1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * #pragma ident	"@(#)fasttrap_isa.c	1.27	08/04/09 SMI"
29 */
30
31#ifdef KERNEL
32#ifndef _KERNEL
33#define _KERNEL /* Solaris vs. Darwin */
34#endif
35#endif
36
37#include <sys/fasttrap_isa.h>
38#include <sys/fasttrap_impl.h>
39#include <sys/dtrace.h>
40#include <sys/dtrace_impl.h>
41extern dtrace_id_t dtrace_probeid_error;
42
43#include "fasttrap_regset.h"
44
45#include <sys/dtrace_ptss.h>
46#include <kern/debug.h>
47
48#include <machine/pal_routines.h>
49
50/* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
51#define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
52
53/*
54 * Lossless User-Land Tracing on x86
55 * ---------------------------------
56 *
57 * The execution of most instructions is not dependent on the address; for
58 * these instructions it is sufficient to copy them into the user process's
59 * address space and execute them. To effectively single-step an instruction
60 * in user-land, we copy out the following sequence of instructions to scratch
61 * space in the user thread's ulwp_t structure.
62 *
63 * We then set the program counter (%eip or %rip) to point to this scratch
64 * space. Once execution resumes, the original instruction is executed and
65 * then control flow is redirected to what was originally the subsequent
66 * instruction. If the kernel attemps to deliver a signal while single-
67 * stepping, the signal is deferred and the program counter is moved into the
68 * second sequence of instructions. The second sequence ends in a trap into
69 * the kernel where the deferred signal is then properly handled and delivered.
70 *
71 * For instructions whose execute is position dependent, we perform simple
72 * emulation. These instructions are limited to control transfer
73 * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
74 * of %rip-relative addressing that means that almost any instruction can be
75 * position dependent. For all the details on how we emulate generic
76 * instructions included %rip-relative instructions, see the code in
77 * fasttrap_pid_probe() below where we handle instructions of type
78 * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
79 */
80
81#define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
82#define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
83#define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
84#define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
85
86#define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
87#define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
88#define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
89
90#define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
91#define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
92#define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
93#define	FASTTRAP_REX_B(rex)		((rex) & 1)
94#define	FASTTRAP_REX(w, r, x, b)	\
95	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
96
97/*
98 * Single-byte op-codes.
99 */
100#define	FASTTRAP_PUSHL_EBP	0x55
101
102#define	FASTTRAP_JO		0x70
103#define	FASTTRAP_JNO		0x71
104#define	FASTTRAP_JB		0x72
105#define	FASTTRAP_JAE		0x73
106#define	FASTTRAP_JE		0x74
107#define	FASTTRAP_JNE		0x75
108#define	FASTTRAP_JBE		0x76
109#define	FASTTRAP_JA		0x77
110#define	FASTTRAP_JS		0x78
111#define	FASTTRAP_JNS		0x79
112#define	FASTTRAP_JP		0x7a
113#define	FASTTRAP_JNP		0x7b
114#define	FASTTRAP_JL		0x7c
115#define	FASTTRAP_JGE		0x7d
116#define	FASTTRAP_JLE		0x7e
117#define	FASTTRAP_JG		0x7f
118
119#define	FASTTRAP_NOP		0x90
120
121#define	FASTTRAP_MOV_EAX	0xb8
122#define	FASTTRAP_MOV_ECX	0xb9
123
124#define	FASTTRAP_RET16		0xc2
125#define	FASTTRAP_RET		0xc3
126
127#define	FASTTRAP_LOOPNZ		0xe0
128#define	FASTTRAP_LOOPZ		0xe1
129#define	FASTTRAP_LOOP		0xe2
130#define	FASTTRAP_JCXZ		0xe3
131
132#define	FASTTRAP_CALL		0xe8
133#define	FASTTRAP_JMP32		0xe9
134#define	FASTTRAP_JMP8		0xeb
135
136#define	FASTTRAP_INT3		0xcc
137#define	FASTTRAP_INT		0xcd
138#define	T_DTRACE_RET		0x7f
139
140#define	FASTTRAP_2_BYTE_OP	0x0f
141#define	FASTTRAP_GROUP5_OP	0xff
142
143/*
144 * Two-byte op-codes (second byte only).
145 */
146#define	FASTTRAP_0F_JO		0x80
147#define	FASTTRAP_0F_JNO		0x81
148#define	FASTTRAP_0F_JB		0x82
149#define	FASTTRAP_0F_JAE		0x83
150#define	FASTTRAP_0F_JE		0x84
151#define	FASTTRAP_0F_JNE		0x85
152#define	FASTTRAP_0F_JBE		0x86
153#define	FASTTRAP_0F_JA		0x87
154#define	FASTTRAP_0F_JS		0x88
155#define	FASTTRAP_0F_JNS		0x89
156#define	FASTTRAP_0F_JP		0x8a
157#define	FASTTRAP_0F_JNP		0x8b
158#define	FASTTRAP_0F_JL		0x8c
159#define	FASTTRAP_0F_JGE		0x8d
160#define	FASTTRAP_0F_JLE		0x8e
161#define	FASTTRAP_0F_JG		0x8f
162
163#define	FASTTRAP_EFLAGS_OF	0x800
164#define	FASTTRAP_EFLAGS_DF	0x400
165#define	FASTTRAP_EFLAGS_SF	0x080
166#define	FASTTRAP_EFLAGS_ZF	0x040
167#define	FASTTRAP_EFLAGS_AF	0x010
168#define	FASTTRAP_EFLAGS_PF	0x004
169#define	FASTTRAP_EFLAGS_CF	0x001
170
171/*
172 * Instruction prefixes.
173 */
174#define	FASTTRAP_PREFIX_OPERAND	0x66
175#define	FASTTRAP_PREFIX_ADDRESS	0x67
176#define	FASTTRAP_PREFIX_CS	0x2E
177#define	FASTTRAP_PREFIX_DS	0x3E
178#define	FASTTRAP_PREFIX_ES	0x26
179#define	FASTTRAP_PREFIX_FS	0x64
180#define	FASTTRAP_PREFIX_GS	0x65
181#define	FASTTRAP_PREFIX_SS	0x36
182#define	FASTTRAP_PREFIX_LOCK	0xF0
183#define	FASTTRAP_PREFIX_REP	0xF3
184#define	FASTTRAP_PREFIX_REPNE	0xF2
185
186#define	FASTTRAP_NOREG	0xff
187
188/*
189 * Map between instruction register encodings and the kernel constants which
190 * correspond to indicies into struct regs.
191 */
192
193/*
194 * APPLE NOTE: We are cheating here. The regmap is used to decode which register
195 * a given instruction is trying to reference. OS X does not have extended registers
196 * for 32 bit apps, but the *order* is the same. So for 32 bit state, we will return:
197 *
198 * REG_RAX -> EAX
199 * REG_RCX -> ECX
200 * REG_RDX -> EDX
201 * REG_RBX -> EBX
202 * REG_RSP -> UESP
203 * REG_RBP -> EBP
204 * REG_RSI -> ESI
205 * REG_RDI -> EDI
206 *
207 * The fasttrap_getreg function knows how to make the correct transformation.
208 */
209static const uint8_t regmap[16] = {
210	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
211	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
212};
213
214static user_addr_t fasttrap_getreg(x86_saved_state_t *, uint_t);
215
216static uint64_t
217fasttrap_anarg(x86_saved_state_t *regs, int function_entry, int argno)
218{
219	uint64_t value;
220	int shift = function_entry ? 1 : 0;
221
222	x86_saved_state64_t *regs64;
223	x86_saved_state32_t *regs32;
224	unsigned int p_model;
225
226        if (is_saved_state64(regs)) {
227                regs64 = saved_state64(regs);
228		regs32 = NULL;
229		p_model = DATAMODEL_LP64;
230        } else {
231		regs64 = NULL;
232                regs32 = saved_state32(regs);
233		p_model = DATAMODEL_ILP32;
234        }
235
236	if (p_model == DATAMODEL_LP64) {
237		user_addr_t stack;
238
239		/*
240		 * In 64-bit mode, the first six arguments are stored in
241		 * registers.
242		 */
243		if (argno < 6)
244			return ((&regs64->rdi)[argno]);
245
246		stack = regs64->isf.rsp + sizeof(uint64_t) * (argno - 6 + shift);
247		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
248		value = dtrace_fuword64(stack);
249		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
250	} else {
251		uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp);
252		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
253		value = dtrace_fuword32((user_addr_t)(unsigned long)&stack[argno + shift]);
254		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
255	}
256
257	return (value);
258}
259
260/*ARGSUSED*/
261int
262fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, user_addr_t pc,
263    fasttrap_probe_type_t type)
264{
265#pragma unused(type)
266	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
267	size_t len = FASTTRAP_MAX_INSTR_SIZE;
268	size_t first = MIN(len, PAGE_SIZE - (pc & PAGE_MASK));
269	uint_t start = 0;
270	size_t size;
271	int rmindex;
272	uint8_t seg, rex = 0;
273	unsigned int p_model = (p->p_flag & P_LP64) ? DATAMODEL_LP64 : DATAMODEL_ILP32;
274
275	/*
276	 * Read the instruction at the given address out of the process's
277	 * address space. We don't have to worry about a debugger
278	 * changing this instruction before we overwrite it with our trap
279	 * instruction since P_PR_LOCK is set. Since instructions can span
280	 * pages, we potentially read the instruction in two parts. If the
281	 * second part fails, we just zero out that part of the instruction.
282	 */
283	/*
284	 * APPLE NOTE: Of course, we do not have a P_PR_LOCK, so this is racey...
285	 */
286	if (uread(p, &instr[0], first, pc) != 0)
287		return (-1);
288	if (len > first &&
289	    uread(p, &instr[first], len - first, pc + first) != 0) {
290		bzero(&instr[first], len - first);
291		len = first;
292	}
293
294	/*
295	 * If the disassembly fails, then we have a malformed instruction.
296	 */
297	if ((size = dtrace_instr_size_isa(instr, p_model, &rmindex)) <= 0)
298		return (-1);
299
300	/*
301	 * Make sure the disassembler isn't completely broken.
302	 */
303	ASSERT(-1 <= rmindex && rmindex < (int)size);
304
305	/*
306	 * If the computed size is greater than the number of bytes read,
307	 * then it was a malformed instruction possibly because it fell on a
308	 * page boundary and the subsequent page was missing or because of
309	 * some malicious user.
310	 */
311	if (size > len)
312		return (-1);
313
314	tp->ftt_size = (uint8_t)size;
315	tp->ftt_segment = FASTTRAP_SEG_NONE;
316
317	/*
318	 * Find the start of the instruction's opcode by processing any
319	 * legacy prefixes.
320	 */
321	for (;;) {
322		seg = 0;
323		switch (instr[start]) {
324		case FASTTRAP_PREFIX_SS:
325			seg++;
326			/*FALLTHRU*/
327		case FASTTRAP_PREFIX_GS:
328			seg++;
329			/*FALLTHRU*/
330		case FASTTRAP_PREFIX_FS:
331			seg++;
332			/*FALLTHRU*/
333		case FASTTRAP_PREFIX_ES:
334			seg++;
335			/*FALLTHRU*/
336		case FASTTRAP_PREFIX_DS:
337			seg++;
338			/*FALLTHRU*/
339		case FASTTRAP_PREFIX_CS:
340			seg++;
341			/*FALLTHRU*/
342		case FASTTRAP_PREFIX_OPERAND:
343		case FASTTRAP_PREFIX_ADDRESS:
344		case FASTTRAP_PREFIX_LOCK:
345		case FASTTRAP_PREFIX_REP:
346		case FASTTRAP_PREFIX_REPNE:
347			if (seg != 0) {
348				/*
349				 * It's illegal for an instruction to specify
350				 * two segment prefixes -- give up on this
351				 * illegal instruction.
352				 */
353				if (tp->ftt_segment != FASTTRAP_SEG_NONE)
354					return (-1);
355
356				tp->ftt_segment = seg;
357			}
358			start++;
359			continue;
360		}
361		break;
362	}
363
364	/*
365	 * Identify the REX prefix on 64-bit processes.
366	 */
367	if (p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
368		rex = instr[start++];
369
370	/*
371	 * Now that we're pretty sure that the instruction is okay, copy the
372	 * valid part to the tracepoint.
373	 */
374	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
375
376	tp->ftt_type = FASTTRAP_T_COMMON;
377	if (instr[start] == FASTTRAP_2_BYTE_OP) {
378		switch (instr[start + 1]) {
379		case FASTTRAP_0F_JO:
380		case FASTTRAP_0F_JNO:
381		case FASTTRAP_0F_JB:
382		case FASTTRAP_0F_JAE:
383		case FASTTRAP_0F_JE:
384		case FASTTRAP_0F_JNE:
385		case FASTTRAP_0F_JBE:
386		case FASTTRAP_0F_JA:
387		case FASTTRAP_0F_JS:
388		case FASTTRAP_0F_JNS:
389		case FASTTRAP_0F_JP:
390		case FASTTRAP_0F_JNP:
391		case FASTTRAP_0F_JL:
392		case FASTTRAP_0F_JGE:
393		case FASTTRAP_0F_JLE:
394		case FASTTRAP_0F_JG:
395			tp->ftt_type = FASTTRAP_T_JCC;
396			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
397			tp->ftt_dest = pc + tp->ftt_size +
398			    /* LINTED - alignment */
399			    *(int32_t *)&instr[start + 2];
400			break;
401		}
402	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
403		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
404		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
405		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
406
407		if (reg == 2 || reg == 4) {
408			uint_t i, sz;
409
410			if (reg == 2)
411				tp->ftt_type = FASTTRAP_T_CALL;
412			else
413				tp->ftt_type = FASTTRAP_T_JMP;
414
415			if (mod == 3)
416				tp->ftt_code = 2;
417			else
418				tp->ftt_code = 1;
419
420			ASSERT(p_model == DATAMODEL_LP64 || rex == 0);
421
422			/*
423			 * See AMD x86-64 Architecture Programmer's Manual
424			 * Volume 3, Section 1.2.7, Table 1-12, and
425			 * Appendix A.3.1, Table A-15.
426			 */
427			if (mod != 3 && rm == 4) {
428				uint8_t sib = instr[start + 2];
429				uint_t index = FASTTRAP_SIB_INDEX(sib);
430				uint_t base = FASTTRAP_SIB_BASE(sib);
431
432				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
433
434				tp->ftt_index = (index == 4) ?
435				    FASTTRAP_NOREG :
436				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
437				tp->ftt_base = (mod == 0 && base == 5) ?
438				    FASTTRAP_NOREG :
439				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
440
441				i = 3;
442				sz = mod == 1 ? 1 : 4;
443			} else {
444				/*
445				 * In 64-bit mode, mod == 0 and r/m == 5
446				 * denotes %rip-relative addressing; in 32-bit
447				 * mode, the base register isn't used. In both
448				 * modes, there is a 32-bit operand.
449				 */
450				if (mod == 0 && rm == 5) {
451					if (p_model == DATAMODEL_LP64)
452						tp->ftt_base = REG_RIP;
453					else
454						tp->ftt_base = FASTTRAP_NOREG;
455					sz = 4;
456				} else  {
457					uint8_t base = rm |
458					    (FASTTRAP_REX_B(rex) << 3);
459
460					tp->ftt_base = regmap[base];
461					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
462				}
463				tp->ftt_index = FASTTRAP_NOREG;
464				i = 2;
465			}
466
467			if (sz == 1) {
468				tp->ftt_dest = *(int8_t *)&instr[start + i];
469			} else if (sz == 4) {
470				/* LINTED - alignment */
471				tp->ftt_dest = *(int32_t *)&instr[start + i];
472			} else {
473				tp->ftt_dest = 0;
474			}
475		}
476	} else {
477		switch (instr[start]) {
478		case FASTTRAP_RET:
479			tp->ftt_type = FASTTRAP_T_RET;
480			break;
481
482		case FASTTRAP_RET16:
483			tp->ftt_type = FASTTRAP_T_RET16;
484			/* LINTED - alignment */
485			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
486			break;
487
488		case FASTTRAP_JO:
489		case FASTTRAP_JNO:
490		case FASTTRAP_JB:
491		case FASTTRAP_JAE:
492		case FASTTRAP_JE:
493		case FASTTRAP_JNE:
494		case FASTTRAP_JBE:
495		case FASTTRAP_JA:
496		case FASTTRAP_JS:
497		case FASTTRAP_JNS:
498		case FASTTRAP_JP:
499		case FASTTRAP_JNP:
500		case FASTTRAP_JL:
501		case FASTTRAP_JGE:
502		case FASTTRAP_JLE:
503		case FASTTRAP_JG:
504			tp->ftt_type = FASTTRAP_T_JCC;
505			tp->ftt_code = instr[start];
506			tp->ftt_dest = pc + tp->ftt_size +
507			    (int8_t)instr[start + 1];
508			break;
509
510		case FASTTRAP_LOOPNZ:
511		case FASTTRAP_LOOPZ:
512		case FASTTRAP_LOOP:
513			tp->ftt_type = FASTTRAP_T_LOOP;
514			tp->ftt_code = instr[start];
515			tp->ftt_dest = pc + tp->ftt_size +
516			    (int8_t)instr[start + 1];
517			break;
518
519		case FASTTRAP_JCXZ:
520			tp->ftt_type = FASTTRAP_T_JCXZ;
521			tp->ftt_dest = pc + tp->ftt_size +
522			    (int8_t)instr[start + 1];
523			break;
524
525		case FASTTRAP_CALL:
526			tp->ftt_type = FASTTRAP_T_CALL;
527			tp->ftt_dest = pc + tp->ftt_size +
528			    /* LINTED - alignment */
529			    *(int32_t *)&instr[start + 1];
530			tp->ftt_code = 0;
531			break;
532
533		case FASTTRAP_JMP32:
534			tp->ftt_type = FASTTRAP_T_JMP;
535			tp->ftt_dest = pc + tp->ftt_size +
536				/* LINTED - alignment */
537			    *(int32_t *)&instr[start + 1];
538			break;
539		case FASTTRAP_JMP8:
540			tp->ftt_type = FASTTRAP_T_JMP;
541			tp->ftt_dest = pc + tp->ftt_size +
542			    (int8_t)instr[start + 1];
543			break;
544
545		case FASTTRAP_PUSHL_EBP:
546			if (start == 0)
547				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
548			break;
549
550		case FASTTRAP_NOP:
551			ASSERT(p_model == DATAMODEL_LP64 || rex == 0);
552
553			/*
554			 * On sol64 we have to be careful not to confuse a nop
555			 * (actually xchgl %eax, %eax) with an instruction using
556			 * the same opcode, but that does something different
557			 * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
558			 */
559			if (FASTTRAP_REX_B(rex) == 0)
560				tp->ftt_type = FASTTRAP_T_NOP;
561			break;
562
563		case FASTTRAP_INT3:
564			/*
565			 * The pid provider shares the int3 trap with debugger
566			 * breakpoints so we can't instrument them.
567			 */
568			ASSERT(instr[start] == FASTTRAP_INSTR);
569			return (-1);
570
571		case FASTTRAP_INT:
572			/*
573			 * Interrupts seem like they could be traced with
574			 * no negative implications, but it's possible that
575			 * a thread could be redirected by the trap handling
576			 * code which would eventually return to the
577			 * instruction after the interrupt. If the interrupt
578			 * were in our scratch space, the subsequent
579			 * instruction might be overwritten before we return.
580			 * Accordingly we refuse to instrument any interrupt.
581			 */
582			return (-1);
583		}
584	}
585
586	if (p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
587		/*
588		 * If the process is 64-bit and the instruction type is still
589		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
590		 * execute it -- we need to watch for %rip-relative
591		 * addressing mode. See the portion of fasttrap_pid_probe()
592		 * below where we handle tracepoints with type
593		 * FASTTRAP_T_COMMON for how we emulate instructions that
594		 * employ %rip-relative addressing.
595		 */
596		if (rmindex != -1) {
597			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
598			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
599			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
600
601			ASSERT(rmindex > (int)start);
602
603			if (mod == 0 && rm == 5) {
604				/*
605				 * We need to be sure to avoid other
606				 * registers used by this instruction. While
607				 * the reg field may determine the op code
608				 * rather than denoting a register, assuming
609				 * that it denotes a register is always safe.
610				 * We leave the REX field intact and use
611				 * whatever value's there for simplicity.
612				 */
613				if (reg != 0) {
614					tp->ftt_ripmode = FASTTRAP_RIP_1 |
615					    (FASTTRAP_RIP_X *
616					    FASTTRAP_REX_B(rex));
617					rm = 0;
618				} else {
619					tp->ftt_ripmode = FASTTRAP_RIP_2 |
620					    (FASTTRAP_RIP_X *
621					    FASTTRAP_REX_B(rex));
622					rm = 1;
623				}
624
625				tp->ftt_modrm = tp->ftt_instr[rmindex];
626				tp->ftt_instr[rmindex] =
627				    FASTTRAP_MODRM(2, reg, rm);
628			}
629		}
630	}
631
632	return (0);
633}
634
635int
636fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
637{
638	fasttrap_instr_t instr = FASTTRAP_INSTR;
639
640	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
641		return (-1);
642
643	return (0);
644}
645
646int
647fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
648{
649	uint8_t instr;
650
651	/*
652	 * Distinguish between read or write failures and a changed
653	 * instruction.
654	 */
655	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
656		return (0);
657	if (instr != FASTTRAP_INSTR)
658		return (0);
659	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
660		return (-1);
661
662	return (0);
663}
664
665static void
666fasttrap_return_common(x86_saved_state_t *regs, user_addr_t pc, pid_t pid,
667    user_addr_t new_pc)
668{
669	x86_saved_state64_t *regs64;
670	x86_saved_state32_t *regs32;
671	unsigned int p_model;
672
673	dtrace_icookie_t cookie;
674
675        if (is_saved_state64(regs)) {
676                regs64 = saved_state64(regs);
677		regs32 = NULL;
678		p_model = DATAMODEL_LP64;
679        } else {
680		regs64 = NULL;
681                regs32 = saved_state32(regs);
682		p_model = DATAMODEL_ILP32;
683        }
684
685	fasttrap_tracepoint_t *tp;
686	fasttrap_bucket_t *bucket;
687	fasttrap_id_t *id;
688	lck_mtx_t *pid_mtx;
689
690	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
691	lck_mtx_lock(pid_mtx);
692	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
693
694	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
695		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
696		    tp->ftt_proc->ftpc_acount != 0)
697			break;
698	}
699
700	/*
701	 * Don't sweat it if we can't find the tracepoint again; unlike
702	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
703	 * is not essential to the correct execution of the process.
704	 */
705	if (tp == NULL) {
706		lck_mtx_unlock(pid_mtx);
707		return;
708	}
709
710	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
711		/*
712		 * If there's a branch that could act as a return site, we
713		 * need to trace it, and check here if the program counter is
714		 * external to the function.
715		 */
716		if (tp->ftt_type != FASTTRAP_T_RET &&
717		    tp->ftt_type != FASTTRAP_T_RET16 &&
718		    new_pc - id->fti_probe->ftp_faddr <
719		    id->fti_probe->ftp_fsize)
720			continue;
721
722		/*
723		 * Provide a hint to the stack trace functions to add the
724		 * following pc to the top of the stack since it's missing
725		 * on a return probe yet highly desirable for consistency.
726		 */
727		cookie = dtrace_interrupt_disable();
728		cpu_core[CPU->cpu_id].cpuc_missing_tos = pc;
729		if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) {
730			dtrace_probe(dtrace_probeid_error, 0 /* state */, id->fti_probe->ftp_id,
731				     1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV);
732		} else if (p_model == DATAMODEL_LP64) {
733			dtrace_probe(id->fti_probe->ftp_id,
734				     pc - id->fti_probe->ftp_faddr,
735				     regs64->rax, regs64->rdx, 0, 0);
736		} else {
737			dtrace_probe(id->fti_probe->ftp_id,
738				     pc - id->fti_probe->ftp_faddr,
739				     regs32->eax, regs32->edx, 0, 0);
740		}
741		/* remove the hint */
742		cpu_core[CPU->cpu_id].cpuc_missing_tos = 0;
743		dtrace_interrupt_enable(cookie);
744	}
745
746	lck_mtx_unlock(pid_mtx);
747}
748
749static void
750fasttrap_sigsegv(proc_t *p, uthread_t t, user_addr_t addr)
751{
752	proc_lock(p);
753
754	/* Set fault address and mark signal */
755	t->uu_code = addr;
756	t->uu_siglist |= sigmask(SIGSEGV);
757
758	/*
759         * XXX These two line may be redundant; if not, then we need
760	 * XXX to potentially set the data address in the machine
761	 * XXX specific thread state structure to indicate the address.
762	 */
763	t->uu_exception = KERN_INVALID_ADDRESS;		/* SIGSEGV */
764	t->uu_subcode = 0;	/* XXX pad */
765
766	proc_unlock(p);
767
768	/* raise signal */
769	signal_setast(t->uu_context.vc_thread);
770}
771
772static void
773fasttrap_usdt_args64(fasttrap_probe_t *probe, x86_saved_state64_t *regs64, int argc,
774    uint64_t *argv)
775{
776	int i, x, cap = MIN(argc, probe->ftp_nargs);
777	user_addr_t stack = (user_addr_t)regs64->isf.rsp;
778
779	for (i = 0; i < cap; i++) {
780		x = probe->ftp_argmap[i];
781
782		if (x < 6) {
783			/* FIXME! This may be broken, needs testing */
784			argv[i] = (&regs64->rdi)[x];
785		} else {
786			fasttrap_fuword64_noerr(stack + (x * sizeof(uint64_t)), &argv[i]);
787		}
788	}
789
790	for (; i < argc; i++) {
791		argv[i] = 0;
792	}
793}
794
795static void
796fasttrap_usdt_args32(fasttrap_probe_t *probe, x86_saved_state32_t *regs32, int argc,
797    uint32_t *argv)
798{
799	int i, x, cap = MIN(argc, probe->ftp_nargs);
800	uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp);
801
802	for (i = 0; i < cap; i++) {
803		x = probe->ftp_argmap[i];
804
805		fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[x], &argv[i]);
806	}
807
808	for (; i < argc; i++) {
809		argv[i] = 0;
810	}
811}
812
813/*
814 * FIXME!
815 */
816static int
817fasttrap_do_seg(fasttrap_tracepoint_t *tp, x86_saved_state_t *rp, user_addr_t *addr) // 64 bit
818{
819#pragma unused(tp, rp, addr)
820	printf("fasttrap_do_seg() called while unimplemented.\n");
821#if 0
822	proc_t *p = curproc;
823	user_desc_t *desc;
824	uint16_t sel, ndx, type;
825	uintptr_t limit;
826
827	switch (tp->ftt_segment) {
828	case FASTTRAP_SEG_CS:
829		sel = rp->r_cs;
830		break;
831	case FASTTRAP_SEG_DS:
832		sel = rp->r_ds;
833		break;
834	case FASTTRAP_SEG_ES:
835		sel = rp->r_es;
836		break;
837	case FASTTRAP_SEG_FS:
838		sel = rp->r_fs;
839		break;
840	case FASTTRAP_SEG_GS:
841		sel = rp->r_gs;
842		break;
843	case FASTTRAP_SEG_SS:
844		sel = rp->r_ss;
845		break;
846	}
847
848	/*
849	 * Make sure the given segment register specifies a user priority
850	 * selector rather than a kernel selector.
851	 */
852	if (!SELISUPL(sel))
853		return (-1);
854
855	ndx = SELTOIDX(sel);
856
857	/*
858	 * Check the bounds and grab the descriptor out of the specified
859	 * descriptor table.
860	 */
861	if (SELISLDT(sel)) {
862		if (ndx > p->p_ldtlimit)
863			return (-1);
864
865		desc = p->p_ldt + ndx;
866
867	} else {
868		if (ndx >= NGDT)
869			return (-1);
870
871		desc = cpu_get_gdt() + ndx;
872	}
873
874	/*
875	 * The descriptor must have user privilege level and it must be
876	 * present in memory.
877	 */
878	if (desc->usd_dpl != SEL_UPL || desc->usd_p != 1)
879		return (-1);
880
881	type = desc->usd_type;
882
883	/*
884	 * If the S bit in the type field is not set, this descriptor can
885	 * only be used in system context.
886	 */
887	if ((type & 0x10) != 0x10)
888		return (-1);
889
890	limit = USEGD_GETLIMIT(desc) * (desc->usd_gran ? PAGESIZE : 1);
891
892	if (tp->ftt_segment == FASTTRAP_SEG_CS) {
893		/*
894		 * The code/data bit and readable bit must both be set.
895		 */
896		if ((type & 0xa) != 0xa)
897			return (-1);
898
899		if (*addr > limit)
900			return (-1);
901	} else {
902		/*
903		 * The code/data bit must be clear.
904		 */
905		if ((type & 0x8) != 0)
906			return (-1);
907
908		/*
909		 * If the expand-down bit is clear, we just check the limit as
910		 * it would naturally be applied. Otherwise, we need to check
911		 * that the address is the range [limit + 1 .. 0xffff] or
912		 * [limit + 1 ... 0xffffffff] depending on if the default
913		 * operand size bit is set.
914		 */
915		if ((type & 0x4) == 0) {
916			if (*addr > limit)
917				return (-1);
918		} else if (desc->usd_def32) {
919			if (*addr < limit + 1 || 0xffff < *addr)
920				return (-1);
921		} else {
922			if (*addr < limit + 1 || 0xffffffff < *addr)
923				return (-1);
924		}
925	}
926
927	*addr += USEGD_GETBASE(desc);
928#endif /* 0 */
929	return (0);
930}
931
932/*
933 * Due to variances between Solaris and xnu, I have split this into a 32 bit and 64 bit
934 * code path. It still takes an x86_saved_state_t* argument, because it must sometimes
935 * call other methods that require a x86_saved_state_t.
936 *
937 * NOTE!!!!
938 *
939 * Any changes made to this method must be echo'd in fasttrap_pid_probe64!
940 *
941 */
942static int
943fasttrap_pid_probe32(x86_saved_state_t *regs)
944{
945	ASSERT(is_saved_state32(regs));
946
947	x86_saved_state32_t *regs32  = saved_state32(regs);
948	user_addr_t pc = regs32->eip - 1;
949	proc_t *p = current_proc();
950	user_addr_t new_pc = 0;
951	fasttrap_bucket_t *bucket;
952	lck_mtx_t *pid_mtx;
953	fasttrap_tracepoint_t *tp, tp_local;
954	pid_t pid;
955	dtrace_icookie_t cookie;
956	uint_t is_enabled = 0;
957
958	uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread());
959
960	/*
961	 * It's possible that a user (in a veritable orgy of bad planning)
962	 * could redirect this thread's flow of control before it reached the
963	 * return probe fasttrap. In this case we need to kill the process
964	 * since it's in a unrecoverable state.
965	 */
966	if (uthread->t_dtrace_step) {
967		ASSERT(uthread->t_dtrace_on);
968		fasttrap_sigtrap(p, uthread, pc);
969		return (0);
970	}
971
972	/*
973	 * Clear all user tracing flags.
974	 */
975	uthread->t_dtrace_ft = 0;
976	uthread->t_dtrace_pc = 0;
977	uthread->t_dtrace_npc = 0;
978	uthread->t_dtrace_scrpc = 0;
979	uthread->t_dtrace_astpc = 0;
980
981	/*
982	 * Treat a child created by a call to vfork(2) as if it were its
983	 * parent. We know that there's only one thread of control in such a
984	 * process: this one.
985	 */
986	if (p->p_lflag & P_LINVFORK) {
987		proc_list_lock();
988		while (p->p_lflag & P_LINVFORK)
989			p = p->p_pptr;
990		proc_list_unlock();
991	}
992
993	pid = p->p_pid;
994	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
995	lck_mtx_lock(pid_mtx);
996	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
997
998	/*
999	 * Lookup the tracepoint that the process just hit.
1000	 */
1001	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
1002		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
1003		    tp->ftt_proc->ftpc_acount != 0)
1004			break;
1005	}
1006
1007	/*
1008	 * If we couldn't find a matching tracepoint, either a tracepoint has
1009	 * been inserted without using the pid<pid> ioctl interface (see
1010	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
1011	 */
1012	if (tp == NULL) {
1013		lck_mtx_unlock(pid_mtx);
1014		return (-1);
1015	}
1016
1017	/*
1018	 * Set the program counter to the address of the traced instruction
1019	 * so that it looks right in ustack() output.
1020	 */
1021	regs32->eip = pc;
1022
1023	if (tp->ftt_ids != NULL) {
1024		fasttrap_id_t *id;
1025
1026		uint32_t s0, s1, s2, s3, s4, s5;
1027		uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp);
1028
1029		/*
1030		 * In 32-bit mode, all arguments are passed on the
1031		 * stack. If this is a function entry probe, we need
1032		 * to skip the first entry on the stack as it
1033		 * represents the return address rather than a
1034		 * parameter to the function.
1035		 */
1036		fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[0], &s0);
1037		fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[1], &s1);
1038		fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[2], &s2);
1039		fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[3], &s3);
1040		fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[4], &s4);
1041		fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[5], &s5);
1042
1043		for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1044			fasttrap_probe_t *probe = id->fti_probe;
1045
1046			if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) {
1047				dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id,
1048					     1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV);
1049			} else if (id->fti_ptype == DTFTP_ENTRY) {
1050				/*
1051				 * We note that this was an entry
1052				 * probe to help ustack() find the
1053				 * first caller.
1054				 */
1055				cookie = dtrace_interrupt_disable();
1056				DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1057				dtrace_probe(probe->ftp_id, s1, s2,
1058					     s3, s4, s5);
1059				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1060				dtrace_interrupt_enable(cookie);
1061			} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1062				/*
1063				 * Note that in this case, we don't
1064				 * call dtrace_probe() since it's only
1065				 * an artificial probe meant to change
1066				 * the flow of control so that it
1067				 * encounters the true probe.
1068				 */
1069				is_enabled = 1;
1070			} else if (probe->ftp_argmap == NULL) {
1071				dtrace_probe(probe->ftp_id, s0, s1,
1072					     s2, s3, s4);
1073			} else {
1074				uint32_t t[5];
1075
1076				fasttrap_usdt_args32(probe, regs32,
1077						     sizeof (t) / sizeof (t[0]), t);
1078
1079				dtrace_probe(probe->ftp_id, t[0], t[1],
1080					     t[2], t[3], t[4]);
1081			}
1082
1083			/* APPLE NOTE: Oneshot probes get one and only one chance... */
1084			if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) {
1085				fasttrap_tracepoint_remove(p, tp);
1086			}
1087		}
1088	}
1089
1090	/*
1091	 * We're about to do a bunch of work so we cache a local copy of
1092	 * the tracepoint to emulate the instruction, and then find the
1093	 * tracepoint again later if we need to light up any return probes.
1094	 */
1095	tp_local = *tp;
1096	lck_mtx_unlock(pid_mtx);
1097	tp = &tp_local;
1098
1099	/*
1100	 * Set the program counter to appear as though the traced instruction
1101	 * had completely executed. This ensures that fasttrap_getreg() will
1102	 * report the expected value for REG_RIP.
1103	 */
1104	regs32->eip = pc + tp->ftt_size;
1105
1106	/*
1107	 * If there's an is-enabled probe connected to this tracepoint it
1108	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1109	 * instruction that was placed there by DTrace when the binary was
1110	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1111	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1112	 * emulation logic since we know the inevitable result. It's possible
1113	 * that a user could construct a scenario where the 'is-enabled'
1114	 * probe was on some other instruction, but that would be a rather
1115	 * exotic way to shoot oneself in the foot.
1116	 */
1117	if (is_enabled) {
1118		regs32->eax = 1;
1119		new_pc = regs32->eip;
1120		goto done;
1121	}
1122
1123	/*
1124	 * We emulate certain types of instructions to ensure correctness
1125	 * (in the case of position dependent instructions) or optimize
1126	 * common cases. The rest we have the thread execute back in user-
1127	 * land.
1128	 */
1129	switch (tp->ftt_type) {
1130		case FASTTRAP_T_RET:
1131		case FASTTRAP_T_RET16:
1132		{
1133			user_addr_t dst;
1134			user_addr_t addr;
1135			int ret;
1136
1137			/*
1138			 * We have to emulate _every_ facet of the behavior of a ret
1139			 * instruction including what happens if the load from %esp
1140			 * fails; in that case, we send a SIGSEGV.
1141			 */
1142			uint32_t dst32;
1143			ret = fasttrap_fuword32((user_addr_t)regs32->uesp, &dst32);
1144			dst = dst32;
1145			addr = regs32->uesp + sizeof (uint32_t);
1146
1147			if (ret == -1) {
1148				fasttrap_sigsegv(p, uthread, (user_addr_t)regs32->uesp);
1149				new_pc = pc;
1150				break;
1151			}
1152
1153			if (tp->ftt_type == FASTTRAP_T_RET16)
1154				addr += tp->ftt_dest;
1155
1156			regs32->uesp = addr;
1157			new_pc = dst;
1158			break;
1159		}
1160
1161		case FASTTRAP_T_JCC:
1162		{
1163			uint_t taken;
1164
1165			switch (tp->ftt_code) {
1166				case FASTTRAP_JO:
1167					taken = (regs32->efl & FASTTRAP_EFLAGS_OF) != 0;
1168					break;
1169				case FASTTRAP_JNO:
1170					taken = (regs32->efl & FASTTRAP_EFLAGS_OF) == 0;
1171					break;
1172				case FASTTRAP_JB:
1173					taken = (regs32->efl & FASTTRAP_EFLAGS_CF) != 0;
1174					break;
1175				case FASTTRAP_JAE:
1176					taken = (regs32->efl & FASTTRAP_EFLAGS_CF) == 0;
1177					break;
1178				case FASTTRAP_JE:
1179					taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0;
1180					break;
1181				case FASTTRAP_JNE:
1182					taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0;
1183					break;
1184				case FASTTRAP_JBE:
1185					taken = (regs32->efl & FASTTRAP_EFLAGS_CF) != 0 ||
1186						(regs32->efl & FASTTRAP_EFLAGS_ZF) != 0;
1187					break;
1188				case FASTTRAP_JA:
1189					taken = (regs32->efl & FASTTRAP_EFLAGS_CF) == 0 &&
1190						(regs32->efl & FASTTRAP_EFLAGS_ZF) == 0;
1191					break;
1192				case FASTTRAP_JS:
1193					taken = (regs32->efl & FASTTRAP_EFLAGS_SF) != 0;
1194					break;
1195				case FASTTRAP_JNS:
1196					taken = (regs32->efl & FASTTRAP_EFLAGS_SF) == 0;
1197					break;
1198				case FASTTRAP_JP:
1199					taken = (regs32->efl & FASTTRAP_EFLAGS_PF) != 0;
1200					break;
1201				case FASTTRAP_JNP:
1202					taken = (regs32->efl & FASTTRAP_EFLAGS_PF) == 0;
1203					break;
1204				case FASTTRAP_JL:
1205					taken = ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) !=
1206						((regs32->efl & FASTTRAP_EFLAGS_OF) == 0);
1207					break;
1208				case FASTTRAP_JGE:
1209					taken = ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) ==
1210						((regs32->efl & FASTTRAP_EFLAGS_OF) == 0);
1211					break;
1212				case FASTTRAP_JLE:
1213					taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0 ||
1214						((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) !=
1215						((regs32->efl & FASTTRAP_EFLAGS_OF) == 0);
1216					break;
1217				case FASTTRAP_JG:
1218					taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0 &&
1219						((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) ==
1220						((regs32->efl & FASTTRAP_EFLAGS_OF) == 0);
1221					break;
1222				default:
1223					taken = FALSE;
1224			}
1225
1226			if (taken)
1227				new_pc = tp->ftt_dest;
1228			else
1229				new_pc = pc + tp->ftt_size;
1230			break;
1231		}
1232
1233		case FASTTRAP_T_LOOP:
1234		{
1235			uint_t taken;
1236			greg_t cx = regs32->ecx--;
1237
1238			switch (tp->ftt_code) {
1239				case FASTTRAP_LOOPNZ:
1240					taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0 &&
1241						cx != 0;
1242					break;
1243				case FASTTRAP_LOOPZ:
1244					taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0 &&
1245						cx != 0;
1246					break;
1247				case FASTTRAP_LOOP:
1248					taken = (cx != 0);
1249					break;
1250				default:
1251					taken = FALSE;
1252			}
1253
1254			if (taken)
1255				new_pc = tp->ftt_dest;
1256			else
1257				new_pc = pc + tp->ftt_size;
1258			break;
1259		}
1260
1261		case FASTTRAP_T_JCXZ:
1262		{
1263			greg_t cx = regs32->ecx;
1264
1265			if (cx == 0)
1266				new_pc = tp->ftt_dest;
1267			else
1268				new_pc = pc + tp->ftt_size;
1269			break;
1270		}
1271
1272		case FASTTRAP_T_PUSHL_EBP:
1273		{
1274			user_addr_t addr = regs32->uesp - sizeof (uint32_t);
1275			int ret = fasttrap_suword32(addr, (uint32_t)regs32->ebp);
1276
1277			if (ret == -1) {
1278				fasttrap_sigsegv(p, uthread, addr);
1279				new_pc = pc;
1280				break;
1281			}
1282
1283			regs32->uesp = addr;
1284			new_pc = pc + tp->ftt_size;
1285			break;
1286		}
1287
1288		case FASTTRAP_T_NOP:
1289			new_pc = pc + tp->ftt_size;
1290			break;
1291
1292		case FASTTRAP_T_JMP:
1293		case FASTTRAP_T_CALL:
1294			if (tp->ftt_code == 0) {
1295				new_pc = tp->ftt_dest;
1296			} else {
1297				user_addr_t /* value ,*/ addr = tp->ftt_dest;
1298
1299				if (tp->ftt_base != FASTTRAP_NOREG)
1300					addr += fasttrap_getreg(regs, tp->ftt_base);
1301				if (tp->ftt_index != FASTTRAP_NOREG)
1302					addr += fasttrap_getreg(regs, tp->ftt_index) <<
1303						tp->ftt_scale;
1304
1305				if (tp->ftt_code == 1) {
1306					/*
1307					 * If there's a segment prefix for this
1308					 * instruction, we'll need to check permissions
1309					 * and bounds on the given selector, and adjust
1310					 * the address accordingly.
1311					 */
1312					if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1313					    fasttrap_do_seg(tp, regs, &addr) != 0) {
1314						fasttrap_sigsegv(p, uthread, addr);
1315						new_pc = pc;
1316						break;
1317					}
1318
1319					uint32_t value32;
1320					addr = (user_addr_t)(uint32_t)addr;
1321					if (fasttrap_fuword32(addr, &value32) == -1) {
1322						fasttrap_sigsegv(p, uthread, addr);
1323						new_pc = pc;
1324						break;
1325					}
1326					new_pc = value32;
1327				} else {
1328					new_pc = addr;
1329				}
1330			}
1331
1332			/*
1333			 * If this is a call instruction, we need to push the return
1334			 * address onto the stack. If this fails, we send the process
1335			 * a SIGSEGV and reset the pc to emulate what would happen if
1336			 * this instruction weren't traced.
1337			 */
1338			if (tp->ftt_type == FASTTRAP_T_CALL) {
1339				user_addr_t addr = regs32->uesp - sizeof (uint32_t);
1340				int ret = fasttrap_suword32(addr, (uint32_t)(pc + tp->ftt_size));
1341
1342				if (ret == -1) {
1343					fasttrap_sigsegv(p, uthread, addr);
1344					new_pc = pc;
1345					break;
1346				}
1347
1348				regs32->uesp = addr;
1349			}
1350			break;
1351
1352		case FASTTRAP_T_COMMON:
1353		{
1354			user_addr_t addr;
1355			uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7];
1356			uint_t i = 0;
1357
1358			/*
1359			 * Generic Instruction Tracing
1360			 * ---------------------------
1361			 *
1362			 * This is the layout of the scratch space in the user-land
1363			 * thread structure for our generated instructions.
1364			 *
1365			 *	32-bit mode			bytes
1366			 *	------------------------	-----
1367			 * a:	<original instruction>		<= 15
1368			 *	jmp	<pc + tp->ftt_size>	    5
1369			 * b:	<original instrction>		<= 15
1370			 *	int	T_DTRACE_RET		    2
1371			 *					-----
1372			 *					<= 37
1373			 *
1374			 *	64-bit mode			bytes
1375			 *	------------------------	-----
1376			 * a:	<original instruction>		<= 15
1377			 *	jmp	0(%rip)			    6
1378			 *	<pc + tp->ftt_size>		    8
1379			 * b:	<original instruction>		<= 15
1380			 * 	int	T_DTRACE_RET		    2
1381			 * 					-----
1382			 * 					<= 46
1383			 *
1384			 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1385			 * to b. If we encounter a signal on the way out of the
1386			 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1387			 * so that we execute the original instruction and re-enter
1388			 * the kernel rather than redirecting to the next instruction.
1389			 *
1390			 * If there are return probes (so we know that we're going to
1391			 * need to reenter the kernel after executing the original
1392			 * instruction), the scratch space will just contain the
1393			 * original instruction followed by an interrupt -- the same
1394			 * data as at b.
1395			 */
1396
1397			addr = uthread->t_dtrace_scratch->addr;
1398
1399			if (addr == 0LL) {
1400				fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc
1401				new_pc = pc;
1402				break;
1403			}
1404
1405			ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1406
1407			uthread->t_dtrace_scrpc = addr;
1408			bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1409			i += tp->ftt_size;
1410
1411			/*
1412			 * Set up the jmp to the next instruction; note that
1413			 * the size of the traced instruction cancels out.
1414			 */
1415			scratch[i++] = FASTTRAP_JMP32;
1416			/* LINTED - alignment */
1417			*(uint32_t *)&scratch[i] = pc - addr - 5;
1418			i += sizeof (uint32_t);
1419
1420			uthread->t_dtrace_astpc = addr + i;
1421			bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1422			i += tp->ftt_size;
1423			scratch[i++] = FASTTRAP_INT;
1424			scratch[i++] = T_DTRACE_RET;
1425
1426			ASSERT(i <= sizeof (scratch));
1427
1428			if (fasttrap_copyout(scratch, addr, i)) {
1429				fasttrap_sigtrap(p, uthread, pc);
1430				new_pc = pc;
1431				break;
1432			}
1433
1434			if (tp->ftt_retids != NULL) {
1435				uthread->t_dtrace_step = 1;
1436				uthread->t_dtrace_ret = 1;
1437				new_pc = uthread->t_dtrace_astpc;
1438			} else {
1439				new_pc = uthread->t_dtrace_scrpc;
1440			}
1441
1442			uthread->t_dtrace_pc = pc;
1443			uthread->t_dtrace_npc = pc + tp->ftt_size;
1444			uthread->t_dtrace_on = 1;
1445			break;
1446		}
1447
1448		default:
1449			panic("fasttrap: mishandled an instruction");
1450	}
1451
1452done:
1453	/*
1454	 * APPLE NOTE:
1455	 *
1456	 * We're setting this earlier than Solaris does, to get a "correct"
1457	 * ustack() output. In the Sun code,  a() -> b() -> c() -> d() is
1458	 * reported at: d, b, a. The new way gives c, b, a, which is closer
1459	 * to correct, as the return instruction has already exectued.
1460	 */
1461	regs32->eip = new_pc;
1462
1463	/*
1464	 * If there were no return probes when we first found the tracepoint,
1465	 * we should feel no obligation to honor any return probes that were
1466	 * subsequently enabled -- they'll just have to wait until the next
1467	 * time around.
1468	 */
1469	if (tp->ftt_retids != NULL) {
1470		/*
1471		 * We need to wait until the results of the instruction are
1472		 * apparent before invoking any return probes. If this
1473		 * instruction was emulated we can just call
1474		 * fasttrap_return_common(); if it needs to be executed, we
1475		 * need to wait until the user thread returns to the kernel.
1476		 */
1477		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1478			fasttrap_return_common(regs, pc, pid, new_pc);
1479		} else {
1480			ASSERT(uthread->t_dtrace_ret != 0);
1481			ASSERT(uthread->t_dtrace_pc == pc);
1482			ASSERT(uthread->t_dtrace_scrpc != 0);
1483			ASSERT(new_pc == uthread->t_dtrace_astpc);
1484		}
1485	}
1486
1487	return (0);
1488}
1489
1490/*
1491 * Due to variances between Solaris and xnu, I have split this into a 32 bit and 64 bit
1492 * code path. It still takes an x86_saved_state_t* argument, because it must sometimes
1493 * call other methods that require a x86_saved_state_t.
1494 *
1495 * NOTE!!!!
1496 *
1497 * Any changes made to this method must be echo'd in fasttrap_pid_probe32!
1498 *
1499 */
1500static int
1501fasttrap_pid_probe64(x86_saved_state_t *regs)
1502{
1503	ASSERT(is_saved_state64(regs));
1504
1505	x86_saved_state64_t *regs64 = saved_state64(regs);
1506	user_addr_t pc = regs64->isf.rip - 1;
1507	proc_t *p = current_proc();
1508	user_addr_t new_pc = 0;
1509	fasttrap_bucket_t *bucket;
1510	lck_mtx_t *pid_mtx;
1511	fasttrap_tracepoint_t *tp, tp_local;
1512	pid_t pid;
1513	dtrace_icookie_t cookie;
1514	uint_t is_enabled = 0;
1515
1516	uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread());
1517
1518	/*
1519	 * It's possible that a user (in a veritable orgy of bad planning)
1520	 * could redirect this thread's flow of control before it reached the
1521	 * return probe fasttrap. In this case we need to kill the process
1522	 * since it's in a unrecoverable state.
1523	 */
1524	if (uthread->t_dtrace_step) {
1525		ASSERT(uthread->t_dtrace_on);
1526		fasttrap_sigtrap(p, uthread, pc);
1527		return (0);
1528	}
1529
1530	/*
1531	 * Clear all user tracing flags.
1532	 */
1533	uthread->t_dtrace_ft = 0;
1534	uthread->t_dtrace_pc = 0;
1535	uthread->t_dtrace_npc = 0;
1536	uthread->t_dtrace_scrpc = 0;
1537	uthread->t_dtrace_astpc = 0;
1538	uthread->t_dtrace_regv = 0;
1539
1540	/*
1541	 * Treat a child created by a call to vfork(2) as if it were its
1542	 * parent. We know that there's only one thread of control in such a
1543	 * process: this one.
1544	 */
1545	if (p->p_lflag & P_LINVFORK) {
1546		proc_list_lock();
1547		while (p->p_lflag & P_LINVFORK)
1548			p = p->p_pptr;
1549		proc_list_unlock();
1550	}
1551
1552	pid = p->p_pid;
1553	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
1554	lck_mtx_lock(pid_mtx);
1555	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
1556
1557	/*
1558	 * Lookup the tracepoint that the process just hit.
1559	 */
1560	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
1561		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
1562		    tp->ftt_proc->ftpc_acount != 0)
1563			break;
1564	}
1565
1566	/*
1567	 * If we couldn't find a matching tracepoint, either a tracepoint has
1568	 * been inserted without using the pid<pid> ioctl interface (see
1569	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
1570	 */
1571	if (tp == NULL) {
1572		lck_mtx_unlock(pid_mtx);
1573		return (-1);
1574	}
1575
1576	/*
1577	 * Set the program counter to the address of the traced instruction
1578	 * so that it looks right in ustack() output.
1579	 */
1580	regs64->isf.rip = pc;
1581
1582	if (tp->ftt_ids != NULL) {
1583		fasttrap_id_t *id;
1584
1585		for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1586			fasttrap_probe_t *probe = id->fti_probe;
1587
1588			if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) {
1589				dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id,
1590					     1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV);
1591			} else if (id->fti_ptype == DTFTP_ENTRY) {
1592				/*
1593				 * We note that this was an entry
1594				 * probe to help ustack() find the
1595				 * first caller.
1596				 */
1597				cookie = dtrace_interrupt_disable();
1598				DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1599				dtrace_probe(probe->ftp_id, regs64->rdi,
1600					     regs64->rsi, regs64->rdx, regs64->rcx,
1601					     regs64->r8);
1602				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1603				dtrace_interrupt_enable(cookie);
1604			} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1605				/*
1606				 * Note that in this case, we don't
1607				 * call dtrace_probe() since it's only
1608				 * an artificial probe meant to change
1609				 * the flow of control so that it
1610				 * encounters the true probe.
1611				 */
1612				is_enabled = 1;
1613			} else if (probe->ftp_argmap == NULL) {
1614				dtrace_probe(probe->ftp_id, regs64->rdi,
1615					     regs64->rsi, regs64->rdx, regs64->rcx,
1616					     regs64->r8);
1617			} else {
1618				uint64_t t[5];
1619
1620				fasttrap_usdt_args64(probe, regs64,
1621						     sizeof (t) / sizeof (t[0]), t);
1622
1623				dtrace_probe(probe->ftp_id, t[0], t[1],
1624					     t[2], t[3], t[4]);
1625			}
1626
1627			/* APPLE NOTE: Oneshot probes get one and only one chance... */
1628			if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) {
1629				fasttrap_tracepoint_remove(p, tp);
1630			}
1631		}
1632	}
1633
1634	/*
1635	 * We're about to do a bunch of work so we cache a local copy of
1636	 * the tracepoint to emulate the instruction, and then find the
1637	 * tracepoint again later if we need to light up any return probes.
1638	 */
1639	tp_local = *tp;
1640	lck_mtx_unlock(pid_mtx);
1641	tp = &tp_local;
1642
1643	/*
1644	 * Set the program counter to appear as though the traced instruction
1645	 * had completely executed. This ensures that fasttrap_getreg() will
1646	 * report the expected value for REG_RIP.
1647	 */
1648	regs64->isf.rip = pc + tp->ftt_size;
1649
1650	/*
1651	 * If there's an is-enabled probe connected to this tracepoint it
1652	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1653	 * instruction that was placed there by DTrace when the binary was
1654	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1655	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1656	 * emulation logic since we know the inevitable result. It's possible
1657	 * that a user could construct a scenario where the 'is-enabled'
1658	 * probe was on some other instruction, but that would be a rather
1659	 * exotic way to shoot oneself in the foot.
1660	 */
1661	if (is_enabled) {
1662		regs64->rax = 1;
1663		new_pc = regs64->isf.rip;
1664		goto done;
1665	}
1666
1667	/*
1668	 * We emulate certain types of instructions to ensure correctness
1669	 * (in the case of position dependent instructions) or optimize
1670	 * common cases. The rest we have the thread execute back in user-
1671	 * land.
1672	 */
1673	switch (tp->ftt_type) {
1674		case FASTTRAP_T_RET:
1675		case FASTTRAP_T_RET16:
1676		{
1677			user_addr_t dst;
1678			user_addr_t addr;
1679			int ret;
1680
1681			/*
1682			 * We have to emulate _every_ facet of the behavior of a ret
1683			 * instruction including what happens if the load from %esp
1684			 * fails; in that case, we send a SIGSEGV.
1685			 */
1686			ret = fasttrap_fuword64((user_addr_t)regs64->isf.rsp, &dst);
1687			addr = regs64->isf.rsp + sizeof (uint64_t);
1688
1689			if (ret == -1) {
1690				fasttrap_sigsegv(p, uthread, (user_addr_t)regs64->isf.rsp);
1691				new_pc = pc;
1692				break;
1693			}
1694
1695			if (tp->ftt_type == FASTTRAP_T_RET16)
1696				addr += tp->ftt_dest;
1697
1698			regs64->isf.rsp = addr;
1699			new_pc = dst;
1700			break;
1701		}
1702
1703		case FASTTRAP_T_JCC:
1704		{
1705			uint_t taken;
1706
1707			switch (tp->ftt_code) {
1708				case FASTTRAP_JO:
1709					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_OF) != 0;
1710					break;
1711				case FASTTRAP_JNO:
1712					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0;
1713					break;
1714				case FASTTRAP_JB:
1715					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) != 0;
1716					break;
1717				case FASTTRAP_JAE:
1718					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) == 0;
1719					break;
1720				case FASTTRAP_JE:
1721					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0;
1722					break;
1723				case FASTTRAP_JNE:
1724					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0;
1725					break;
1726				case FASTTRAP_JBE:
1727					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) != 0 ||
1728						(regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0;
1729					break;
1730				case FASTTRAP_JA:
1731					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) == 0 &&
1732						(regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0;
1733					break;
1734				case FASTTRAP_JS:
1735					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_SF) != 0;
1736					break;
1737				case FASTTRAP_JNS:
1738					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0;
1739					break;
1740				case FASTTRAP_JP:
1741					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_PF) != 0;
1742					break;
1743				case FASTTRAP_JNP:
1744					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_PF) == 0;
1745					break;
1746				case FASTTRAP_JL:
1747					taken = ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1748						((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0);
1749					break;
1750				case FASTTRAP_JGE:
1751					taken = ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1752						((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0);
1753					break;
1754				case FASTTRAP_JLE:
1755					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0 ||
1756						((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1757						((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0);
1758					break;
1759				case FASTTRAP_JG:
1760					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1761						((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1762						((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0);
1763					break;
1764				default:
1765					taken = FALSE;
1766			}
1767
1768			if (taken)
1769				new_pc = tp->ftt_dest;
1770			else
1771				new_pc = pc + tp->ftt_size;
1772			break;
1773		}
1774
1775		case FASTTRAP_T_LOOP:
1776		{
1777			uint_t taken;
1778			uint64_t cx = regs64->rcx--;
1779
1780			switch (tp->ftt_code) {
1781				case FASTTRAP_LOOPNZ:
1782					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1783						cx != 0;
1784					break;
1785				case FASTTRAP_LOOPZ:
1786					taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0 &&
1787						cx != 0;
1788					break;
1789				case FASTTRAP_LOOP:
1790					taken = (cx != 0);
1791					break;
1792				default:
1793					taken = FALSE;
1794			}
1795
1796			if (taken)
1797				new_pc = tp->ftt_dest;
1798			else
1799				new_pc = pc + tp->ftt_size;
1800			break;
1801		}
1802
1803		case FASTTRAP_T_JCXZ:
1804		{
1805			uint64_t cx = regs64->rcx;
1806
1807			if (cx == 0)
1808				new_pc = tp->ftt_dest;
1809			else
1810				new_pc = pc + tp->ftt_size;
1811			break;
1812		}
1813
1814		case FASTTRAP_T_PUSHL_EBP:
1815		{
1816			user_addr_t addr = regs64->isf.rsp - sizeof (uint64_t);
1817			int ret = fasttrap_suword64(addr, (uint64_t)regs64->rbp);
1818
1819			if (ret == -1) {
1820				fasttrap_sigsegv(p, uthread, addr);
1821				new_pc = pc;
1822				break;
1823			}
1824
1825			regs64->isf.rsp = addr;
1826			new_pc = pc + tp->ftt_size;
1827			break;
1828		}
1829
1830		case FASTTRAP_T_NOP:
1831			new_pc = pc + tp->ftt_size;
1832			break;
1833
1834		case FASTTRAP_T_JMP:
1835		case FASTTRAP_T_CALL:
1836			if (tp->ftt_code == 0) {
1837				new_pc = tp->ftt_dest;
1838			} else {
1839				user_addr_t value, addr = tp->ftt_dest;
1840
1841				if (tp->ftt_base != FASTTRAP_NOREG)
1842					addr += fasttrap_getreg(regs, tp->ftt_base);
1843				if (tp->ftt_index != FASTTRAP_NOREG)
1844					addr += fasttrap_getreg(regs, tp->ftt_index) <<
1845						tp->ftt_scale;
1846
1847				if (tp->ftt_code == 1) {
1848					/*
1849					 * If there's a segment prefix for this
1850					 * instruction, we'll need to check permissions
1851					 * and bounds on the given selector, and adjust
1852					 * the address accordingly.
1853					 */
1854					if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1855					    fasttrap_do_seg(tp, regs, &addr) != 0) {
1856						fasttrap_sigsegv(p, uthread, addr);
1857						new_pc = pc;
1858						break;
1859					}
1860
1861					if (fasttrap_fuword64(addr, &value) == -1) {
1862						fasttrap_sigsegv(p, uthread, addr);
1863						new_pc = pc;
1864						break;
1865					}
1866					new_pc = value;
1867				} else {
1868					new_pc = addr;
1869				}
1870			}
1871
1872			/*
1873			 * If this is a call instruction, we need to push the return
1874			 * address onto the stack. If this fails, we send the process
1875			 * a SIGSEGV and reset the pc to emulate what would happen if
1876			 * this instruction weren't traced.
1877			 */
1878			if (tp->ftt_type == FASTTRAP_T_CALL) {
1879				user_addr_t addr = regs64->isf.rsp - sizeof (uint64_t);
1880				int ret = fasttrap_suword64(addr, pc + tp->ftt_size);
1881
1882				if (ret == -1) {
1883					fasttrap_sigsegv(p, uthread, addr);
1884					new_pc = pc;
1885					break;
1886				}
1887
1888				regs64->isf.rsp = addr;
1889			}
1890			break;
1891
1892		case FASTTRAP_T_COMMON:
1893		{
1894			user_addr_t addr;
1895			uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22];
1896			uint_t i = 0;
1897
1898			/*
1899			 * Generic Instruction Tracing
1900			 * ---------------------------
1901			 *
1902			 * This is the layout of the scratch space in the user-land
1903			 * thread structure for our generated instructions.
1904			 *
1905			 *	32-bit mode			bytes
1906			 *	------------------------	-----
1907			 * a:	<original instruction>		<= 15
1908			 *	jmp	<pc + tp->ftt_size>	    5
1909			 * b:	<original instrction>		<= 15
1910			 *	int	T_DTRACE_RET		    2
1911			 *					-----
1912			 *					<= 37
1913			 *
1914			 *	64-bit mode			bytes
1915			 *	------------------------	-----
1916			 * a:	<original instruction>		<= 15
1917			 *	jmp	0(%rip)			    6
1918			 *	<pc + tp->ftt_size>		    8
1919			 * b:	<original instruction>		<= 15
1920			 * 	int	T_DTRACE_RET		    2
1921			 * 					-----
1922			 * 					<= 46
1923			 *
1924			 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1925			 * to b. If we encounter a signal on the way out of the
1926			 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1927			 * so that we execute the original instruction and re-enter
1928			 * the kernel rather than redirecting to the next instruction.
1929			 *
1930			 * If there are return probes (so we know that we're going to
1931			 * need to reenter the kernel after executing the original
1932			 * instruction), the scratch space will just contain the
1933			 * original instruction followed by an interrupt -- the same
1934			 * data as at b.
1935			 *
1936			 * %rip-relative Addressing
1937			 * ------------------------
1938			 *
1939			 * There's a further complication in 64-bit mode due to %rip-
1940			 * relative addressing. While this is clearly a beneficial
1941			 * architectural decision for position independent code, it's
1942			 * hard not to see it as a personal attack against the pid
1943			 * provider since before there was a relatively small set of
1944			 * instructions to emulate; with %rip-relative addressing,
1945			 * almost every instruction can potentially depend on the
1946			 * address at which it's executed. Rather than emulating
1947			 * the broad spectrum of instructions that can now be
1948			 * position dependent, we emulate jumps and others as in
1949			 * 32-bit mode, and take a different tack for instructions
1950			 * using %rip-relative addressing.
1951			 *
1952			 * For every instruction that uses the ModRM byte, the
1953			 * in-kernel disassembler reports its location. We use the
1954			 * ModRM byte to identify that an instruction uses
1955			 * %rip-relative addressing and to see what other registers
1956			 * the instruction uses. To emulate those instructions,
1957			 * we modify the instruction to be %rax-relative rather than
1958			 * %rip-relative (or %rcx-relative if the instruction uses
1959			 * %rax; or %r8- or %r9-relative if the REX.B is present so
1960			 * we don't have to rewrite the REX prefix). We then load
1961			 * the value that %rip would have been into the scratch
1962			 * register and generate an instruction to reset the scratch
1963			 * register back to its original value. The instruction
1964			 * sequence looks like this:
1965			 *
1966			 *	64-mode %rip-relative		bytes
1967			 *	------------------------	-----
1968			 * a:	<modified instruction>		<= 15
1969			 *	movq	$<value>, %<scratch>	    6
1970			 *	jmp	0(%rip)			    6
1971			 *	<pc + tp->ftt_size>		    8
1972			 * b:	<modified instruction>  	<= 15
1973			 * 	int	T_DTRACE_RET		    2
1974			 * 					-----
1975			 *					   52
1976			 *
1977			 * We set curthread->t_dtrace_regv so that upon receiving
1978			 * a signal we can reset the value of the scratch register.
1979			 */
1980
1981			addr = uthread->t_dtrace_scratch->addr;
1982
1983			if (addr == 0LL) {
1984				fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc
1985				new_pc = pc;
1986				break;
1987			}
1988
1989			ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1990
1991			uthread->t_dtrace_scrpc = addr;
1992			bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1993			i += tp->ftt_size;
1994
1995			if (tp->ftt_ripmode != 0) {
1996				uint64_t* reg;
1997
1998				ASSERT(tp->ftt_ripmode &
1999				       (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
2000
2001				/*
2002				 * If this was a %rip-relative instruction, we change
2003				 * it to be either a %rax- or %rcx-relative
2004				 * instruction (depending on whether those registers
2005				 * are used as another operand; or %r8- or %r9-
2006				 * relative depending on the value of REX.B). We then
2007				 * set that register and generate a movq instruction
2008				 * to reset the value.
2009				 */
2010				if (tp->ftt_ripmode & FASTTRAP_RIP_X)
2011					scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
2012				else
2013					scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
2014
2015				if (tp->ftt_ripmode & FASTTRAP_RIP_1)
2016					scratch[i++] = FASTTRAP_MOV_EAX;
2017				else
2018					scratch[i++] = FASTTRAP_MOV_ECX;
2019
2020				switch (tp->ftt_ripmode) {
2021					case FASTTRAP_RIP_1:
2022						reg = &regs64->rax;
2023						uthread->t_dtrace_reg = REG_RAX;
2024						break;
2025					case FASTTRAP_RIP_2:
2026						reg = &regs64->rcx;
2027						uthread->t_dtrace_reg = REG_RCX;
2028						break;
2029					case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
2030						reg = &regs64->r8;
2031						uthread->t_dtrace_reg = REG_R8;
2032						break;
2033					case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
2034						reg = &regs64->r9;
2035						uthread->t_dtrace_reg = REG_R9;
2036						break;
2037					default:
2038						reg = NULL;
2039						panic("unhandled ripmode in fasttrap_pid_probe64");
2040				}
2041
2042				/* LINTED - alignment */
2043				*(uint64_t *)&scratch[i] = *reg;
2044				uthread->t_dtrace_regv = *reg;
2045				*reg = pc + tp->ftt_size;
2046				i += sizeof (uint64_t);
2047			}
2048
2049			/*
2050			 * Generate the branch instruction to what would have
2051			 * normally been the subsequent instruction. In 32-bit mode,
2052			 * this is just a relative branch; in 64-bit mode this is a
2053			 * %rip-relative branch that loads the 64-bit pc value
2054			 * immediately after the jmp instruction.
2055			 */
2056			scratch[i++] = FASTTRAP_GROUP5_OP;
2057			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
2058			/* LINTED - alignment */
2059			*(uint32_t *)&scratch[i] = 0;
2060			i += sizeof (uint32_t);
2061			/* LINTED - alignment */
2062			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
2063			i += sizeof (uint64_t);
2064
2065			uthread->t_dtrace_astpc = addr + i;
2066			bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
2067			i += tp->ftt_size;
2068			scratch[i++] = FASTTRAP_INT;
2069			scratch[i++] = T_DTRACE_RET;
2070
2071			ASSERT(i <= sizeof (scratch));
2072
2073			if (fasttrap_copyout(scratch, addr, i)) {
2074				fasttrap_sigtrap(p, uthread, pc);
2075				new_pc = pc;
2076				break;
2077			}
2078
2079			if (tp->ftt_retids != NULL) {
2080				uthread->t_dtrace_step = 1;
2081				uthread->t_dtrace_ret = 1;
2082				new_pc = uthread->t_dtrace_astpc;
2083			} else {
2084				new_pc = uthread->t_dtrace_scrpc;
2085			}
2086
2087			uthread->t_dtrace_pc = pc;
2088			uthread->t_dtrace_npc = pc + tp->ftt_size;
2089			uthread->t_dtrace_on = 1;
2090			break;
2091		}
2092
2093		default:
2094			panic("fasttrap: mishandled an instruction");
2095	}
2096
2097done:
2098	/*
2099	 * APPLE NOTE:
2100	 *
2101	 * We're setting this earlier than Solaris does, to get a "correct"
2102	 * ustack() output. In the Sun code,  a() -> b() -> c() -> d() is
2103	 * reported at: d, b, a. The new way gives c, b, a, which is closer
2104	 * to correct, as the return instruction has already exectued.
2105	 */
2106	regs64->isf.rip = new_pc;
2107
2108
2109	/*
2110	 * If there were no return probes when we first found the tracepoint,
2111	 * we should feel no obligation to honor any return probes that were
2112	 * subsequently enabled -- they'll just have to wait until the next
2113	 * time around.
2114	 */
2115	if (tp->ftt_retids != NULL) {
2116		/*
2117		 * We need to wait until the results of the instruction are
2118		 * apparent before invoking any return probes. If this
2119		 * instruction was emulated we can just call
2120		 * fasttrap_return_common(); if it needs to be executed, we
2121		 * need to wait until the user thread returns to the kernel.
2122		 */
2123		if (tp->ftt_type != FASTTRAP_T_COMMON) {
2124			fasttrap_return_common(regs, pc, pid, new_pc);
2125		} else {
2126			ASSERT(uthread->t_dtrace_ret != 0);
2127			ASSERT(uthread->t_dtrace_pc == pc);
2128			ASSERT(uthread->t_dtrace_scrpc != 0);
2129			ASSERT(new_pc == uthread->t_dtrace_astpc);
2130		}
2131	}
2132
2133	return (0);
2134}
2135
2136int
2137fasttrap_pid_probe(x86_saved_state_t *regs)
2138{
2139        if (is_saved_state64(regs))
2140		return fasttrap_pid_probe64(regs);
2141
2142	return fasttrap_pid_probe32(regs);
2143}
2144
2145int
2146fasttrap_return_probe(x86_saved_state_t *regs)
2147{
2148	x86_saved_state64_t *regs64;
2149	x86_saved_state32_t *regs32;
2150	unsigned int p_model;
2151
2152        if (is_saved_state64(regs)) {
2153                regs64 = saved_state64(regs);
2154		regs32 = NULL;
2155		p_model = DATAMODEL_LP64;
2156        } else {
2157		regs64 = NULL;
2158                regs32 = saved_state32(regs);
2159		p_model = DATAMODEL_ILP32;
2160        }
2161
2162	proc_t *p = current_proc();
2163	uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread());
2164	user_addr_t pc = uthread->t_dtrace_pc;
2165	user_addr_t npc = uthread->t_dtrace_npc;
2166
2167	uthread->t_dtrace_pc = 0;
2168	uthread->t_dtrace_npc = 0;
2169	uthread->t_dtrace_scrpc = 0;
2170	uthread->t_dtrace_astpc = 0;
2171
2172	/*
2173	 * Treat a child created by a call to vfork(2) as if it were its
2174	 * parent. We know that there's only one thread of control in such a
2175	 * process: this one.
2176	 */
2177	proc_list_lock();
2178	while (p->p_lflag & P_LINVFORK)
2179		p = p->p_pptr;
2180	proc_list_unlock();
2181
2182	/*
2183	 * We set rp->r_pc to the address of the traced instruction so
2184	 * that it appears to dtrace_probe() that we're on the original
2185	 * instruction, and so that the user can't easily detect our
2186	 * complex web of lies. dtrace_return_probe() (our caller)
2187	 * will correctly set %pc after we return.
2188	 */
2189	if (p_model == DATAMODEL_LP64)
2190		regs64->isf.rip = pc;
2191	else
2192		regs32->eip = pc;
2193
2194	fasttrap_return_common(regs, pc, p->p_pid, npc);
2195
2196	return (0);
2197}
2198
2199uint64_t
2200fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
2201    int aframes)
2202{
2203	pal_register_cache_state(current_thread(), VALID);
2204#pragma unused(arg, id, parg, aframes)
2205	return (fasttrap_anarg((x86_saved_state_t *)find_user_regs(current_thread()), 1, argno));
2206}
2207
2208uint64_t
2209fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
2210    int aframes)
2211{
2212	pal_register_cache_state(current_thread(), VALID);
2213#pragma unused(arg, id, parg, aframes)
2214	return (fasttrap_anarg((x86_saved_state_t *)find_user_regs(current_thread()), 0, argno));
2215}
2216
2217/*
2218 * APPLE NOTE: See comments by regmap array definition. We are cheating
2219 * when returning 32 bit registers.
2220 */
2221static user_addr_t
2222fasttrap_getreg(x86_saved_state_t *regs, uint_t reg)
2223{
2224	if (is_saved_state64(regs)) {
2225		x86_saved_state64_t *regs64 = saved_state64(regs);
2226
2227		switch (reg) {
2228			case REG_RAX:		return regs64->rax;
2229			case REG_RCX:		return regs64->rcx;
2230			case REG_RDX:		return regs64->rdx;
2231			case REG_RBX:		return regs64->rbx;
2232			case REG_RSP:		return regs64->isf.rsp;
2233			case REG_RBP:		return regs64->rbp;
2234			case REG_RSI:		return regs64->rsi;
2235			case REG_RDI:		return regs64->rdi;
2236			case REG_R8:		return regs64->r8;
2237			case REG_R9:		return regs64->r9;
2238			case REG_R10:		return regs64->r10;
2239			case REG_R11:		return regs64->r11;
2240			case REG_R12:		return regs64->r12;
2241			case REG_R13:		return regs64->r13;
2242			case REG_R14:		return regs64->r14;
2243			case REG_R15:		return regs64->r15;
2244			case REG_TRAPNO:	return regs64->isf.trapno;
2245			case REG_ERR:		return regs64->isf.err;
2246			case REG_RIP:		return regs64->isf.rip;
2247			case REG_CS:		return regs64->isf.cs;
2248			case REG_RFL:		return regs64->isf.rflags;
2249			case REG_SS:		return regs64->isf.ss;
2250			case REG_FS:		return regs64->fs;
2251			case REG_GS:		return regs64->gs;
2252			case REG_ES:
2253			case REG_DS:
2254			case REG_FSBASE:
2255			case REG_GSBASE:
2256				// Important to distinguish these requests (which should be legal) from other values.
2257				panic("dtrace: unimplemented x86_64 getreg()");
2258		}
2259
2260		panic("dtrace: unhandled x86_64 getreg() constant");
2261	} else {
2262		x86_saved_state32_t *regs32 = saved_state32(regs);
2263
2264		switch (reg) {
2265			case REG_RAX:		return regs32->eax;
2266			case REG_RCX:		return regs32->ecx;
2267			case REG_RDX:		return regs32->edx;
2268			case REG_RBX:		return regs32->ebx;
2269			case REG_RSP:		return regs32->uesp;
2270			case REG_RBP:		return regs32->ebp;
2271			case REG_RSI:		return regs32->esi;
2272			case REG_RDI:		return regs32->edi;
2273		}
2274
2275		panic("dtrace: unhandled i386 getreg() constant");
2276	}
2277
2278	return 0;
2279}
2280