1/*
2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 *	The Regents of the University of California.  All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 *    notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 *    notice, this list of conditions and the following disclaimer in the
39 *    documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 *    must display the following acknowledgement:
42 *	This product includes software developed by the University of
43 *	California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.22 2001/08/22 00:59:12 silby Exp $
62 */
63/*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections.  This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/callout.h>
73#include <sys/kernel.h>
74#include <sys/sysctl.h>
75#include <sys/malloc.h>
76#include <sys/mbuf.h>
77#include <sys/domain.h>
78#include <sys/proc.h>
79#include <sys/kauth.h>
80#include <sys/socket.h>
81#include <sys/socketvar.h>
82#include <sys/protosw.h>
83#include <sys/random.h>
84#include <sys/syslog.h>
85#include <sys/mcache.h>
86#include <kern/locks.h>
87#include <kern/zalloc.h>
88
89#include <dev/random/randomdev.h>
90
91#include <net/route.h>
92#include <net/if.h>
93#include <net/content_filter.h>
94
95#define tcp_minmssoverload fring
96#define _IP_VHL
97#include <netinet/in.h>
98#include <netinet/in_systm.h>
99#include <netinet/ip.h>
100#include <netinet/ip_icmp.h>
101#if INET6
102#include <netinet/ip6.h>
103#endif
104#include <netinet/in_pcb.h>
105#if INET6
106#include <netinet6/in6_pcb.h>
107#endif
108#include <netinet/in_var.h>
109#include <netinet/ip_var.h>
110#include <netinet/icmp_var.h>
111#if INET6
112#include <netinet6/ip6_var.h>
113#endif
114#include <netinet/tcp.h>
115#include <netinet/tcp_fsm.h>
116#include <netinet/tcp_seq.h>
117#include <netinet/tcp_timer.h>
118#include <netinet/tcp_var.h>
119#include <netinet/tcp_cc.h>
120#include <kern/thread_call.h>
121
122#if INET6
123#include <netinet6/tcp6_var.h>
124#endif
125#include <netinet/tcpip.h>
126#if TCPDEBUG
127#include <netinet/tcp_debug.h>
128#endif
129#include <netinet6/ip6protosw.h>
130
131#if IPSEC
132#include <netinet6/ipsec.h>
133#if INET6
134#include <netinet6/ipsec6.h>
135#endif
136#endif /*IPSEC*/
137
138#if NECP
139#include <net/necp.h>
140#endif /* NECP */
141
142#undef tcp_minmssoverload
143
144#if CONFIG_MACF_NET
145#include <security/mac_framework.h>
146#endif /* MAC_NET */
147
148#include <libkern/crypto/md5.h>
149#include <sys/kdebug.h>
150#include <mach/sdt.h>
151
152#include <netinet/lro_ext.h>
153
154#define DBG_FNC_TCP_CLOSE	NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
155
156extern int tcp_lq_overflow;
157
158extern struct tcptimerlist tcp_timer_list;
159extern struct tcptailq tcp_tw_tailq;
160
161int 	tcp_mssdflt = TCP_MSS;
162SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW | CTLFLAG_LOCKED,
163    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
164
165#if INET6
166int	tcp_v6mssdflt = TCP6_MSS;
167SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
168	CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_v6mssdflt , 0,
169	"Default TCP Maximum Segment Size for IPv6");
170#endif
171
172extern int tcp_do_autorcvbuf;
173
174/*
175 * Minimum MSS we accept and use. This prevents DoS attacks where
176 * we are forced to a ridiculous low MSS like 20 and send hundreds
177 * of packets instead of one. The effect scales with the available
178 * bandwidth and quickly saturates the CPU and network interface
179 * with packet generation and sending. Set to zero to disable MINMSS
180 * checking. This setting prevents us from sending too small packets.
181 */
182int	tcp_minmss = TCP_MINMSS;
183SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW | CTLFLAG_LOCKED,
184    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
185
186static int	tcp_do_rfc1323 = 1;
187SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW | CTLFLAG_LOCKED,
188    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
189
190// Not used
191static int	tcp_do_rfc1644 = 0;
192SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW | CTLFLAG_LOCKED,
193    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
194
195static int	do_tcpdrain = 0;
196SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW | CTLFLAG_LOCKED, &do_tcpdrain, 0,
197     "Enable tcp_drain routine for extra help when low on mbufs");
198
199SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD | CTLFLAG_LOCKED,
200    &tcbinfo.ipi_count, 0, "Number of active PCBs");
201
202SYSCTL_INT(_net_inet_tcp, OID_AUTO, tw_pcbcount,
203    CTLFLAG_RD | CTLFLAG_LOCKED,
204    &tcbinfo.ipi_twcount, 0, "Number of pcbs in time-wait state");
205
206static int	icmp_may_rst = 1;
207SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW | CTLFLAG_LOCKED, &icmp_may_rst, 0,
208    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
209
210static int	tcp_strict_rfc1948 = 0;
211SYSCTL_INT(_net_inet_tcp, OID_AUTO, strict_rfc1948, CTLFLAG_RW | CTLFLAG_LOCKED,
212    &tcp_strict_rfc1948, 0, "Determines if RFC1948 is followed exactly");
213
214static int	tcp_isn_reseed_interval = 0;
215SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW | CTLFLAG_LOCKED,
216    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
217static int 	tcp_background_io_enabled = 1;
218SYSCTL_INT(_net_inet_tcp, OID_AUTO, background_io_enabled, CTLFLAG_RW | CTLFLAG_LOCKED,
219    &tcp_background_io_enabled, 0, "Background IO Enabled");
220
221int 	tcp_TCPTV_MIN = 100;	/* 100ms minimum RTT */
222SYSCTL_INT(_net_inet_tcp, OID_AUTO, rtt_min, CTLFLAG_RW | CTLFLAG_LOCKED,
223    &tcp_TCPTV_MIN, 0, "min rtt value allowed");
224
225int tcp_rexmt_slop = TCPTV_REXMTSLOP;
226SYSCTL_INT(_net_inet_tcp, OID_AUTO, rexmt_slop, CTLFLAG_RW,
227	&tcp_rexmt_slop, 0, "Slop added to retransmit timeout");
228
229__private_extern__ int tcp_use_randomport = 0;
230SYSCTL_INT(_net_inet_tcp, OID_AUTO, randomize_ports, CTLFLAG_RW | CTLFLAG_LOCKED,
231    &tcp_use_randomport, 0, "Randomize TCP port numbers");
232
233__private_extern__ int	tcp_win_scale = 3;
234SYSCTL_INT(_net_inet_tcp, OID_AUTO, win_scale_factor, CTLFLAG_RW | CTLFLAG_LOCKED,
235    &tcp_win_scale, 0, "Window scaling factor");
236
237static void	tcp_cleartaocache(void);
238static void	tcp_notify(struct inpcb *, int);
239
240struct zone	*sack_hole_zone;
241struct zone	*tcp_reass_zone;
242struct zone	*tcp_bwmeas_zone;
243
244extern int slowlink_wsize;	/* window correction for slow links */
245extern int path_mtu_discovery;
246
247extern u_int32_t tcp_autorcvbuf_max;
248extern u_int32_t tcp_autorcvbuf_inc_shift;
249static void tcp_sbrcv_grow_rwin(struct tcpcb *tp, struct sockbuf *sb);
250
251#define TCP_BWMEAS_BURST_MINSIZE 6
252#define TCP_BWMEAS_BURST_MAXSIZE 25
253
254static uint32_t bwmeas_elm_size;
255
256/*
257 * Target size of TCP PCB hash tables. Must be a power of two.
258 *
259 * Note that this can be overridden by the kernel environment
260 * variable net.inet.tcp.tcbhashsize
261 */
262#ifndef TCBHASHSIZE
263#define TCBHASHSIZE	CONFIG_TCBHASHSIZE
264#endif
265
266__private_extern__ int	tcp_tcbhashsize = TCBHASHSIZE;
267SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD | CTLFLAG_LOCKED,
268     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
269
270/*
271 * This is the actual shape of what we allocate using the zone
272 * allocator.  Doing it this way allows us to protect both structures
273 * using the same generation count, and also eliminates the overhead
274 * of allocating tcpcbs separately.  By hiding the structure here,
275 * we avoid changing most of the rest of the code (although it needs
276 * to be changed, eventually, for greater efficiency).
277 */
278#define	ALIGNMENT	32
279struct	inp_tp {
280	struct	inpcb	inp;
281	struct	tcpcb	tcb __attribute__((aligned(ALIGNMENT)));
282};
283#undef ALIGNMENT
284
285int  get_inpcb_str_size(void);
286int  get_tcp_str_size(void);
287
288static void tcpcb_to_otcpcb(struct tcpcb *, struct otcpcb *);
289
290static lck_attr_t *tcp_uptime_mtx_attr = NULL;		/* mutex attributes */
291static lck_grp_t *tcp_uptime_mtx_grp = NULL;		/* mutex group definition */
292static lck_grp_attr_t *tcp_uptime_mtx_grp_attr = NULL;	/* mutex group attributes */
293int tcp_notsent_lowat_check(struct socket *so);
294
295int  get_inpcb_str_size(void)
296{
297	return sizeof(struct inpcb);
298}
299
300int  get_tcp_str_size(void)
301{
302	return sizeof(struct tcpcb);
303}
304
305int	tcp_freeq(struct tcpcb *tp);
306
307static int scale_to_powerof2(int size);
308
309/*
310 * This helper routine returns one of the following scaled value of size:
311 * 1. Rounded down power of two value of size if the size value passed as
312 *    argument is not a power of two and the rounded up value overflows.
313 * OR
314 * 2. Rounded up power of two value of size if the size value passed as
315 *    argument is not a power of two and the rounded up value does not overflow
316 * OR
317 * 3. Same value as argument size if it is already a power of two.
318 */
319static int scale_to_powerof2(int size) {
320	/* Handle special case of size = 0 */
321	int ret = size ? size : 1;
322
323	if (!powerof2(ret)) {
324		while(!powerof2(size)) {
325			/*
326			 * Clear out least significant
327			 * set bit till size is left with
328			 * its highest set bit at which point
329			 * it is rounded down power of two.
330			 */
331			size = size & (size -1);
332		}
333
334		/* Check for overflow when rounding up */
335		if (0 == (size << 1)) {
336			ret = size;
337		} else {
338			ret = size << 1;
339		}
340	}
341
342	return ret;
343}
344
345/*
346 * Tcp initialization
347 */
348void
349tcp_init(struct protosw *pp, struct domain *dp)
350{
351#pragma unused(dp)
352	static int tcp_initialized = 0;
353	vm_size_t       str_size;
354	struct inpcbinfo *pcbinfo;
355
356	VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED);
357
358	if (tcp_initialized)
359		return;
360	tcp_initialized = 1;
361
362	tcp_ccgen = 1;
363	tcp_cleartaocache();
364
365	tcp_keepinit = TCPTV_KEEP_INIT;
366	tcp_keepidle = TCPTV_KEEP_IDLE;
367	tcp_keepintvl = TCPTV_KEEPINTVL;
368	tcp_keepcnt = TCPTV_KEEPCNT;
369	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
370	tcp_msl = TCPTV_MSL;
371
372	microuptime(&tcp_uptime);
373	read_random(&tcp_now, sizeof(tcp_now));
374	tcp_now = tcp_now & 0x3fffffff; /* Starts tcp internal clock at a random value */
375
376	LIST_INIT(&tcb);
377	tcbinfo.ipi_listhead = &tcb;
378
379	pcbinfo = &tcbinfo;
380	/*
381	 * allocate lock group attribute and group for tcp pcb mutexes
382	 */
383	pcbinfo->ipi_lock_grp_attr = lck_grp_attr_alloc_init();
384	pcbinfo->ipi_lock_grp = lck_grp_alloc_init("tcppcb", pcbinfo->ipi_lock_grp_attr);
385
386	/*
387	 * allocate the lock attribute for tcp pcb mutexes
388	 */
389	pcbinfo->ipi_lock_attr = lck_attr_alloc_init();
390
391	if ((pcbinfo->ipi_lock = lck_rw_alloc_init(pcbinfo->ipi_lock_grp,
392	    pcbinfo->ipi_lock_attr)) == NULL) {
393		panic("%s: unable to allocate PCB lock\n", __func__);
394		/* NOTREACHED */
395	}
396
397	if (tcp_tcbhashsize == 0) {
398		/* Set to default */
399		tcp_tcbhashsize = 512;
400	}
401
402	if (!powerof2(tcp_tcbhashsize)) {
403		int old_hash_size = tcp_tcbhashsize;
404		tcp_tcbhashsize = scale_to_powerof2(tcp_tcbhashsize);
405		/* Lower limit of 16  */
406		if (tcp_tcbhashsize < 16) {
407			tcp_tcbhashsize = 16;
408		}
409		printf("WARNING: TCB hash size not a power of 2, "
410				"scaled from %d to %d.\n",
411				old_hash_size,
412				tcp_tcbhashsize);
413	}
414
415	tcbinfo.ipi_hashbase = hashinit(tcp_tcbhashsize, M_PCB, &tcbinfo.ipi_hashmask);
416	tcbinfo.ipi_porthashbase = hashinit(tcp_tcbhashsize, M_PCB,
417					&tcbinfo.ipi_porthashmask);
418	str_size = P2ROUNDUP(sizeof(struct inp_tp), sizeof(u_int64_t));
419	tcbinfo.ipi_zone = zinit(str_size, 120000*str_size, 8192, "tcpcb");
420	zone_change(tcbinfo.ipi_zone, Z_CALLERACCT, FALSE);
421	zone_change(tcbinfo.ipi_zone, Z_EXPAND, TRUE);
422
423	tcbinfo.ipi_gc = tcp_gc;
424	in_pcbinfo_attach(&tcbinfo);
425
426	str_size = P2ROUNDUP(sizeof(struct sackhole), sizeof(u_int64_t));
427	sack_hole_zone = zinit(str_size, 120000*str_size, 8192, "sack_hole zone");
428	zone_change(sack_hole_zone, Z_CALLERACCT, FALSE);
429	zone_change(sack_hole_zone, Z_EXPAND, TRUE);
430
431	str_size = P2ROUNDUP(sizeof(struct tseg_qent), sizeof(u_int64_t));
432	tcp_reass_zone = zinit(str_size, (nmbclusters >> 4) * str_size,
433		0, "tcp_reass_zone");
434	if (tcp_reass_zone == NULL) {
435		panic("%s: failed allocating tcp_reass_zone", __func__);
436		/* NOTREACHED */
437	}
438	zone_change(tcp_reass_zone, Z_CALLERACCT, FALSE);
439	zone_change(tcp_reass_zone, Z_EXPAND, TRUE);
440
441	bwmeas_elm_size = P2ROUNDUP(sizeof(struct bwmeas), sizeof(u_int64_t));
442	tcp_bwmeas_zone = zinit(bwmeas_elm_size, (100 * bwmeas_elm_size), 0, "tcp_bwmeas_zone");
443	if (tcp_bwmeas_zone == NULL) {
444		panic("%s: failed allocating tcp_bwmeas_zone", __func__);
445		/* NOTREACHED */
446	}
447	zone_change(tcp_bwmeas_zone, Z_CALLERACCT, FALSE);
448	zone_change(tcp_bwmeas_zone, Z_EXPAND, TRUE);
449
450	str_size = P2ROUNDUP(sizeof(struct tcp_ccstate), sizeof(u_int64_t));
451	tcp_cc_zone = zinit(str_size, 20000 * str_size, 0, "tcp_cc_zone");
452	zone_change(tcp_cc_zone, Z_CALLERACCT, FALSE);
453	zone_change(tcp_cc_zone, Z_EXPAND, TRUE);
454
455#if INET6
456#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
457#else /* INET6 */
458#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
459#endif /* INET6 */
460	if (max_protohdr < TCP_MINPROTOHDR) {
461		_max_protohdr = TCP_MINPROTOHDR;
462		_max_protohdr = max_protohdr;	/* round it up */
463	}
464	if (max_linkhdr + max_protohdr > MCLBYTES)
465		panic("tcp_init");
466#undef TCP_MINPROTOHDR
467
468	/* Initialize time wait and timer lists */
469	TAILQ_INIT(&tcp_tw_tailq);
470
471	bzero(&tcp_timer_list, sizeof(tcp_timer_list));
472	LIST_INIT(&tcp_timer_list.lhead);
473	/*
474	 * allocate lock group attribute, group and attribute for the tcp timer list
475	 */
476	tcp_timer_list.mtx_grp_attr = lck_grp_attr_alloc_init();
477	tcp_timer_list.mtx_grp = lck_grp_alloc_init("tcptimerlist", tcp_timer_list.mtx_grp_attr);
478	tcp_timer_list.mtx_attr = lck_attr_alloc_init();
479	if ((tcp_timer_list.mtx = lck_mtx_alloc_init(tcp_timer_list.mtx_grp, tcp_timer_list.mtx_attr)) == NULL) {
480		panic("failed to allocate memory for tcp_timer_list.mtx\n");
481	};
482	if ((tcp_timer_list.call = thread_call_allocate(tcp_run_timerlist, NULL)) == NULL) {
483		panic("failed to allocate call entry 1 in tcp_init\n");
484	}
485
486	/*
487	 * allocate lock group attribute, group and attribute for tcp_uptime_lock
488	 */
489	tcp_uptime_mtx_grp_attr = lck_grp_attr_alloc_init();
490	tcp_uptime_mtx_grp = lck_grp_alloc_init("tcpuptime", tcp_uptime_mtx_grp_attr);
491	tcp_uptime_mtx_attr = lck_attr_alloc_init();
492	tcp_uptime_lock = lck_spin_alloc_init(tcp_uptime_mtx_grp, tcp_uptime_mtx_attr);
493
494	/* Initialize TCP LRO data structures */
495	tcp_lro_init();
496
497	/*
498	 * If more than 60 MB of mbuf pool is available, increase the
499	 * maximum allowed receive and send socket buffer size.
500	 */
501	if (nmbclusters > 30720) {
502		tcp_autorcvbuf_max = 1024 * 1024;
503		tcp_autosndbuf_max = 1024 * 1024;
504	}
505}
506
507/*
508 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
509 * tcp_template used to store this data in mbufs, but we now recopy it out
510 * of the tcpcb each time to conserve mbufs.
511 */
512void
513tcp_fillheaders(tp, ip_ptr, tcp_ptr)
514	struct tcpcb *tp;
515	void *ip_ptr;
516	void *tcp_ptr;
517{
518	struct inpcb *inp = tp->t_inpcb;
519	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
520
521#if INET6
522	if ((inp->inp_vflag & INP_IPV6) != 0) {
523		struct ip6_hdr *ip6;
524
525		ip6 = (struct ip6_hdr *)ip_ptr;
526		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
527			(inp->inp_flow & IPV6_FLOWINFO_MASK);
528		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
529			(IPV6_VERSION & IPV6_VERSION_MASK);
530		ip6->ip6_nxt = IPPROTO_TCP;
531		ip6->ip6_plen = sizeof(struct tcphdr);
532		ip6->ip6_src = inp->in6p_laddr;
533		ip6->ip6_dst = inp->in6p_faddr;
534		tcp_hdr->th_sum = in6_pseudo(&inp->in6p_laddr, &inp->in6p_faddr,
535		    htonl(sizeof (struct tcphdr) + IPPROTO_TCP));
536	} else
537#endif
538	{
539	struct ip *ip = (struct ip *) ip_ptr;
540
541	ip->ip_vhl = IP_VHL_BORING;
542	ip->ip_tos = 0;
543	ip->ip_len = 0;
544	ip->ip_id = 0;
545	ip->ip_off = 0;
546	ip->ip_ttl = 0;
547	ip->ip_sum = 0;
548	ip->ip_p = IPPROTO_TCP;
549	ip->ip_src = inp->inp_laddr;
550	ip->ip_dst = inp->inp_faddr;
551	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
552		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
553	}
554
555	tcp_hdr->th_sport = inp->inp_lport;
556	tcp_hdr->th_dport = inp->inp_fport;
557	tcp_hdr->th_seq = 0;
558	tcp_hdr->th_ack = 0;
559	tcp_hdr->th_x2 = 0;
560	tcp_hdr->th_off = 5;
561	tcp_hdr->th_flags = 0;
562	tcp_hdr->th_win = 0;
563	tcp_hdr->th_urp = 0;
564}
565
566/*
567 * Create template to be used to send tcp packets on a connection.
568 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
569 * use for this function is in keepalives, which use tcp_respond.
570 */
571struct tcptemp *
572tcp_maketemplate(tp)
573	struct tcpcb *tp;
574{
575	struct mbuf *m;
576	struct tcptemp *n;
577
578	m = m_get(M_DONTWAIT, MT_HEADER);
579	if (m == NULL)
580		return (0);
581	m->m_len = sizeof(struct tcptemp);
582	n = mtod(m, struct tcptemp *);
583
584	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
585	return (n);
586}
587
588/*
589 * Send a single message to the TCP at address specified by
590 * the given TCP/IP header.  If m == 0, then we make a copy
591 * of the tcpiphdr at ti and send directly to the addressed host.
592 * This is used to force keep alive messages out using the TCP
593 * template for a connection.  If flags are given then we send
594 * a message back to the TCP which originated the * segment ti,
595 * and discard the mbuf containing it and any other attached mbufs.
596 *
597 * In any case the ack and sequence number of the transmitted
598 * segment are as specified by the parameters.
599 *
600 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
601 */
602void
603tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
604    tcp_seq ack, tcp_seq seq, int flags, struct tcp_respond_args *tra)
605{
606	int tlen;
607	int win = 0;
608	struct route *ro = 0;
609	struct route sro;
610	struct ip *ip;
611	struct tcphdr *nth;
612#if INET6
613	struct route_in6 *ro6 = 0;
614	struct route_in6 sro6;
615	struct ip6_hdr *ip6;
616	int isipv6;
617#endif /* INET6 */
618	struct ifnet *outif;
619
620#if INET6
621	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
622	ip6 = ipgen;
623#endif /* INET6 */
624	ip = ipgen;
625
626	if (tp) {
627		if (!(flags & TH_RST)) {
628			win = tcp_sbspace(tp);
629			if (win > (int32_t)TCP_MAXWIN << tp->rcv_scale)
630				win = (int32_t)TCP_MAXWIN << tp->rcv_scale;
631		}
632#if INET6
633		if (isipv6)
634			ro6 = &tp->t_inpcb->in6p_route;
635		else
636#endif /* INET6 */
637		ro = &tp->t_inpcb->inp_route;
638	} else {
639#if INET6
640		if (isipv6) {
641			ro6 = &sro6;
642			bzero(ro6, sizeof *ro6);
643		} else
644#endif /* INET6 */
645		{
646			ro = &sro;
647			bzero(ro, sizeof *ro);
648		}
649	}
650	if (m == 0) {
651		m = m_gethdr(M_DONTWAIT, MT_HEADER);	/* MAC-OK */
652		if (m == NULL)
653			return;
654		tlen = 0;
655		m->m_data += max_linkhdr;
656#if INET6
657		if (isipv6) {
658			VERIFY((MHLEN - max_linkhdr) >=
659			    (sizeof (*ip6) + sizeof (*nth)));
660			bcopy((caddr_t)ip6, mtod(m, caddr_t),
661			      sizeof(struct ip6_hdr));
662			ip6 = mtod(m, struct ip6_hdr *);
663			nth = (struct tcphdr *)(void *)(ip6 + 1);
664		} else
665#endif /* INET6 */
666		{
667			VERIFY((MHLEN - max_linkhdr) >=
668			    (sizeof (*ip) + sizeof (*nth)));
669			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
670			ip = mtod(m, struct ip *);
671			nth = (struct tcphdr *)(void *)(ip + 1);
672		}
673		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
674#if MPTCP
675		if ((tp) && (tp->t_mpflags & TMPF_RESET))
676			flags = (TH_RST | TH_ACK);
677		else
678#endif
679		flags = TH_ACK;
680	} else {
681		m_freem(m->m_next);
682		m->m_next = 0;
683		m->m_data = (caddr_t)ipgen;
684		/* m_len is set later */
685		tlen = 0;
686#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
687#if INET6
688		if (isipv6) {
689			/* Expect 32-bit aligned IP on strict-align platforms */
690			IP6_HDR_STRICT_ALIGNMENT_CHECK(ip6);
691			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
692			nth = (struct tcphdr *)(void *)(ip6 + 1);
693		} else
694#endif /* INET6 */
695	      {
696		/* Expect 32-bit aligned IP on strict-align platforms */
697		IP_HDR_STRICT_ALIGNMENT_CHECK(ip);
698		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
699		nth = (struct tcphdr *)(void *)(ip + 1);
700	      }
701		if (th != nth) {
702			/*
703			 * this is usually a case when an extension header
704			 * exists between the IPv6 header and the
705			 * TCP header.
706			 */
707			nth->th_sport = th->th_sport;
708			nth->th_dport = th->th_dport;
709		}
710		xchg(nth->th_dport, nth->th_sport, n_short);
711#undef xchg
712	}
713#if INET6
714	if (isipv6) {
715		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
716						tlen));
717		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
718	} else
719#endif
720      {
721	tlen += sizeof (struct tcpiphdr);
722	ip->ip_len = tlen;
723	ip->ip_ttl = ip_defttl;
724      }
725	m->m_len = tlen;
726	m->m_pkthdr.len = tlen;
727	m->m_pkthdr.rcvif = 0;
728#if CONFIG_MACF_NET
729	if (tp != NULL && tp->t_inpcb != NULL) {
730		/*
731		 * Packet is associated with a socket, so allow the
732		 * label of the response to reflect the socket label.
733		 */
734		mac_mbuf_label_associate_inpcb(tp->t_inpcb, m);
735	} else {
736		/*
737		 * Packet is not associated with a socket, so possibly
738		 * update the label in place.
739		 */
740		mac_netinet_tcp_reply(m);
741	}
742#endif
743
744	nth->th_seq = htonl(seq);
745	nth->th_ack = htonl(ack);
746	nth->th_x2 = 0;
747	nth->th_off = sizeof (struct tcphdr) >> 2;
748	nth->th_flags = flags;
749	if (tp)
750		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
751	else
752		nth->th_win = htons((u_short)win);
753	nth->th_urp = 0;
754#if INET6
755	if (isipv6) {
756		nth->th_sum = 0;
757		nth->th_sum = in6_pseudo(&ip6->ip6_src, &ip6->ip6_dst,
758		    htonl((tlen - sizeof (struct ip6_hdr)) + IPPROTO_TCP));
759		m->m_pkthdr.csum_flags = CSUM_TCPIPV6;
760		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
761		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
762					       ro6 && ro6->ro_rt ?
763					       ro6->ro_rt->rt_ifp :
764					       NULL);
765	} else
766#endif /* INET6 */
767	{
768		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
769		htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
770		m->m_pkthdr.csum_flags = CSUM_TCP;
771		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
772	}
773#if TCPDEBUG
774	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
775		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
776#endif
777
778#if NECP
779	necp_mark_packet_from_socket(m, tp ? tp->t_inpcb : NULL, 0);
780#endif /* NECP */
781
782#if IPSEC
783	if (tp != NULL && tp->t_inpcb->inp_sp != NULL &&
784		ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
785		m_freem(m);
786		return;
787	}
788#endif
789
790	if (tp != NULL) {
791		u_int32_t svc_flags = 0;
792		if (isipv6) {
793			svc_flags |= PKT_SCF_IPV6;
794		}
795		set_packet_service_class(m, tp->t_inpcb->inp_socket,
796		    MBUF_SC_UNSPEC, svc_flags);
797
798		/* Embed flowhash and flow control flags */
799		m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB;
800		m->m_pkthdr.pkt_flowid = tp->t_inpcb->inp_flowhash;
801		m->m_pkthdr.pkt_flags |= PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC;
802#if MPTCP
803		/* Disable flow advisory when using MPTCP. */
804		if (!(tp->t_mpflags & TMPF_MPTCP_TRUE))
805#endif /* MPTCP */
806			m->m_pkthdr.pkt_flags |= PKTF_FLOW_ADV;
807		m->m_pkthdr.pkt_proto = IPPROTO_TCP;
808	}
809
810#if INET6
811	if (isipv6) {
812		struct ip6_out_args ip6oa = { tra->ifscope, { 0 },
813		    IP6OAF_SELECT_SRCIF | IP6OAF_BOUND_SRCADDR, 0 };
814
815		if (tra->ifscope != IFSCOPE_NONE)
816			ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF;
817		if (tra->nocell)
818			ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR;
819		if (tra->noexpensive)
820			ip6oa.ip6oa_flags |= IP6OAF_NO_EXPENSIVE;
821		if (tra->awdl_unrestricted)
822			ip6oa.ip6oa_flags |= IP6OAF_AWDL_UNRESTRICTED;
823
824		(void) ip6_output(m, NULL, ro6, IPV6_OUTARGS, NULL,
825		    NULL, &ip6oa);
826
827		if (tp != NULL && ro6 != NULL && ro6->ro_rt != NULL &&
828		    (outif = ro6->ro_rt->rt_ifp) !=
829		    tp->t_inpcb->in6p_last_outifp)
830			tp->t_inpcb->in6p_last_outifp = outif;
831
832		if (ro6 == &sro6)
833			ROUTE_RELEASE(ro6);
834	} else
835#endif /* INET6 */
836	{
837		struct ip_out_args ipoa = { tra->ifscope, { 0 },
838		    IPOAF_SELECT_SRCIF | IPOAF_BOUND_SRCADDR, 0 };
839
840		if (tra->ifscope != IFSCOPE_NONE)
841			ipoa.ipoa_flags |= IPOAF_BOUND_IF;
842		if (tra->nocell)
843			ipoa.ipoa_flags |= IPOAF_NO_CELLULAR;
844		if (tra->noexpensive)
845			ipoa.ipoa_flags |= IPOAF_NO_EXPENSIVE;
846		if (tra->awdl_unrestricted)
847			ipoa.ipoa_flags |= IPOAF_AWDL_UNRESTRICTED;
848
849		if (ro != &sro) {
850			/* Copy the cached route and take an extra reference */
851			inp_route_copyout(tp->t_inpcb, &sro);
852		}
853		/*
854		 * For consistency, pass a local route copy.
855		 */
856		(void) ip_output(m, NULL, &sro, IP_OUTARGS, NULL, &ipoa);
857
858		if (tp != NULL && sro.ro_rt != NULL &&
859		    (outif = sro.ro_rt->rt_ifp) !=
860		    tp->t_inpcb->inp_last_outifp)
861			tp->t_inpcb->inp_last_outifp = outif;
862
863		if (ro != &sro) {
864			/* Synchronize cached PCB route */
865			inp_route_copyin(tp->t_inpcb, &sro);
866		} else {
867			ROUTE_RELEASE(&sro);
868		}
869	}
870}
871
872/*
873 * Create a new TCP control block, making an
874 * empty reassembly queue and hooking it to the argument
875 * protocol control block.  The `inp' parameter must have
876 * come from the zone allocator set up in tcp_init().
877 */
878struct tcpcb *
879tcp_newtcpcb(inp)
880	struct inpcb *inp;
881{
882	struct inp_tp *it;
883	register struct tcpcb *tp;
884	register struct socket *so = inp->inp_socket;
885#if INET6
886	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
887#endif /* INET6 */
888
889	calculate_tcp_clock();
890
891	if (!so->cached_in_sock_layer) {
892	     it = (struct inp_tp *)(void *)inp;
893	     tp = &it->tcb;
894	} else {
895	     tp = (struct tcpcb *)(void *)inp->inp_saved_ppcb;
896	}
897
898	bzero((char *) tp, sizeof(struct tcpcb));
899	LIST_INIT(&tp->t_segq);
900	tp->t_maxseg = tp->t_maxopd =
901#if INET6
902		isipv6 ? tcp_v6mssdflt :
903#endif /* INET6 */
904		tcp_mssdflt;
905
906	if (tcp_do_rfc1323)
907		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
908	if (tcp_do_sack)
909		tp->t_flagsext |= TF_SACK_ENABLE;
910
911	TAILQ_INIT(&tp->snd_holes);
912	tp->t_inpcb = inp;	/* XXX */
913	/*
914	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
915	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
916	 * reasonable initial retransmit time.
917	 */
918	tp->t_srtt = TCPTV_SRTTBASE;
919	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
920	tp->t_rttmin = tcp_TCPTV_MIN;
921	tp->t_rxtcur = TCPTV_RTOBASE;
922
923	if (tcp_use_newreno)
924		/* use newreno by default */
925		tp->tcp_cc_index = TCP_CC_ALGO_NEWRENO_INDEX;
926	else
927		tp->tcp_cc_index = TCP_CC_ALGO_CUBIC_INDEX;
928
929	tcp_cc_allocate_state(tp);
930
931	if (CC_ALGO(tp)->init != NULL)
932		CC_ALGO(tp)->init(tp);
933
934	tp->snd_cwnd = TCP_CC_CWND_INIT_BYTES;
935	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
936	tp->snd_ssthresh_prev = TCP_MAXWIN << TCP_MAX_WINSHIFT;
937	tp->t_rcvtime = tcp_now;
938	tp->tentry.timer_start = tcp_now;
939	tp->t_persist_timeout = tcp_max_persist_timeout;
940	tp->t_persist_stop = 0;
941	tp->t_flagsext |= TF_RCVUNACK_WAITSS;
942	tp->t_rexmtthresh = tcprexmtthresh;
943
944	/* Clear time wait tailq entry */
945	tp->t_twentry.tqe_next = NULL;
946	tp->t_twentry.tqe_prev = NULL;
947
948	/*
949	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
950	 * because the socket may be bound to an IPv6 wildcard address,
951	 * which may match an IPv4-mapped IPv6 address.
952	 */
953	inp->inp_ip_ttl = ip_defttl;
954	inp->inp_ppcb = (caddr_t)tp;
955	return (tp);		/* XXX */
956}
957
958/*
959 * Drop a TCP connection, reporting
960 * the specified error.  If connection is synchronized,
961 * then send a RST to peer.
962 */
963struct tcpcb *
964tcp_drop(tp, errno)
965	register struct tcpcb *tp;
966	int errno;
967{
968	struct socket *so = tp->t_inpcb->inp_socket;
969#if CONFIG_DTRACE
970	struct inpcb *inp = tp->t_inpcb;
971#endif
972
973	if (TCPS_HAVERCVDSYN(tp->t_state)) {
974		DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
975			struct tcpcb *, tp, int32_t, TCPS_CLOSED);
976		tp->t_state = TCPS_CLOSED;
977		(void) tcp_output(tp);
978		tcpstat.tcps_drops++;
979	} else
980		tcpstat.tcps_conndrops++;
981	if (errno == ETIMEDOUT && tp->t_softerror)
982		errno = tp->t_softerror;
983	so->so_error = errno;
984	return (tcp_close(tp));
985}
986
987void
988tcp_getrt_rtt(struct tcpcb *tp, struct rtentry *rt)
989{
990	u_int32_t rtt = rt->rt_rmx.rmx_rtt;
991	int isnetlocal = (tp->t_flags & TF_LOCAL);
992
993	if (rtt != 0) {
994		/*
995		 * XXX the lock bit for RTT indicates that the value
996		 * is also a minimum value; this is subject to time.
997		 */
998		if (rt->rt_rmx.rmx_locks & RTV_RTT)
999			tp->t_rttmin = rtt / (RTM_RTTUNIT / TCP_RETRANSHZ);
1000		else
1001			tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCPTV_REXMTMIN;
1002		tp->t_srtt = rtt / (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE));
1003		tcpstat.tcps_usedrtt++;
1004		if (rt->rt_rmx.rmx_rttvar) {
1005			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1006		    		(RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE));
1007			tcpstat.tcps_usedrttvar++;
1008		} else {
1009			/* default variation is +- 1 rtt */
1010			tp->t_rttvar =
1011		    		tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
1012		}
1013		TCPT_RANGESET(tp->t_rxtcur,
1014			((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
1015			tp->t_rttmin, TCPTV_REXMTMAX,
1016			TCP_ADD_REXMTSLOP(tp));
1017	}
1018}
1019
1020/*
1021 * Close a TCP control block:
1022 *	discard all space held by the tcp
1023 *	discard internet protocol block
1024 *	wake up any sleepers
1025 */
1026struct tcpcb *
1027tcp_close(tp)
1028	register struct tcpcb *tp;
1029{
1030	struct inpcb *inp = tp->t_inpcb;
1031	struct socket *so = inp->inp_socket;
1032#if INET6
1033	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1034#endif /* INET6 */
1035	struct route *ro;
1036	struct rtentry *rt;
1037	int dosavessthresh;
1038
1039	/* tcp_close was called previously, bail */
1040	if (inp->inp_ppcb == NULL)
1041		return(NULL);
1042
1043	tcp_canceltimers(tp);
1044	KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_START, tp,0,0,0,0);
1045
1046	/*
1047	 * If another thread for this tcp is currently in ip (indicated by
1048	 * the TF_SENDINPROG flag), defer the cleanup until after it returns
1049	 * back to tcp.  This is done to serialize the close until after all
1050	 * pending output is finished, in order to avoid having the PCB be
1051	 * detached and the cached route cleaned, only for ip to cache the
1052	 * route back into the PCB again.  Note that we've cleared all the
1053	 * timers at this point.  Set TF_CLOSING to indicate to tcp_output()
1054	 * that is should call us again once it returns from ip; at that
1055	 * point both flags should be cleared and we can proceed further
1056	 * with the cleanup.
1057	 */
1058	if ((tp->t_flags & TF_CLOSING) ||
1059		inp->inp_sndinprog_cnt > 0) {
1060		tp->t_flags |= TF_CLOSING;
1061		return (NULL);
1062	}
1063
1064	DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
1065		struct tcpcb *, tp, int32_t, TCPS_CLOSED);
1066
1067#if INET6
1068	ro = (isipv6 ? (struct route *)&inp->in6p_route : &inp->inp_route);
1069#else
1070	ro = &inp->inp_route;
1071#endif
1072	rt = ro->ro_rt;
1073	if (rt != NULL)
1074		RT_LOCK_SPIN(rt);
1075
1076	/*
1077	 * If we got enough samples through the srtt filter,
1078	 * save the rtt and rttvar in the routing entry.
1079	 * 'Enough' is arbitrarily defined as the 16 samples.
1080	 * 16 samples is enough for the srtt filter to converge
1081	 * to within 5% of the correct value; fewer samples and
1082	 * we could save a very bogus rtt.
1083	 *
1084	 * Don't update the default route's characteristics and don't
1085	 * update anything that the user "locked".
1086	 */
1087	if (tp->t_rttupdated >= 16) {
1088		register u_int32_t i = 0;
1089
1090#if INET6
1091		if (isipv6) {
1092			struct sockaddr_in6 *sin6;
1093
1094			if (rt == NULL)
1095				goto no_valid_rt;
1096			sin6 = (struct sockaddr_in6 *)(void *)rt_key(rt);
1097			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
1098				goto no_valid_rt;
1099		}
1100		else
1101#endif /* INET6 */
1102		if (ROUTE_UNUSABLE(ro) ||
1103		    SIN(rt_key(rt))->sin_addr.s_addr == INADDR_ANY) {
1104			DTRACE_TCP4(state__change, void, NULL,
1105			    struct inpcb *, inp, struct tcpcb *, tp,
1106			    int32_t, TCPS_CLOSED);
1107			tp->t_state = TCPS_CLOSED;
1108			goto no_valid_rt;
1109		}
1110
1111		RT_LOCK_ASSERT_HELD(rt);
1112		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1113			i = tp->t_srtt *
1114			    (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE));
1115			if (rt->rt_rmx.rmx_rtt && i)
1116				/*
1117				 * filter this update to half the old & half
1118				 * the new values, converting scale.
1119				 * See route.h and tcp_var.h for a
1120				 * description of the scaling constants.
1121				 */
1122				rt->rt_rmx.rmx_rtt =
1123				    (rt->rt_rmx.rmx_rtt + i) / 2;
1124			else
1125				rt->rt_rmx.rmx_rtt = i;
1126			tcpstat.tcps_cachedrtt++;
1127		}
1128		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1129			i = tp->t_rttvar *
1130			    (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE));
1131			if (rt->rt_rmx.rmx_rttvar && i)
1132				rt->rt_rmx.rmx_rttvar =
1133				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1134			else
1135				rt->rt_rmx.rmx_rttvar = i;
1136			tcpstat.tcps_cachedrttvar++;
1137		}
1138		/*
1139		 * The old comment here said:
1140		 * update the pipelimit (ssthresh) if it has been updated
1141		 * already or if a pipesize was specified & the threshhold
1142		 * got below half the pipesize.  I.e., wait for bad news
1143		 * before we start updating, then update on both good
1144		 * and bad news.
1145		 *
1146		 * But we want to save the ssthresh even if no pipesize is
1147		 * specified explicitly in the route, because such
1148		 * connections still have an implicit pipesize specified
1149		 * by the global tcp_sendspace.  In the absence of a reliable
1150		 * way to calculate the pipesize, it will have to do.
1151		 */
1152		i = tp->snd_ssthresh;
1153		if (rt->rt_rmx.rmx_sendpipe != 0)
1154			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
1155		else
1156			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
1157		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1158		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
1159		    || dosavessthresh) {
1160			/*
1161			 * convert the limit from user data bytes to
1162			 * packets then to packet data bytes.
1163			 */
1164			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1165			if (i < 2)
1166				i = 2;
1167			i *= (u_int32_t)(tp->t_maxseg +
1168#if INET6
1169				      (isipv6 ? sizeof (struct ip6_hdr) +
1170					       sizeof (struct tcphdr) :
1171#endif
1172				       sizeof (struct tcpiphdr)
1173#if INET6
1174				       )
1175#endif
1176				      );
1177			if (rt->rt_rmx.rmx_ssthresh)
1178				rt->rt_rmx.rmx_ssthresh =
1179				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1180			else
1181				rt->rt_rmx.rmx_ssthresh = i;
1182			tcpstat.tcps_cachedssthresh++;
1183		}
1184	}
1185
1186	/*
1187	 * Mark route for deletion if no information is cached.
1188	 */
1189	if (rt != NULL && (so->so_flags & SOF_OVERFLOW) && tcp_lq_overflow) {
1190		if (!(rt->rt_rmx.rmx_locks & RTV_RTT) &&
1191		    rt->rt_rmx.rmx_rtt == 0) {
1192			rt->rt_flags |= RTF_DELCLONE;
1193		}
1194	}
1195
1196no_valid_rt:
1197	if (rt != NULL)
1198		RT_UNLOCK(rt);
1199
1200	/* free the reassembly queue, if any */
1201	(void) tcp_freeq(tp);
1202
1203	tcp_free_sackholes(tp);
1204	if (tp->t_bwmeas != NULL) {
1205		tcp_bwmeas_free(tp);
1206	}
1207
1208	/* Free the packet list */
1209	if (tp->t_pktlist_head != NULL)
1210		m_freem_list(tp->t_pktlist_head);
1211	TCP_PKTLIST_CLEAR(tp);
1212
1213#if MPTCP
1214	/* Clear MPTCP state */
1215	if ((so->so_flags & SOF_MPTCP_TRUE) ||
1216	    (so->so_flags & SOF_MP_SUBFLOW)) {
1217		soevent(so, (SO_FILT_HINT_LOCKED | SO_FILT_HINT_DELETEOK));
1218	}
1219	tp->t_mpflags = 0;
1220	tp->t_mptcb = NULL;
1221#endif /* MPTCP */
1222
1223	if (so->cached_in_sock_layer)
1224	    inp->inp_saved_ppcb = (caddr_t) tp;
1225
1226	tp->t_state = TCPS_CLOSED;
1227
1228	/* Issue a wakeup before detach so that we don't miss
1229	 * a wakeup
1230	 */
1231	sodisconnectwakeup(so);
1232
1233	/*
1234	 * Clean up any LRO state
1235	 */
1236	if (tp->t_flagsext & TF_LRO_OFFLOADED) {
1237		tcp_lro_remove_state(inp->inp_laddr, inp->inp_faddr,
1238		    inp->inp_lport, inp->inp_fport);
1239		tp->t_flagsext &= ~TF_LRO_OFFLOADED;
1240	}
1241
1242	/*
1243	 * If this is a socket that does not want to wakeup the device
1244	 * for it's traffic, the application might need to know that the
1245	 * socket is closed, send a notification.
1246	 */
1247	if ((so->so_options & SO_NOWAKEFROMSLEEP) &&
1248	    inp->inp_state != INPCB_STATE_DEAD &&
1249	    !(inp->inp_flags2 & INP2_TIMEWAIT))
1250		socket_post_kev_msg_closed(so);
1251
1252	if (CC_ALGO(tp)->cleanup != NULL) {
1253		CC_ALGO(tp)->cleanup(tp);
1254	}
1255
1256	if (tp->t_ccstate != NULL) {
1257		zfree(tcp_cc_zone, tp->t_ccstate);
1258		tp->t_ccstate = NULL;
1259	}
1260	tp->tcp_cc_index = TCP_CC_ALGO_NONE;
1261
1262#if INET6
1263	if (SOCK_CHECK_DOM(so, PF_INET6))
1264		in6_pcbdetach(inp);
1265	else
1266#endif /* INET6 */
1267	in_pcbdetach(inp);
1268
1269	/* Call soisdisconnected after detach because it might unlock the socket */
1270	soisdisconnected(so);
1271	tcpstat.tcps_closed++;
1272	KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_END,
1273	    tcpstat.tcps_closed, 0, 0, 0, 0);
1274	return(NULL);
1275}
1276
1277int
1278tcp_freeq(tp)
1279	struct tcpcb *tp;
1280{
1281
1282	register struct tseg_qent *q;
1283	int rv = 0;
1284
1285	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
1286		LIST_REMOVE(q, tqe_q);
1287		m_freem(q->tqe_m);
1288		zfree(tcp_reass_zone, q);
1289		rv = 1;
1290	}
1291	tp->t_reassqlen = 0;
1292	return (rv);
1293}
1294
1295void
1296tcp_drain()
1297{
1298	if (do_tcpdrain)
1299	{
1300		struct inpcb *inp;
1301		struct tcpcb *tp;
1302	/*
1303	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1304	 * if there is one...
1305	 * Do it next time if the pcbinfo lock is in use
1306	 */
1307		if (!lck_rw_try_lock_exclusive(tcbinfo.ipi_lock))
1308			return;
1309
1310		LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1311			if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) !=
1312				WNT_STOPUSING) {
1313				tcp_lock(inp->inp_socket, 1, 0);
1314				if (in_pcb_checkstate(inp, WNT_RELEASE, 1)
1315					== WNT_STOPUSING) {
1316					/* lost a race, try the next one */
1317					tcp_unlock(inp->inp_socket, 1, 0);
1318					continue;
1319				}
1320				tp = intotcpcb(inp);
1321				tcp_freeq(tp);
1322				tcp_unlock(inp->inp_socket, 1, 0);
1323			}
1324		}
1325		lck_rw_done(tcbinfo.ipi_lock);
1326
1327	}
1328}
1329
1330/*
1331 * Notify a tcp user of an asynchronous error;
1332 * store error as soft error, but wake up user
1333 * (for now, won't do anything until can select for soft error).
1334 *
1335 * Do not wake up user since there currently is no mechanism for
1336 * reporting soft errors (yet - a kqueue filter may be added).
1337 */
1338static void
1339tcp_notify(inp, error)
1340	struct inpcb *inp;
1341	int error;
1342{
1343	struct tcpcb *tp;
1344
1345	if (inp == NULL || (inp->inp_state == INPCB_STATE_DEAD))
1346		return; /* pcb is gone already */
1347
1348	tp = (struct tcpcb *)inp->inp_ppcb;
1349
1350	/*
1351	 * Ignore some errors if we are hooked up.
1352	 * If connection hasn't completed, has retransmitted several times,
1353	 * and receives a second error, give up now.  This is better
1354	 * than waiting a long time to establish a connection that
1355	 * can never complete.
1356	 */
1357	if (tp->t_state == TCPS_ESTABLISHED &&
1358	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1359	      error == EHOSTDOWN)) {
1360		return;
1361	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1362	    tp->t_softerror)
1363		tcp_drop(tp, error);
1364	else
1365		tp->t_softerror = error;
1366#if 0
1367	wakeup((caddr_t) &so->so_timeo);
1368	sorwakeup(so);
1369	sowwakeup(so);
1370#endif
1371}
1372
1373struct bwmeas*
1374tcp_bwmeas_alloc(struct tcpcb *tp)
1375{
1376	struct bwmeas *elm;
1377	elm = zalloc(tcp_bwmeas_zone);
1378	if (elm == NULL)
1379		return(elm);
1380
1381	bzero(elm, bwmeas_elm_size);
1382	elm->bw_minsizepkts = TCP_BWMEAS_BURST_MINSIZE;
1383	elm->bw_maxsizepkts = TCP_BWMEAS_BURST_MAXSIZE;
1384	elm->bw_minsize = elm->bw_minsizepkts * tp->t_maxseg;
1385	elm->bw_maxsize = elm->bw_maxsizepkts * tp->t_maxseg;
1386	return(elm);
1387}
1388
1389void
1390tcp_bwmeas_free(struct tcpcb* tp)
1391{
1392	zfree(tcp_bwmeas_zone, tp->t_bwmeas);
1393	tp->t_bwmeas = NULL;
1394	tp->t_flagsext &= ~(TF_MEASURESNDBW);
1395}
1396
1397/*
1398 * tcpcb_to_otcpcb copies specific bits of a tcpcb to a otcpcb format.
1399 * The otcpcb data structure is passed to user space and must not change.
1400 */
1401static void
1402tcpcb_to_otcpcb(struct tcpcb *tp, struct otcpcb *otp)
1403{
1404	otp->t_segq = (uint32_t)VM_KERNEL_ADDRPERM(tp->t_segq.lh_first);
1405	otp->t_dupacks = tp->t_dupacks;
1406	otp->t_timer[TCPT_REXMT_EXT] = tp->t_timer[TCPT_REXMT];
1407	otp->t_timer[TCPT_PERSIST_EXT] = tp->t_timer[TCPT_PERSIST];
1408	otp->t_timer[TCPT_KEEP_EXT] = tp->t_timer[TCPT_KEEP];
1409	otp->t_timer[TCPT_2MSL_EXT] = tp->t_timer[TCPT_2MSL];
1410	otp->t_inpcb = (_TCPCB_PTR(struct inpcb *))VM_KERNEL_ADDRPERM(tp->t_inpcb);
1411	otp->t_state = tp->t_state;
1412	otp->t_flags = tp->t_flags;
1413	otp->t_force = (tp->t_flagsext & TF_FORCE) ? 1 : 0;
1414	otp->snd_una = tp->snd_una;
1415	otp->snd_max = tp->snd_max;
1416	otp->snd_nxt = tp->snd_nxt;
1417	otp->snd_up = tp->snd_up;
1418	otp->snd_wl1 = tp->snd_wl1;
1419	otp->snd_wl2 = tp->snd_wl2;
1420	otp->iss = tp->iss;
1421	otp->irs = tp->irs;
1422	otp->rcv_nxt = tp->rcv_nxt;
1423	otp->rcv_adv = tp->rcv_adv;
1424	otp->rcv_wnd = tp->rcv_wnd;
1425	otp->rcv_up = tp->rcv_up;
1426	otp->snd_wnd = tp->snd_wnd;
1427	otp->snd_cwnd = tp->snd_cwnd;
1428	otp->snd_ssthresh = tp->snd_ssthresh;
1429	otp->t_maxopd = tp->t_maxopd;
1430	otp->t_rcvtime = tp->t_rcvtime;
1431	otp->t_starttime = tp->t_starttime;
1432	otp->t_rtttime = tp->t_rtttime;
1433	otp->t_rtseq = tp->t_rtseq;
1434	otp->t_rxtcur = tp->t_rxtcur;
1435	otp->t_maxseg = tp->t_maxseg;
1436	otp->t_srtt = tp->t_srtt;
1437	otp->t_rttvar = tp->t_rttvar;
1438	otp->t_rxtshift = tp->t_rxtshift;
1439	otp->t_rttmin = tp->t_rttmin;
1440	otp->t_rttupdated = tp->t_rttupdated;
1441	otp->max_sndwnd = tp->max_sndwnd;
1442	otp->t_softerror = tp->t_softerror;
1443	otp->t_oobflags = tp->t_oobflags;
1444	otp->t_iobc = tp->t_iobc;
1445	otp->snd_scale = tp->snd_scale;
1446	otp->rcv_scale = tp->rcv_scale;
1447	otp->request_r_scale = tp->request_r_scale;
1448	otp->requested_s_scale = tp->requested_s_scale;
1449	otp->ts_recent = tp->ts_recent;
1450	otp->ts_recent_age = tp->ts_recent_age;
1451	otp->last_ack_sent = tp->last_ack_sent;
1452	otp->cc_send = tp->cc_send;
1453	otp->cc_recv = tp->cc_recv;
1454	otp->snd_recover = tp->snd_recover;
1455	otp->snd_cwnd_prev = tp->snd_cwnd_prev;
1456	otp->snd_ssthresh_prev = tp->snd_ssthresh_prev;
1457	otp->t_badrxtwin = 0;
1458}
1459
1460static int
1461tcp_pcblist SYSCTL_HANDLER_ARGS
1462{
1463#pragma unused(oidp, arg1, arg2)
1464	int error, i = 0, n;
1465	struct inpcb *inp, **inp_list;
1466	struct tcpcb *tp;
1467	inp_gen_t gencnt;
1468	struct xinpgen xig;
1469
1470	/*
1471	 * The process of preparing the TCB list is too time-consuming and
1472	 * resource-intensive to repeat twice on every request.
1473	 */
1474	lck_rw_lock_shared(tcbinfo.ipi_lock);
1475	if (req->oldptr == USER_ADDR_NULL) {
1476		n = tcbinfo.ipi_count;
1477		req->oldidx = 2 * (sizeof xig)
1478			+ (n + n/8) * sizeof(struct xtcpcb);
1479		lck_rw_done(tcbinfo.ipi_lock);
1480		return 0;
1481	}
1482
1483	if (req->newptr != USER_ADDR_NULL) {
1484		lck_rw_done(tcbinfo.ipi_lock);
1485		return EPERM;
1486	}
1487
1488	/*
1489	 * OK, now we're committed to doing something.
1490	 */
1491	gencnt = tcbinfo.ipi_gencnt;
1492	n = tcbinfo.ipi_count;
1493
1494	bzero(&xig, sizeof(xig));
1495	xig.xig_len = sizeof xig;
1496	xig.xig_count = n;
1497	xig.xig_gen = gencnt;
1498	xig.xig_sogen = so_gencnt;
1499	error = SYSCTL_OUT(req, &xig, sizeof xig);
1500	if (error) {
1501		lck_rw_done(tcbinfo.ipi_lock);
1502		return error;
1503	}
1504	/*
1505	 * We are done if there is no pcb
1506	 */
1507	if (n == 0) {
1508		lck_rw_done(tcbinfo.ipi_lock);
1509		return 0;
1510	}
1511
1512	inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1513	if (inp_list == 0) {
1514		lck_rw_done(tcbinfo.ipi_lock);
1515		return ENOMEM;
1516	}
1517
1518	LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1519		if (inp->inp_gencnt <= gencnt &&
1520			inp->inp_state != INPCB_STATE_DEAD)
1521			inp_list[i++] = inp;
1522		if (i >= n) break;
1523	}
1524
1525	TAILQ_FOREACH(tp, &tcp_tw_tailq, t_twentry) {
1526		inp = tp->t_inpcb;
1527		if (inp->inp_gencnt <= gencnt &&
1528			inp->inp_state != INPCB_STATE_DEAD)
1529			inp_list[i++] = inp;
1530		if (i >= n) break;
1531	}
1532
1533	n = i;
1534
1535	error = 0;
1536	for (i = 0; i < n; i++) {
1537		inp = inp_list[i];
1538		if (inp->inp_gencnt <= gencnt &&
1539			inp->inp_state != INPCB_STATE_DEAD) {
1540			struct xtcpcb xt;
1541			caddr_t inp_ppcb;
1542
1543			bzero(&xt, sizeof(xt));
1544			xt.xt_len = sizeof xt;
1545			/* XXX should avoid extra copy */
1546			inpcb_to_compat(inp, &xt.xt_inp);
1547			inp_ppcb = inp->inp_ppcb;
1548			if (inp_ppcb != NULL) {
1549				tcpcb_to_otcpcb(
1550				    (struct tcpcb *)(void *)inp_ppcb,
1551				    &xt.xt_tp);
1552			} else {
1553				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1554			}
1555			if (inp->inp_socket)
1556				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1557			error = SYSCTL_OUT(req, &xt, sizeof xt);
1558		}
1559	}
1560	if (!error) {
1561		/*
1562		 * Give the user an updated idea of our state.
1563		 * If the generation differs from what we told
1564		 * her before, she knows that something happened
1565		 * while we were processing this request, and it
1566		 * might be necessary to retry.
1567		 */
1568		bzero(&xig, sizeof(xig));
1569		xig.xig_len = sizeof xig;
1570		xig.xig_gen = tcbinfo.ipi_gencnt;
1571		xig.xig_sogen = so_gencnt;
1572		xig.xig_count = tcbinfo.ipi_count;
1573		error = SYSCTL_OUT(req, &xig, sizeof xig);
1574	}
1575	FREE(inp_list, M_TEMP);
1576	lck_rw_done(tcbinfo.ipi_lock);
1577	return error;
1578}
1579
1580SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1581	    CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1582	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1583
1584
1585static void
1586tcpcb_to_xtcpcb64(struct tcpcb *tp, struct xtcpcb64 *otp)
1587{
1588        otp->t_segq = (uint32_t)VM_KERNEL_ADDRPERM(tp->t_segq.lh_first);
1589        otp->t_dupacks = tp->t_dupacks;
1590	otp->t_timer[TCPT_REXMT_EXT] = tp->t_timer[TCPT_REXMT];
1591	otp->t_timer[TCPT_PERSIST_EXT] = tp->t_timer[TCPT_PERSIST];
1592	otp->t_timer[TCPT_KEEP_EXT] = tp->t_timer[TCPT_KEEP];
1593	otp->t_timer[TCPT_2MSL_EXT] = tp->t_timer[TCPT_2MSL];
1594        otp->t_state = tp->t_state;
1595        otp->t_flags = tp->t_flags;
1596        otp->t_force = (tp->t_flagsext & TF_FORCE) ? 1 : 0;
1597        otp->snd_una = tp->snd_una;
1598        otp->snd_max = tp->snd_max;
1599        otp->snd_nxt = tp->snd_nxt;
1600        otp->snd_up = tp->snd_up;
1601        otp->snd_wl1 = tp->snd_wl1;
1602        otp->snd_wl2 = tp->snd_wl2;
1603        otp->iss = tp->iss;
1604        otp->irs = tp->irs;
1605        otp->rcv_nxt = tp->rcv_nxt;
1606        otp->rcv_adv = tp->rcv_adv;
1607        otp->rcv_wnd = tp->rcv_wnd;
1608        otp->rcv_up = tp->rcv_up;
1609        otp->snd_wnd = tp->snd_wnd;
1610        otp->snd_cwnd = tp->snd_cwnd;
1611        otp->snd_ssthresh = tp->snd_ssthresh;
1612        otp->t_maxopd = tp->t_maxopd;
1613        otp->t_rcvtime = tp->t_rcvtime;
1614        otp->t_starttime = tp->t_starttime;
1615        otp->t_rtttime = tp->t_rtttime;
1616        otp->t_rtseq = tp->t_rtseq;
1617        otp->t_rxtcur = tp->t_rxtcur;
1618        otp->t_maxseg = tp->t_maxseg;
1619        otp->t_srtt = tp->t_srtt;
1620        otp->t_rttvar = tp->t_rttvar;
1621        otp->t_rxtshift = tp->t_rxtshift;
1622        otp->t_rttmin = tp->t_rttmin;
1623        otp->t_rttupdated = tp->t_rttupdated;
1624        otp->max_sndwnd = tp->max_sndwnd;
1625        otp->t_softerror = tp->t_softerror;
1626        otp->t_oobflags = tp->t_oobflags;
1627        otp->t_iobc = tp->t_iobc;
1628        otp->snd_scale = tp->snd_scale;
1629        otp->rcv_scale = tp->rcv_scale;
1630        otp->request_r_scale = tp->request_r_scale;
1631        otp->requested_s_scale = tp->requested_s_scale;
1632        otp->ts_recent = tp->ts_recent;
1633        otp->ts_recent_age = tp->ts_recent_age;
1634        otp->last_ack_sent = tp->last_ack_sent;
1635        otp->cc_send = tp->cc_send;
1636        otp->cc_recv = tp->cc_recv;
1637        otp->snd_recover = tp->snd_recover;
1638        otp->snd_cwnd_prev = tp->snd_cwnd_prev;
1639        otp->snd_ssthresh_prev = tp->snd_ssthresh_prev;
1640        otp->t_badrxtwin = 0;
1641}
1642
1643
1644static int
1645tcp_pcblist64 SYSCTL_HANDLER_ARGS
1646{
1647#pragma unused(oidp, arg1, arg2)
1648        int error, i = 0, n;
1649        struct inpcb *inp, **inp_list;
1650	struct tcpcb *tp;
1651        inp_gen_t gencnt;
1652        struct xinpgen xig;
1653
1654        /*
1655         * The process of preparing the TCB list is too time-consuming and
1656         * resource-intensive to repeat twice on every request.
1657         */
1658        lck_rw_lock_shared(tcbinfo.ipi_lock);
1659        if (req->oldptr == USER_ADDR_NULL) {
1660                n = tcbinfo.ipi_count;
1661                req->oldidx = 2 * (sizeof xig)
1662                        + (n + n/8) * sizeof(struct xtcpcb64);
1663                lck_rw_done(tcbinfo.ipi_lock);
1664                return 0;
1665        }
1666
1667        if (req->newptr != USER_ADDR_NULL) {
1668                lck_rw_done(tcbinfo.ipi_lock);
1669                return EPERM;
1670        }
1671
1672        /*
1673         * OK, now we're committed to doing something.
1674         */
1675        gencnt = tcbinfo.ipi_gencnt;
1676        n = tcbinfo.ipi_count;
1677
1678        bzero(&xig, sizeof(xig));
1679        xig.xig_len = sizeof xig;
1680        xig.xig_count = n;
1681        xig.xig_gen = gencnt;
1682        xig.xig_sogen = so_gencnt;
1683        error = SYSCTL_OUT(req, &xig, sizeof xig);
1684        if (error) {
1685                lck_rw_done(tcbinfo.ipi_lock);
1686                return error;
1687        }
1688        /*
1689         * We are done if there is no pcb
1690         */
1691        if (n == 0) {
1692                lck_rw_done(tcbinfo.ipi_lock);
1693                return 0;
1694        }
1695
1696        inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1697        if (inp_list == 0) {
1698                lck_rw_done(tcbinfo.ipi_lock);
1699                return ENOMEM;
1700        }
1701
1702	LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1703                if (inp->inp_gencnt <= gencnt &&
1704			inp->inp_state != INPCB_STATE_DEAD)
1705                        inp_list[i++] = inp;
1706		if (i >= n) break;
1707        }
1708
1709	TAILQ_FOREACH(tp, &tcp_tw_tailq, t_twentry) {
1710		inp = tp->t_inpcb;
1711		if (inp->inp_gencnt <= gencnt &&
1712			inp->inp_state != INPCB_STATE_DEAD)
1713			inp_list[i++] = inp;
1714		if (i >= n) break;
1715        }
1716
1717        n = i;
1718
1719        error = 0;
1720        for (i = 0; i < n; i++) {
1721                inp = inp_list[i];
1722                if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
1723					struct xtcpcb64 xt;
1724
1725					bzero(&xt, sizeof(xt));
1726					xt.xt_len = sizeof xt;
1727					inpcb_to_xinpcb64(inp, &xt.xt_inpcb);
1728					xt.xt_inpcb.inp_ppcb = (uint64_t)VM_KERNEL_ADDRPERM(inp->inp_ppcb);
1729					if (inp->inp_ppcb != NULL)
1730						tcpcb_to_xtcpcb64((struct tcpcb *)inp->inp_ppcb, &xt);
1731					if (inp->inp_socket)
1732						sotoxsocket64(inp->inp_socket, &xt.xt_inpcb.xi_socket);
1733					error = SYSCTL_OUT(req, &xt, sizeof xt);
1734                }
1735        }
1736        if (!error) {
1737			/*
1738			 * Give the user an updated idea of our state.
1739			 * If the generation differs from what we told
1740			 * her before, she knows that something happened
1741			 * while we were processing this request, and it
1742			 * might be necessary to retry.
1743			 */
1744			bzero(&xig, sizeof(xig));
1745			xig.xig_len = sizeof xig;
1746			xig.xig_gen = tcbinfo.ipi_gencnt;
1747			xig.xig_sogen = so_gencnt;
1748			xig.xig_count = tcbinfo.ipi_count;
1749			error = SYSCTL_OUT(req, &xig, sizeof xig);
1750        }
1751        FREE(inp_list, M_TEMP);
1752        lck_rw_done(tcbinfo.ipi_lock);
1753        return error;
1754}
1755
1756SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist64,
1757	    CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1758            tcp_pcblist64, "S,xtcpcb64", "List of active TCP connections");
1759
1760
1761static int
1762tcp_pcblist_n SYSCTL_HANDLER_ARGS
1763{
1764#pragma unused(oidp, arg1, arg2)
1765	int error = 0;
1766
1767	error = get_pcblist_n(IPPROTO_TCP, req, &tcbinfo);
1768
1769	return error;
1770}
1771
1772
1773SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist_n,
1774	    CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1775            tcp_pcblist_n, "S,xtcpcb_n", "List of active TCP connections");
1776
1777
1778__private_extern__ void
1779tcp_get_ports_used(uint32_t ifindex, int protocol, uint32_t flags,
1780    bitstr_t *bitfield)
1781{
1782	inpcb_get_ports_used(ifindex, protocol, flags,
1783		bitfield, &tcbinfo);
1784}
1785
1786__private_extern__ uint32_t
1787tcp_count_opportunistic(unsigned int ifindex, u_int32_t flags)
1788{
1789	return inpcb_count_opportunistic(ifindex, &tcbinfo, flags);
1790}
1791
1792__private_extern__ uint32_t
1793tcp_find_anypcb_byaddr(struct ifaddr *ifa)
1794{
1795	return inpcb_find_anypcb_byaddr(ifa, &tcbinfo);
1796}
1797
1798void
1799tcp_ctlinput(cmd, sa, vip)
1800	int cmd;
1801	struct sockaddr *sa;
1802	void *vip;
1803{
1804	tcp_seq icmp_tcp_seq;
1805	struct ip *ip = vip;
1806	struct in_addr faddr;
1807	struct inpcb *inp;
1808	struct tcpcb *tp;
1809
1810	void (*notify)(struct inpcb *, int) = tcp_notify;
1811
1812	faddr = ((struct sockaddr_in *)(void *)sa)->sin_addr;
1813	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1814		return;
1815
1816	if (cmd == PRC_MSGSIZE)
1817		notify = tcp_mtudisc;
1818	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1819		cmd == PRC_UNREACH_PORT) && ip)
1820		notify = tcp_drop_syn_sent;
1821	else if (PRC_IS_REDIRECT(cmd)) {
1822		ip = 0;
1823		notify = in_rtchange;
1824	} else if (cmd == PRC_HOSTDEAD)
1825		ip = 0;
1826	/* Source quench is deprecated */
1827	else if (cmd == PRC_QUENCH)
1828		return;
1829	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1830		return;
1831	if (ip) {
1832		struct tcphdr th;
1833		struct icmp *icp;
1834
1835		icp = (struct icmp *)(void *)
1836		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1837		bcopy(((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2)),
1838		    &th, sizeof (th));
1839		inp = in_pcblookup_hash(&tcbinfo, faddr, th.th_dport,
1840		    ip->ip_src, th.th_sport, 0, NULL);
1841		if (inp != NULL && inp->inp_socket != NULL) {
1842			tcp_lock(inp->inp_socket, 1, 0);
1843			if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
1844				tcp_unlock(inp->inp_socket, 1, 0);
1845				return;
1846			}
1847			icmp_tcp_seq = htonl(th.th_seq);
1848			tp = intotcpcb(inp);
1849			if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1850			    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1851				if (cmd == PRC_MSGSIZE) {
1852
1853					/*
1854				  	 * MTU discovery:
1855				 	 * If we got a needfrag and there is a host route to the
1856				 	 * original destination, and the MTU is not locked, then
1857				 	 * set the MTU in the route to the suggested new value
1858				 	 * (if given) and then notify as usual.  The ULPs will
1859				 	 * notice that the MTU has changed and adapt accordingly.
1860				 	 * If no new MTU was suggested, then we guess a new one
1861				 	 * less than the current value.  If the new MTU is
1862				 	 * unreasonably small (defined by sysctl tcp_minmss), then
1863				 	 * we reset the MTU to the interface value and enable the
1864				 	 * lock bit, indicating that we are no longer doing MTU
1865				 	 * discovery.
1866				 	 */
1867					struct rtentry *rt;
1868					int mtu;
1869					struct sockaddr_in icmpsrc = { sizeof (struct sockaddr_in), AF_INET,
1870										0 , { 0 }, { 0,0,0,0,0,0,0,0 } };
1871					icmpsrc.sin_addr = icp->icmp_ip.ip_dst;
1872
1873					rt = rtalloc1((struct sockaddr *)&icmpsrc, 0,
1874					    RTF_CLONING | RTF_PRCLONING);
1875					if (rt != NULL) {
1876						RT_LOCK(rt);
1877						if ((rt->rt_flags & RTF_HOST) &&
1878						    !(rt->rt_rmx.rmx_locks & RTV_MTU)) {
1879							mtu = ntohs(icp->icmp_nextmtu);
1880							if (!mtu)
1881								mtu = ip_next_mtu(rt->rt_rmx.
1882								    rmx_mtu, 1);
1883#if DEBUG_MTUDISC
1884							printf("MTU for %s reduced to %d\n",
1885							    inet_ntop(AF_INET,
1886							    &icmpsrc.sin_addr, ipv4str,
1887							    sizeof (ipv4str)), mtu);
1888#endif
1889							if (mtu < max(296, (tcp_minmss +
1890							    sizeof (struct tcpiphdr)))) {
1891								/* rt->rt_rmx.rmx_mtu =
1892									rt->rt_ifp->if_mtu; */
1893								rt->rt_rmx.rmx_locks |= RTV_MTU;
1894							} else if (rt->rt_rmx.rmx_mtu > mtu) {
1895								rt->rt_rmx.rmx_mtu = mtu;
1896							}
1897						}
1898						RT_UNLOCK(rt);
1899						rtfree(rt);
1900					}
1901				}
1902
1903				(*notify)(inp, inetctlerrmap[cmd]);
1904			}
1905			tcp_unlock(inp->inp_socket, 1, 0);
1906		}
1907	} else
1908		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1909}
1910
1911#if INET6
1912void
1913tcp6_ctlinput(cmd, sa, d)
1914	int cmd;
1915	struct sockaddr *sa;
1916	void *d;
1917{
1918	struct tcphdr th;
1919	void (*notify)(struct inpcb *, int) = tcp_notify;
1920	struct ip6_hdr *ip6;
1921	struct mbuf *m;
1922	struct ip6ctlparam *ip6cp = NULL;
1923	const struct sockaddr_in6 *sa6_src = NULL;
1924	int off;
1925	struct tcp_portonly {
1926		u_int16_t th_sport;
1927		u_int16_t th_dport;
1928	} *thp;
1929
1930	if (sa->sa_family != AF_INET6 ||
1931	    sa->sa_len != sizeof(struct sockaddr_in6))
1932		return;
1933
1934	if (cmd == PRC_MSGSIZE)
1935		notify = tcp_mtudisc;
1936	else if (!PRC_IS_REDIRECT(cmd) &&
1937		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1938		return;
1939	/* Source quench is deprecated */
1940	else if (cmd == PRC_QUENCH)
1941		return;
1942
1943	/* if the parameter is from icmp6, decode it. */
1944	if (d != NULL) {
1945		ip6cp = (struct ip6ctlparam *)d;
1946		m = ip6cp->ip6c_m;
1947		ip6 = ip6cp->ip6c_ip6;
1948		off = ip6cp->ip6c_off;
1949		sa6_src = ip6cp->ip6c_src;
1950	} else {
1951		m = NULL;
1952		ip6 = NULL;
1953		off = 0;	/* fool gcc */
1954		sa6_src = &sa6_any;
1955	}
1956
1957	if (ip6) {
1958		/*
1959		 * XXX: We assume that when IPV6 is non NULL,
1960		 * M and OFF are valid.
1961		 */
1962
1963		/* check if we can safely examine src and dst ports */
1964		if (m->m_pkthdr.len < off + sizeof(*thp))
1965			return;
1966
1967		bzero(&th, sizeof(th));
1968		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1969
1970		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1971		    (struct sockaddr *)ip6cp->ip6c_src,
1972		    th.th_sport, cmd, NULL, notify);
1973	} else {
1974		in6_pcbnotify(&tcbinfo, sa, 0,
1975		    (struct sockaddr *)(size_t)sa6_src, 0, cmd, NULL, notify);
1976	}
1977}
1978#endif /* INET6 */
1979
1980
1981/*
1982 * Following is where TCP initial sequence number generation occurs.
1983 *
1984 * There are two places where we must use initial sequence numbers:
1985 * 1.  In SYN-ACK packets.
1986 * 2.  In SYN packets.
1987 *
1988 * The ISNs in SYN-ACK packets have no monotonicity requirement,
1989 * and should be as unpredictable as possible to avoid the possibility
1990 * of spoofing and/or connection hijacking.  To satisfy this
1991 * requirement, SYN-ACK ISNs are generated via the arc4random()
1992 * function.  If exact RFC 1948 compliance is requested via sysctl,
1993 * these ISNs will be generated just like those in SYN packets.
1994 *
1995 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1996 * depends on this property.  In addition, these ISNs should be
1997 * unguessable so as to prevent connection hijacking.  To satisfy
1998 * the requirements of this situation, the algorithm outlined in
1999 * RFC 1948 is used to generate sequence numbers.
2000 *
2001 * For more information on the theory of operation, please see
2002 * RFC 1948.
2003 *
2004 * Implementation details:
2005 *
2006 * Time is based off the system timer, and is corrected so that it
2007 * increases by one megabyte per second.  This allows for proper
2008 * recycling on high speed LANs while still leaving over an hour
2009 * before rollover.
2010 *
2011 * Two sysctls control the generation of ISNs:
2012 *
2013 * net.inet.tcp.isn_reseed_interval controls the number of seconds
2014 * between seeding of isn_secret.  This is normally set to zero,
2015 * as reseeding should not be necessary.
2016 *
2017 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
2018 * strictly.  When strict compliance is requested, reseeding is
2019 * disabled and SYN-ACKs will be generated in the same manner as
2020 * SYNs.  Strict mode is disabled by default.
2021 *
2022 */
2023
2024#define ISN_BYTES_PER_SECOND 1048576
2025
2026tcp_seq
2027tcp_new_isn(tp)
2028	struct tcpcb *tp;
2029{
2030	u_int32_t md5_buffer[4];
2031	tcp_seq new_isn;
2032	struct timeval timenow;
2033	u_char isn_secret[32];
2034	int isn_last_reseed = 0;
2035	MD5_CTX isn_ctx;
2036
2037	/* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
2038	if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT))
2039	   && tcp_strict_rfc1948 == 0)
2040#ifdef __APPLE__
2041		return RandomULong();
2042#else
2043		return arc4random();
2044#endif
2045	getmicrotime(&timenow);
2046
2047	/* Seed if this is the first use, reseed if requested. */
2048	if ((isn_last_reseed == 0) ||
2049	    ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) &&
2050	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
2051		< (u_int)timenow.tv_sec))) {
2052#ifdef __APPLE__
2053		read_random(&isn_secret, sizeof(isn_secret));
2054#else
2055		read_random_unlimited(&isn_secret, sizeof(isn_secret));
2056#endif
2057		isn_last_reseed = timenow.tv_sec;
2058	}
2059
2060	/* Compute the md5 hash and return the ISN. */
2061	MD5Init(&isn_ctx);
2062	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
2063	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
2064#if INET6
2065	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
2066		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
2067			  sizeof(struct in6_addr));
2068		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
2069			  sizeof(struct in6_addr));
2070	} else
2071#endif
2072	{
2073		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
2074			  sizeof(struct in_addr));
2075		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
2076			  sizeof(struct in_addr));
2077	}
2078	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
2079	MD5Final((u_char *) &md5_buffer, &isn_ctx);
2080	new_isn = (tcp_seq) md5_buffer[0];
2081	new_isn += timenow.tv_sec * (ISN_BYTES_PER_SECOND / hz);
2082	return new_isn;
2083}
2084
2085
2086/*
2087 * When a specific ICMP unreachable message is received and the
2088 * connection state is SYN-SENT, drop the connection.  This behavior
2089 * is controlled by the icmp_may_rst sysctl.
2090 */
2091void
2092tcp_drop_syn_sent(inp, errno)
2093	struct inpcb *inp;
2094	int errno;
2095{
2096	struct tcpcb *tp = intotcpcb(inp);
2097
2098	if (tp && tp->t_state == TCPS_SYN_SENT)
2099		tcp_drop(tp, errno);
2100}
2101
2102/*
2103 * When `need fragmentation' ICMP is received, update our idea of the MSS
2104 * based on the new value in the route.  Also nudge TCP to send something,
2105 * since we know the packet we just sent was dropped.
2106 * This duplicates some code in the tcp_mss() function in tcp_input.c.
2107 */
2108void
2109tcp_mtudisc(
2110	struct inpcb *inp,
2111	__unused int errno
2112)
2113{
2114	struct tcpcb *tp = intotcpcb(inp);
2115	struct rtentry *rt;
2116	struct rmxp_tao *taop;
2117	struct socket *so = inp->inp_socket;
2118	int offered;
2119	int mss;
2120#if INET6
2121	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
2122#endif /* INET6 */
2123
2124	if (tp) {
2125#if INET6
2126		if (isipv6)
2127			rt = tcp_rtlookup6(inp, IFSCOPE_NONE);
2128		else
2129#endif /* INET6 */
2130		rt = tcp_rtlookup(inp, IFSCOPE_NONE);
2131		if (!rt || !rt->rt_rmx.rmx_mtu) {
2132			tp->t_maxopd = tp->t_maxseg =
2133#if INET6
2134				isipv6 ? tcp_v6mssdflt :
2135#endif /* INET6 */
2136				tcp_mssdflt;
2137
2138			/* Route locked during lookup above */
2139			if (rt != NULL)
2140				RT_UNLOCK(rt);
2141			return;
2142		}
2143		taop = rmx_taop(rt->rt_rmx);
2144		offered = taop->tao_mssopt;
2145		mss = rt->rt_rmx.rmx_mtu -
2146#if INET6
2147			(isipv6 ?
2148			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2149#endif /* INET6 */
2150			 sizeof(struct tcpiphdr)
2151#if INET6
2152			 )
2153#endif /* INET6 */
2154			;
2155
2156		/* Route locked during lookup above */
2157		RT_UNLOCK(rt);
2158
2159		if (offered)
2160			mss = min(mss, offered);
2161		/*
2162		 * XXX - The above conditional probably violates the TCP
2163		 * spec.  The problem is that, since we don't know the
2164		 * other end's MSS, we are supposed to use a conservative
2165		 * default.  But, if we do that, then MTU discovery will
2166		 * never actually take place, because the conservative
2167		 * default is much less than the MTUs typically seen
2168		 * on the Internet today.  For the moment, we'll sweep
2169		 * this under the carpet.
2170		 *
2171		 * The conservative default might not actually be a problem
2172		 * if the only case this occurs is when sending an initial
2173		 * SYN with options and data to a host we've never talked
2174		 * to before.  Then, they will reply with an MSS value which
2175		 * will get recorded and the new parameters should get
2176		 * recomputed.  For Further Study.
2177		 */
2178		if (tp->t_maxopd <= mss)
2179			return;
2180		tp->t_maxopd = mss;
2181
2182		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2183		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2184			mss -= TCPOLEN_TSTAMP_APPA;
2185
2186#if MPTCP
2187		mss -= mptcp_adj_mss(tp, TRUE);
2188#endif
2189		if (so->so_snd.sb_hiwat < mss)
2190			mss = so->so_snd.sb_hiwat;
2191
2192		tp->t_maxseg = mss;
2193
2194		/*
2195		 * Reset the slow-start flight size as it may depends on the new MSS
2196		 */
2197		if (CC_ALGO(tp)->cwnd_init != NULL)
2198			CC_ALGO(tp)->cwnd_init(tp);
2199		tcpstat.tcps_mturesent++;
2200		tp->t_rtttime = 0;
2201		tp->snd_nxt = tp->snd_una;
2202		tcp_output(tp);
2203	}
2204}
2205
2206/*
2207 * Look-up the routing entry to the peer of this inpcb.  If no route
2208 * is found and it cannot be allocated the return NULL.  This routine
2209 * is called by TCP routines that access the rmx structure and by tcp_mss
2210 * to get the interface MTU.  If a route is found, this routine will
2211 * hold the rtentry lock; the caller is responsible for unlocking.
2212 */
2213struct rtentry *
2214tcp_rtlookup(inp, input_ifscope)
2215	struct inpcb *inp;
2216	unsigned int input_ifscope;
2217{
2218	struct route *ro;
2219	struct rtentry *rt;
2220	struct tcpcb *tp;
2221
2222	lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2223
2224	ro = &inp->inp_route;
2225	if ((rt = ro->ro_rt) != NULL)
2226		RT_LOCK(rt);
2227
2228	if (ROUTE_UNUSABLE(ro)) {
2229		if (rt != NULL) {
2230			RT_UNLOCK(rt);
2231			rt = NULL;
2232		}
2233		ROUTE_RELEASE(ro);
2234		/* No route yet, so try to acquire one */
2235		if (inp->inp_faddr.s_addr != INADDR_ANY) {
2236			unsigned int ifscope;
2237
2238			ro->ro_dst.sa_family = AF_INET;
2239			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
2240			((struct sockaddr_in *)(void *)&ro->ro_dst)->sin_addr =
2241				inp->inp_faddr;
2242
2243			/*
2244			 * If the socket was bound to an interface, then
2245			 * the bound-to-interface takes precedence over
2246			 * the inbound interface passed in by the caller
2247			 * (if we get here as part of the output path then
2248			 * input_ifscope is IFSCOPE_NONE).
2249			 */
2250			ifscope = (inp->inp_flags & INP_BOUND_IF) ?
2251			    inp->inp_boundifp->if_index : input_ifscope;
2252
2253			rtalloc_scoped(ro, ifscope);
2254			if ((rt = ro->ro_rt) != NULL)
2255				RT_LOCK(rt);
2256		}
2257	}
2258	if (rt != NULL)
2259		RT_LOCK_ASSERT_HELD(rt);
2260
2261	/*
2262	 * Update MTU discovery determination. Don't do it if:
2263	 *	1) it is disabled via the sysctl
2264	 *	2) the route isn't up
2265	 *	3) the MTU is locked (if it is, then discovery has been
2266	 *	   disabled)
2267	 */
2268
2269	 tp = intotcpcb(inp);
2270
2271	if (!path_mtu_discovery || ((rt != NULL) &&
2272	    (!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU))))
2273		tp->t_flags &= ~TF_PMTUD;
2274	else
2275		tp->t_flags |= TF_PMTUD;
2276
2277#if CONFIG_IFEF_NOWINDOWSCALE
2278	if (tcp_obey_ifef_nowindowscale &&
2279	    tp->t_state == TCPS_SYN_SENT && rt != NULL && rt->rt_ifp != NULL &&
2280	    (rt->rt_ifp->if_eflags & IFEF_NOWINDOWSCALE)) {
2281		/* Window scaling is enabled on this interface */
2282		tp->t_flags &= ~TF_REQ_SCALE;
2283	}
2284#endif
2285
2286	if (rt != NULL && rt->rt_ifp != NULL) {
2287		somultipages(inp->inp_socket,
2288		    (rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES));
2289		tcp_set_tso(tp, rt->rt_ifp);
2290		soif2kcl(inp->inp_socket,
2291		    (rt->rt_ifp->if_eflags & IFEF_2KCL));
2292	}
2293
2294	/* Note if the peer is local */
2295	if (rt != NULL && !(rt->rt_ifp->if_flags & IFF_POINTOPOINT) &&
2296		(rt->rt_gateway->sa_family == AF_LINK ||
2297		rt->rt_ifp->if_flags & IFF_LOOPBACK ||
2298		in_localaddr(inp->inp_faddr))) {
2299		tp->t_flags |= TF_LOCAL;
2300	}
2301
2302	/*
2303	 * Caller needs to call RT_UNLOCK(rt).
2304	 */
2305	return rt;
2306}
2307
2308#if INET6
2309struct rtentry *
2310tcp_rtlookup6(inp, input_ifscope)
2311	struct inpcb *inp;
2312	unsigned int input_ifscope;
2313{
2314	struct route_in6 *ro6;
2315	struct rtentry *rt;
2316	struct tcpcb *tp;
2317
2318	lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2319
2320	ro6 = &inp->in6p_route;
2321	if ((rt = ro6->ro_rt) != NULL)
2322		RT_LOCK(rt);
2323
2324	if (ROUTE_UNUSABLE(ro6)) {
2325		if (rt != NULL) {
2326			RT_UNLOCK(rt);
2327			rt = NULL;
2328		}
2329		ROUTE_RELEASE(ro6);
2330		/* No route yet, so try to acquire one */
2331		if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
2332			struct sockaddr_in6 *dst6;
2333			unsigned int ifscope;
2334
2335			dst6 = (struct sockaddr_in6 *)&ro6->ro_dst;
2336			dst6->sin6_family = AF_INET6;
2337			dst6->sin6_len = sizeof(*dst6);
2338			dst6->sin6_addr = inp->in6p_faddr;
2339
2340			/*
2341			 * If the socket was bound to an interface, then
2342			 * the bound-to-interface takes precedence over
2343			 * the inbound interface passed in by the caller
2344			 * (if we get here as part of the output path then
2345			 * input_ifscope is IFSCOPE_NONE).
2346			 */
2347			ifscope = (inp->inp_flags & INP_BOUND_IF) ?
2348			    inp->inp_boundifp->if_index : input_ifscope;
2349
2350			rtalloc_scoped((struct route *)ro6, ifscope);
2351			if ((rt = ro6->ro_rt) != NULL)
2352				RT_LOCK(rt);
2353		}
2354	}
2355	if (rt != NULL)
2356		RT_LOCK_ASSERT_HELD(rt);
2357
2358	/*
2359	 * Update path MTU Discovery determination
2360	 * while looking up the route:
2361	 *  1) we have a valid route to the destination
2362	 *  2) the MTU is not locked (if it is, then discovery has been
2363	 *    disabled)
2364	 */
2365
2366
2367	 tp = intotcpcb(inp);
2368
2369	/*
2370	 * Update MTU discovery determination. Don't do it if:
2371	 *	1) it is disabled via the sysctl
2372	 *	2) the route isn't up
2373	 *	3) the MTU is locked (if it is, then discovery has been
2374	 *	   disabled)
2375	 */
2376
2377	if (!path_mtu_discovery || ((rt != NULL) &&
2378	    (!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU))))
2379		tp->t_flags &= ~TF_PMTUD;
2380	else
2381		tp->t_flags |= TF_PMTUD;
2382
2383#if CONFIG_IFEF_NOWINDOWSCALE
2384	if (tcp_obey_ifef_nowindowscale &&
2385	    tp->t_state == TCPS_SYN_SENT && rt != NULL && rt->rt_ifp != NULL &&
2386	    (rt->rt_ifp->if_eflags & IFEF_NOWINDOWSCALE)) {
2387		/* Window scaling is not enabled on this interface */
2388		tp->t_flags &= ~TF_REQ_SCALE;
2389	}
2390#endif
2391
2392	if (rt != NULL && rt->rt_ifp != NULL) {
2393		somultipages(inp->inp_socket,
2394		    (rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES));
2395		tcp_set_tso(tp, rt->rt_ifp);
2396		soif2kcl(inp->inp_socket,
2397		    (rt->rt_ifp->if_eflags & IFEF_2KCL));
2398	}
2399
2400	/* Note if the peer is local */
2401	if (rt != NULL && !(rt->rt_ifp->if_flags & IFF_POINTOPOINT) &&
2402		(IN6_IS_ADDR_LOOPBACK(&inp->in6p_faddr) ||
2403		IN6_IS_ADDR_LINKLOCAL(&inp->in6p_faddr) ||
2404		rt->rt_gateway->sa_family == AF_LINK ||
2405		in6_localaddr(&inp->in6p_faddr))) {
2406		tp->t_flags |= TF_LOCAL;
2407	}
2408
2409	/*
2410	 * Caller needs to call RT_UNLOCK(rt).
2411	 */
2412	return rt;
2413}
2414#endif /* INET6 */
2415
2416#if IPSEC
2417/* compute ESP/AH header size for TCP, including outer IP header. */
2418size_t
2419ipsec_hdrsiz_tcp(tp)
2420	struct tcpcb *tp;
2421{
2422	struct inpcb *inp;
2423	struct mbuf *m;
2424	size_t hdrsiz;
2425	struct ip *ip;
2426#if INET6
2427	struct ip6_hdr *ip6 = NULL;
2428#endif /* INET6 */
2429	struct tcphdr *th;
2430
2431	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
2432		return 0;
2433	MGETHDR(m, M_DONTWAIT, MT_DATA);	/* MAC-OK */
2434	if (!m)
2435		return 0;
2436
2437#if INET6
2438	if ((inp->inp_vflag & INP_IPV6) != 0) {
2439		ip6 = mtod(m, struct ip6_hdr *);
2440		th = (struct tcphdr *)(void *)(ip6 + 1);
2441		m->m_pkthdr.len = m->m_len =
2442			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2443		tcp_fillheaders(tp, ip6, th);
2444		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2445	} else
2446#endif /* INET6 */
2447      {
2448	ip = mtod(m, struct ip *);
2449	th = (struct tcphdr *)(ip + 1);
2450	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
2451	tcp_fillheaders(tp, ip, th);
2452	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2453      }
2454	m_free(m);
2455	return hdrsiz;
2456}
2457#endif /*IPSEC*/
2458
2459/*
2460 * Return a pointer to the cached information about the remote host.
2461 * The cached information is stored in the protocol specific part of
2462 * the route metrics.
2463 */
2464struct rmxp_tao *
2465tcp_gettaocache(inp)
2466	struct inpcb *inp;
2467{
2468	struct rtentry *rt;
2469	struct rmxp_tao *taop;
2470
2471#if INET6
2472	if ((inp->inp_vflag & INP_IPV6) != 0)
2473		rt = tcp_rtlookup6(inp, IFSCOPE_NONE);
2474	else
2475#endif /* INET6 */
2476	rt = tcp_rtlookup(inp, IFSCOPE_NONE);
2477
2478	/* Make sure this is a host route and is up. */
2479	if (rt == NULL ||
2480	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST)) {
2481		/* Route locked during lookup above */
2482		if (rt != NULL)
2483			RT_UNLOCK(rt);
2484		return NULL;
2485	}
2486
2487	taop = rmx_taop(rt->rt_rmx);
2488	/* Route locked during lookup above */
2489	RT_UNLOCK(rt);
2490	return (taop);
2491}
2492
2493/*
2494 * Clear all the TAO cache entries, called from tcp_init.
2495 *
2496 * XXX
2497 * This routine is just an empty one, because we assume that the routing
2498 * routing tables are initialized at the same time when TCP, so there is
2499 * nothing in the cache left over.
2500 */
2501static void
2502tcp_cleartaocache()
2503{
2504}
2505
2506int
2507tcp_lock(struct socket *so, int refcount, void *lr)
2508{
2509	void *lr_saved;
2510
2511	if (lr == NULL)
2512		lr_saved = __builtin_return_address(0);
2513	else
2514		lr_saved = lr;
2515
2516	if (so->so_pcb != NULL) {
2517		lck_mtx_lock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
2518	} else  {
2519		panic("tcp_lock: so=%p NO PCB! lr=%p lrh= %s\n",
2520		    so, lr_saved, solockhistory_nr(so));
2521		/* NOTREACHED */
2522	}
2523
2524	if (so->so_usecount < 0) {
2525		panic("tcp_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s\n",
2526		    so, so->so_pcb, lr_saved, so->so_usecount, solockhistory_nr(so));
2527		/* NOTREACHED */
2528	}
2529	if (refcount)
2530		so->so_usecount++;
2531	so->lock_lr[so->next_lock_lr] = lr_saved;
2532	so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX;
2533	return (0);
2534}
2535
2536int
2537tcp_unlock(struct socket *so, int refcount, void *lr)
2538{
2539	void *lr_saved;
2540
2541	if (lr == NULL)
2542		lr_saved = __builtin_return_address(0);
2543	else
2544		lr_saved = lr;
2545
2546#ifdef MORE_TCPLOCK_DEBUG
2547	printf("tcp_unlock: so=0x%llx sopcb=0x%llx lock=0x%llx ref=%x "
2548	    "lr=0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(so),
2549	    (uint64_t)VM_KERNEL_ADDRPERM(so->so_pcb),
2550	    (uint64_t)VM_KERNEL_ADDRPERM(&(sotoinpcb(so)->inpcb_mtx)),
2551	    so->so_usecount, (uint64_t)VM_KERNEL_ADDRPERM(lr_saved));
2552#endif
2553	if (refcount)
2554		so->so_usecount--;
2555
2556	if (so->so_usecount < 0) {
2557		panic("tcp_unlock: so=%p usecount=%x lrh= %s\n",
2558		    so, so->so_usecount, solockhistory_nr(so));
2559		/* NOTREACHED */
2560	}
2561	if (so->so_pcb == NULL) {
2562		panic("tcp_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s\n",
2563		    so, so->so_usecount, lr_saved, solockhistory_nr(so));
2564		/* NOTREACHED */
2565	} else {
2566		lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx,
2567		    LCK_MTX_ASSERT_OWNED);
2568		so->unlock_lr[so->next_unlock_lr] = lr_saved;
2569		so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
2570		lck_mtx_unlock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
2571	}
2572	return (0);
2573}
2574
2575lck_mtx_t *
2576tcp_getlock(
2577	struct socket *so,
2578	__unused int locktype)
2579{
2580	struct inpcb *inp = sotoinpcb(so);
2581
2582	if (so->so_pcb)  {
2583		if (so->so_usecount < 0)
2584			panic("tcp_getlock: so=%p usecount=%x lrh= %s\n",
2585			    so, so->so_usecount, solockhistory_nr(so));
2586		return(&inp->inpcb_mtx);
2587	}
2588	else {
2589		panic("tcp_getlock: so=%p NULL so_pcb %s\n",
2590		    so, solockhistory_nr(so));
2591		return (so->so_proto->pr_domain->dom_mtx);
2592	}
2593}
2594
2595/* Determine if we can grow the recieve socket buffer to avoid sending
2596 * a zero window update to the peer. We allow even socket buffers that
2597 * have fixed size (set by the application) to grow if the resource
2598 * constraints are met. They will also be trimmed after the application
2599 * reads data.
2600 */
2601static void
2602tcp_sbrcv_grow_rwin(struct tcpcb *tp, struct sockbuf *sb) {
2603	u_int32_t rcvbufinc = tp->t_maxseg << 4;
2604	u_int32_t rcvbuf = sb->sb_hiwat;
2605	struct socket *so = tp->t_inpcb->inp_socket;
2606
2607	/*
2608	 * If message delivery is enabled, do not count
2609	 * unordered bytes in receive buffer towards hiwat
2610	 */
2611	if (so->so_flags & SOF_ENABLE_MSGS)
2612		rcvbuf = rcvbuf - so->so_msg_state->msg_uno_bytes;
2613
2614	if (tcp_do_autorcvbuf == 1 &&
2615		tcp_cansbgrow(sb) &&
2616		(tp->t_flags & TF_SLOWLINK) == 0 &&
2617		(rcvbuf - sb->sb_cc) < rcvbufinc &&
2618		rcvbuf < tcp_autorcvbuf_max &&
2619		(sb->sb_idealsize > 0 &&
2620		sb->sb_hiwat <= (sb->sb_idealsize + rcvbufinc))) {
2621		sbreserve(sb,
2622		    min((sb->sb_hiwat + rcvbufinc), tcp_autorcvbuf_max));
2623	}
2624}
2625
2626int32_t
2627tcp_sbspace(struct tcpcb *tp)
2628{
2629	struct sockbuf *sb = &tp->t_inpcb->inp_socket->so_rcv;
2630	u_int32_t rcvbuf = sb->sb_hiwat;
2631	int32_t space;
2632	struct socket *so = tp->t_inpcb->inp_socket;
2633	int32_t pending = 0;
2634
2635	/*
2636	 * If message delivery is enabled, do not count
2637	 * unordered bytes in receive buffer towards hiwat mark.
2638	 * This value is used to return correct rwnd that does
2639	 * not reflect the extra unordered bytes added to the
2640	 * receive socket buffer.
2641	 */
2642	if (so->so_flags & SOF_ENABLE_MSGS)
2643		rcvbuf = rcvbuf - so->so_msg_state->msg_uno_bytes;
2644
2645	tcp_sbrcv_grow_rwin(tp, sb);
2646
2647	space =  ((int32_t) imin((rcvbuf - sb->sb_cc),
2648		(sb->sb_mbmax - sb->sb_mbcnt)));
2649	if (space < 0)
2650		space = 0;
2651
2652#if CONTENT_FILTER
2653	/* Compensate for data being processed by content filters */
2654	pending = cfil_sock_data_space(sb);
2655#endif /* CONTENT_FILTER */
2656	if (pending > space)
2657		space = 0;
2658	else
2659		space -= pending;
2660
2661	/* Avoid increasing window size if the current window
2662	 * is already very low, we could be in "persist" mode and
2663	 * we could break some apps (see rdar://5409343)
2664	 */
2665
2666	if (space < tp->t_maxseg)
2667		return space;
2668
2669	/* Clip window size for slower link */
2670
2671	if (((tp->t_flags & TF_SLOWLINK) != 0) && slowlink_wsize > 0 )
2672		return imin(space, slowlink_wsize);
2673
2674	return space;
2675}
2676/*
2677 * Checks TCP Segment Offloading capability for a given connection
2678 * and interface pair.
2679 */
2680void
2681tcp_set_tso(struct tcpcb *tp, struct ifnet *ifp)
2682{
2683#if INET6
2684	struct inpcb *inp;
2685	int isipv6;
2686#endif /* INET6 */
2687#if MPTCP
2688	/*
2689	 * We can't use TSO if this tcpcb belongs to an MPTCP session.
2690	 */
2691	if (tp->t_mpflags & TMPF_MPTCP_TRUE) {
2692		tp->t_flags &= ~TF_TSO;
2693		return;
2694	}
2695#endif
2696#if INET6
2697	inp = tp->t_inpcb;
2698	isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
2699
2700	if (isipv6) {
2701		if (ifp && (ifp->if_hwassist & IFNET_TSO_IPV6)) {
2702			tp->t_flags |= TF_TSO;
2703			if (ifp->if_tso_v6_mtu != 0)
2704				tp->tso_max_segment_size = ifp->if_tso_v6_mtu;
2705			else
2706				tp->tso_max_segment_size = TCP_MAXWIN;
2707		} else
2708				tp->t_flags &= ~TF_TSO;
2709
2710	} else
2711#endif /* INET6 */
2712
2713	{
2714		if (ifp && (ifp->if_hwassist & IFNET_TSO_IPV4)) {
2715			tp->t_flags |= TF_TSO;
2716			if (ifp->if_tso_v4_mtu != 0)
2717				tp->tso_max_segment_size = ifp->if_tso_v4_mtu;
2718			else
2719				tp->tso_max_segment_size = TCP_MAXWIN;
2720		} else
2721				tp->t_flags &= ~TF_TSO;
2722	}
2723}
2724
2725#define TIMEVAL_TO_TCPHZ(_tv_) ((_tv_).tv_sec * TCP_RETRANSHZ + (_tv_).tv_usec / TCP_RETRANSHZ_TO_USEC)
2726
2727/* Function to calculate the tcp clock. The tcp clock will get updated
2728 * at the boundaries of the tcp layer. This is done at 3 places:
2729 * 1. Right before processing an input tcp packet
2730 * 2. Whenever a connection wants to access the network using tcp_usrreqs
2731 * 3. When a tcp timer fires or before tcp slow timeout
2732 *
2733 */
2734
2735void
2736calculate_tcp_clock()
2737{
2738	struct timeval tv = tcp_uptime;
2739	struct timeval interval = {0, TCP_RETRANSHZ_TO_USEC};
2740	struct timeval now, hold_now;
2741	uint32_t incr = 0;
2742
2743	microuptime(&now);
2744
2745	/*
2746	 * Update coarse-grained networking timestamp (in sec.); the idea
2747	 * is to update the counter returnable via net_uptime() when
2748	 * we read time.
2749	 */
2750	net_update_uptime_secs(now.tv_sec);
2751
2752	timevaladd(&tv, &interval);
2753	if (timevalcmp(&now, &tv, >)) {
2754		/* time to update the clock */
2755		lck_spin_lock(tcp_uptime_lock);
2756		if (timevalcmp(&tcp_uptime, &now, >=)) {
2757			/* clock got updated while waiting for the lock */
2758			lck_spin_unlock(tcp_uptime_lock);
2759			return;
2760		}
2761
2762		microuptime(&now);
2763		hold_now = now;
2764		tv = tcp_uptime;
2765		timevalsub(&now, &tv);
2766
2767		incr = TIMEVAL_TO_TCPHZ(now);
2768		if (incr > 0) {
2769			tcp_uptime = hold_now;
2770			tcp_now += incr;
2771		}
2772
2773                lck_spin_unlock(tcp_uptime_lock);
2774        }
2775        return;
2776}
2777
2778/* Compute receive window scaling that we are going to request
2779 * for this connection based on  sb_hiwat. Try to leave some
2780 * room to potentially increase the window size upto a maximum
2781 * defined by the constant tcp_autorcvbuf_max.
2782 */
2783void
2784tcp_set_max_rwinscale(struct tcpcb *tp, struct socket *so) {
2785	u_int32_t maxsockbufsize;
2786
2787	tp->request_r_scale = max(tcp_win_scale, tp->request_r_scale);
2788	maxsockbufsize = ((so->so_rcv.sb_flags & SB_USRSIZE) != 0) ?
2789		so->so_rcv.sb_hiwat : tcp_autorcvbuf_max;
2790
2791	while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
2792		(TCP_MAXWIN << tp->request_r_scale) < maxsockbufsize)
2793		tp->request_r_scale++;
2794	tp->request_r_scale = min(tp->request_r_scale, TCP_MAX_WINSHIFT);
2795
2796}
2797
2798int
2799tcp_notsent_lowat_check(struct socket *so) {
2800	struct inpcb *inp = sotoinpcb(so);
2801	struct tcpcb *tp = NULL;
2802	int notsent = 0;
2803	if (inp != NULL) {
2804		tp = intotcpcb(inp);
2805	}
2806
2807	notsent = so->so_snd.sb_cc -
2808		(tp->snd_nxt - tp->snd_una);
2809
2810	/* When we send a FIN or SYN, not_sent can be negative.
2811	 * In that case also we need to send a write event to the
2812	 * process if it is waiting. In the FIN case, it will
2813	 * get an error from send because cantsendmore will be set.
2814	 */
2815	if (notsent <= tp->t_notsent_lowat) {
2816		return(1);
2817	}
2818
2819	/* When Nagle's algorithm is not disabled, it is better
2820	 * to wakeup the client until there is atleast one
2821	 * maxseg of data to write.
2822	 */
2823	if ((tp->t_flags & TF_NODELAY) == 0 &&
2824		notsent > 0 && notsent < tp->t_maxseg) {
2825		return(1);
2826	}
2827	return(0);
2828}
2829
2830
2831/* DSEP Review Done pl-20051213-v02 @3253,@3391,@3400 */
2832