1/*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
30 * Portions Copyright (c) 2000 Akamba Corp.
31 * All rights reserved
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 *
54 * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $
55 */
56
57#define	DUMMYNET_DEBUG
58
59/*
60 * This module implements IP dummynet, a bandwidth limiter/delay emulator
61 * used in conjunction with the ipfw package.
62 * Description of the data structures used is in ip_dummynet.h
63 * Here you mainly find the following blocks of code:
64 *  + variable declarations;
65 *  + heap management functions;
66 *  + scheduler and dummynet functions;
67 *  + configuration and initialization.
68 *
69 * NOTA BENE: critical sections are protected by the "dummynet lock".
70 *
71 * Most important Changes:
72 *
73 * 010124: Fixed WF2Q behaviour
74 * 010122: Fixed spl protection.
75 * 000601: WF2Q support
76 * 000106: large rewrite, use heaps to handle very many pipes.
77 * 980513:	initial release
78 *
79 * include files marked with XXX are probably not needed
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/malloc.h>
85#include <sys/mbuf.h>
86#include <sys/queue.h>			/* XXX */
87#include <sys/kernel.h>
88#include <sys/socket.h>
89#include <sys/socketvar.h>
90#include <sys/time.h>
91#include <sys/sysctl.h>
92#include <net/if.h>
93#include <net/route.h>
94#include <net/kpi_protocol.h>
95#if DUMMYNET
96#include <net/kpi_protocol.h>
97#endif /* DUMMYNET */
98#include <netinet/in.h>
99#include <netinet/in_systm.h>
100#include <netinet/in_var.h>
101#include <netinet/ip.h>
102#include <netinet/ip_fw.h>
103#include <netinet/ip_dummynet.h>
104#include <netinet/ip_var.h>
105
106#include <netinet/ip6.h>       /* for ip6_input, ip6_output prototypes */
107#include <netinet6/ip6_var.h>
108
109static struct ip_fw default_rule;
110
111/*
112 * We keep a private variable for the simulation time, but we could
113 * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
114 */
115static dn_key curr_time = 0 ; /* current simulation time */
116
117/* this is for the timer that fires to call dummynet() - we only enable the timer when
118	there are packets to process, otherwise it's disabled */
119static int timer_enabled = 0;
120
121static int dn_hash_size = 64 ;	/* default hash size */
122
123/* statistics on number of queue searches and search steps */
124static int searches, search_steps ;
125static int pipe_expire = 1 ;   /* expire queue if empty */
126static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
127
128static int red_lookup_depth = 256;	/* RED - default lookup table depth */
129static int red_avg_pkt_size = 512;      /* RED - default medium packet size */
130static int red_max_pkt_size = 1500;     /* RED - default max packet size */
131
132static int serialize = 0;
133
134/*
135 * Three heaps contain queues and pipes that the scheduler handles:
136 *
137 * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
138 *
139 * wfq_ready_heap contains the pipes associated with WF2Q flows
140 *
141 * extract_heap contains pipes associated with delay lines.
142 *
143 */
144static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
145
146static int heap_init(struct dn_heap *h, int size) ;
147static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
148static void heap_extract(struct dn_heap *h, void *obj);
149
150
151static void	transmit_event(struct dn_pipe *pipe, struct mbuf **head,
152		    struct mbuf **tail);
153static void	ready_event(struct dn_flow_queue *q, struct mbuf **head,
154		    struct mbuf **tail);
155static void	ready_event_wfq(struct dn_pipe *p, struct mbuf **head,
156		    struct mbuf **tail);
157
158/*
159 * Packets are retrieved from queues in Dummynet in chains instead of
160 * packet-by-packet.  The entire list of packets is first dequeued and
161 * sent out by the following function.
162 */
163static void dummynet_send(struct mbuf *m);
164
165#define	HASHSIZE	16
166#define	HASH(num)	((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
167static struct dn_pipe_head	pipehash[HASHSIZE];	/* all pipes */
168static struct dn_flow_set_head	flowsethash[HASHSIZE];	/* all flowsets */
169
170
171#ifdef SYSCTL_NODE
172SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
173		CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Dummynet");
174SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
175	    CTLFLAG_RW | CTLFLAG_LOCKED, &dn_hash_size, 0, "Default hash table size");
176SYSCTL_QUAD(_net_inet_ip_dummynet, OID_AUTO, curr_time,
177	    CTLFLAG_RD | CTLFLAG_LOCKED, &curr_time, "Current tick");
178SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
179	    CTLFLAG_RD | CTLFLAG_LOCKED, &ready_heap.size, 0, "Size of ready heap");
180SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
181	    CTLFLAG_RD | CTLFLAG_LOCKED, &extract_heap.size, 0, "Size of extract heap");
182SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
183	    CTLFLAG_RD | CTLFLAG_LOCKED, &searches, 0, "Number of queue searches");
184SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
185	    CTLFLAG_RD | CTLFLAG_LOCKED, &search_steps, 0, "Number of queue search steps");
186SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
187	    CTLFLAG_RW | CTLFLAG_LOCKED, &pipe_expire, 0, "Expire queue if empty");
188SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
189	    CTLFLAG_RW | CTLFLAG_LOCKED, &dn_max_ratio, 0,
190	"Max ratio between dynamic queues and buckets");
191SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
192	CTLFLAG_RD | CTLFLAG_LOCKED, &red_lookup_depth, 0, "Depth of RED lookup table");
193SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
194	CTLFLAG_RD | CTLFLAG_LOCKED, &red_avg_pkt_size, 0, "RED Medium packet size");
195SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
196	CTLFLAG_RD | CTLFLAG_LOCKED, &red_max_pkt_size, 0, "RED Max packet size");
197#endif
198
199#ifdef DUMMYNET_DEBUG
200int	dummynet_debug = 0;
201#ifdef SYSCTL_NODE
202SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, &dummynet_debug,
203	    0, "control debugging printfs");
204#endif
205#define	DPRINTF(X)	if (dummynet_debug) printf X
206#else
207#define	DPRINTF(X)
208#endif
209
210/* contrary to the comment above random(), it does not actually
211 * return a value [0, 2^31 - 1], which breaks plr amongst other
212 * things. Masking it should work even if the behavior of
213 * the function is fixed.
214 */
215#define MY_RANDOM (random() & 0x7FFFFFFF)
216
217/* dummynet lock */
218static lck_grp_t         *dn_mutex_grp;
219static lck_grp_attr_t    *dn_mutex_grp_attr;
220static lck_attr_t        *dn_mutex_attr;
221decl_lck_mtx_data(static, dn_mutex_data);
222static lck_mtx_t         *dn_mutex = &dn_mutex_data;
223
224static int config_pipe(struct dn_pipe *p);
225static int ip_dn_ctl(struct sockopt *sopt);
226
227static void dummynet(void *);
228static void dummynet_flush(void);
229void dummynet_drain(void);
230static ip_dn_io_t dummynet_io;
231
232int if_tx_rdy(struct ifnet *ifp);
233
234static void cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp);
235static void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp);
236static char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp);
237static char* dn_copy_set_64(struct dn_flow_set *set, char *bp);
238static int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p );
239
240static void cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp);
241static void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp);
242static char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp);
243static char* dn_copy_set_32(struct dn_flow_set *set, char *bp);
244static int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p );
245
246
247/*
248 * Heap management functions.
249 *
250 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
251 * Some macros help finding parent/children so we can optimize them.
252 *
253 * heap_init() is called to expand the heap when needed.
254 * Increment size in blocks of 16 entries.
255 * XXX failure to allocate a new element is a pretty bad failure
256 * as we basically stall a whole queue forever!!
257 * Returns 1 on error, 0 on success
258 */
259#define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
260#define HEAP_LEFT(x) ( 2*(x) + 1 )
261#define HEAP_IS_LEFT(x) ( (x) & 1 )
262#define HEAP_RIGHT(x) ( 2*(x) + 2 )
263#define	HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
264#define HEAP_INCREMENT	15
265
266
267int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p )
268{
269	struct dn_pipe_32 user_pipe_32;
270	int error=0;
271
272	error = sooptcopyin(sopt, &user_pipe_32, sizeof(struct dn_pipe_32), sizeof(struct dn_pipe_32));
273	if ( !error ){
274		p->pipe_nr = user_pipe_32.pipe_nr;
275		p->bandwidth = user_pipe_32.bandwidth;
276		p->delay = user_pipe_32.delay;
277		p->V = user_pipe_32.V;
278		p->sum = user_pipe_32.sum;
279		p->numbytes = user_pipe_32.numbytes;
280		p->sched_time = user_pipe_32.sched_time;
281		bcopy( user_pipe_32.if_name, p->if_name, IFNAMSIZ);
282		p->ready = user_pipe_32.ready;
283
284		p->fs.fs_nr = user_pipe_32.fs.fs_nr;
285		p->fs.flags_fs = user_pipe_32.fs.flags_fs;
286		p->fs.parent_nr = user_pipe_32.fs.parent_nr;
287		p->fs.weight = user_pipe_32.fs.weight;
288		p->fs.qsize = user_pipe_32.fs.qsize;
289		p->fs.plr = user_pipe_32.fs.plr;
290		p->fs.flow_mask = user_pipe_32.fs.flow_mask;
291		p->fs.rq_size = user_pipe_32.fs.rq_size;
292		p->fs.rq_elements = user_pipe_32.fs.rq_elements;
293		p->fs.last_expired = user_pipe_32.fs.last_expired;
294		p->fs.backlogged = user_pipe_32.fs.backlogged;
295		p->fs.w_q = user_pipe_32.fs.w_q;
296		p->fs.max_th = user_pipe_32.fs.max_th;
297		p->fs.min_th = user_pipe_32.fs.min_th;
298		p->fs.max_p = user_pipe_32.fs.max_p;
299		p->fs.c_1 = user_pipe_32.fs.c_1;
300		p->fs.c_2 = user_pipe_32.fs.c_2;
301		p->fs.c_3 = user_pipe_32.fs.c_3;
302		p->fs.c_4 = user_pipe_32.fs.c_4;
303		p->fs.lookup_depth = user_pipe_32.fs.lookup_depth;
304		p->fs.lookup_step = user_pipe_32.fs.lookup_step;
305		p->fs.lookup_weight = user_pipe_32.fs.lookup_weight;
306		p->fs.avg_pkt_size = user_pipe_32.fs.avg_pkt_size;
307		p->fs.max_pkt_size = user_pipe_32.fs.max_pkt_size;
308	}
309	return error;
310}
311
312
313int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p )
314{
315	struct dn_pipe_64 user_pipe_64;
316	int error=0;
317
318	error = sooptcopyin(sopt, &user_pipe_64, sizeof(struct dn_pipe_64), sizeof(struct dn_pipe_64));
319	if ( !error ){
320		p->pipe_nr = user_pipe_64.pipe_nr;
321		p->bandwidth = user_pipe_64.bandwidth;
322		p->delay = user_pipe_64.delay;
323		p->V = user_pipe_64.V;
324		p->sum = user_pipe_64.sum;
325		p->numbytes = user_pipe_64.numbytes;
326		p->sched_time = user_pipe_64.sched_time;
327		bcopy( user_pipe_64.if_name, p->if_name, IFNAMSIZ);
328		p->ready = user_pipe_64.ready;
329
330		p->fs.fs_nr = user_pipe_64.fs.fs_nr;
331		p->fs.flags_fs = user_pipe_64.fs.flags_fs;
332		p->fs.parent_nr = user_pipe_64.fs.parent_nr;
333		p->fs.weight = user_pipe_64.fs.weight;
334		p->fs.qsize = user_pipe_64.fs.qsize;
335		p->fs.plr = user_pipe_64.fs.plr;
336		p->fs.flow_mask = user_pipe_64.fs.flow_mask;
337		p->fs.rq_size = user_pipe_64.fs.rq_size;
338		p->fs.rq_elements = user_pipe_64.fs.rq_elements;
339		p->fs.last_expired = user_pipe_64.fs.last_expired;
340		p->fs.backlogged = user_pipe_64.fs.backlogged;
341		p->fs.w_q = user_pipe_64.fs.w_q;
342		p->fs.max_th = user_pipe_64.fs.max_th;
343		p->fs.min_th = user_pipe_64.fs.min_th;
344		p->fs.max_p = user_pipe_64.fs.max_p;
345		p->fs.c_1 = user_pipe_64.fs.c_1;
346		p->fs.c_2 = user_pipe_64.fs.c_2;
347		p->fs.c_3 = user_pipe_64.fs.c_3;
348		p->fs.c_4 = user_pipe_64.fs.c_4;
349		p->fs.lookup_depth = user_pipe_64.fs.lookup_depth;
350		p->fs.lookup_step = user_pipe_64.fs.lookup_step;
351		p->fs.lookup_weight = user_pipe_64.fs.lookup_weight;
352		p->fs.avg_pkt_size = user_pipe_64.fs.avg_pkt_size;
353		p->fs.max_pkt_size = user_pipe_64.fs.max_pkt_size;
354	}
355	return error;
356}
357
358static void
359cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp)
360{
361	fs_bp->fs_nr = set->fs_nr;
362	fs_bp->flags_fs = set->flags_fs ;
363	fs_bp->parent_nr = set->parent_nr ;
364	fs_bp->weight = set->weight ;
365	fs_bp->qsize = set->qsize ;
366	fs_bp->plr = set->plr ;
367	fs_bp->flow_mask = set->flow_mask ;
368	fs_bp->rq_size = set->rq_size ;
369	fs_bp->rq_elements = set->rq_elements ;
370	fs_bp->last_expired = set->last_expired ;
371	fs_bp->backlogged = set->backlogged ;
372	fs_bp->w_q = set->w_q ;
373	fs_bp->max_th = set->max_th ;
374	fs_bp->min_th = set->min_th ;
375	fs_bp->max_p = set->max_p ;
376	fs_bp->c_1 = set->c_1 ;
377	fs_bp->c_2 = set->c_2 ;
378	fs_bp->c_3 = set->c_3 ;
379	fs_bp->c_4 = set->c_4 ;
380	fs_bp->w_q_lookup = CAST_DOWN_EXPLICIT(user32_addr_t, set->w_q_lookup) ;
381	fs_bp->lookup_depth = set->lookup_depth ;
382	fs_bp->lookup_step = set->lookup_step ;
383	fs_bp->lookup_weight = set->lookup_weight ;
384	fs_bp->avg_pkt_size = set->avg_pkt_size ;
385	fs_bp->max_pkt_size = set->max_pkt_size ;
386}
387
388static void
389cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp)
390{
391	fs_bp->fs_nr = set->fs_nr;
392	fs_bp->flags_fs = set->flags_fs ;
393	fs_bp->parent_nr = set->parent_nr ;
394	fs_bp->weight = set->weight ;
395	fs_bp->qsize = set->qsize ;
396	fs_bp->plr = set->plr ;
397	fs_bp->flow_mask = set->flow_mask ;
398	fs_bp->rq_size = set->rq_size ;
399	fs_bp->rq_elements = set->rq_elements ;
400	fs_bp->last_expired = set->last_expired ;
401	fs_bp->backlogged = set->backlogged ;
402	fs_bp->w_q = set->w_q ;
403	fs_bp->max_th = set->max_th ;
404	fs_bp->min_th = set->min_th ;
405	fs_bp->max_p = set->max_p ;
406	fs_bp->c_1 = set->c_1 ;
407	fs_bp->c_2 = set->c_2 ;
408	fs_bp->c_3 = set->c_3 ;
409	fs_bp->c_4 = set->c_4 ;
410	fs_bp->w_q_lookup = CAST_DOWN(user64_addr_t, set->w_q_lookup) ;
411	fs_bp->lookup_depth = set->lookup_depth ;
412	fs_bp->lookup_step = set->lookup_step ;
413	fs_bp->lookup_weight = set->lookup_weight ;
414	fs_bp->avg_pkt_size = set->avg_pkt_size ;
415	fs_bp->max_pkt_size = set->max_pkt_size ;
416}
417
418static
419void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp)
420{
421	qp->id = q->id;
422	qp->len = q->len;
423	qp->len_bytes = q->len_bytes;
424	qp->numbytes = q->numbytes;
425	qp->tot_pkts = q->tot_pkts;
426	qp->tot_bytes = q->tot_bytes;
427	qp->drops = q->drops;
428	qp->hash_slot = q->hash_slot;
429	qp->avg = q->avg;
430	qp->count = q->count;
431	qp->random = q->random;
432	qp->q_time = q->q_time;
433	qp->heap_pos = q->heap_pos;
434	qp->sched_time = q->sched_time;
435	qp->S = q->S;
436	qp->F = q->F;
437}
438
439static
440void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp)
441{
442	qp->id = q->id;
443	qp->len = q->len;
444	qp->len_bytes = q->len_bytes;
445	qp->numbytes = q->numbytes;
446	qp->tot_pkts = q->tot_pkts;
447	qp->tot_bytes = q->tot_bytes;
448	qp->drops = q->drops;
449	qp->hash_slot = q->hash_slot;
450	qp->avg = q->avg;
451	qp->count = q->count;
452	qp->random = q->random;
453	qp->q_time = q->q_time;
454	qp->heap_pos = q->heap_pos;
455	qp->sched_time = q->sched_time;
456	qp->S = q->S;
457	qp->F = q->F;
458}
459
460static
461char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp)
462{
463	char	*bp;
464
465	pipe_bp->pipe_nr = p->pipe_nr;
466	pipe_bp->bandwidth = p->bandwidth;
467	pipe_bp->delay = p->delay;
468	bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_32));
469	pipe_bp->scheduler_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->scheduler_heap.p);
470	bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_32));
471	pipe_bp->not_eligible_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->not_eligible_heap.p);
472	bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_32));
473	pipe_bp->idle_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->idle_heap.p);
474	pipe_bp->V = p->V;
475	pipe_bp->sum = p->sum;
476	pipe_bp->numbytes = p->numbytes;
477	pipe_bp->sched_time = p->sched_time;
478	bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
479	pipe_bp->ifp = CAST_DOWN_EXPLICIT(user32_addr_t, p->ifp);
480	pipe_bp->ready = p->ready;
481
482	cp_flow_set_to_32_user( &(p->fs), &(pipe_bp->fs));
483
484	pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
485	/*
486	 * XXX the following is a hack based on ->next being the
487	 * first field in dn_pipe and dn_flow_set. The correct
488	 * solution would be to move the dn_flow_set to the beginning
489	 * of struct dn_pipe.
490	 */
491	pipe_bp->next = CAST_DOWN_EXPLICIT( user32_addr_t, DN_IS_PIPE );
492	/* clean pointers */
493	pipe_bp->head = pipe_bp->tail = (user32_addr_t) 0 ;
494	pipe_bp->fs.next = (user32_addr_t)0 ;
495	pipe_bp->fs.pipe = (user32_addr_t)0 ;
496	pipe_bp->fs.rq = (user32_addr_t)0 ;
497	bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_32);
498	return( dn_copy_set_32( &(p->fs), bp) );
499}
500
501static
502char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp)
503{
504	char	*bp;
505
506	pipe_bp->pipe_nr = p->pipe_nr;
507	pipe_bp->bandwidth = p->bandwidth;
508	pipe_bp->delay = p->delay;
509	bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_64));
510	pipe_bp->scheduler_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->scheduler_heap.p);
511	bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_64));
512	pipe_bp->not_eligible_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->not_eligible_heap.p);
513	bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_64));
514	pipe_bp->idle_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->idle_heap.p);
515	pipe_bp->V = p->V;
516	pipe_bp->sum = p->sum;
517	pipe_bp->numbytes = p->numbytes;
518	pipe_bp->sched_time = p->sched_time;
519	bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
520	pipe_bp->ifp = CAST_DOWN(user64_addr_t, p->ifp);
521	pipe_bp->ready = p->ready;
522
523	cp_flow_set_to_64_user( &(p->fs), &(pipe_bp->fs));
524
525	pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
526	/*
527	 * XXX the following is a hack based on ->next being the
528	 * first field in dn_pipe and dn_flow_set. The correct
529	 * solution would be to move the dn_flow_set to the beginning
530	 * of struct dn_pipe.
531	 */
532	pipe_bp->next = CAST_DOWN( user64_addr_t, DN_IS_PIPE );
533	/* clean pointers */
534	pipe_bp->head = pipe_bp->tail = USER_ADDR_NULL ;
535	pipe_bp->fs.next = USER_ADDR_NULL ;
536	pipe_bp->fs.pipe = USER_ADDR_NULL ;
537	pipe_bp->fs.rq = USER_ADDR_NULL ;
538	bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_64);
539	return( dn_copy_set_64( &(p->fs), bp) );
540}
541
542static int
543heap_init(struct dn_heap *h, int new_size)
544{
545    struct dn_heap_entry *p;
546
547    if (h->size >= new_size ) {
548	printf("dummynet: heap_init, Bogus call, have %d want %d\n",
549		h->size, new_size);
550	return 0 ;
551    }
552    new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
553    p = _MALLOC(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT );
554    if (p == NULL) {
555	printf("dummynet: heap_init, resize %d failed\n", new_size );
556	return 1 ; /* error */
557    }
558    if (h->size > 0) {
559	bcopy(h->p, p, h->size * sizeof(*p) );
560	FREE(h->p, M_DUMMYNET);
561    }
562    h->p = p ;
563    h->size = new_size ;
564    return 0 ;
565}
566
567/*
568 * Insert element in heap. Normally, p != NULL, we insert p in
569 * a new position and bubble up. If p == NULL, then the element is
570 * already in place, and key is the position where to start the
571 * bubble-up.
572 * Returns 1 on failure (cannot allocate new heap entry)
573 *
574 * If offset > 0 the position (index, int) of the element in the heap is
575 * also stored in the element itself at the given offset in bytes.
576 */
577#define SET_OFFSET(heap, node) \
578    if (heap->offset > 0) \
579	    *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
580/*
581 * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
582 */
583#define RESET_OFFSET(heap, node) \
584    if (heap->offset > 0) \
585	    *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
586static int
587heap_insert(struct dn_heap *h, dn_key key1, void *p)
588{
589    int son = h->elements ;
590
591    if (p == NULL)	/* data already there, set starting point */
592	son = key1 ;
593    else {		/* insert new element at the end, possibly resize */
594	son = h->elements ;
595	if (son == h->size) /* need resize... */
596	    if (heap_init(h, h->elements+1) )
597		return 1 ; /* failure... */
598	h->p[son].object = p ;
599	h->p[son].key = key1 ;
600	h->elements++ ;
601    }
602    while (son > 0) {				/* bubble up */
603	int father = HEAP_FATHER(son) ;
604	struct dn_heap_entry tmp  ;
605
606	if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
607	    break ; /* found right position */
608	/* son smaller than father, swap and repeat */
609	HEAP_SWAP(h->p[son], h->p[father], tmp) ;
610	SET_OFFSET(h, son);
611	son = father ;
612    }
613    SET_OFFSET(h, son);
614    return 0 ;
615}
616
617/*
618 * remove top element from heap, or obj if obj != NULL
619 */
620static void
621heap_extract(struct dn_heap *h, void *obj)
622{
623    int child, father, maxelt = h->elements - 1 ;
624
625    if (maxelt < 0) {
626	printf("dummynet: warning, extract from empty heap 0x%llx\n",
627	    (uint64_t)VM_KERNEL_ADDRPERM(h));
628	return ;
629    }
630    father = 0 ; /* default: move up smallest child */
631    if (obj != NULL) { /* extract specific element, index is at offset */
632	if (h->offset <= 0)
633	    panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
634	father = *((int *)((char *)obj + h->offset)) ;
635	if (father < 0 || father >= h->elements) {
636	    printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
637		father, h->elements);
638	    panic("dummynet: heap_extract");
639	}
640    }
641    RESET_OFFSET(h, father);
642    child = HEAP_LEFT(father) ;		/* left child */
643    while (child <= maxelt) {		/* valid entry */
644	if (child != maxelt && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
645	    child = child+1 ;		/* take right child, otherwise left */
646	h->p[father] = h->p[child] ;
647	SET_OFFSET(h, father);
648	father = child ;
649	child = HEAP_LEFT(child) ;   /* left child for next loop */
650    }
651    h->elements-- ;
652    if (father != maxelt) {
653	/*
654	 * Fill hole with last entry and bubble up, reusing the insert code
655	 */
656	h->p[father] = h->p[maxelt] ;
657	heap_insert(h, father, NULL); /* this one cannot fail */
658    }
659}
660
661/*
662 * heapify() will reorganize data inside an array to maintain the
663 * heap property. It is needed when we delete a bunch of entries.
664 */
665static void
666heapify(struct dn_heap *h)
667{
668    int i ;
669
670    for (i = 0 ; i < h->elements ; i++ )
671	heap_insert(h, i , NULL) ;
672}
673
674/*
675 * cleanup the heap and free data structure
676 */
677static void
678heap_free(struct dn_heap *h)
679{
680    if (h->size >0 )
681	FREE(h->p, M_DUMMYNET);
682    bzero(h, sizeof(*h));
683}
684
685/*
686 * --- end of heap management functions ---
687 */
688
689/*
690 * Return the mbuf tag holding the dummynet state.  As an optimization
691 * this is assumed to be the first tag on the list.  If this turns out
692 * wrong we'll need to search the list.
693 */
694static struct dn_pkt_tag *
695dn_tag_get(struct mbuf *m)
696{
697    struct m_tag *mtag = m_tag_first(m);
698
699    if (!(mtag != NULL &&
700          mtag->m_tag_id == KERNEL_MODULE_TAG_ID &&
701          mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET))
702	panic("packet on dummynet queue w/o dummynet tag: 0x%llx",
703	    (uint64_t)VM_KERNEL_ADDRPERM(m));
704
705    return (struct dn_pkt_tag *)(mtag+1);
706}
707
708/*
709 * Scheduler functions:
710 *
711 * transmit_event() is called when the delay-line needs to enter
712 * the scheduler, either because of existing pkts getting ready,
713 * or new packets entering the queue. The event handled is the delivery
714 * time of the packet.
715 *
716 * ready_event() does something similar with fixed-rate queues, and the
717 * event handled is the finish time of the head pkt.
718 *
719 * wfq_ready_event() does something similar with WF2Q queues, and the
720 * event handled is the start time of the head pkt.
721 *
722 * In all cases, we make sure that the data structures are consistent
723 * before passing pkts out, because this might trigger recursive
724 * invocations of the procedures.
725 */
726static void
727transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail)
728{
729	struct mbuf *m ;
730	struct dn_pkt_tag *pkt = NULL;
731	u_int64_t schedule_time;
732
733	lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
734        ASSERT(serialize >= 0);
735	if (serialize == 0) {
736		while ((m = pipe->head) != NULL) {
737			pkt = dn_tag_get(m);
738			if (!DN_KEY_LEQ(pkt->dn_output_time, curr_time))
739				break;
740
741			pipe->head = m->m_nextpkt;
742			if (*tail != NULL)
743				(*tail)->m_nextpkt = m;
744			else
745				*head = m;
746			*tail = m;
747		}
748
749		if (*tail != NULL)
750			(*tail)->m_nextpkt = NULL;
751	}
752
753	schedule_time = pkt == NULL || DN_KEY_LEQ(pkt->dn_output_time, curr_time) ?
754		curr_time + 1 : pkt->dn_output_time;
755
756	/* if there are leftover packets, put the pipe into the heap for next ready event */
757	if ((m = pipe->head) != NULL) {
758		pkt = dn_tag_get(m);
759		/* XXX should check errors on heap_insert, by draining the
760		 * whole pipe p and hoping in the future we are more successful
761		 */
762		heap_insert(&extract_heap, schedule_time, pipe);
763	}
764}
765
766/*
767 * the following macro computes how many ticks we have to wait
768 * before being able to transmit a packet. The credit is taken from
769 * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
770 */
771
772/* hz is 100, which gives a granularity of 10ms in the old timer.
773 * The timer has been changed to fire every 1ms, so the use of
774 * hz has been modified here. All instances of hz have been left
775 * in place but adjusted by a factor of 10 so that hz is functionally
776 * equal to 1000.
777 */
778#define SET_TICKS(_m, q, p)	\
779    ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \
780	    p->bandwidth ;
781
782/*
783 * extract pkt from queue, compute output time (could be now)
784 * and put into delay line (p_queue)
785 */
786static void
787move_pkt(struct mbuf *pkt, struct dn_flow_queue *q,
788	struct dn_pipe *p, int len)
789{
790    struct dn_pkt_tag *dt = dn_tag_get(pkt);
791
792    q->head = pkt->m_nextpkt ;
793    q->len-- ;
794    q->len_bytes -= len ;
795
796    dt->dn_output_time = curr_time + p->delay ;
797
798    if (p->head == NULL)
799	p->head = pkt;
800    else
801	p->tail->m_nextpkt = pkt;
802    p->tail = pkt;
803    p->tail->m_nextpkt = NULL;
804}
805
806/*
807 * ready_event() is invoked every time the queue must enter the
808 * scheduler, either because the first packet arrives, or because
809 * a previously scheduled event fired.
810 * On invokation, drain as many pkts as possible (could be 0) and then
811 * if there are leftover packets reinsert the pkt in the scheduler.
812 */
813static void
814ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail)
815{
816    struct mbuf *pkt;
817    struct dn_pipe *p = q->fs->pipe ;
818    int p_was_empty ;
819
820	lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
821
822    if (p == NULL) {
823		printf("dummynet: ready_event pipe is gone\n");
824		return ;
825    }
826    p_was_empty = (p->head == NULL) ;
827
828    /*
829     * schedule fixed-rate queues linked to this pipe:
830     * Account for the bw accumulated since last scheduling, then
831     * drain as many pkts as allowed by q->numbytes and move to
832     * the delay line (in p) computing output time.
833     * bandwidth==0 (no limit) means we can drain the whole queue,
834     * setting len_scaled = 0 does the job.
835     */
836    q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
837    while ( (pkt = q->head) != NULL ) {
838	int len = pkt->m_pkthdr.len;
839	int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
840	if (len_scaled > q->numbytes )
841	    break ;
842	q->numbytes -= len_scaled ;
843	move_pkt(pkt, q, p, len);
844    }
845    /*
846     * If we have more packets queued, schedule next ready event
847     * (can only occur when bandwidth != 0, otherwise we would have
848     * flushed the whole queue in the previous loop).
849     * To this purpose we record the current time and compute how many
850     * ticks to go for the finish time of the packet.
851     */
852    if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
853	dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
854	q->sched_time = curr_time ;
855	heap_insert(&ready_heap, curr_time + t, (void *)q );
856	/* XXX should check errors on heap_insert, and drain the whole
857	 * queue on error hoping next time we are luckier.
858	 */
859    } else {	/* RED needs to know when the queue becomes empty */
860	q->q_time = curr_time;
861	q->numbytes = 0;
862    }
863    /*
864     * If the delay line was empty call transmit_event(p) now.
865     * Otherwise, the scheduler will take care of it.
866     */
867    if (p_was_empty)
868		transmit_event(p, head, tail);
869}
870
871/*
872 * Called when we can transmit packets on WF2Q queues. Take pkts out of
873 * the queues at their start time, and enqueue into the delay line.
874 * Packets are drained until p->numbytes < 0. As long as
875 * len_scaled >= p->numbytes, the packet goes into the delay line
876 * with a deadline p->delay. For the last packet, if p->numbytes<0,
877 * there is an additional delay.
878 */
879static void
880ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail)
881{
882    int p_was_empty = (p->head == NULL) ;
883    struct dn_heap *sch = &(p->scheduler_heap);
884    struct dn_heap *neh = &(p->not_eligible_heap) ;
885	int64_t p_numbytes = p->numbytes;
886
887	lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
888
889    if (p->if_name[0] == 0) /* tx clock is simulated */
890	p_numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
891    else { /* tx clock is for real, the ifq must be empty or this is a NOP */
892	if (p->ifp && !IFCQ_IS_EMPTY(&p->ifp->if_snd))
893	    return ;
894	else {
895	    DPRINTF(("dummynet: pipe %d ready from %s --\n",
896		p->pipe_nr, p->if_name));
897	}
898    }
899
900    /*
901     * While we have backlogged traffic AND credit, we need to do
902     * something on the queue.
903     */
904    while ( p_numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
905	if (sch->elements > 0) { /* have some eligible pkts to send out */
906	    struct dn_flow_queue *q = sch->p[0].object ;
907	    struct mbuf *pkt = q->head;
908	    struct dn_flow_set *fs = q->fs;
909	    u_int64_t len = pkt->m_pkthdr.len;
910	    int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
911
912	    heap_extract(sch, NULL); /* remove queue from heap */
913	    p_numbytes -= len_scaled ;
914	    move_pkt(pkt, q, p, len);
915
916	    p->V += (len<<MY_M) / p->sum ; /* update V */
917	    q->S = q->F ; /* update start time */
918	    if (q->len == 0) { /* Flow not backlogged any more */
919		fs->backlogged-- ;
920		heap_insert(&(p->idle_heap), q->F, q);
921	    } else { /* still backlogged */
922		/*
923		 * update F and position in backlogged queue, then
924		 * put flow in not_eligible_heap (we will fix this later).
925		 */
926		len = (q->head)->m_pkthdr.len;
927		q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
928		if (DN_KEY_LEQ(q->S, p->V))
929		    heap_insert(neh, q->S, q);
930		else
931		    heap_insert(sch, q->F, q);
932	    }
933	}
934	/*
935	 * now compute V = max(V, min(S_i)). Remember that all elements in sch
936	 * have by definition S_i <= V so if sch is not empty, V is surely
937	 * the max and we must not update it. Conversely, if sch is empty
938	 * we only need to look at neh.
939	 */
940	if (sch->elements == 0 && neh->elements > 0)
941	    p->V = MAX64 ( p->V, neh->p[0].key );
942	/* move from neh to sch any packets that have become eligible */
943	while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
944	    struct dn_flow_queue *q = neh->p[0].object ;
945	    heap_extract(neh, NULL);
946	    heap_insert(sch, q->F, q);
947	}
948
949	if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
950	    p_numbytes = -1 ; /* mark not ready for I/O */
951	    break ;
952	}
953    }
954    if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0
955	    && p->idle_heap.elements > 0) {
956	/*
957	 * no traffic and no events scheduled. We can get rid of idle-heap.
958	 */
959	int i ;
960
961	for (i = 0 ; i < p->idle_heap.elements ; i++) {
962	    struct dn_flow_queue *q = p->idle_heap.p[i].object ;
963
964	    q->F = 0 ;
965	    q->S = q->F + 1 ;
966	}
967	p->sum = 0 ;
968	p->V = 0 ;
969	p->idle_heap.elements = 0 ;
970    }
971    /*
972     * If we are getting clocks from dummynet (not a real interface) and
973     * If we are under credit, schedule the next ready event.
974     * Also fix the delivery time of the last packet.
975     */
976    if (p->if_name[0]==0 && p_numbytes < 0) { /* this implies bandwidth >0 */
977	dn_key t=0 ; /* number of ticks i have to wait */
978
979	if (p->bandwidth > 0)
980	    t = ( p->bandwidth -1 - p_numbytes) / p->bandwidth ;
981	dn_tag_get(p->tail)->dn_output_time += t ;
982	p->sched_time = curr_time ;
983	heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
984	/* XXX should check errors on heap_insert, and drain the whole
985	 * queue on error hoping next time we are luckier.
986	 */
987    }
988
989	/* Fit (adjust if necessary) 64bit result into 32bit variable. */
990    if (p_numbytes > INT_MAX)
991		p->numbytes = INT_MAX;
992    else if (p_numbytes < INT_MIN)
993		p->numbytes = INT_MIN;
994    else
995		p->numbytes = p_numbytes;
996
997    /*
998     * If the delay line was empty call transmit_event(p) now.
999     * Otherwise, the scheduler will take care of it.
1000     */
1001    if (p_was_empty)
1002		transmit_event(p, head, tail);
1003
1004}
1005
1006/*
1007 * This is called every 1ms. It is used to
1008 * increment the current tick counter and schedule expired events.
1009 */
1010static void
1011dummynet(__unused void * unused)
1012{
1013    void *p ; /* generic parameter to handler */
1014    struct dn_heap *h ;
1015    struct dn_heap *heaps[3];
1016    struct mbuf *head = NULL, *tail = NULL;
1017    int i;
1018    struct dn_pipe *pe ;
1019    struct timespec ts;
1020    struct timeval	tv;
1021
1022    heaps[0] = &ready_heap ;		/* fixed-rate queues */
1023    heaps[1] = &wfq_ready_heap ;	/* wfq queues */
1024    heaps[2] = &extract_heap ;		/* delay line */
1025
1026	lck_mtx_lock(dn_mutex);
1027
1028        /* make all time measurements in milliseconds (ms) -
1029         * here we convert secs and usecs to msecs (just divide the
1030	 * usecs and take the closest whole number).
1031         */
1032        microuptime(&tv);
1033        curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
1034
1035    for (i=0; i < 3 ; i++) {
1036	h = heaps[i];
1037	while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
1038		if (h->p[0].key > curr_time)
1039			printf("dummynet: warning, heap %d is %d ticks late\n",
1040				i, (int)(curr_time - h->p[0].key));
1041		p = h->p[0].object ; /* store a copy before heap_extract */
1042		heap_extract(h, NULL); /* need to extract before processing */
1043		if (i == 0)
1044			ready_event(p, &head, &tail) ;
1045		else if (i == 1) {
1046			struct dn_pipe *pipe = p;
1047			if (pipe->if_name[0] != '\0')
1048				printf("dummynet: bad ready_event_wfq for pipe %s\n",
1049				pipe->if_name);
1050			else
1051				ready_event_wfq(p, &head, &tail) ;
1052		} else {
1053			transmit_event(p, &head, &tail);
1054		}
1055	}
1056    }
1057    /* sweep pipes trying to expire idle flow_queues */
1058    for (i = 0; i < HASHSIZE; i++)
1059	SLIST_FOREACH(pe, &pipehash[i], next)
1060	if (pe->idle_heap.elements > 0 &&
1061		DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
1062	    struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
1063
1064	    heap_extract(&(pe->idle_heap), NULL);
1065	    q->S = q->F + 1 ; /* mark timestamp as invalid */
1066	    pe->sum -= q->fs->weight ;
1067	}
1068
1069	/* check the heaps to see if there's still stuff in there, and
1070	 * only set the timer if there are packets to process
1071	 */
1072	timer_enabled = 0;
1073	for (i=0; i < 3 ; i++) {
1074		h = heaps[i];
1075		if (h->elements > 0) { // set the timer
1076			ts.tv_sec = 0;
1077			ts.tv_nsec = 1 * 1000000;	// 1ms
1078			timer_enabled = 1;
1079			bsd_timeout(dummynet, NULL, &ts);
1080			break;
1081		}
1082	}
1083
1084	if (head != NULL)
1085		serialize++;
1086
1087	lck_mtx_unlock(dn_mutex);
1088
1089	/* Send out the de-queued list of ready-to-send packets */
1090	if (head != NULL) {
1091		dummynet_send(head);
1092		lck_mtx_lock(dn_mutex);
1093		serialize--;
1094		lck_mtx_unlock(dn_mutex);
1095	}
1096}
1097
1098
1099static void
1100dummynet_send(struct mbuf *m)
1101{
1102	struct dn_pkt_tag *pkt;
1103	struct mbuf *n;
1104
1105	for (; m != NULL; m = n) {
1106		n = m->m_nextpkt;
1107		m->m_nextpkt = NULL;
1108		pkt = dn_tag_get(m);
1109
1110		DPRINTF(("dummynet_send m: 0x%llx dn_dir: %d dn_flags: 0x%x\n",
1111		    (uint64_t)VM_KERNEL_ADDRPERM(m), pkt->dn_dir,
1112		    pkt->dn_flags));
1113
1114	switch (pkt->dn_dir) {
1115		case DN_TO_IP_OUT: {
1116			struct route tmp_rt;
1117
1118			/* route is already in the packet's dn_ro */
1119			bzero(&tmp_rt, sizeof (tmp_rt));
1120
1121			/* Force IP_RAWOUTPUT as the IP header is fully formed */
1122			pkt->dn_flags |= IP_RAWOUTPUT | IP_FORWARDING;
1123			(void)ip_output(m, NULL, &tmp_rt, pkt->dn_flags, NULL, NULL);
1124			ROUTE_RELEASE(&tmp_rt);
1125			break ;
1126		}
1127		case DN_TO_IP_IN :
1128			proto_inject(PF_INET, m);
1129			break ;
1130#ifdef INET6
1131		case DN_TO_IP6_OUT: {
1132			/* routes already in the packet's dn_{ro6,pmtu} */
1133			ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
1134			break;
1135		}
1136		case DN_TO_IP6_IN:
1137			proto_inject(PF_INET6, m);
1138			break;
1139#endif /* INET6 */
1140		default:
1141			printf("dummynet: bad switch %d!\n", pkt->dn_dir);
1142			m_freem(m);
1143			break ;
1144	}
1145	}
1146}
1147
1148
1149
1150/*
1151 * called by an interface when tx_rdy occurs.
1152 */
1153int
1154if_tx_rdy(struct ifnet *ifp)
1155{
1156    struct dn_pipe *p;
1157	struct mbuf *head = NULL, *tail = NULL;
1158	int i;
1159
1160	lck_mtx_lock(dn_mutex);
1161
1162	for (i = 0; i < HASHSIZE; i++)
1163		SLIST_FOREACH(p, &pipehash[i], next)
1164		if (p->ifp == ifp)
1165			break ;
1166    if (p == NULL) {
1167	char buf[32];
1168	snprintf(buf, sizeof(buf), "%s", if_name(ifp));
1169	for (i = 0; i < HASHSIZE; i++)
1170		SLIST_FOREACH(p, &pipehash[i], next)
1171	    if (!strcmp(p->if_name, buf) ) {
1172		p->ifp = ifp ;
1173		DPRINTF(("dummynet: ++ tx rdy from %s (now found)\n", buf));
1174		break ;
1175	    }
1176    }
1177    if (p != NULL) {
1178	DPRINTF(("dummynet: ++ tx rdy from %s - qlen %d\n", if_name(ifp),
1179		IFCQ_LEN(&ifp->if_snd)));
1180	p->numbytes = 0 ; /* mark ready for I/O */
1181	ready_event_wfq(p, &head, &tail);
1182    }
1183
1184	if (head != NULL) {
1185		serialize++;
1186	}
1187
1188	lck_mtx_unlock(dn_mutex);
1189
1190	/* Send out the de-queued list of ready-to-send packets */
1191	if (head != NULL) {
1192		dummynet_send(head);
1193		lck_mtx_lock(dn_mutex);
1194		serialize--;
1195		lck_mtx_unlock(dn_mutex);
1196	}
1197    return 0;
1198}
1199
1200/*
1201 * Unconditionally expire empty queues in case of shortage.
1202 * Returns the number of queues freed.
1203 */
1204static int
1205expire_queues(struct dn_flow_set *fs)
1206{
1207    struct dn_flow_queue *q, *prev ;
1208    int i, initial_elements = fs->rq_elements ;
1209	struct timeval timenow;
1210
1211	/* reviewed for getmicrotime usage */
1212	getmicrotime(&timenow);
1213
1214    if (fs->last_expired == timenow.tv_sec)
1215	return 0 ;
1216    fs->last_expired = timenow.tv_sec ;
1217    for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
1218	for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
1219	    if (q->head != NULL || q->S != q->F+1) {
1220  		prev = q ;
1221  	        q = q->next ;
1222  	    } else { /* entry is idle, expire it */
1223		struct dn_flow_queue *old_q = q ;
1224
1225		if (prev != NULL)
1226		    prev->next = q = q->next ;
1227		else
1228		    fs->rq[i] = q = q->next ;
1229		fs->rq_elements-- ;
1230		FREE(old_q, M_DUMMYNET);
1231	    }
1232    return initial_elements - fs->rq_elements ;
1233}
1234
1235/*
1236 * If room, create a new queue and put at head of slot i;
1237 * otherwise, create or use the default queue.
1238 */
1239static struct dn_flow_queue *
1240create_queue(struct dn_flow_set *fs, int i)
1241{
1242    struct dn_flow_queue *q ;
1243
1244    if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
1245	    expire_queues(fs) == 0) {
1246	/*
1247	 * No way to get room, use or create overflow queue.
1248	 */
1249	i = fs->rq_size ;
1250	if ( fs->rq[i] != NULL )
1251	    return fs->rq[i] ;
1252    }
1253    q = _MALLOC(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO);
1254    if (q == NULL) {
1255	printf("dummynet: sorry, cannot allocate queue for new flow\n");
1256	return NULL ;
1257    }
1258    q->fs = fs ;
1259    q->hash_slot = i ;
1260    q->next = fs->rq[i] ;
1261    q->S = q->F + 1;   /* hack - mark timestamp as invalid */
1262    fs->rq[i] = q ;
1263    fs->rq_elements++ ;
1264    return q ;
1265}
1266
1267/*
1268 * Given a flow_set and a pkt in last_pkt, find a matching queue
1269 * after appropriate masking. The queue is moved to front
1270 * so that further searches take less time.
1271 */
1272static struct dn_flow_queue *
1273find_queue(struct dn_flow_set *fs, struct ip_flow_id *id)
1274{
1275    int i = 0 ; /* we need i and q for new allocations */
1276    struct dn_flow_queue *q, *prev;
1277    int is_v6 = IS_IP6_FLOW_ID(id);
1278
1279    if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
1280	q = fs->rq[0] ;
1281    else {
1282	/* first, do the masking, then hash */
1283	id->dst_port &= fs->flow_mask.dst_port ;
1284	id->src_port &= fs->flow_mask.src_port ;
1285	id->proto &= fs->flow_mask.proto ;
1286	id->flags = 0 ; /* we don't care about this one */
1287        if (is_v6) {
1288            APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6);
1289            APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6);
1290            id->flow_id6 &= fs->flow_mask.flow_id6;
1291
1292            i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff)^
1293                ((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff)^
1294                ((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff)^
1295                ((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff)^
1296
1297                ((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff)^
1298                ((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff)^
1299                ((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff)^
1300                ((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff)^
1301
1302                ((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff)^
1303                ((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff)^
1304                ((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff)^
1305                ((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff)^
1306
1307                ((id->src_ip6.__u6_addr.__u6_addr32[0] << 16) & 0xffff)^
1308                ((id->src_ip6.__u6_addr.__u6_addr32[1] << 16) & 0xffff)^
1309                ((id->src_ip6.__u6_addr.__u6_addr32[2] << 16) & 0xffff)^
1310                ((id->src_ip6.__u6_addr.__u6_addr32[3] << 16) & 0xffff)^
1311
1312                (id->dst_port << 1) ^ (id->src_port) ^
1313                (id->proto ) ^
1314                (id->flow_id6);
1315        } else {
1316            id->dst_ip &= fs->flow_mask.dst_ip ;
1317            id->src_ip &= fs->flow_mask.src_ip ;
1318
1319            i = ( (id->dst_ip) & 0xffff ) ^
1320                ( (id->dst_ip >> 15) & 0xffff ) ^
1321                ( (id->src_ip << 1) & 0xffff ) ^
1322                ( (id->src_ip >> 16 ) & 0xffff ) ^
1323                (id->dst_port << 1) ^ (id->src_port) ^
1324                (id->proto );
1325        }
1326	i = i % fs->rq_size ;
1327	/* finally, scan the current list for a match */
1328	searches++ ;
1329	for (prev=NULL, q = fs->rq[i] ; q ; ) {
1330	    search_steps++;
1331            if (is_v6 &&
1332                    IN6_ARE_ADDR_EQUAL(&id->dst_ip6,&q->id.dst_ip6) &&
1333                    IN6_ARE_ADDR_EQUAL(&id->src_ip6,&q->id.src_ip6) &&
1334                    id->dst_port == q->id.dst_port &&
1335                    id->src_port == q->id.src_port &&
1336                    id->proto == q->id.proto &&
1337                    id->flags == q->id.flags &&
1338                    id->flow_id6 == q->id.flow_id6)
1339                break ; /* found */
1340
1341            if (!is_v6 && id->dst_ip == q->id.dst_ip &&
1342                    id->src_ip == q->id.src_ip &&
1343                    id->dst_port == q->id.dst_port &&
1344                    id->src_port == q->id.src_port &&
1345                    id->proto == q->id.proto &&
1346                    id->flags == q->id.flags)
1347                break ; /* found */
1348
1349            /* No match. Check if we can expire the entry */
1350	    if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
1351		/* entry is idle and not in any heap, expire it */
1352		struct dn_flow_queue *old_q = q ;
1353
1354		if (prev != NULL)
1355		    prev->next = q = q->next ;
1356		else
1357		    fs->rq[i] = q = q->next ;
1358		fs->rq_elements-- ;
1359		FREE(old_q, M_DUMMYNET);
1360		continue ;
1361	    }
1362	    prev = q ;
1363	    q = q->next ;
1364	}
1365	if (q && prev != NULL) { /* found and not in front */
1366	    prev->next = q->next ;
1367	    q->next = fs->rq[i] ;
1368	    fs->rq[i] = q ;
1369	}
1370    }
1371    if (q == NULL) { /* no match, need to allocate a new entry */
1372	q = create_queue(fs, i);
1373	if (q != NULL)
1374	q->id = *id ;
1375    }
1376    return q ;
1377}
1378
1379static int
1380red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
1381{
1382    /*
1383     * RED algorithm
1384     *
1385     * RED calculates the average queue size (avg) using a low-pass filter
1386     * with an exponential weighted (w_q) moving average:
1387     * 	avg  <-  (1-w_q) * avg + w_q * q_size
1388     * where q_size is the queue length (measured in bytes or * packets).
1389     *
1390     * If q_size == 0, we compute the idle time for the link, and set
1391     *	avg = (1 - w_q)^(idle/s)
1392     * where s is the time needed for transmitting a medium-sized packet.
1393     *
1394     * Now, if avg < min_th the packet is enqueued.
1395     * If avg > max_th the packet is dropped. Otherwise, the packet is
1396     * dropped with probability P function of avg.
1397     *
1398     */
1399
1400    int64_t p_b = 0;
1401    /* queue in bytes or packets ? */
1402    u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
1403
1404    DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size));
1405
1406    /* average queue size estimation */
1407    if (q_size != 0) {
1408	/*
1409	 * queue is not empty, avg <- avg + (q_size - avg) * w_q
1410	 */
1411	int diff = SCALE(q_size) - q->avg;
1412	int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
1413
1414	q->avg += (int) v;
1415    } else {
1416	/*
1417	 * queue is empty, find for how long the queue has been
1418	 * empty and use a lookup table for computing
1419	 * (1 - * w_q)^(idle_time/s) where s is the time to send a
1420	 * (small) packet.
1421	 * XXX check wraps...
1422	 */
1423	if (q->avg) {
1424	    u_int t = (curr_time - q->q_time) / fs->lookup_step;
1425
1426	    q->avg = (t < fs->lookup_depth) ?
1427		    SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
1428	}
1429    }
1430    DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
1431
1432    /* should i drop ? */
1433
1434    if (q->avg < fs->min_th) {
1435	q->count = -1;
1436	return 0; /* accept packet ; */
1437    }
1438    if (q->avg >= fs->max_th) { /* average queue >=  max threshold */
1439	if (fs->flags_fs & DN_IS_GENTLE_RED) {
1440	    /*
1441	     * According to Gentle-RED, if avg is greater than max_th the
1442	     * packet is dropped with a probability
1443	     *	p_b = c_3 * avg - c_4
1444	     * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
1445	     */
1446	    p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
1447	} else {
1448	    q->count = -1;
1449	    DPRINTF(("dummynet: - drop"));
1450	    return 1 ;
1451	}
1452    } else if (q->avg > fs->min_th) {
1453	/*
1454	 * we compute p_b using the linear dropping function p_b = c_1 *
1455	 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
1456	 * max_p * min_th / (max_th - min_th)
1457	 */
1458	p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
1459    }
1460    if (fs->flags_fs & DN_QSIZE_IS_BYTES)
1461	p_b = (p_b * len) / fs->max_pkt_size;
1462    if (++q->count == 0)
1463	q->random = MY_RANDOM & 0xffff;
1464    else {
1465	/*
1466	 * q->count counts packets arrived since last drop, so a greater
1467	 * value of q->count means a greater packet drop probability.
1468	 */
1469	if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
1470	    q->count = 0;
1471	    DPRINTF(("dummynet: - red drop"));
1472	    /* after a drop we calculate a new random value */
1473	    q->random = MY_RANDOM & 0xffff;
1474	    return 1;    /* drop */
1475	}
1476    }
1477    /* end of RED algorithm */
1478    return 0 ; /* accept */
1479}
1480
1481static __inline
1482struct dn_flow_set *
1483locate_flowset(int fs_nr)
1484{
1485    struct dn_flow_set *fs;
1486    SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next)
1487		if (fs->fs_nr == fs_nr)
1488			return fs ;
1489
1490	return (NULL);
1491}
1492
1493static __inline struct dn_pipe *
1494locate_pipe(int pipe_nr)
1495{
1496	struct dn_pipe *pipe;
1497
1498	SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next)
1499		if (pipe->pipe_nr == pipe_nr)
1500			return (pipe);
1501
1502	return (NULL);
1503}
1504
1505
1506
1507/*
1508 * dummynet hook for packets. Below 'pipe' is a pipe or a queue
1509 * depending on whether WF2Q or fixed bw is used.
1510 *
1511 * pipe_nr	pipe or queue the packet is destined for.
1512 * dir		where shall we send the packet after dummynet.
1513 * m		the mbuf with the packet
1514 * ifp		the 'ifp' parameter from the caller.
1515 *		NULL in ip_input, destination interface in ip_output,
1516 *		real_dst in bdg_forward
1517 * ro		route parameter (only used in ip_output, NULL otherwise)
1518 * dst		destination address, only used by ip_output
1519 * rule		matching rule, in case of multiple passes
1520 * flags	flags from the caller, only used in ip_output
1521 *
1522 */
1523static int
1524dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa, int client)
1525{
1526    struct mbuf *head = NULL, *tail = NULL;
1527    struct dn_pkt_tag *pkt;
1528    struct m_tag *mtag;
1529    struct dn_flow_set *fs = NULL;
1530    struct dn_pipe *pipe ;
1531    u_int64_t len = m->m_pkthdr.len ;
1532    struct dn_flow_queue *q = NULL ;
1533    int is_pipe = 0;
1534    struct timespec ts;
1535    struct timeval	tv;
1536
1537    DPRINTF(("dummynet_io m: 0x%llx pipe: %d dir: %d client: %d\n",
1538        (uint64_t)VM_KERNEL_ADDRPERM(m), pipe_nr, dir, client));
1539
1540#if IPFIREWALL
1541#if IPFW2
1542    if (client == DN_CLIENT_IPFW) {
1543        ipfw_insn *cmd = fwa->fwa_ipfw_rule->cmd + fwa->fwa_ipfw_rule->act_ofs;
1544
1545        if (cmd->opcode == O_LOG)
1546	    cmd += F_LEN(cmd);
1547        is_pipe = (cmd->opcode == O_PIPE);
1548    }
1549#else
1550    if (client == DN_CLIENT_IPFW)
1551        is_pipe = (fwa->fwa_ipfw_rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
1552#endif
1553#endif /* IPFIREWALL */
1554
1555#if DUMMYNET
1556    if (client == DN_CLIENT_PF)
1557    	is_pipe = fwa->fwa_flags == DN_IS_PIPE ? 1 : 0;
1558#endif /* DUMMYNET */
1559
1560    pipe_nr &= 0xffff ;
1561
1562 	lck_mtx_lock(dn_mutex);
1563
1564	/* make all time measurements in milliseconds (ms) -
1565         * here we convert secs and usecs to msecs (just divide the
1566         * usecs and take the closest whole number).
1567	 */
1568    microuptime(&tv);
1569	curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
1570
1571   /*
1572     * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
1573     */
1574    if (is_pipe) {
1575		pipe = locate_pipe(pipe_nr);
1576		if (pipe != NULL)
1577			fs = &(pipe->fs);
1578	} else
1579		fs = locate_flowset(pipe_nr);
1580
1581
1582    if (fs == NULL){
1583	goto dropit ;	/* this queue/pipe does not exist! */
1584    }
1585    pipe = fs->pipe ;
1586    if (pipe == NULL) { /* must be a queue, try find a matching pipe */
1587	pipe = locate_pipe(fs->parent_nr);
1588
1589	if (pipe != NULL)
1590	    fs->pipe = pipe ;
1591	else {
1592	    printf("dummynet: no pipe %d for queue %d, drop pkt\n",
1593		fs->parent_nr, fs->fs_nr);
1594	    goto dropit ;
1595	}
1596    }
1597    q = find_queue(fs, &(fwa->fwa_id));
1598    if ( q == NULL )
1599	goto dropit ;		/* cannot allocate queue		*/
1600    /*
1601     * update statistics, then check reasons to drop pkt
1602     */
1603    q->tot_bytes += len ;
1604    q->tot_pkts++ ;
1605    if ( fs->plr && (MY_RANDOM < fs->plr) )
1606	goto dropit ;		/* random pkt drop			*/
1607    if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
1608    	if (q->len_bytes > fs->qsize)
1609	    goto dropit ;	/* queue size overflow			*/
1610    } else {
1611	if (q->len >= fs->qsize)
1612	    goto dropit ;	/* queue count overflow			*/
1613    }
1614    if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
1615	goto dropit ;
1616
1617    /* XXX expensive to zero, see if we can remove it*/
1618    mtag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET,
1619    		sizeof(struct dn_pkt_tag), M_NOWAIT, m);
1620    if ( mtag == NULL )
1621		goto dropit ;		/* cannot allocate packet header	*/
1622    m_tag_prepend(m, mtag);	/* attach to mbuf chain */
1623
1624    pkt = (struct dn_pkt_tag *)(mtag+1);
1625    bzero(pkt, sizeof(struct dn_pkt_tag));
1626    /* ok, i can handle the pkt now... */
1627    /* build and enqueue packet + parameters */
1628    /*
1629     * PF is checked before ipfw so remember ipfw rule only when
1630     * the caller is ipfw. When the caller is PF, fwa_ipfw_rule
1631     * is a fake rule just used for convenience
1632     */
1633    if (client == DN_CLIENT_IPFW)
1634    	pkt->dn_ipfw_rule = fwa->fwa_ipfw_rule;
1635    pkt->dn_pf_rule = fwa->fwa_pf_rule;
1636    pkt->dn_dir = dir ;
1637    pkt->dn_client = client;
1638
1639    pkt->dn_ifp = fwa->fwa_oif;
1640    if (dir == DN_TO_IP_OUT) {
1641		/*
1642		 * We need to copy *ro because for ICMP pkts (and maybe others)
1643		 * the caller passed a pointer into the stack; dst might also be
1644		 * a pointer into *ro so it needs to be updated.
1645		 */
1646		if (fwa->fwa_ro) {
1647			route_copyout(&pkt->dn_ro, fwa->fwa_ro, sizeof (pkt->dn_ro));
1648		}
1649		if (fwa->fwa_dst) {
1650			if (fwa->fwa_dst == (struct sockaddr_in *)&fwa->fwa_ro->ro_dst) /* dst points into ro */
1651				fwa->fwa_dst = (struct sockaddr_in *)&(pkt->dn_ro.ro_dst) ;
1652
1653			bcopy (fwa->fwa_dst, &pkt->dn_dst, sizeof(pkt->dn_dst));
1654		}
1655    } else if (dir == DN_TO_IP6_OUT) {
1656		if (fwa->fwa_ro6) {
1657			route_copyout((struct route *)&pkt->dn_ro6,
1658			    (struct route *)fwa->fwa_ro6, sizeof (pkt->dn_ro6));
1659		}
1660		if (fwa->fwa_ro6_pmtu) {
1661			route_copyout((struct route *)&pkt->dn_ro6_pmtu,
1662			    (struct route *)fwa->fwa_ro6_pmtu, sizeof (pkt->dn_ro6_pmtu));
1663		}
1664		if (fwa->fwa_dst6) {
1665			if (fwa->fwa_dst6 == (struct sockaddr_in6 *)&fwa->fwa_ro6->ro_dst) /* dst points into ro */
1666				fwa->fwa_dst6 = (struct sockaddr_in6 *)&(pkt->dn_ro6.ro_dst) ;
1667
1668			bcopy (fwa->fwa_dst6, &pkt->dn_dst6, sizeof(pkt->dn_dst6));
1669		}
1670		pkt->dn_origifp = fwa->fwa_origifp;
1671		pkt->dn_mtu = fwa->fwa_mtu;
1672		pkt->dn_alwaysfrag = fwa->fwa_alwaysfrag;
1673		pkt->dn_unfragpartlen = fwa->fwa_unfragpartlen;
1674		if (fwa->fwa_exthdrs) {
1675			bcopy (fwa->fwa_exthdrs, &pkt->dn_exthdrs, sizeof(pkt->dn_exthdrs));
1676			/*
1677			 * Need to zero out the source structure so the mbufs
1678			 * won't be freed by ip6_output()
1679			 */
1680			bzero(fwa->fwa_exthdrs, sizeof(struct ip6_exthdrs));
1681		}
1682    }
1683    if (dir == DN_TO_IP_OUT || dir == DN_TO_IP6_OUT) {
1684		pkt->dn_flags = fwa->fwa_oflags;
1685		if (fwa->fwa_ipoa != NULL)
1686			pkt->dn_ipoa = *(fwa->fwa_ipoa);
1687    }
1688    if (q->head == NULL)
1689	q->head = m;
1690    else
1691	q->tail->m_nextpkt = m;
1692    q->tail = m;
1693    q->len++;
1694    q->len_bytes += len ;
1695
1696    if ( q->head != m )		/* flow was not idle, we are done */
1697	goto done;
1698    /*
1699     * If we reach this point the flow was previously idle, so we need
1700     * to schedule it. This involves different actions for fixed-rate or
1701     * WF2Q queues.
1702     */
1703    if (is_pipe) {
1704	/*
1705	 * Fixed-rate queue: just insert into the ready_heap.
1706	 */
1707	dn_key t = 0 ;
1708	if (pipe->bandwidth)
1709	    t = SET_TICKS(m, q, pipe);
1710	q->sched_time = curr_time ;
1711	if (t == 0)	/* must process it now */
1712	    ready_event( q , &head, &tail );
1713	else
1714	    heap_insert(&ready_heap, curr_time + t , q );
1715    } else {
1716	/*
1717	 * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
1718	 * set S to the virtual time V for the controlling pipe, and update
1719	 * the sum of weights for the pipe; otherwise, remove flow from
1720	 * idle_heap and set S to max(F,V).
1721	 * Second, compute finish time F = S + len/weight.
1722	 * Third, if pipe was idle, update V=max(S, V).
1723	 * Fourth, count one more backlogged flow.
1724	 */
1725	if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
1726	    q->S = pipe->V ;
1727	    pipe->sum += fs->weight ; /* add weight of new queue */
1728	} else {
1729	    heap_extract(&(pipe->idle_heap), q);
1730	    q->S = MAX64(q->F, pipe->V ) ;
1731	}
1732	q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
1733
1734	if (pipe->not_eligible_heap.elements == 0 &&
1735		pipe->scheduler_heap.elements == 0)
1736	    pipe->V = MAX64 ( q->S, pipe->V );
1737	fs->backlogged++ ;
1738	/*
1739	 * Look at eligibility. A flow is not eligibile if S>V (when
1740	 * this happens, it means that there is some other flow already
1741	 * scheduled for the same pipe, so the scheduler_heap cannot be
1742	 * empty). If the flow is not eligible we just store it in the
1743	 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1744	 * and possibly invoke ready_event_wfq() right now if there is
1745	 * leftover credit.
1746	 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1747	 * and for all flows in not_eligible_heap (NEH), S_i > V .
1748	 * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
1749	 * we only need to look into NEH.
1750	 */
1751	if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
1752	    if (pipe->scheduler_heap.elements == 0)
1753		printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
1754	    heap_insert(&(pipe->not_eligible_heap), q->S, q);
1755	} else {
1756	    heap_insert(&(pipe->scheduler_heap), q->F, q);
1757	    if (pipe->numbytes >= 0) { /* pipe is idle */
1758		if (pipe->scheduler_heap.elements != 1)
1759		    printf("dummynet: OUCH! pipe should have been idle!\n");
1760		DPRINTF(("dummynet: waking up pipe %d at %d\n",
1761			pipe->pipe_nr, (int)(q->F >> MY_M)));
1762		pipe->sched_time = curr_time ;
1763		ready_event_wfq(pipe, &head, &tail);
1764	    }
1765	}
1766    }
1767done:
1768	/* start the timer and set global if not already set */
1769	if (!timer_enabled) {
1770		ts.tv_sec = 0;
1771		ts.tv_nsec = 1 * 1000000;	// 1ms
1772		timer_enabled = 1;
1773		bsd_timeout(dummynet, NULL, &ts);
1774	}
1775
1776	lck_mtx_unlock(dn_mutex);
1777
1778	if (head != NULL) {
1779		dummynet_send(head);
1780	}
1781
1782    return 0;
1783
1784dropit:
1785    if (q)
1786	q->drops++ ;
1787	lck_mtx_unlock(dn_mutex);
1788    m_freem(m);
1789    return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
1790}
1791
1792/*
1793 * Below, the ROUTE_RELEASE is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
1794 * Doing this would probably save us the initial bzero of dn_pkt
1795 */
1796#define	DN_FREE_PKT(_m) do {					\
1797	struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \
1798	if (tag) {						\
1799		struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1);	\
1800		ROUTE_RELEASE(&n->dn_ro);			\
1801	}							\
1802	m_tag_delete(_m, tag);					\
1803	m_freem(_m);						\
1804} while (0)
1805
1806/*
1807 * Dispose all packets and flow_queues on a flow_set.
1808 * If all=1, also remove red lookup table and other storage,
1809 * including the descriptor itself.
1810 * For the one in dn_pipe MUST also cleanup ready_heap...
1811 */
1812static void
1813purge_flow_set(struct dn_flow_set *fs, int all)
1814{
1815    struct dn_flow_queue *q, *qn ;
1816    int i ;
1817
1818	lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
1819
1820    for (i = 0 ; i <= fs->rq_size ; i++ ) {
1821	for (q = fs->rq[i] ; q ; q = qn ) {
1822	    struct mbuf *m, *mnext;
1823
1824	    mnext = q->head;
1825	    while ((m = mnext) != NULL) {
1826		mnext = m->m_nextpkt;
1827		DN_FREE_PKT(m);
1828	    }
1829	    qn = q->next ;
1830	    FREE(q, M_DUMMYNET);
1831	}
1832	fs->rq[i] = NULL ;
1833    }
1834    fs->rq_elements = 0 ;
1835    if (all) {
1836	/* RED - free lookup table */
1837	if (fs->w_q_lookup)
1838	    FREE(fs->w_q_lookup, M_DUMMYNET);
1839	if (fs->rq)
1840	    FREE(fs->rq, M_DUMMYNET);
1841	/* if this fs is not part of a pipe, free it */
1842	if (fs->pipe && fs != &(fs->pipe->fs) )
1843	    FREE(fs, M_DUMMYNET);
1844    }
1845}
1846
1847/*
1848 * Dispose all packets queued on a pipe (not a flow_set).
1849 * Also free all resources associated to a pipe, which is about
1850 * to be deleted.
1851 */
1852static void
1853purge_pipe(struct dn_pipe *pipe)
1854{
1855    struct mbuf *m, *mnext;
1856
1857    purge_flow_set( &(pipe->fs), 1 );
1858
1859    mnext = pipe->head;
1860    while ((m = mnext) != NULL) {
1861	mnext = m->m_nextpkt;
1862	DN_FREE_PKT(m);
1863    }
1864
1865    heap_free( &(pipe->scheduler_heap) );
1866    heap_free( &(pipe->not_eligible_heap) );
1867    heap_free( &(pipe->idle_heap) );
1868}
1869
1870/*
1871 * Delete all pipes and heaps returning memory. Must also
1872 * remove references from all ipfw rules to all pipes.
1873 */
1874static void
1875dummynet_flush(void)
1876{
1877	struct dn_pipe *pipe, *pipe1;
1878	struct dn_flow_set *fs, *fs1;
1879	int i;
1880
1881	lck_mtx_lock(dn_mutex);
1882
1883#if IPFW2
1884	/* remove all references to pipes ...*/
1885	flush_pipe_ptrs(NULL);
1886#endif /* IPFW2 */
1887
1888	/* Free heaps so we don't have unwanted events. */
1889	heap_free(&ready_heap);
1890	heap_free(&wfq_ready_heap);
1891	heap_free(&extract_heap);
1892
1893	/*
1894	 * Now purge all queued pkts and delete all pipes.
1895	 *
1896	 * XXXGL: can we merge the for(;;) cycles into one or not?
1897	 */
1898	for (i = 0; i < HASHSIZE; i++)
1899		SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) {
1900			SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next);
1901			purge_flow_set(fs, 1);
1902		}
1903	for (i = 0; i < HASHSIZE; i++)
1904		SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) {
1905			SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next);
1906			purge_pipe(pipe);
1907			FREE(pipe, M_DUMMYNET);
1908		}
1909	lck_mtx_unlock(dn_mutex);
1910}
1911
1912
1913static void
1914dn_ipfw_rule_delete_fs(struct dn_flow_set *fs, void *r)
1915{
1916    int i ;
1917    struct dn_flow_queue *q ;
1918    struct mbuf *m ;
1919
1920    for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
1921	for (q = fs->rq[i] ; q ; q = q->next )
1922	    for (m = q->head ; m ; m = m->m_nextpkt ) {
1923		struct dn_pkt_tag *pkt = dn_tag_get(m) ;
1924		if (pkt->dn_ipfw_rule == r)
1925		    pkt->dn_ipfw_rule = &default_rule ;
1926	    }
1927}
1928/*
1929 * when a firewall rule is deleted, scan all queues and remove the flow-id
1930 * from packets matching this rule.
1931 */
1932void
1933dn_ipfw_rule_delete(void *r)
1934{
1935    struct dn_pipe *p ;
1936    struct dn_flow_set *fs ;
1937    struct dn_pkt_tag *pkt ;
1938    struct mbuf *m ;
1939    int i;
1940
1941	lck_mtx_lock(dn_mutex);
1942
1943    /*
1944     * If the rule references a queue (dn_flow_set), then scan
1945     * the flow set, otherwise scan pipes. Should do either, but doing
1946     * both does not harm.
1947     */
1948    for (i = 0; i < HASHSIZE; i++)
1949	SLIST_FOREACH(fs, &flowsethash[i], next)
1950		dn_ipfw_rule_delete_fs(fs, r);
1951
1952    for (i = 0; i < HASHSIZE; i++)
1953	SLIST_FOREACH(p, &pipehash[i], next) {
1954		fs = &(p->fs);
1955		dn_ipfw_rule_delete_fs(fs, r);
1956		for (m = p->head ; m ; m = m->m_nextpkt ) {
1957			pkt = dn_tag_get(m);
1958			if (pkt->dn_ipfw_rule == r)
1959				pkt->dn_ipfw_rule = &default_rule;
1960		}
1961	}
1962	lck_mtx_unlock(dn_mutex);
1963}
1964
1965/*
1966 * setup RED parameters
1967 */
1968static int
1969config_red(struct dn_flow_set *p, struct dn_flow_set * x)
1970{
1971    int i;
1972
1973    x->w_q = p->w_q;
1974    x->min_th = SCALE(p->min_th);
1975    x->max_th = SCALE(p->max_th);
1976    x->max_p = p->max_p;
1977
1978    x->c_1 = p->max_p / (p->max_th - p->min_th);
1979    x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
1980    if (x->flags_fs & DN_IS_GENTLE_RED) {
1981	x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
1982	x->c_4 = (SCALE(1) - 2 * p->max_p);
1983    }
1984
1985    /* if the lookup table already exist, free and create it again */
1986    if (x->w_q_lookup) {
1987	FREE(x->w_q_lookup, M_DUMMYNET);
1988	x->w_q_lookup = NULL ;
1989    }
1990    if (red_lookup_depth == 0) {
1991	printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
1992	FREE(x, M_DUMMYNET);
1993	return EINVAL;
1994    }
1995    x->lookup_depth = red_lookup_depth;
1996    x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int),
1997	    M_DUMMYNET, M_DONTWAIT);
1998    if (x->w_q_lookup == NULL) {
1999	printf("dummynet: sorry, cannot allocate red lookup table\n");
2000	FREE(x, M_DUMMYNET);
2001	return ENOSPC;
2002    }
2003
2004    /* fill the lookup table with (1 - w_q)^x */
2005    x->lookup_step = p->lookup_step ;
2006    x->lookup_weight = p->lookup_weight ;
2007    x->w_q_lookup[0] = SCALE(1) - x->w_q;
2008    for (i = 1; i < x->lookup_depth; i++)
2009	x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
2010    if (red_avg_pkt_size < 1)
2011	red_avg_pkt_size = 512 ;
2012    x->avg_pkt_size = red_avg_pkt_size ;
2013    if (red_max_pkt_size < 1)
2014	red_max_pkt_size = 1500 ;
2015    x->max_pkt_size = red_max_pkt_size ;
2016    return 0 ;
2017}
2018
2019static int
2020alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
2021{
2022    if (x->flags_fs & DN_HAVE_FLOW_MASK) {     /* allocate some slots */
2023	int l = pfs->rq_size;
2024
2025	if (l == 0)
2026	    l = dn_hash_size;
2027	if (l < 4)
2028	    l = 4;
2029	else if (l > DN_MAX_HASH_SIZE)
2030	    l = DN_MAX_HASH_SIZE;
2031	x->rq_size = l;
2032    } else                  /* one is enough for null mask */
2033	x->rq_size = 1;
2034    x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
2035	    M_DUMMYNET, M_DONTWAIT | M_ZERO);
2036    if (x->rq == NULL) {
2037	printf("dummynet: sorry, cannot allocate queue\n");
2038	return ENOSPC;
2039    }
2040    x->rq_elements = 0;
2041    return 0 ;
2042}
2043
2044static void
2045set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
2046{
2047    x->flags_fs = src->flags_fs;
2048    x->qsize = src->qsize;
2049    x->plr = src->plr;
2050    x->flow_mask = src->flow_mask;
2051    if (x->flags_fs & DN_QSIZE_IS_BYTES) {
2052	if (x->qsize > 1024*1024)
2053	    x->qsize = 1024*1024 ;
2054    } else {
2055	if (x->qsize == 0)
2056	    x->qsize = 50 ;
2057	if (x->qsize > 100)
2058	    x->qsize = 50 ;
2059    }
2060    /* configuring RED */
2061    if ( x->flags_fs & DN_IS_RED )
2062	config_red(src, x) ;    /* XXX should check errors */
2063}
2064
2065/*
2066 * setup pipe or queue parameters.
2067 */
2068
2069static int
2070config_pipe(struct dn_pipe *p)
2071{
2072    int i, r;
2073    struct dn_flow_set *pfs = &(p->fs);
2074    struct dn_flow_queue *q;
2075
2076    /*
2077     * The config program passes parameters as follows:
2078     * bw = bits/second (0 means no limits),
2079     * delay = ms, must be translated into ticks.
2080     * qsize = slots/bytes
2081     */
2082    p->delay = ( p->delay * (hz*10) ) / 1000 ;
2083    /* We need either a pipe number or a flow_set number */
2084    if (p->pipe_nr == 0 && pfs->fs_nr == 0)
2085	return EINVAL ;
2086    if (p->pipe_nr != 0 && pfs->fs_nr != 0)
2087	return EINVAL ;
2088    if (p->pipe_nr != 0) { /* this is a pipe */
2089	struct dn_pipe *x, *b;
2090
2091	lck_mtx_lock(dn_mutex);
2092
2093	/* locate pipe */
2094	b = locate_pipe(p->pipe_nr);
2095
2096	if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
2097	    x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO) ;
2098	    if (x == NULL) {
2099	    lck_mtx_unlock(dn_mutex);
2100		printf("dummynet: no memory for new pipe\n");
2101		return ENOSPC;
2102	    }
2103	    x->pipe_nr = p->pipe_nr;
2104	    x->fs.pipe = x ;
2105	    /* idle_heap is the only one from which we extract from the middle.
2106	     */
2107	    x->idle_heap.size = x->idle_heap.elements = 0 ;
2108	    x->idle_heap.offset=offsetof(struct dn_flow_queue, heap_pos);
2109	} else {
2110	    x = b;
2111	    /* Flush accumulated credit for all queues */
2112	    for (i = 0; i <= x->fs.rq_size; i++)
2113		for (q = x->fs.rq[i]; q; q = q->next)
2114		    q->numbytes = 0;
2115	}
2116
2117	x->bandwidth = p->bandwidth ;
2118	x->numbytes = 0; /* just in case... */
2119	bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
2120	x->ifp = NULL ; /* reset interface ptr */
2121	x->delay = p->delay ;
2122	set_fs_parms(&(x->fs), pfs);
2123
2124
2125	if ( x->fs.rq == NULL ) { /* a new pipe */
2126	    r = alloc_hash(&(x->fs), pfs) ;
2127	    if (r) {
2128		lck_mtx_unlock(dn_mutex);
2129		FREE(x, M_DUMMYNET);
2130		return r ;
2131	    }
2132	    SLIST_INSERT_HEAD(&pipehash[HASH(x->pipe_nr)],
2133			    x, next);
2134	}
2135	lck_mtx_unlock(dn_mutex);
2136    } else { /* config queue */
2137	struct dn_flow_set *x, *b ;
2138
2139	lck_mtx_lock(dn_mutex);
2140	/* locate flow_set */
2141	b = locate_flowset(pfs->fs_nr);
2142
2143	if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new  */
2144	    if (pfs->parent_nr == 0) {	/* need link to a pipe */
2145	    	lck_mtx_unlock(dn_mutex);
2146			return EINVAL ;
2147		}
2148	    x = _MALLOC(sizeof(struct dn_flow_set), M_DUMMYNET, M_DONTWAIT | M_ZERO);
2149	    if (x == NULL) {
2150	    	lck_mtx_unlock(dn_mutex);
2151			printf("dummynet: no memory for new flow_set\n");
2152			return ENOSPC;
2153	    }
2154	    x->fs_nr = pfs->fs_nr;
2155	    x->parent_nr = pfs->parent_nr;
2156	    x->weight = pfs->weight ;
2157	    if (x->weight == 0)
2158		x->weight = 1 ;
2159	    else if (x->weight > 100)
2160		x->weight = 100 ;
2161	} else {
2162	    /* Change parent pipe not allowed; must delete and recreate */
2163	    if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) {
2164	    	lck_mtx_unlock(dn_mutex);
2165			return EINVAL ;
2166		}
2167	    x = b;
2168	}
2169	set_fs_parms(x, pfs);
2170
2171	if ( x->rq == NULL ) { /* a new flow_set */
2172	    r = alloc_hash(x, pfs) ;
2173	    if (r) {
2174		lck_mtx_unlock(dn_mutex);
2175		FREE(x, M_DUMMYNET);
2176		return r ;
2177	    }
2178	    SLIST_INSERT_HEAD(&flowsethash[HASH(x->fs_nr)],
2179			    x, next);
2180	}
2181	lck_mtx_unlock(dn_mutex);
2182    }
2183    return 0 ;
2184}
2185
2186/*
2187 * Helper function to remove from a heap queues which are linked to
2188 * a flow_set about to be deleted.
2189 */
2190static void
2191fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
2192{
2193    int i = 0, found = 0 ;
2194    for (; i < h->elements ;)
2195	if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
2196	    h->elements-- ;
2197	    h->p[i] = h->p[h->elements] ;
2198	    found++ ;
2199	} else
2200	    i++ ;
2201    if (found)
2202	heapify(h);
2203}
2204
2205/*
2206 * helper function to remove a pipe from a heap (can be there at most once)
2207 */
2208static void
2209pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
2210{
2211    if (h->elements > 0) {
2212	int i = 0 ;
2213	for (i=0; i < h->elements ; i++ ) {
2214	    if (h->p[i].object == p) { /* found it */
2215		h->elements-- ;
2216		h->p[i] = h->p[h->elements] ;
2217		heapify(h);
2218		break ;
2219	    }
2220	}
2221    }
2222}
2223
2224/*
2225 * drain all queues. Called in case of severe mbuf shortage.
2226 */
2227void
2228dummynet_drain(void)
2229{
2230    struct dn_flow_set *fs;
2231    struct dn_pipe *p;
2232    struct mbuf *m, *mnext;
2233	int i;
2234
2235	lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2236
2237    heap_free(&ready_heap);
2238    heap_free(&wfq_ready_heap);
2239    heap_free(&extract_heap);
2240    /* remove all references to this pipe from flow_sets */
2241    for (i = 0; i < HASHSIZE; i++)
2242	SLIST_FOREACH(fs, &flowsethash[i], next)
2243		purge_flow_set(fs, 0);
2244
2245    for (i = 0; i < HASHSIZE; i++)
2246	SLIST_FOREACH(p, &pipehash[i], next) {
2247		purge_flow_set(&(p->fs), 0);
2248
2249	mnext = p->head;
2250	while ((m = mnext) != NULL) {
2251	    mnext = m->m_nextpkt;
2252	    DN_FREE_PKT(m);
2253	}
2254	p->head = p->tail = NULL ;
2255    }
2256}
2257
2258/*
2259 * Fully delete a pipe or a queue, cleaning up associated info.
2260 */
2261static int
2262delete_pipe(struct dn_pipe *p)
2263{
2264    if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
2265	return EINVAL ;
2266    if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
2267	return EINVAL ;
2268    if (p->pipe_nr != 0) { /* this is an old-style pipe */
2269	struct dn_pipe *b;
2270	struct dn_flow_set *fs;
2271	int i;
2272
2273	lck_mtx_lock(dn_mutex);
2274	/* locate pipe */
2275	b = locate_pipe(p->pipe_nr);
2276	if(b == NULL){
2277		lck_mtx_unlock(dn_mutex);
2278	    return EINVAL ; /* not found */
2279	}
2280
2281	/* Unlink from list of pipes. */
2282	SLIST_REMOVE(&pipehash[HASH(b->pipe_nr)], b, dn_pipe, next);
2283
2284#if IPFW2
2285	/* remove references to this pipe from the ip_fw rules. */
2286	flush_pipe_ptrs(&(b->fs));
2287#endif /* IPFW2 */
2288
2289	/* Remove all references to this pipe from flow_sets. */
2290	for (i = 0; i < HASHSIZE; i++)
2291	    SLIST_FOREACH(fs, &flowsethash[i], next)
2292		if (fs->pipe == b) {
2293			printf("dummynet: ++ ref to pipe %d from fs %d\n",
2294			    p->pipe_nr, fs->fs_nr);
2295			fs->pipe = NULL ;
2296			purge_flow_set(fs, 0);
2297		}
2298	fs_remove_from_heap(&ready_heap, &(b->fs));
2299
2300	purge_pipe(b);	/* remove all data associated to this pipe */
2301	/* remove reference to here from extract_heap and wfq_ready_heap */
2302	pipe_remove_from_heap(&extract_heap, b);
2303	pipe_remove_from_heap(&wfq_ready_heap, b);
2304	lck_mtx_unlock(dn_mutex);
2305
2306	FREE(b, M_DUMMYNET);
2307    } else { /* this is a WF2Q queue (dn_flow_set) */
2308	struct dn_flow_set *b;
2309
2310	lck_mtx_lock(dn_mutex);
2311	/* locate set */
2312	b = locate_flowset(p->fs.fs_nr);
2313	if (b == NULL) {
2314		lck_mtx_unlock(dn_mutex);
2315	    return EINVAL ; /* not found */
2316	}
2317
2318#if IPFW2
2319	/* remove references to this flow_set from the ip_fw rules. */
2320	flush_pipe_ptrs(b);
2321#endif /* IPFW2 */
2322
2323	/* Unlink from list of flowsets. */
2324	SLIST_REMOVE( &flowsethash[HASH(b->fs_nr)], b, dn_flow_set, next);
2325
2326	if (b->pipe != NULL) {
2327	    /* Update total weight on parent pipe and cleanup parent heaps */
2328	    b->pipe->sum -= b->weight * b->backlogged ;
2329	    fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
2330	    fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
2331#if 1	/* XXX should i remove from idle_heap as well ? */
2332	    fs_remove_from_heap(&(b->pipe->idle_heap), b);
2333#endif
2334	}
2335	purge_flow_set(b, 1);
2336	lck_mtx_unlock(dn_mutex);
2337    }
2338    return 0 ;
2339}
2340
2341/*
2342 * helper function used to copy data from kernel in DUMMYNET_GET
2343 */
2344static
2345char* dn_copy_set_32(struct dn_flow_set *set, char *bp)
2346{
2347    int i, copied = 0 ;
2348    struct dn_flow_queue *q;
2349	struct dn_flow_queue_32 *qp = (struct dn_flow_queue_32 *)bp;
2350
2351	lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2352
2353    for (i = 0 ; i <= set->rq_size ; i++)
2354		for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
2355			if (q->hash_slot != i)
2356				printf("dummynet: ++ at %d: wrong slot (have %d, "
2357					   "should be %d)\n", copied, q->hash_slot, i);
2358			if (q->fs != set)
2359				printf("dummynet: ++ at %d: wrong fs ptr "
2360				    "(have 0x%llx, should be 0x%llx)\n", i,
2361				    (uint64_t)VM_KERNEL_ADDRPERM(q->fs),
2362				    (uint64_t)VM_KERNEL_ADDRPERM(set));
2363			copied++ ;
2364			cp_queue_to_32_user( q, qp );
2365			/* cleanup pointers */
2366			qp->next = (user32_addr_t)0 ;
2367			qp->head = qp->tail = (user32_addr_t)0 ;
2368			qp->fs = (user32_addr_t)0 ;
2369		}
2370    if (copied != set->rq_elements)
2371		printf("dummynet: ++ wrong count, have %d should be %d\n",
2372			   copied, set->rq_elements);
2373    return (char *)qp ;
2374}
2375
2376static
2377char* dn_copy_set_64(struct dn_flow_set *set, char *bp)
2378{
2379    int i, copied = 0 ;
2380    struct dn_flow_queue *q;
2381	struct dn_flow_queue_64 *qp = (struct dn_flow_queue_64 *)bp;
2382
2383	lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2384
2385    for (i = 0 ; i <= set->rq_size ; i++)
2386		for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
2387			if (q->hash_slot != i)
2388				printf("dummynet: ++ at %d: wrong slot (have %d, "
2389					   "should be %d)\n", copied, q->hash_slot, i);
2390			if (q->fs != set)
2391				printf("dummynet: ++ at %d: wrong fs ptr "
2392				    "(have 0x%llx, should be 0x%llx)\n", i,
2393				    (uint64_t)VM_KERNEL_ADDRPERM(q->fs),
2394				    (uint64_t)VM_KERNEL_ADDRPERM(set));
2395			copied++ ;
2396			//bcopy(q, qp, sizeof(*q));
2397			cp_queue_to_64_user( q, qp );
2398			/* cleanup pointers */
2399			qp->next = USER_ADDR_NULL ;
2400			qp->head = qp->tail = USER_ADDR_NULL ;
2401			qp->fs = USER_ADDR_NULL ;
2402		}
2403    if (copied != set->rq_elements)
2404		printf("dummynet: ++ wrong count, have %d should be %d\n",
2405			   copied, set->rq_elements);
2406    return (char *)qp ;
2407}
2408
2409static size_t
2410dn_calc_size(int is64user)
2411{
2412    struct dn_flow_set *set ;
2413    struct dn_pipe *p ;
2414    size_t size = 0 ;
2415	size_t pipesize;
2416	size_t queuesize;
2417	size_t setsize;
2418	int i;
2419
2420	lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2421	if ( is64user ){
2422		pipesize = sizeof(struct dn_pipe_64);
2423		queuesize = sizeof(struct dn_flow_queue_64);
2424		setsize = sizeof(struct dn_flow_set_64);
2425	}
2426	else {
2427		pipesize = sizeof(struct dn_pipe_32);
2428		queuesize = sizeof( struct dn_flow_queue_32 );
2429		setsize = sizeof(struct dn_flow_set_32);
2430	}
2431    /*
2432     * compute size of data structures: list of pipes and flow_sets.
2433     */
2434    for (i = 0; i < HASHSIZE; i++) {
2435	SLIST_FOREACH(p, &pipehash[i], next)
2436		size += sizeof(*p) +
2437		    p->fs.rq_elements * sizeof(struct dn_flow_queue);
2438	SLIST_FOREACH(set, &flowsethash[i], next)
2439		size += sizeof (*set) +
2440		    set->rq_elements * sizeof(struct dn_flow_queue);
2441    }
2442    return size;
2443}
2444
2445static int
2446dummynet_get(struct sockopt *sopt)
2447{
2448    char *buf, *bp=NULL; /* bp is the "copy-pointer" */
2449    size_t size ;
2450    struct dn_flow_set *set ;
2451    struct dn_pipe *p ;
2452    int error=0, i ;
2453	int	is64user = 0;
2454
2455    /* XXX lock held too long */
2456    lck_mtx_lock(dn_mutex);
2457    /*
2458     * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
2459     *      cannot use this flag while holding a mutex.
2460     */
2461	if (proc_is64bit(sopt->sopt_p))
2462		is64user = 1;
2463    for (i = 0; i < 10; i++) {
2464		size = dn_calc_size(is64user);
2465		lck_mtx_unlock(dn_mutex);
2466		buf = _MALLOC(size, M_TEMP, M_WAITOK);
2467		if (buf == NULL)
2468			return ENOBUFS;
2469		lck_mtx_lock(dn_mutex);
2470		if (size == dn_calc_size(is64user))
2471			break;
2472		FREE(buf, M_TEMP);
2473		buf = NULL;
2474    }
2475    if (buf == NULL) {
2476		lck_mtx_unlock(dn_mutex);
2477		return ENOBUFS ;
2478    }
2479
2480
2481    bp = buf;
2482    for (i = 0; i < HASHSIZE; i++)
2483	SLIST_FOREACH(p, &pipehash[i], next) {
2484		/*
2485		 * copy pipe descriptor into *bp, convert delay back to ms,
2486		 * then copy the flow_set descriptor(s) one at a time.
2487		 * After each flow_set, copy the queue descriptor it owns.
2488		 */
2489		if ( is64user ){
2490			bp = cp_pipe_to_64_user(p, (struct dn_pipe_64 *)bp);
2491		}
2492		else{
2493			bp = cp_pipe_to_32_user(p, (struct dn_pipe_32 *)bp);
2494		}
2495    }
2496	for (i = 0; i < HASHSIZE; i++)
2497	SLIST_FOREACH(set, &flowsethash[i], next) {
2498		struct dn_flow_set_64 *fs_bp = (struct dn_flow_set_64 *)bp ;
2499		cp_flow_set_to_64_user(set, fs_bp);
2500		/* XXX same hack as above */
2501		fs_bp->next = CAST_DOWN(user64_addr_t, DN_IS_QUEUE);
2502		fs_bp->pipe = USER_ADDR_NULL;
2503		fs_bp->rq = USER_ADDR_NULL ;
2504		bp += sizeof(struct dn_flow_set_64);
2505		bp = dn_copy_set_64( set, bp );
2506    }
2507    lck_mtx_unlock(dn_mutex);
2508
2509    error = sooptcopyout(sopt, buf, size);
2510    FREE(buf, M_TEMP);
2511    return error ;
2512}
2513
2514/*
2515 * Handler for the various dummynet socket options (get, flush, config, del)
2516 */
2517static int
2518ip_dn_ctl(struct sockopt *sopt)
2519{
2520    int error = 0 ;
2521    struct dn_pipe *p, tmp_pipe;
2522
2523    /* Disallow sets in really-really secure mode. */
2524    if (sopt->sopt_dir == SOPT_SET && securelevel >= 3)
2525	return (EPERM);
2526
2527    switch (sopt->sopt_name) {
2528    default :
2529	printf("dummynet: -- unknown option %d", sopt->sopt_name);
2530	return EINVAL ;
2531
2532    case IP_DUMMYNET_GET :
2533	error = dummynet_get(sopt);
2534	break ;
2535
2536    case IP_DUMMYNET_FLUSH :
2537	dummynet_flush() ;
2538	break ;
2539
2540    case IP_DUMMYNET_CONFIGURE :
2541	p = &tmp_pipe ;
2542	if (proc_is64bit(sopt->sopt_p))
2543		error = cp_pipe_from_user_64( sopt, p );
2544	else
2545		error = cp_pipe_from_user_32( sopt, p );
2546
2547	if (error)
2548	    break ;
2549	error = config_pipe(p);
2550	break ;
2551
2552    case IP_DUMMYNET_DEL :	/* remove a pipe or queue */
2553	p = &tmp_pipe ;
2554	if (proc_is64bit(sopt->sopt_p))
2555		error = cp_pipe_from_user_64( sopt, p );
2556	else
2557		error = cp_pipe_from_user_32( sopt, p );
2558	if (error)
2559	    break ;
2560
2561	error = delete_pipe(p);
2562	break ;
2563    }
2564    return error ;
2565}
2566
2567void
2568ip_dn_init(void)
2569{
2570	/* setup locks */
2571	dn_mutex_grp_attr = lck_grp_attr_alloc_init();
2572	dn_mutex_grp = lck_grp_alloc_init("dn", dn_mutex_grp_attr);
2573	dn_mutex_attr = lck_attr_alloc_init();
2574	lck_mtx_init(dn_mutex, dn_mutex_grp, dn_mutex_attr);
2575
2576	ready_heap.size = ready_heap.elements = 0 ;
2577	ready_heap.offset = 0 ;
2578
2579	wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
2580	wfq_ready_heap.offset = 0 ;
2581
2582	extract_heap.size = extract_heap.elements = 0 ;
2583	extract_heap.offset = 0 ;
2584	ip_dn_ctl_ptr = ip_dn_ctl;
2585	ip_dn_io_ptr = dummynet_io;
2586
2587	bzero(&default_rule, sizeof default_rule);
2588
2589	default_rule.act_ofs = 0;
2590	default_rule.rulenum = IPFW_DEFAULT_RULE;
2591	default_rule.cmd_len = 1;
2592	default_rule.set = RESVD_SET;
2593
2594	default_rule.cmd[0].len = 1;
2595	default_rule.cmd[0].opcode =
2596#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
2597                                (1) ? O_ACCEPT :
2598#endif
2599                                O_DENY;
2600}
2601