk));
416
417		/*
418		 * Allocate copyio windows.
419		 */
420		cpu_userwindow_init(cdp->cpu_number);
421		cpu_physwindow_init(cdp->cpu_number);
422	}
423
424	/* Require that the top of the sysenter stack is 16-byte aligned */
425	if ((cdi->cdi_sstk % 16) != 0)
426		panic("cpu_desc_init64() sysenter stack not 16-byte aligned");
427}
428
429/*
430 * Set MSRs for sysenter/sysexit for 64-bit.
431 */
432static void
433fast_syscall_init64(void)
434{
435	wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS);
436	wrmsr64(MSR_IA32_SYSENTER_EIP, UBER64(hi64_sysenter));
437	wrmsr64(MSR_IA32_SYSENTER_ESP, UBER64(current_sstk()));
438
439	/* Enable syscall/sysret */
440	wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE);
441
442	/*
443	 * MSRs for 64-bit syscall/sysret
444	 * Note USER_CS because sysret uses this + 16 when returning to
445	 * 64-bit code.
446	 */
447	wrmsr64(MSR_IA32_LSTAR, UBER64(hi64_syscall));
448	wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS)     << 48) |
449			       (((uint64_t)KERNEL64_CS) << 32));
450	/*
451	 * Emulate eflags cleared by sysenter but note that
452	 * we also clear the trace trap to avoid the complications
453	 * of single-stepping into a syscall. The nested task bit
454	 * is also cleared to avoid a spurious "task switch"
455	 * should we choose to return via an IRET.
456	 */
457	wrmsr64(MSR_IA32_FMASK, EFL_DF|EFL_IF|EFL_TF|EFL_NT);
458
459	/*
460	 * Set the Kernel GS base MSR to point to per-cpu data in uber-space.
461	 * The uber-space handler (hi64_syscall) uses the swapgs instruction.
462	 */
463	wrmsr64(MSR_IA32_KERNEL_GS_BASE,
464		UBER64((unsigned long)current_cpu_datap()));
465
466#if ONLY_SAFE_FOR_LINDA_SERIAL
467	kprintf("fast_syscall_init64() KERNEL_GS_BASE=0x%016llx\n",
468		rdmsr64(MSR_IA32_KERNEL_GS_BASE));
469#endif
470}
471
472/*
473 * Set MSRs for sysenter/sysexit
474 */
475static void
476fast_syscall_init(void)
477{
478	wrmsr(MSR_IA32_SYSENTER_CS, SYSENTER_CS, 0);
479	wrmsr(MSR_IA32_SYSENTER_EIP, HI_TEXT(hi_sysenter), 0);
480	wrmsr(MSR_IA32_SYSENTER_ESP, current_sstk(), 0);
481}
482
483cpu_data_t *
484cpu_data_alloc(boolean_t is_boot_cpu)
485{
486	int		ret;
487	cpu_data_t	*cdp;
488
489	if (is_boot_cpu) {
490		assert(real_ncpus == 1);
491		cdp = &cpu_data_master;
492		if (cdp->cpu_processor == NULL) {
493			simple_lock_init(&cpu_lock, 0);
494			cdp->cpu_processor = cpu_processor_alloc(TRUE);
495			cdp->cpu_pmap = pmap_cpu_alloc(TRUE);
496			cpu_desc_init(cdp, TRUE);
497			fast_syscall_init();
498			queue_init(&cdp->rtclock_timer.queue);
499			cdp->rtclock_timer.deadline = EndOfAllTime;
500		}
501		return cdp;
502	}
503
504	/* Check count before making allocations */
505	if (real_ncpus >= max_ncpus)
506		return NULL;
507
508	/*
509	 * Allocate per-cpu data:
510	 */
511	ret = kmem_alloc(kernel_map,
512			 (vm_offset_t *) &cdp, sizeof(cpu_data_t));
513	if (ret != KERN_SUCCESS) {
514		printf("cpu_data_alloc() failed, ret=%d\n", ret);
515		goto abort;
516	}
517	bzero((void*) cdp, sizeof(cpu_data_t));
518	cdp->cpu_this = cdp;
519
520	/* Propagate mode */
521	cdp->cpu_is64bit = cpu_mode_is64bit();
522
523	/*
524	 * Allocate interrupt stack:
525	 */
526	ret = kmem_alloc(kernel_map,
527			 (vm_offset_t *) &cdp->cpu_int_stack_top,
528			 INTSTACK_SIZE);
529	if (ret != KERN_SUCCESS) {
530		printf("cpu_data_alloc() int stack failed, ret=%d\n", ret);
531		goto abort;
532	}
533	bzero((void*) cdp->cpu_int_stack_top, INTSTACK_SIZE);
534	cdp->cpu_int_stack_top += INTSTACK_SIZE;
535
536	/*
537	 * Allocate descriptor table:
538	 * Size depends on cpu mode.
539	 */
540	ret = kmem_alloc(kernel_map,
541			 (vm_offset_t *) &cdp->cpu_desc_tablep,
542			 cdp->cpu_is64bit ? sizeof(cpu_desc_table64_t)
543					  : sizeof(cpu_desc_table_t));
544	if (ret != KERN_SUCCESS) {
545		printf("cpu_data_alloc() desc_table failed, ret=%d\n", ret);
546		goto abort;
547	}
548
549	/*
550	 * Allocate LDT
551	 */
552	ret = kmem_alloc(kernel_map,
553			 (vm_offset_t *) &cdp->cpu_ldtp,
554			 sizeof(struct real_descriptor) * LDTSZ);
555	if (ret != KERN_SUCCESS) {
556		printf("cpu_data_alloc() ldt failed, ret=%d\n", ret);
557		goto abort;
558	}
559
560	/* Machine-check shadow register allocation. */
561	mca_cpu_alloc(cdp);
562
563	simple_lock(&cpu_lock);
564	if (real_ncpus >= max_ncpus) {
565		simple_unlock(&cpu_lock);
566		goto abort;
567	}
568	cpu_data_ptr[real_ncpus] = cdp;
569	cdp->cpu_number = real_ncpus;
570	real_ncpus++;
571	simple_unlock(&cpu_lock);
572
573	cdp->cpu_nanotime = &rtc_nanotime_info;
574	queue_init(&cdp->rtclock_timer.queue);
575	cdp->rtclock_timer.deadline = EndOfAllTime;
576
577	kprintf("cpu_data_alloc(%d) %p desc_table: %p "
578		"ldt: %p "
579		"int_stack: 0x%x-0x%x\n",
580		cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp,
581		cdp->cpu_int_stack_top - INTSTACK_SIZE, cdp->cpu_int_stack_top);
582
583	return cdp;
584
585abort:
586	if (cdp) {
587		if (cdp->cpu_desc_tablep)
588			kfree((void *) cdp->cpu_desc_tablep,
589				sizeof(*cdp->cpu_desc_tablep));
590		if (cdp->cpu_int_stack_top)
591			kfree((void *) (cdp->cpu_int_stack_top - INTSTACK_SIZE),
592				INTSTACK_SIZE);
593		kfree((void *) cdp, sizeof(*cdp));
594	}
595	return NULL;
596}
597
598boolean_t
599valid_user_segment_selectors(uint16_t cs,
600			     uint16_t ss,
601			     uint16_t ds,
602			     uint16_t es,
603			     uint16_t fs,
604			     uint16_t gs)
605{
606	return valid_user_code_selector(cs)  &&
607	       valid_user_stack_selector(ss) &&
608	       valid_user_data_selector(ds)  &&
609	       valid_user_data_selector(es)  &&
610	       valid_user_data_selector(fs)  &&
611	       valid_user_data_selector(gs);
612}
613
614
615static vm_offset_t user_window_base = 0;
616
617void
618cpu_userwindow_init(int cpu)
619{
620	cpu_data_t		*cdp = cpu_data_ptr[cpu];
621	cpu_desc_index_t	*cdi = &cdp->cpu_desc_index;
622        vm_offset_t 		user_window;
623        vm_offset_t 		vaddr;
624	int			num_cpus;
625
626	num_cpus = ml_get_max_cpus();
627
628	if (cpu >= num_cpus)
629	        panic("cpu_userwindow_init: cpu > num_cpus");
630
631	if (user_window_base == 0) {
632
633	        if (vm_allocate(kernel_map, &vaddr,
634				(NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE,
635				VM_FLAGS_ANYWHERE) != KERN_SUCCESS)
636		        panic("cpu_userwindow_init: "
637				"couldn't allocate user map window");
638
639		/*
640		 * window must start on a page table boundary
641		 * in the virtual address space
642		 */
643		user_window_base = (vaddr + (NBPDE - 1)) & ~(NBPDE - 1);
644
645		/*
646		 * get rid of any allocation leading up to our
647		 * starting boundary
648		 */
649		vm_deallocate(kernel_map, vaddr, user_window_base - vaddr);
650
651		/*
652		 * get rid of tail that we don't need
653		 */
654		user_window = user_window_base +
655					(NBPDE * NCOPY_WINDOWS * num_cpus);
656
657		vm_deallocate(kernel_map, user_window,
658				(vaddr +
659				 ((NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE)) -
660				 user_window);
661	}
662
663	user_window = user_window_base + (cpu * NCOPY_WINDOWS * NBPDE);
664
665	cdp->cpu_copywindow_base = user_window;
666	cdp->cpu_copywindow_pdp  = pmap_pde(kernel_pmap, user_window);
667
668	cdi->cdi_gdt[sel_idx(USER_WINDOW_SEL)] = userwindow_desc_pattern;
669	cdi->cdi_gdt[sel_idx(USER_WINDOW_SEL)].offset = user_window;
670
671	fix_desc(&cdi->cdi_gdt[sel_idx(USER_WINDOW_SEL)], 1);
672
673}
674
675void
676cpu_physwindow_init(int cpu)
677{
678	cpu_data_t		*cdp = cpu_data_ptr[cpu];
679	cpu_desc_index_t	*cdi = &cdp->cpu_desc_index;
680        vm_offset_t 		phys_window = cdp->cpu_physwindow_base;
681
682	if (phys_window == 0) {
683		if (vm_allocate(kernel_map, &phys_window,
684				PAGE_SIZE, VM_FLAGS_ANYWHERE)
685				!= KERN_SUCCESS)
686		        panic("cpu_physwindow_init: "
687				"couldn't allocate phys map window");
688
689		/*
690		 * make sure the page that encompasses the
691		 * pte pointer we're interested in actually
692		 * exists in the page table
693		 */
694		pmap_expand(kernel_pmap, phys_window);
695
696		cdp->cpu_physwindow_base = phys_window;
697		cdp->cpu_physwindow_ptep = vtopte(phys_window);
698	}
699
700	cdi->cdi_gdt[sel_idx(PHYS_WINDOW_SEL)] = physwindow_desc_pattern;
701	cdi->cdi_gdt[sel_idx(PHYS_WINDOW_SEL)].offset = phys_window;
702
703	fix_desc(&cdi->cdi_gdt[sel_idx(PHYS_WINDOW_SEL)], 1);
704}
705
706
707typedef struct {
708	uint16_t	length;
709	uint32_t	offset[2];
710} __attribute__((__packed__)) table_descriptor64_t;
711
712extern	table_descriptor64_t	gdtptr64;
713extern	table_descriptor64_t	idtptr64;
714/*
715 * Load the segment descriptor tables for the current processor.
716 */
717void
718cpu_desc_load64(cpu_data_t *cdp)
719{
720	cpu_desc_index_t	*cdi = &cdp->cpu_desc_index;
721
722 	/*
723	 * Load up the new descriptors etc
724	 * ml_load_desc64() expects these global pseudo-descriptors:
725	 *   gdtptr64 -> master_gdt
726	 *   idtptr64 -> master_idt64
727	 * These are 10-byte descriptors with 64-bit addresses into
728	 * uber-space.
729	 */
730	gdtptr64.length = sizeof(master_gdt) - 1;
731	gdtptr64.offset[0] = (uint32_t) cdi->cdi_gdt;
732	gdtptr64.offset[1] = KERNEL_UBER_BASE_HI32;
733	idtptr64.length = sizeof(master_idt64) - 1;
734	idtptr64.offset[0] = (uint32_t) cdi->cdi_idt;
735	idtptr64.offset[1] = KERNEL_UBER_BASE_HI32;
736
737	/* Make sure busy bit is cleared in the TSS */
738	gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY;
739
740	ml_load_desc64();
741
742#if ONLY_SAFE_FOR_LINDA_SERIAL
743	kprintf("64-bit descriptor tables loaded\n");
744#endif
745}
746
747void
748cpu_mode_init(cpu_data_t *cdp)
749{
750	if (cpu_mode_is64bit()) {
751		cpu_IA32e_enable(cdp);
752		cpu_desc_load64(cdp);
753		fast_syscall_init64();
754	} else {
755		fast_syscall_init();
756	}
757
758	/* Call for per-cpu pmap mode initialization */
759	pmap_cpu_init();
760
761}
762
763