1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Portions copyright (c) 2011, Joyent, Inc. All rights reserved.
24 */
25
26/*
27 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
28 * Use is subject to license terms.
29 */
30
31/* #pragma ident	"@(#)dtrace.c	1.65	08/07/02 SMI" */
32
33/*
34 * DTrace - Dynamic Tracing for Solaris
35 *
36 * This is the implementation of the Solaris Dynamic Tracing framework
37 * (DTrace).  The user-visible interface to DTrace is described at length in
38 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
39 * library, the in-kernel DTrace framework, and the DTrace providers are
40 * described in the block comments in the <sys/dtrace.h> header file.  The
41 * internal architecture of DTrace is described in the block comments in the
42 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
43 * implementation very much assume mastery of all of these sources; if one has
44 * an unanswered question about the implementation, one should consult them
45 * first.
46 *
47 * The functions here are ordered roughly as follows:
48 *
49 *   - Probe context functions
50 *   - Probe hashing functions
51 *   - Non-probe context utility functions
52 *   - Matching functions
53 *   - Provider-to-Framework API functions
54 *   - Probe management functions
55 *   - DIF object functions
56 *   - Format functions
57 *   - Predicate functions
58 *   - ECB functions
59 *   - Buffer functions
60 *   - Enabling functions
61 *   - DOF functions
62 *   - Anonymous enabling functions
63 *   - Consumer state functions
64 *   - Helper functions
65 *   - Hook functions
66 *   - Driver cookbook functions
67 *
68 * Each group of functions begins with a block comment labelled the "DTrace
69 * [Group] Functions", allowing one to find each block by searching forward
70 * on capital-f functions.
71 */
72#include <sys/errno.h>
73#include <sys/types.h>
74#include <sys/stat.h>
75#include <sys/conf.h>
76#include <sys/systm.h>
77#include <sys/dtrace_impl.h>
78#include <sys/param.h>
79#include <sys/proc_internal.h>
80#include <sys/ioctl.h>
81#include <sys/fcntl.h>
82#include <miscfs/devfs/devfs.h>
83#include <sys/malloc.h>
84#include <sys/kernel_types.h>
85#include <sys/proc_internal.h>
86#include <sys/uio_internal.h>
87#include <sys/kauth.h>
88#include <vm/pmap.h>
89#include <sys/user.h>
90#include <mach/exception_types.h>
91#include <sys/signalvar.h>
92#include <mach/task.h>
93#include <kern/zalloc.h>
94#include <kern/ast.h>
95#include <kern/task.h>
96#include <netinet/in.h>
97
98#include <kern/cpu_data.h>
99extern uint32_t pmap_find_phys(void *, uint64_t);
100extern boolean_t pmap_valid_page(uint32_t);
101extern void OSKextRegisterKextsWithDTrace(void);
102extern kmod_info_t g_kernel_kmod_info;
103
104/* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
105#define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
106
107#define t_predcache t_dtrace_predcache /* Cosmetic. Helps readability of thread.h */
108
109extern void dtrace_suspend(void);
110extern void dtrace_resume(void);
111extern void dtrace_init(void);
112extern void helper_init(void);
113extern void fasttrap_init(void);
114extern void dtrace_lazy_dofs_duplicate(proc_t *, proc_t *);
115extern void dtrace_lazy_dofs_destroy(proc_t *);
116extern void dtrace_postinit(void);
117
118#include "../../../osfmk/chud/chud_dtrace.h"
119
120extern kern_return_t chudxnu_dtrace_callback
121	(uint64_t selector, uint64_t *args, uint32_t count);
122
123/* Import this function to retrieve the physical memory. */
124extern int kernel_sysctlbyname(const char *name, void *oldp,
125	size_t *oldlenp, void *newp, size_t newlen);
126
127/*
128 * DTrace Tunable Variables
129 *
130 * The following variables may be dynamically tuned by using sysctl(8), the
131 * variables being stored in the kern.dtrace namespace.  For example:
132 * 	sysctl kern.dtrace.dof_maxsize = 1048575 	# 1M
133 *
134 * In general, the only variables that one should be tuning this way are those
135 * that affect system-wide DTrace behavior, and for which the default behavior
136 * is undesirable.  Most of these variables are tunable on a per-consumer
137 * basis using DTrace options, and need not be tuned on a system-wide basis.
138 * When tuning these variables, avoid pathological values; while some attempt
139 * is made to verify the integrity of these variables, they are not considered
140 * part of the supported interface to DTrace, and they are therefore not
141 * checked comprehensively.
142 */
143uint64_t	dtrace_buffer_memory_maxsize = 0;		/* initialized in dtrace_init */
144uint64_t	dtrace_buffer_memory_inuse = 0;
145int		dtrace_destructive_disallow = 0;
146dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
147size_t		dtrace_difo_maxsize = (256 * 1024);
148dtrace_optval_t	dtrace_dof_maxsize = (384 * 1024);
149size_t		dtrace_global_maxsize = (16 * 1024);
150size_t		dtrace_actions_max = (16 * 1024);
151size_t		dtrace_retain_max = 1024;
152dtrace_optval_t	dtrace_helper_actions_max = 32;
153dtrace_optval_t	dtrace_helper_providers_max = 64;
154dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
155size_t		dtrace_strsize_default = 256;
156dtrace_optval_t	dtrace_cleanrate_default = 990099000;		/* 1.1 hz */
157dtrace_optval_t	dtrace_cleanrate_min = 20000000;			/* 50 hz */
158dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
159dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
160dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
161dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
162dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
163dtrace_optval_t	dtrace_nspec_default = 1;
164dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
165dtrace_optval_t dtrace_stackframes_default = 20;
166dtrace_optval_t dtrace_ustackframes_default = 20;
167dtrace_optval_t dtrace_jstackframes_default = 50;
168dtrace_optval_t dtrace_jstackstrsize_default = 512;
169int		dtrace_msgdsize_max = 128;
170hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
171hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
172int		dtrace_devdepth_max = 32;
173int		dtrace_err_verbose;
174int		dtrace_provide_private_probes = 0;
175hrtime_t	dtrace_deadman_interval = NANOSEC;
176hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
177hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
178
179/*
180 * DTrace External Variables
181 *
182 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
183 * available to DTrace consumers via the backtick (`) syntax.  One of these,
184 * dtrace_zero, is made deliberately so:  it is provided as a source of
185 * well-known, zero-filled memory.  While this variable is not documented,
186 * it is used by some translators as an implementation detail.
187 */
188const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
189unsigned int	dtrace_max_cpus = 0;		/* number of enabled cpus */
190/*
191 * DTrace Internal Variables
192 */
193static dev_info_t	*dtrace_devi;		/* device info */
194static vmem_t		*dtrace_arena;		/* probe ID arena */
195static vmem_t		*dtrace_minor;		/* minor number arena */
196static taskq_t		*dtrace_taskq;		/* task queue */
197static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
198static int		dtrace_nprobes;		/* number of probes */
199static dtrace_provider_t *dtrace_provider;	/* provider list */
200static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
201static int		dtrace_opens;		/* number of opens */
202static int		dtrace_helpers;		/* number of helpers */
203static void		*dtrace_softstate;	/* softstate pointer */
204static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
205static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
206static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
207static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
208static int		dtrace_toxranges;	/* number of toxic ranges */
209static int		dtrace_toxranges_max;	/* size of toxic range array */
210static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
211static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
212static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
213static kthread_t	*dtrace_panicked;	/* panicking thread */
214static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
215static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
216static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
217static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
218static dtrace_genid_t   dtrace_retained_gen;    /* current retained enab gen */
219static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
220
221static int		dtrace_dof_mode;	/* See dtrace_impl.h for a description of Darwin's dof modes. */
222
223			/*
224			 * This does't quite fit as an internal variable, as it must be accessed in
225			 * fbt_provide and sdt_provide. Its clearly not a dtrace tunable variable either...
226			 */
227int			dtrace_kernel_symbol_mode;	/* See dtrace_impl.h for a description of Darwin's kernel symbol modes. */
228
229
230/*
231 * To save memory, some common memory allocations are given a
232 * unique zone. For example, dtrace_probe_t is 72 bytes in size,
233 * which means it would fall into the kalloc.128 bucket. With
234 * 20k elements allocated, the space saved is substantial.
235 */
236
237struct zone *dtrace_probe_t_zone;
238
239static int dtrace_module_unloaded(struct kmod_info *kmod);
240
241/*
242 * DTrace Locking
243 * DTrace is protected by three (relatively coarse-grained) locks:
244 *
245 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
246 *     including enabling state, probes, ECBs, consumer state, helper state,
247 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
248 *     probe context is lock-free -- synchronization is handled via the
249 *     dtrace_sync() cross call mechanism.
250 *
251 * (2) dtrace_provider_lock is required when manipulating provider state, or
252 *     when provider state must be held constant.
253 *
254 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
255 *     when meta provider state must be held constant.
256 *
257 * The lock ordering between these three locks is dtrace_meta_lock before
258 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
259 * several places where dtrace_provider_lock is held by the framework as it
260 * calls into the providers -- which then call back into the framework,
261 * grabbing dtrace_lock.)
262 *
263 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
264 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
265 * role as a coarse-grained lock; it is acquired before both of these locks.
266 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
267 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
268 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
269 * acquired _between_ dtrace_provider_lock and dtrace_lock.
270 */
271
272
273/*
274 * APPLE NOTE:
275 *
276 * For porting purposes, all kmutex_t vars have been changed
277 * to lck_mtx_t, which require explicit initialization.
278 *
279 * kmutex_t becomes lck_mtx_t
280 * mutex_enter() becomes lck_mtx_lock()
281 * mutex_exit() becomes lck_mtx_unlock()
282 *
283 * Lock asserts are changed like this:
284 *
285 * ASSERT(MUTEX_HELD(&cpu_lock));
286 *	becomes:
287 * lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
288 *
289 */
290static lck_mtx_t	dtrace_lock;		/* probe state lock */
291static lck_mtx_t	dtrace_provider_lock;	/* provider state lock */
292static lck_mtx_t	dtrace_meta_lock;	/* meta-provider state lock */
293static lck_rw_t		dtrace_dof_mode_lock;	/* dof mode lock */
294
295/*
296 * DTrace Provider Variables
297 *
298 * These are the variables relating to DTrace as a provider (that is, the
299 * provider of the BEGIN, END, and ERROR probes).
300 */
301static dtrace_pattr_t	dtrace_provider_attr = {
302{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
303{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
304{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
305{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
306{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
307};
308
309static void
310dtrace_nullop(void)
311{}
312
313static int
314dtrace_enable_nullop(void)
315{
316    return (0);
317}
318
319static dtrace_pops_t	dtrace_provider_ops = {
320	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
321	(void (*)(void *, struct modctl *))dtrace_nullop,
322	(int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
323	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
324	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
325	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
326	NULL,
327	NULL,
328	NULL,
329	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
330};
331
332static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
333static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
334dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
335
336/*
337 * DTrace Helper Tracing Variables
338 */
339uint32_t dtrace_helptrace_next = 0;
340uint32_t dtrace_helptrace_nlocals;
341char	*dtrace_helptrace_buffer;
342size_t	dtrace_helptrace_bufsize = 512 * 1024;
343
344#if DEBUG
345int	dtrace_helptrace_enabled = 1;
346#else
347int	dtrace_helptrace_enabled = 0;
348#endif
349
350
351/*
352 * DTrace Error Hashing
353 *
354 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
355 * table.  This is very useful for checking coverage of tests that are
356 * expected to induce DIF or DOF processing errors, and may be useful for
357 * debugging problems in the DIF code generator or in DOF generation .  The
358 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
359 */
360#if DEBUG
361static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
362static const char *dtrace_errlast;
363static kthread_t *dtrace_errthread;
364static lck_mtx_t dtrace_errlock;
365#endif
366
367/*
368 * DTrace Macros and Constants
369 *
370 * These are various macros that are useful in various spots in the
371 * implementation, along with a few random constants that have no meaning
372 * outside of the implementation.  There is no real structure to this cpp
373 * mishmash -- but is there ever?
374 */
375#define	DTRACE_HASHSTR(hash, probe)	\
376	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
377
378#define	DTRACE_HASHNEXT(hash, probe)	\
379	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
380
381#define	DTRACE_HASHPREV(hash, probe)	\
382	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
383
384#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
385	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
386	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
387
388#define	DTRACE_AGGHASHSIZE_SLEW		17
389
390#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
391
392/*
393 * The key for a thread-local variable consists of the lower 61 bits of the
394 * current_thread(), plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
395 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
396 * equal to a variable identifier.  This is necessary (but not sufficient) to
397 * assure that global associative arrays never collide with thread-local
398 * variables.  To guarantee that they cannot collide, we must also define the
399 * order for keying dynamic variables.  That order is:
400 *
401 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
402 *
403 * Because the variable-key and the tls-key are in orthogonal spaces, there is
404 * no way for a global variable key signature to match a thread-local key
405 * signature.
406 */
407#if defined (__x86_64__)
408/* FIXME: two function calls!! */
409#define	DTRACE_TLS_THRKEY(where) { \
410	uint_t intr = ml_at_interrupt_context(); /* Note: just one measly bit */ \
411	uint64_t thr = (uintptr_t)current_thread(); \
412	ASSERT(intr < (1 << 3)); \
413	(where) = ((thr + DIF_VARIABLE_MAX) & \
414	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
415}
416#else
417#error Unknown architecture
418#endif
419
420#define	DT_BSWAP_8(x)	((x) & 0xff)
421#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
422#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
423#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
424
425#define	DT_MASK_LO 0x00000000FFFFFFFFULL
426
427#define	DTRACE_STORE(type, tomax, offset, what) \
428	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
429
430
431#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
432	if (addr & (MIN(size,4) - 1)) {					\
433		*flags |= CPU_DTRACE_BADALIGN;				\
434		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
435		return (0);						\
436	}
437
438/*
439 * Test whether a range of memory starting at testaddr of size testsz falls
440 * within the range of memory described by addr, sz.  We take care to avoid
441 * problems with overflow and underflow of the unsigned quantities, and
442 * disallow all negative sizes.  Ranges of size 0 are allowed.
443 */
444#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
445	((testaddr) - (baseaddr) < (basesz) && \
446	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
447	(testaddr) + (testsz) >= (testaddr))
448
449/*
450 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
451 * alloc_sz on the righthand side of the comparison in order to avoid overflow
452 * or underflow in the comparison with it.  This is simpler than the INRANGE
453 * check above, because we know that the dtms_scratch_ptr is valid in the
454 * range.  Allocations of size zero are allowed.
455 */
456#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
457	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
458	(mstate)->dtms_scratch_ptr >= (alloc_sz))
459
460#define RECOVER_LABEL(bits) dtraceLoadRecover##bits:
461
462#if defined (__x86_64__)
463#define	DTRACE_LOADFUNC(bits)						\
464/*CSTYLED*/								\
465uint##bits##_t dtrace_load##bits(uintptr_t addr);			\
466									\
467uint##bits##_t								\
468dtrace_load##bits(uintptr_t addr)					\
469{									\
470	size_t size = bits / NBBY;					\
471	/*CSTYLED*/							\
472	uint##bits##_t rval = 0;					\
473	int i;								\
474	volatile uint16_t *flags = (volatile uint16_t *)		\
475	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
476									\
477	DTRACE_ALIGNCHECK(addr, size, flags);				\
478									\
479	for (i = 0; i < dtrace_toxranges; i++) {			\
480		if (addr >= dtrace_toxrange[i].dtt_limit)		\
481			continue;					\
482									\
483		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
484			continue;					\
485									\
486		/*							\
487		 * This address falls within a toxic region; return 0.	\
488		 */							\
489		*flags |= CPU_DTRACE_BADADDR;				\
490		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
491		return (0);						\
492	}								\
493									\
494	{								\
495	volatile vm_offset_t recover = (vm_offset_t)&&dtraceLoadRecover##bits;		\
496	*flags |= CPU_DTRACE_NOFAULT;					\
497	recover = dtrace_set_thread_recover(current_thread(), recover);	\
498	/*CSTYLED*/							\
499	/*                                                              \
500	* PR6394061 - avoid device memory that is unpredictably		\
501	* mapped and unmapped                                   	\
502	*/								\
503        if (pmap_valid_page(pmap_find_phys(kernel_pmap, addr)))		\
504	    rval = *((volatile uint##bits##_t *)addr);			\
505	RECOVER_LABEL(bits);						\
506	(void)dtrace_set_thread_recover(current_thread(), recover);	\
507	*flags &= ~CPU_DTRACE_NOFAULT;					\
508	}								\
509									\
510	return (rval);							\
511}
512#else /* all other architectures */
513#error Unknown Architecture
514#endif
515
516#ifdef __LP64__
517#define	dtrace_loadptr	dtrace_load64
518#else
519#define	dtrace_loadptr	dtrace_load32
520#endif
521
522#define	DTRACE_DYNHASH_FREE	0
523#define	DTRACE_DYNHASH_SINK	1
524#define	DTRACE_DYNHASH_VALID	2
525
526#define DTRACE_MATCH_FAIL       -1
527#define	DTRACE_MATCH_NEXT	0
528#define	DTRACE_MATCH_DONE	1
529#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
530#define	DTRACE_STATE_ALIGN	64
531
532#define	DTRACE_FLAGS2FLT(flags)						\
533	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
534	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
535	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
536	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
537	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
538	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
539	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
540	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
541	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
542	DTRACEFLT_UNKNOWN)
543
544#define	DTRACEACT_ISSTRING(act)						\
545	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
546	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
547
548
549static size_t dtrace_strlen(const char *, size_t);
550static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
551static void dtrace_enabling_provide(dtrace_provider_t *);
552static int dtrace_enabling_match(dtrace_enabling_t *, int *);
553static void dtrace_enabling_matchall(void);
554static dtrace_state_t *dtrace_anon_grab(void);
555static uint64_t dtrace_helper(int, dtrace_mstate_t *,
556    dtrace_state_t *, uint64_t, uint64_t);
557static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
558static void dtrace_buffer_drop(dtrace_buffer_t *);
559static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
560    dtrace_state_t *, dtrace_mstate_t *);
561static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
562    dtrace_optval_t);
563static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
564static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
565
566
567/*
568 * DTrace sysctl handlers
569 *
570 * These declarations and functions are used for a deeper DTrace configuration.
571 * Most of them are not per-consumer basis and may impact the other DTrace
572 * consumers.  Correctness may not be supported for all the variables, so you
573 * should be careful about what values you are using.
574 */
575
576SYSCTL_DECL(_kern_dtrace);
577SYSCTL_NODE(_kern, OID_AUTO, dtrace, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "dtrace");
578
579static int
580sysctl_dtrace_err_verbose SYSCTL_HANDLER_ARGS
581{
582#pragma unused(oidp, arg2)
583	int changed, error;
584	int value = *(int *) arg1;
585
586	error = sysctl_io_number(req, value, sizeof(value), &value, &changed);
587	if (error || !changed)
588		return (error);
589
590	if (value != 0 && value != 1)
591		return (ERANGE);
592
593	lck_mtx_lock(&dtrace_lock);
594		dtrace_err_verbose = value;
595	lck_mtx_unlock(&dtrace_lock);
596
597	return (0);
598}
599
600/*
601 * kern.dtrace.err_verbose
602 *
603 * Set DTrace verbosity when an error occured (0 = disabled, 1 = enabld).
604 * Errors are reported when a DIFO or a DOF has been rejected by the kernel.
605 */
606SYSCTL_PROC(_kern_dtrace, OID_AUTO, err_verbose,
607	CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
608	&dtrace_err_verbose, 0,
609	sysctl_dtrace_err_verbose, "I", "dtrace error verbose");
610
611static int
612sysctl_dtrace_buffer_memory_maxsize SYSCTL_HANDLER_ARGS
613{
614#pragma unused(oidp, arg2, req)
615	int changed, error;
616	uint64_t value = *(uint64_t *) arg1;
617
618	error = sysctl_io_number(req, value, sizeof(value), &value, &changed);
619	if (error || !changed)
620		return (error);
621
622	if (value <= dtrace_buffer_memory_inuse)
623		return (ERANGE);
624
625	lck_mtx_lock(&dtrace_lock);
626		dtrace_buffer_memory_maxsize = value;
627	lck_mtx_unlock(&dtrace_lock);
628
629	return (0);
630}
631
632/*
633 * kern.dtrace.buffer_memory_maxsize
634 *
635 * Set DTrace maximal size in bytes used by all the consumers' state buffers.  By default
636 * the limit is PHYS_MEM / 3 for *all* consumers.  Attempting to set a null, a negative value
637 * or a value <= to dtrace_buffer_memory_inuse will result in a failure.
638 */
639SYSCTL_PROC(_kern_dtrace, OID_AUTO, buffer_memory_maxsize,
640	CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
641	&dtrace_buffer_memory_maxsize, 0,
642	sysctl_dtrace_buffer_memory_maxsize, "Q", "dtrace state buffer memory maxsize");
643
644/*
645 * kern.dtrace.buffer_memory_inuse
646 *
647 * Current state buffer memory used, in bytes, by all the DTrace consumers.
648 * This value is read-only.
649 */
650SYSCTL_QUAD(_kern_dtrace, OID_AUTO, buffer_memory_inuse, CTLFLAG_RD | CTLFLAG_LOCKED,
651	&dtrace_buffer_memory_inuse, "dtrace state buffer memory in-use");
652
653static int
654sysctl_dtrace_difo_maxsize SYSCTL_HANDLER_ARGS
655{
656#pragma unused(oidp, arg2, req)
657	int changed, error;
658	size_t value = *(size_t*) arg1;
659
660	error = sysctl_io_number(req, value, sizeof(value), &value, &changed);
661	if (error || !changed)
662		return (error);
663
664	if (value <= 0)
665		return (ERANGE);
666
667	lck_mtx_lock(&dtrace_lock);
668		dtrace_difo_maxsize = value;
669	lck_mtx_unlock(&dtrace_lock);
670
671	return (0);
672}
673
674/*
675 * kern.dtrace.difo_maxsize
676 *
677 * Set the DIFO max size in bytes, check the definition of dtrace_difo_maxsize
678 * to get the default value.  Attempting to set a null or negative size will
679 * result in a failure.
680 */
681SYSCTL_PROC(_kern_dtrace, OID_AUTO, difo_maxsize,
682	CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
683	&dtrace_difo_maxsize, 0,
684	sysctl_dtrace_difo_maxsize, "Q", "dtrace difo maxsize");
685
686static int
687sysctl_dtrace_dof_maxsize SYSCTL_HANDLER_ARGS
688{
689#pragma unused(oidp, arg2, req)
690	int changed, error;
691	dtrace_optval_t value = *(dtrace_optval_t *) arg1;
692
693	error = sysctl_io_number(req, value, sizeof(value), &value, &changed);
694	if (error || !changed)
695		return (error);
696
697	if (value <= 0)
698		return (ERANGE);
699
700	lck_mtx_lock(&dtrace_lock);
701		dtrace_dof_maxsize = value;
702	lck_mtx_unlock(&dtrace_lock);
703
704	return (0);
705}
706
707/*
708 * kern.dtrace.dof_maxsize
709 *
710 * Set the DOF max size in bytes, check the definition of dtrace_dof_maxsize to
711 * get the default value.  Attempting to set a null or negative size will result
712 * in a failure.
713 */
714SYSCTL_PROC(_kern_dtrace, OID_AUTO, dof_maxsize,
715	CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
716	&dtrace_dof_maxsize, 0,
717	sysctl_dtrace_dof_maxsize, "Q", "dtrace dof maxsize");
718
719static int
720sysctl_dtrace_global_maxsize SYSCTL_HANDLER_ARGS
721{
722#pragma unused(oidp, arg2, req)
723	int changed, error;
724	dtrace_optval_t value = *(dtrace_optval_t*) arg1;
725
726	error = sysctl_io_number(req, value, sizeof(value), &value, &changed);
727	if (error || !changed)
728		return (error);
729
730	if (value <= 0)
731		return (ERANGE);
732
733	lck_mtx_lock(&dtrace_lock);
734		dtrace_global_maxsize = value;
735	lck_mtx_unlock(&dtrace_lock);
736
737	return (0);
738}
739
740/*
741 * kern.dtrace.global_maxsize
742 *
743 * Set the global variable max size in bytes, check the definition of
744 * dtrace_global_maxsize to get the default value.  Attempting to set a null or
745 * negative size will result in a failure.
746 */
747SYSCTL_PROC(_kern_dtrace, OID_AUTO, global_maxsize,
748	CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
749	&dtrace_global_maxsize, 0,
750	sysctl_dtrace_global_maxsize, "Q", "dtrace global maxsize");
751
752static int
753sysctl_dtrace_provide_private_probes SYSCTL_HANDLER_ARGS
754{
755#pragma unused(oidp, arg2)
756	int error;
757	int value = *(int *) arg1;
758
759	error = sysctl_io_number(req, value, sizeof(value), &value, NULL);
760	if (error)
761		return (error);
762
763	if (value != 0 && value != 1)
764		return (ERANGE);
765
766	lck_mtx_lock(&dtrace_lock);
767		dtrace_provide_private_probes = value;
768	lck_mtx_unlock(&dtrace_lock);
769
770	return (0);
771}
772
773/*
774 * kern.dtrace.provide_private_probes
775 *
776 * Set whether the providers must provide the private probes.  This is
777 * mainly used by the FBT provider to request probes for the private/static
778 * symbols.
779 */
780SYSCTL_PROC(_kern_dtrace, OID_AUTO, provide_private_probes,
781	CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
782	&dtrace_provide_private_probes, 0,
783	sysctl_dtrace_provide_private_probes, "I", "provider must provide the private probes");
784
785/*
786 * DTrace Probe Context Functions
787 *
788 * These functions are called from probe context.  Because probe context is
789 * any context in which C may be called, arbitrarily locks may be held,
790 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
791 * As a result, functions called from probe context may only call other DTrace
792 * support functions -- they may not interact at all with the system at large.
793 * (Note that the ASSERT macro is made probe-context safe by redefining it in
794 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
795 * loads are to be performed from probe context, they _must_ be in terms of
796 * the safe dtrace_load*() variants.
797 *
798 * Some functions in this block are not actually called from probe context;
799 * for these functions, there will be a comment above the function reading
800 * "Note:  not called from probe context."
801 */
802
803int
804dtrace_assfail(const char *a, const char *f, int l)
805{
806	panic("dtrace: assertion failed: %s, file: %s, line: %d", a, f, l);
807
808	/*
809	 * We just need something here that even the most clever compiler
810	 * cannot optimize away.
811	 */
812	return (a[(uintptr_t)f]);
813}
814
815/*
816 * Atomically increment a specified error counter from probe context.
817 */
818static void
819dtrace_error(uint32_t *counter)
820{
821	/*
822	 * Most counters stored to in probe context are per-CPU counters.
823	 * However, there are some error conditions that are sufficiently
824	 * arcane that they don't merit per-CPU storage.  If these counters
825	 * are incremented concurrently on different CPUs, scalability will be
826	 * adversely affected -- but we don't expect them to be white-hot in a
827	 * correctly constructed enabling...
828	 */
829	uint32_t oval, nval;
830
831	do {
832		oval = *counter;
833
834		if ((nval = oval + 1) == 0) {
835			/*
836			 * If the counter would wrap, set it to 1 -- assuring
837			 * that the counter is never zero when we have seen
838			 * errors.  (The counter must be 32-bits because we
839			 * aren't guaranteed a 64-bit compare&swap operation.)
840			 * To save this code both the infamy of being fingered
841			 * by a priggish news story and the indignity of being
842			 * the target of a neo-puritan witch trial, we're
843			 * carefully avoiding any colorful description of the
844			 * likelihood of this condition -- but suffice it to
845			 * say that it is only slightly more likely than the
846			 * overflow of predicate cache IDs, as discussed in
847			 * dtrace_predicate_create().
848			 */
849			nval = 1;
850		}
851	} while (dtrace_cas32(counter, oval, nval) != oval);
852}
853
854/*
855 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
856 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
857 */
858DTRACE_LOADFUNC(8)
859DTRACE_LOADFUNC(16)
860DTRACE_LOADFUNC(32)
861DTRACE_LOADFUNC(64)
862
863static int
864dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
865{
866	if (dest < mstate->dtms_scratch_base)
867		return (0);
868
869	if (dest + size < dest)
870		return (0);
871
872	if (dest + size > mstate->dtms_scratch_ptr)
873		return (0);
874
875	return (1);
876}
877
878static int
879dtrace_canstore_statvar(uint64_t addr, size_t sz,
880    dtrace_statvar_t **svars, int nsvars)
881{
882	int i;
883
884	for (i = 0; i < nsvars; i++) {
885		dtrace_statvar_t *svar = svars[i];
886
887		if (svar == NULL || svar->dtsv_size == 0)
888			continue;
889
890		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
891			return (1);
892	}
893
894	return (0);
895}
896
897/*
898 * Check to see if the address is within a memory region to which a store may
899 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
900 * region.  The caller of dtrace_canstore() is responsible for performing any
901 * alignment checks that are needed before stores are actually executed.
902 */
903static int
904dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
905    dtrace_vstate_t *vstate)
906{
907	/*
908	 * First, check to see if the address is in scratch space...
909	 */
910	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
911	    mstate->dtms_scratch_size))
912		return (1);
913
914	/*
915	 * Now check to see if it's a dynamic variable.  This check will pick
916	 * up both thread-local variables and any global dynamically-allocated
917	 * variables.
918	 */
919	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
920	    vstate->dtvs_dynvars.dtds_size)) {
921		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
922		uintptr_t base = (uintptr_t)dstate->dtds_base +
923		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
924		uintptr_t chunkoffs;
925
926		/*
927		 * Before we assume that we can store here, we need to make
928		 * sure that it isn't in our metadata -- storing to our
929		 * dynamic variable metadata would corrupt our state.  For
930		 * the range to not include any dynamic variable metadata,
931		 * it must:
932		 *
933		 *	(1) Start above the hash table that is at the base of
934		 *	the dynamic variable space
935		 *
936		 *	(2) Have a starting chunk offset that is beyond the
937		 *	dtrace_dynvar_t that is at the base of every chunk
938		 *
939		 *	(3) Not span a chunk boundary
940		 *
941		 */
942		if (addr < base)
943			return (0);
944
945		chunkoffs = (addr - base) % dstate->dtds_chunksize;
946
947		if (chunkoffs < sizeof (dtrace_dynvar_t))
948			return (0);
949
950		if (chunkoffs + sz > dstate->dtds_chunksize)
951			return (0);
952
953		return (1);
954	}
955
956	/*
957	 * Finally, check the static local and global variables.  These checks
958	 * take the longest, so we perform them last.
959	 */
960	if (dtrace_canstore_statvar(addr, sz,
961	    vstate->dtvs_locals, vstate->dtvs_nlocals))
962		return (1);
963
964	if (dtrace_canstore_statvar(addr, sz,
965	    vstate->dtvs_globals, vstate->dtvs_nglobals))
966		return (1);
967
968	return (0);
969}
970
971
972/*
973 * Convenience routine to check to see if the address is within a memory
974 * region in which a load may be issued given the user's privilege level;
975 * if not, it sets the appropriate error flags and loads 'addr' into the
976 * illegal value slot.
977 *
978 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
979 * appropriate memory access protection.
980 */
981static int
982dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
983    dtrace_vstate_t *vstate)
984{
985	volatile uint64_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
986
987	/*
988	 * If we hold the privilege to read from kernel memory, then
989	 * everything is readable.
990	 */
991	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
992		return (1);
993
994	/*
995	 * You can obviously read that which you can store.
996	 */
997	if (dtrace_canstore(addr, sz, mstate, vstate))
998		return (1);
999
1000	/*
1001	 * We're allowed to read from our own string table.
1002	 */
1003	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
1004	    mstate->dtms_difo->dtdo_strlen))
1005		return (1);
1006
1007	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
1008	*illval = addr;
1009	return (0);
1010}
1011
1012/*
1013 * Convenience routine to check to see if a given string is within a memory
1014 * region in which a load may be issued given the user's privilege level;
1015 * this exists so that we don't need to issue unnecessary dtrace_strlen()
1016 * calls in the event that the user has all privileges.
1017 */
1018static int
1019dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
1020    dtrace_vstate_t *vstate)
1021{
1022	size_t strsz;
1023
1024	/*
1025	 * If we hold the privilege to read from kernel memory, then
1026	 * everything is readable.
1027	 */
1028	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
1029		return (1);
1030
1031	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
1032	if (dtrace_canload(addr, strsz, mstate, vstate))
1033		return (1);
1034
1035	return (0);
1036}
1037
1038/*
1039 * Convenience routine to check to see if a given variable is within a memory
1040 * region in which a load may be issued given the user's privilege level.
1041 */
1042static int
1043dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
1044    dtrace_vstate_t *vstate)
1045{
1046	size_t sz;
1047	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1048
1049	/*
1050	 * If we hold the privilege to read from kernel memory, then
1051	 * everything is readable.
1052	 */
1053	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
1054		return (1);
1055
1056	if (type->dtdt_kind == DIF_TYPE_STRING)
1057		sz = dtrace_strlen(src,
1058		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
1059	else
1060		sz = type->dtdt_size;
1061
1062	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
1063}
1064
1065/*
1066 * Compare two strings using safe loads.
1067 */
1068static int
1069dtrace_strncmp(char *s1, char *s2, size_t limit)
1070{
1071	uint8_t c1, c2;
1072	volatile uint16_t *flags;
1073
1074	if (s1 == s2 || limit == 0)
1075		return (0);
1076
1077	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1078
1079	do {
1080		if (s1 == NULL) {
1081			c1 = '\0';
1082		} else {
1083			c1 = dtrace_load8((uintptr_t)s1++);
1084		}
1085
1086		if (s2 == NULL) {
1087			c2 = '\0';
1088		} else {
1089			c2 = dtrace_load8((uintptr_t)s2++);
1090		}
1091
1092		if (c1 != c2)
1093			return (c1 - c2);
1094	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1095
1096	return (0);
1097}
1098
1099/*
1100 * Compute strlen(s) for a string using safe memory accesses.  The additional
1101 * len parameter is used to specify a maximum length to ensure completion.
1102 */
1103static size_t
1104dtrace_strlen(const char *s, size_t lim)
1105{
1106	uint_t len;
1107
1108	for (len = 0; len != lim; len++) {
1109		if (dtrace_load8((uintptr_t)s++) == '\0')
1110			break;
1111	}
1112
1113	return (len);
1114}
1115
1116/*
1117 * Check if an address falls within a toxic region.
1118 */
1119static int
1120dtrace_istoxic(uintptr_t kaddr, size_t size)
1121{
1122	uintptr_t taddr, tsize;
1123	int i;
1124
1125	for (i = 0; i < dtrace_toxranges; i++) {
1126		taddr = dtrace_toxrange[i].dtt_base;
1127		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1128
1129		if (kaddr - taddr < tsize) {
1130			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1131			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
1132			return (1);
1133		}
1134
1135		if (taddr - kaddr < size) {
1136			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1137			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
1138			return (1);
1139		}
1140	}
1141
1142	return (0);
1143}
1144
1145/*
1146 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1147 * memory specified by the DIF program.  The dst is assumed to be safe memory
1148 * that we can store to directly because it is managed by DTrace.  As with
1149 * standard bcopy, overlapping copies are handled properly.
1150 */
1151static void
1152dtrace_bcopy(const void *src, void *dst, size_t len)
1153{
1154	if (len != 0) {
1155		uint8_t *s1 = dst;
1156		const uint8_t *s2 = src;
1157
1158		if (s1 <= s2) {
1159			do {
1160				*s1++ = dtrace_load8((uintptr_t)s2++);
1161			} while (--len != 0);
1162		} else {
1163			s2 += len;
1164			s1 += len;
1165
1166			do {
1167				*--s1 = dtrace_load8((uintptr_t)--s2);
1168			} while (--len != 0);
1169		}
1170	}
1171}
1172
1173/*
1174 * Copy src to dst using safe memory accesses, up to either the specified
1175 * length, or the point that a nul byte is encountered.  The src is assumed to
1176 * be unsafe memory specified by the DIF program.  The dst is assumed to be
1177 * safe memory that we can store to directly because it is managed by DTrace.
1178 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1179 */
1180static void
1181dtrace_strcpy(const void *src, void *dst, size_t len)
1182{
1183	if (len != 0) {
1184		uint8_t *s1 = dst, c;
1185		const uint8_t *s2 = src;
1186
1187		do {
1188			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1189		} while (--len != 0 && c != '\0');
1190	}
1191}
1192
1193/*
1194 * Copy src to dst, deriving the size and type from the specified (BYREF)
1195 * variable type.  The src is assumed to be unsafe memory specified by the DIF
1196 * program.  The dst is assumed to be DTrace variable memory that is of the
1197 * specified type; we assume that we can store to directly.
1198 */
1199static void
1200dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1201{
1202	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1203
1204	if (type->dtdt_kind == DIF_TYPE_STRING) {
1205		dtrace_strcpy(src, dst, type->dtdt_size);
1206	} else {
1207		dtrace_bcopy(src, dst, type->dtdt_size);
1208}
1209}
1210
1211/*
1212 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1213 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1214 * safe memory that we can access directly because it is managed by DTrace.
1215 */
1216static int
1217dtrace_bcmp(const void *s1, const void *s2, size_t len)
1218{
1219	volatile uint16_t *flags;
1220
1221	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1222
1223	if (s1 == s2)
1224		return (0);
1225
1226	if (s1 == NULL || s2 == NULL)
1227		return (1);
1228
1229	if (s1 != s2 && len != 0) {
1230		const uint8_t *ps1 = s1;
1231		const uint8_t *ps2 = s2;
1232
1233		do {
1234			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1235				return (1);
1236		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1237	}
1238	return (0);
1239}
1240
1241/*
1242 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1243 * is for safe DTrace-managed memory only.
1244 */
1245static void
1246dtrace_bzero(void *dst, size_t len)
1247{
1248	uchar_t *cp;
1249
1250	for (cp = dst; len != 0; len--)
1251		*cp++ = 0;
1252}
1253
1254static void
1255dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1256{
1257	uint64_t result[2];
1258
1259	result[0] = addend1[0] + addend2[0];
1260	result[1] = addend1[1] + addend2[1] +
1261	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1262
1263	sum[0] = result[0];
1264	sum[1] = result[1];
1265}
1266
1267/*
1268 * Shift the 128-bit value in a by b. If b is positive, shift left.
1269 * If b is negative, shift right.
1270 */
1271static void
1272dtrace_shift_128(uint64_t *a, int b)
1273{
1274	uint64_t mask;
1275
1276	if (b == 0)
1277		return;
1278
1279	if (b < 0) {
1280		b = -b;
1281		if (b >= 64) {
1282			a[0] = a[1] >> (b - 64);
1283			a[1] = 0;
1284		} else {
1285			a[0] >>= b;
1286			mask = 1LL << (64 - b);
1287			mask -= 1;
1288			a[0] |= ((a[1] & mask) << (64 - b));
1289			a[1] >>= b;
1290		}
1291	} else {
1292		if (b >= 64) {
1293			a[1] = a[0] << (b - 64);
1294			a[0] = 0;
1295		} else {
1296			a[1] <<= b;
1297			mask = a[0] >> (64 - b);
1298			a[1] |= mask;
1299			a[0] <<= b;
1300		}
1301	}
1302}
1303
1304/*
1305 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1306 * use native multiplication on those, and then re-combine into the
1307 * resulting 128-bit value.
1308 *
1309 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1310 *     hi1 * hi2 << 64 +
1311 *     hi1 * lo2 << 32 +
1312 *     hi2 * lo1 << 32 +
1313 *     lo1 * lo2
1314 */
1315static void
1316dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1317{
1318	uint64_t hi1, hi2, lo1, lo2;
1319	uint64_t tmp[2];
1320
1321	hi1 = factor1 >> 32;
1322	hi2 = factor2 >> 32;
1323
1324	lo1 = factor1 & DT_MASK_LO;
1325	lo2 = factor2 & DT_MASK_LO;
1326
1327	product[0] = lo1 * lo2;
1328	product[1] = hi1 * hi2;
1329
1330	tmp[0] = hi1 * lo2;
1331	tmp[1] = 0;
1332	dtrace_shift_128(tmp, 32);
1333	dtrace_add_128(product, tmp, product);
1334
1335	tmp[0] = hi2 * lo1;
1336	tmp[1] = 0;
1337	dtrace_shift_128(tmp, 32);
1338	dtrace_add_128(product, tmp, product);
1339}
1340
1341/*
1342 * This privilege check should be used by actions and subroutines to
1343 * verify that the user credentials of the process that enabled the
1344 * invoking ECB match the target credentials
1345 */
1346static int
1347dtrace_priv_proc_common_user(dtrace_state_t *state)
1348{
1349	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1350
1351	/*
1352	 * We should always have a non-NULL state cred here, since if cred
1353	 * is null (anonymous tracing), we fast-path bypass this routine.
1354	 */
1355	ASSERT(s_cr != NULL);
1356
1357	if ((cr = dtrace_CRED()) != NULL &&
1358	    posix_cred_get(s_cr)->cr_uid == posix_cred_get(cr)->cr_uid &&
1359	    posix_cred_get(s_cr)->cr_uid == posix_cred_get(cr)->cr_ruid &&
1360	    posix_cred_get(s_cr)->cr_uid == posix_cred_get(cr)->cr_suid &&
1361	    posix_cred_get(s_cr)->cr_gid == posix_cred_get(cr)->cr_gid &&
1362	    posix_cred_get(s_cr)->cr_gid == posix_cred_get(cr)->cr_rgid &&
1363	    posix_cred_get(s_cr)->cr_gid == posix_cred_get(cr)->cr_sgid)
1364		return (1);
1365
1366	return (0);
1367}
1368
1369/*
1370 * This privilege check should be used by actions and subroutines to
1371 * verify that the zone of the process that enabled the invoking ECB
1372 * matches the target credentials
1373 */
1374static int
1375dtrace_priv_proc_common_zone(dtrace_state_t *state)
1376{
1377	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1378#pragma unused(cr, s_cr, state) /* __APPLE__ */
1379
1380	/*
1381	 * We should always have a non-NULL state cred here, since if cred
1382	 * is null (anonymous tracing), we fast-path bypass this routine.
1383	 */
1384	ASSERT(s_cr != NULL);
1385
1386	return 1; /* APPLE NOTE: Darwin doesn't do zones. */
1387}
1388
1389/*
1390 * This privilege check should be used by actions and subroutines to
1391 * verify that the process has not setuid or changed credentials.
1392 */
1393static int
1394dtrace_priv_proc_common_nocd(void)
1395{
1396	return 1; /* Darwin omits "No Core Dump" flag. */
1397}
1398
1399static int
1400dtrace_priv_proc_destructive(dtrace_state_t *state)
1401{
1402	int action = state->dts_cred.dcr_action;
1403
1404	if (ISSET(current_proc()->p_lflag, P_LNOATTACH))
1405		goto bad;
1406
1407	if (dtrace_is_restricted() && !dtrace_can_attach_to_proc(current_proc()))
1408		goto bad;
1409
1410	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1411	    dtrace_priv_proc_common_zone(state) == 0)
1412		goto bad;
1413
1414	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1415	    dtrace_priv_proc_common_user(state) == 0)
1416		goto bad;
1417
1418	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1419	    dtrace_priv_proc_common_nocd() == 0)
1420		goto bad;
1421
1422	return (1);
1423
1424bad:
1425	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1426
1427	return (0);
1428}
1429
1430static int
1431dtrace_priv_proc_control(dtrace_state_t *state)
1432{
1433	if (ISSET(current_proc()->p_lflag, P_LNOATTACH))
1434		goto bad;
1435
1436	if (dtrace_is_restricted() && !dtrace_can_attach_to_proc(current_proc()))
1437		goto bad;
1438
1439	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1440		return (1);
1441
1442	if (dtrace_priv_proc_common_zone(state) &&
1443	    dtrace_priv_proc_common_user(state) &&
1444	    dtrace_priv_proc_common_nocd())
1445		return (1);
1446
1447bad:
1448	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1449
1450	return (0);
1451}
1452
1453static int
1454dtrace_priv_proc(dtrace_state_t *state)
1455{
1456	if (ISSET(current_proc()->p_lflag, P_LNOATTACH))
1457		goto bad;
1458
1459	if (dtrace_is_restricted() && !dtrace_can_attach_to_proc(current_proc()))
1460		goto bad;
1461
1462	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1463		return (1);
1464
1465bad:
1466	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1467
1468	return (0);
1469}
1470
1471/*
1472 * The P_LNOATTACH check is an Apple specific check.
1473 * We need a version of dtrace_priv_proc() that omits
1474 * that check for PID and EXECNAME accesses
1475 */
1476static int
1477dtrace_priv_proc_relaxed(dtrace_state_t *state)
1478{
1479
1480	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1481		return (1);
1482
1483	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1484
1485	return (0);
1486}
1487
1488static int
1489dtrace_priv_kernel(dtrace_state_t *state)
1490{
1491	if (dtrace_is_restricted())
1492		goto bad;
1493
1494	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1495		return (1);
1496
1497bad:
1498	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1499
1500	return (0);
1501}
1502
1503static int
1504dtrace_priv_kernel_destructive(dtrace_state_t *state)
1505{
1506	if (dtrace_is_restricted())
1507		goto bad;
1508
1509	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1510		return (1);
1511
1512bad:
1513	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1514
1515	return (0);
1516}
1517
1518/*
1519 * Note:  not called from probe context.  This function is called
1520 * asynchronously (and at a regular interval) from outside of probe context to
1521 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1522 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1523 */
1524static void
1525dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1526{
1527	dtrace_dynvar_t *dirty;
1528	dtrace_dstate_percpu_t *dcpu;
1529	int i, work = 0;
1530
1531	for (i = 0; i < (int)NCPU; i++) {
1532		dcpu = &dstate->dtds_percpu[i];
1533
1534		ASSERT(dcpu->dtdsc_rinsing == NULL);
1535
1536		/*
1537		 * If the dirty list is NULL, there is no dirty work to do.
1538		 */
1539		if (dcpu->dtdsc_dirty == NULL)
1540			continue;
1541
1542		/*
1543		 * If the clean list is non-NULL, then we're not going to do
1544		 * any work for this CPU -- it means that there has not been
1545		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1546		 * since the last time we cleaned house.
1547		 */
1548		if (dcpu->dtdsc_clean != NULL)
1549			continue;
1550
1551		work = 1;
1552
1553		/*
1554		 * Atomically move the dirty list aside.
1555		 */
1556		do {
1557			dirty = dcpu->dtdsc_dirty;
1558
1559			/*
1560			 * Before we zap the dirty list, set the rinsing list.
1561			 * (This allows for a potential assertion in
1562			 * dtrace_dynvar():  if a free dynamic variable appears
1563			 * on a hash chain, either the dirty list or the
1564			 * rinsing list for some CPU must be non-NULL.)
1565			 */
1566			dcpu->dtdsc_rinsing = dirty;
1567			dtrace_membar_producer();
1568		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1569		    dirty, NULL) != dirty);
1570	}
1571
1572	if (!work) {
1573		/*
1574		 * We have no work to do; we can simply return.
1575		 */
1576		return;
1577	}
1578
1579	dtrace_sync();
1580
1581	for (i = 0; i < (int)NCPU; i++) {
1582		dcpu = &dstate->dtds_percpu[i];
1583
1584		if (dcpu->dtdsc_rinsing == NULL)
1585			continue;
1586
1587		/*
1588		 * We are now guaranteed that no hash chain contains a pointer
1589		 * into this dirty list; we can make it clean.
1590		 */
1591		ASSERT(dcpu->dtdsc_clean == NULL);
1592		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1593		dcpu->dtdsc_rinsing = NULL;
1594	}
1595
1596	/*
1597	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1598	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1599	 * This prevents a race whereby a CPU incorrectly decides that
1600	 * the state should be something other than DTRACE_DSTATE_CLEAN
1601	 * after dtrace_dynvar_clean() has completed.
1602	 */
1603	dtrace_sync();
1604
1605	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1606}
1607
1608/*
1609 * Depending on the value of the op parameter, this function looks-up,
1610 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1611 * allocation is requested, this function will return a pointer to a
1612 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1613 * variable can be allocated.  If NULL is returned, the appropriate counter
1614 * will be incremented.
1615 */
1616static dtrace_dynvar_t *
1617dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1618    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1619    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1620{
1621	uint64_t hashval = DTRACE_DYNHASH_VALID;
1622	dtrace_dynhash_t *hash = dstate->dtds_hash;
1623	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1624	processorid_t me = CPU->cpu_id, cpu = me;
1625	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1626	size_t bucket, ksize;
1627	size_t chunksize = dstate->dtds_chunksize;
1628	uintptr_t kdata, lock, nstate;
1629	uint_t i;
1630
1631	ASSERT(nkeys != 0);
1632
1633	/*
1634	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1635	 * algorithm.  For the by-value portions, we perform the algorithm in
1636	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1637	 * bit, and seems to have only a minute effect on distribution.  For
1638	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1639	 * over each referenced byte.  It's painful to do this, but it's much
1640	 * better than pathological hash distribution.  The efficacy of the
1641	 * hashing algorithm (and a comparison with other algorithms) may be
1642	 * found by running the ::dtrace_dynstat MDB dcmd.
1643	 */
1644	for (i = 0; i < nkeys; i++) {
1645		if (key[i].dttk_size == 0) {
1646			uint64_t val = key[i].dttk_value;
1647
1648			hashval += (val >> 48) & 0xffff;
1649			hashval += (hashval << 10);
1650			hashval ^= (hashval >> 6);
1651
1652			hashval += (val >> 32) & 0xffff;
1653			hashval += (hashval << 10);
1654			hashval ^= (hashval >> 6);
1655
1656			hashval += (val >> 16) & 0xffff;
1657			hashval += (hashval << 10);
1658			hashval ^= (hashval >> 6);
1659
1660			hashval += val & 0xffff;
1661			hashval += (hashval << 10);
1662			hashval ^= (hashval >> 6);
1663		} else {
1664			/*
1665			 * This is incredibly painful, but it beats the hell
1666			 * out of the alternative.
1667			 */
1668			uint64_t j, size = key[i].dttk_size;
1669			uintptr_t base = (uintptr_t)key[i].dttk_value;
1670
1671			if (!dtrace_canload(base, size, mstate, vstate))
1672				break;
1673
1674			for (j = 0; j < size; j++) {
1675				hashval += dtrace_load8(base + j);
1676				hashval += (hashval << 10);
1677				hashval ^= (hashval >> 6);
1678			}
1679		}
1680	}
1681
1682	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1683		return (NULL);
1684
1685	hashval += (hashval << 3);
1686	hashval ^= (hashval >> 11);
1687	hashval += (hashval << 15);
1688
1689	/*
1690	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1691	 * comes out to be one of our two sentinel hash values.  If this
1692	 * actually happens, we set the hashval to be a value known to be a
1693	 * non-sentinel value.
1694	 */
1695	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1696		hashval = DTRACE_DYNHASH_VALID;
1697
1698	/*
1699	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1700	 * important here, tricks can be pulled to reduce it.  (However, it's
1701	 * critical that hash collisions be kept to an absolute minimum;
1702	 * they're much more painful than a divide.)  It's better to have a
1703	 * solution that generates few collisions and still keeps things
1704	 * relatively simple.
1705	 */
1706	bucket = hashval % dstate->dtds_hashsize;
1707
1708	if (op == DTRACE_DYNVAR_DEALLOC) {
1709		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1710
1711		for (;;) {
1712			while ((lock = *lockp) & 1)
1713				continue;
1714
1715			if (dtrace_casptr((void *)(uintptr_t)lockp,
1716			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1717				break;
1718		}
1719
1720		dtrace_membar_producer();
1721	}
1722
1723top:
1724	prev = NULL;
1725	lock = hash[bucket].dtdh_lock;
1726
1727	dtrace_membar_consumer();
1728
1729	start = hash[bucket].dtdh_chain;
1730	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1731	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1732	    op != DTRACE_DYNVAR_DEALLOC));
1733
1734	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1735		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1736		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1737
1738		if (dvar->dtdv_hashval != hashval) {
1739			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1740				/*
1741				 * We've reached the sink, and therefore the
1742				 * end of the hash chain; we can kick out of
1743				 * the loop knowing that we have seen a valid
1744				 * snapshot of state.
1745				 */
1746				ASSERT(dvar->dtdv_next == NULL);
1747				ASSERT(dvar == &dtrace_dynhash_sink);
1748				break;
1749			}
1750
1751			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1752				/*
1753				 * We've gone off the rails:  somewhere along
1754				 * the line, one of the members of this hash
1755				 * chain was deleted.  Note that we could also
1756				 * detect this by simply letting this loop run
1757				 * to completion, as we would eventually hit
1758				 * the end of the dirty list.  However, we
1759				 * want to avoid running the length of the
1760				 * dirty list unnecessarily (it might be quite
1761				 * long), so we catch this as early as
1762				 * possible by detecting the hash marker.  In
1763				 * this case, we simply set dvar to NULL and
1764				 * break; the conditional after the loop will
1765				 * send us back to top.
1766				 */
1767				dvar = NULL;
1768				break;
1769			}
1770
1771			goto next;
1772		}
1773
1774		if (dtuple->dtt_nkeys != nkeys)
1775			goto next;
1776
1777		for (i = 0; i < nkeys; i++, dkey++) {
1778			if (dkey->dttk_size != key[i].dttk_size)
1779				goto next; /* size or type mismatch */
1780
1781			if (dkey->dttk_size != 0) {
1782				if (dtrace_bcmp(
1783				    (void *)(uintptr_t)key[i].dttk_value,
1784				    (void *)(uintptr_t)dkey->dttk_value,
1785				    dkey->dttk_size))
1786					goto next;
1787			} else {
1788				if (dkey->dttk_value != key[i].dttk_value)
1789					goto next;
1790			}
1791		}
1792
1793		if (op != DTRACE_DYNVAR_DEALLOC)
1794			return (dvar);
1795
1796		ASSERT(dvar->dtdv_next == NULL ||
1797		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1798
1799		if (prev != NULL) {
1800			ASSERT(hash[bucket].dtdh_chain != dvar);
1801			ASSERT(start != dvar);
1802			ASSERT(prev->dtdv_next == dvar);
1803			prev->dtdv_next = dvar->dtdv_next;
1804		} else {
1805			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1806			    start, dvar->dtdv_next) != start) {
1807				/*
1808				 * We have failed to atomically swing the
1809				 * hash table head pointer, presumably because
1810				 * of a conflicting allocation on another CPU.
1811				 * We need to reread the hash chain and try
1812				 * again.
1813				 */
1814				goto top;
1815			}
1816		}
1817
1818		dtrace_membar_producer();
1819
1820		/*
1821		 * Now set the hash value to indicate that it's free.
1822		 */
1823		ASSERT(hash[bucket].dtdh_chain != dvar);
1824		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1825
1826		dtrace_membar_producer();
1827
1828		/*
1829		 * Set the next pointer to point at the dirty list, and
1830		 * atomically swing the dirty pointer to the newly freed dvar.
1831		 */
1832		do {
1833			next = dcpu->dtdsc_dirty;
1834			dvar->dtdv_next = next;
1835		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1836
1837		/*
1838		 * Finally, unlock this hash bucket.
1839		 */
1840		ASSERT(hash[bucket].dtdh_lock == lock);
1841		ASSERT(lock & 1);
1842		hash[bucket].dtdh_lock++;
1843
1844		return (NULL);
1845next:
1846		prev = dvar;
1847		continue;
1848	}
1849
1850	if (dvar == NULL) {
1851		/*
1852		 * If dvar is NULL, it is because we went off the rails:
1853		 * one of the elements that we traversed in the hash chain
1854		 * was deleted while we were traversing it.  In this case,
1855		 * we assert that we aren't doing a dealloc (deallocs lock
1856		 * the hash bucket to prevent themselves from racing with
1857		 * one another), and retry the hash chain traversal.
1858		 */
1859		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1860		goto top;
1861	}
1862
1863	if (op != DTRACE_DYNVAR_ALLOC) {
1864		/*
1865		 * If we are not to allocate a new variable, we want to
1866		 * return NULL now.  Before we return, check that the value
1867		 * of the lock word hasn't changed.  If it has, we may have
1868		 * seen an inconsistent snapshot.
1869		 */
1870		if (op == DTRACE_DYNVAR_NOALLOC) {
1871			if (hash[bucket].dtdh_lock != lock)
1872				goto top;
1873		} else {
1874			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1875			ASSERT(hash[bucket].dtdh_lock == lock);
1876			ASSERT(lock & 1);
1877			hash[bucket].dtdh_lock++;
1878		}
1879
1880		return (NULL);
1881	}
1882
1883	/*
1884	 * We need to allocate a new dynamic variable.  The size we need is the
1885	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1886	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1887	 * the size of any referred-to data (dsize).  We then round the final
1888	 * size up to the chunksize for allocation.
1889	 */
1890	for (ksize = 0, i = 0; i < nkeys; i++)
1891		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1892
1893	/*
1894	 * This should be pretty much impossible, but could happen if, say,
1895	 * strange DIF specified the tuple.  Ideally, this should be an
1896	 * assertion and not an error condition -- but that requires that the
1897	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1898	 * bullet-proof.  (That is, it must not be able to be fooled by
1899	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1900	 * solving this would presumably not amount to solving the Halting
1901	 * Problem -- but it still seems awfully hard.
1902	 */
1903	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1904	    ksize + dsize > chunksize) {
1905		dcpu->dtdsc_drops++;
1906		return (NULL);
1907	}
1908
1909	nstate = DTRACE_DSTATE_EMPTY;
1910
1911	do {
1912retry:
1913		free = dcpu->dtdsc_free;
1914
1915		if (free == NULL) {
1916			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1917			void *rval;
1918
1919			if (clean == NULL) {
1920				/*
1921				 * We're out of dynamic variable space on
1922				 * this CPU.  Unless we have tried all CPUs,
1923				 * we'll try to allocate from a different
1924				 * CPU.
1925				 */
1926				switch (dstate->dtds_state) {
1927				case DTRACE_DSTATE_CLEAN: {
1928					void *sp = &dstate->dtds_state;
1929
1930					if (++cpu >= (int)NCPU)
1931						cpu = 0;
1932
1933					if (dcpu->dtdsc_dirty != NULL &&
1934					    nstate == DTRACE_DSTATE_EMPTY)
1935						nstate = DTRACE_DSTATE_DIRTY;
1936
1937					if (dcpu->dtdsc_rinsing != NULL)
1938						nstate = DTRACE_DSTATE_RINSING;
1939
1940					dcpu = &dstate->dtds_percpu[cpu];
1941
1942					if (cpu != me)
1943						goto retry;
1944
1945					(void) dtrace_cas32(sp,
1946					    DTRACE_DSTATE_CLEAN, nstate);
1947
1948					/*
1949					 * To increment the correct bean
1950					 * counter, take another lap.
1951					 */
1952					goto retry;
1953				}
1954
1955				case DTRACE_DSTATE_DIRTY:
1956					dcpu->dtdsc_dirty_drops++;
1957					break;
1958
1959				case DTRACE_DSTATE_RINSING:
1960					dcpu->dtdsc_rinsing_drops++;
1961					break;
1962
1963				case DTRACE_DSTATE_EMPTY:
1964					dcpu->dtdsc_drops++;
1965					break;
1966				}
1967
1968				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1969				return (NULL);
1970			}
1971
1972			/*
1973			 * The clean list appears to be non-empty.  We want to
1974			 * move the clean list to the free list; we start by
1975			 * moving the clean pointer aside.
1976			 */
1977			if (dtrace_casptr(&dcpu->dtdsc_clean,
1978			    clean, NULL) != clean) {
1979				/*
1980				 * We are in one of two situations:
1981				 *
1982				 *  (a)	The clean list was switched to the
1983				 *	free list by another CPU.
1984				 *
1985				 *  (b)	The clean list was added to by the
1986				 *	cleansing cyclic.
1987				 *
1988				 * In either of these situations, we can
1989				 * just reattempt the free list allocation.
1990				 */
1991				goto retry;
1992			}
1993
1994			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1995
1996			/*
1997			 * Now we'll move the clean list to the free list.
1998			 * It's impossible for this to fail:  the only way
1999			 * the free list can be updated is through this
2000			 * code path, and only one CPU can own the clean list.
2001			 * Thus, it would only be possible for this to fail if
2002			 * this code were racing with dtrace_dynvar_clean().
2003			 * (That is, if dtrace_dynvar_clean() updated the clean
2004			 * list, and we ended up racing to update the free
2005			 * list.)  This race is prevented by the dtrace_sync()
2006			 * in dtrace_dynvar_clean() -- which flushes the
2007			 * owners of the clean lists out before resetting
2008			 * the clean lists.
2009			 */
2010			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2011			ASSERT(rval == NULL);
2012			goto retry;
2013		}
2014
2015		dvar = free;
2016		new_free = dvar->dtdv_next;
2017	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2018
2019	/*
2020	 * We have now allocated a new chunk.  We copy the tuple keys into the
2021	 * tuple array and copy any referenced key data into the data space
2022	 * following the tuple array.  As we do this, we relocate dttk_value
2023	 * in the final tuple to point to the key data address in the chunk.
2024	 */
2025	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2026	dvar->dtdv_data = (void *)(kdata + ksize);
2027	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2028
2029	for (i = 0; i < nkeys; i++) {
2030		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2031		size_t kesize = key[i].dttk_size;
2032
2033		if (kesize != 0) {
2034			dtrace_bcopy(
2035			    (const void *)(uintptr_t)key[i].dttk_value,
2036			    (void *)kdata, kesize);
2037			dkey->dttk_value = kdata;
2038			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2039		} else {
2040			dkey->dttk_value = key[i].dttk_value;
2041		}
2042
2043		dkey->dttk_size = kesize;
2044	}
2045
2046	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2047	dvar->dtdv_hashval = hashval;
2048	dvar->dtdv_next = start;
2049
2050	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2051		return (dvar);
2052
2053	/*
2054	 * The cas has failed.  Either another CPU is adding an element to
2055	 * this hash chain, or another CPU is deleting an element from this
2056	 * hash chain.  The simplest way to deal with both of these cases
2057	 * (though not necessarily the most efficient) is to free our
2058	 * allocated block and tail-call ourselves.  Note that the free is
2059	 * to the dirty list and _not_ to the free list.  This is to prevent
2060	 * races with allocators, above.
2061	 */
2062	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2063
2064	dtrace_membar_producer();
2065
2066	do {
2067		free = dcpu->dtdsc_dirty;
2068		dvar->dtdv_next = free;
2069	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2070
2071	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
2072}
2073
2074/*ARGSUSED*/
2075static void
2076dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2077{
2078#pragma unused(arg) /* __APPLE__ */
2079	if ((int64_t)nval < (int64_t)*oval)
2080		*oval = nval;
2081}
2082
2083/*ARGSUSED*/
2084static void
2085dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2086{
2087#pragma unused(arg) /* __APPLE__ */
2088	if ((int64_t)nval > (int64_t)*oval)
2089		*oval = nval;
2090}
2091
2092static void
2093dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2094{
2095	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2096	int64_t val = (int64_t)nval;
2097
2098	if (val < 0) {
2099		for (i = 0; i < zero; i++) {
2100			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2101				quanta[i] += incr;
2102				return;
2103			}
2104		}
2105	} else {
2106		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2107			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2108				quanta[i - 1] += incr;
2109				return;
2110			}
2111		}
2112
2113		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2114		return;
2115	}
2116
2117	ASSERT(0);
2118}
2119
2120static void
2121dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2122{
2123	uint64_t arg = *lquanta++;
2124	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2125	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2126	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2127	int32_t val = (int32_t)nval, level;
2128
2129	ASSERT(step != 0);
2130	ASSERT(levels != 0);
2131
2132	if (val < base) {
2133		/*
2134		 * This is an underflow.
2135		 */
2136		lquanta[0] += incr;
2137		return;
2138	}
2139
2140	level = (val - base) / step;
2141
2142	if (level < levels) {
2143		lquanta[level + 1] += incr;
2144		return;
2145	}
2146
2147	/*
2148	 * This is an overflow.
2149	 */
2150	lquanta[levels + 1] += incr;
2151}
2152
2153static int
2154dtrace_aggregate_llquantize_bucket(int16_t factor, int16_t low, int16_t high,
2155                                   int16_t nsteps, int64_t value)
2156{
2157	int64_t this = 1, last, next;
2158	int base = 1, order;
2159
2160	for (order = 0; order < low; ++order)
2161		this *= factor;
2162
2163	/*
2164	 * If our value is less than our factor taken to the power of the
2165	 * low order of magnitude, it goes into the zeroth bucket.
2166	 */
2167	if (value < this)
2168		return 0;
2169	else
2170		last = this;
2171
2172	for (this *= factor; order <= high; ++order) {
2173		int nbuckets = this > nsteps ? nsteps : this;
2174
2175		/*
2176		 * We should not generally get log/linear quantizations
2177		 * with a high magnitude that allows 64-bits to
2178		 * overflow, but we nonetheless protect against this
2179		 * by explicitly checking for overflow, and clamping
2180		 * our value accordingly.
2181		 */
2182		next = this * factor;
2183		if (next < this) {
2184			value = this - 1;
2185		}
2186
2187		/*
2188		 * If our value lies within this order of magnitude,
2189		 * determine its position by taking the offset within
2190		 * the order of magnitude, dividing by the bucket
2191		 * width, and adding to our (accumulated) base.
2192		 */
2193		if (value < this) {
2194			return (base + (value - last) / (this / nbuckets));
2195		}
2196
2197		base += nbuckets - (nbuckets / factor);
2198		last = this;
2199		this = next;
2200	}
2201
2202	/*
2203	 * Our value is greater than or equal to our factor taken to the
2204	 * power of one plus the high magnitude -- return the top bucket.
2205	 */
2206	return base;
2207}
2208
2209static void
2210dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2211{
2212	uint64_t arg    = *llquanta++;
2213	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2214	uint16_t low    = DTRACE_LLQUANTIZE_LOW(arg);
2215	uint16_t high   = DTRACE_LLQUANTIZE_HIGH(arg);
2216	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2217
2218	llquanta[dtrace_aggregate_llquantize_bucket(factor, low, high, nsteps, nval)] += incr;
2219}
2220
2221/*ARGSUSED*/
2222static void
2223dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2224{
2225#pragma unused(arg) /* __APPLE__ */
2226	data[0]++;
2227	data[1] += nval;
2228}
2229
2230/*ARGSUSED*/
2231static void
2232dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2233{
2234#pragma unused(arg) /* __APPLE__ */
2235	int64_t snval = (int64_t)nval;
2236	uint64_t tmp[2];
2237
2238	data[0]++;
2239	data[1] += nval;
2240
2241	/*
2242	 * What we want to say here is:
2243	 *
2244	 * data[2] += nval * nval;
2245	 *
2246	 * But given that nval is 64-bit, we could easily overflow, so
2247	 * we do this as 128-bit arithmetic.
2248	 */
2249	if (snval < 0)
2250		snval = -snval;
2251
2252	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2253	dtrace_add_128(data + 2, tmp, data + 2);
2254}
2255
2256/*ARGSUSED*/
2257static void
2258dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2259{
2260#pragma unused(nval, arg) /* __APPLE__ */
2261	*oval = *oval + 1;
2262}
2263
2264/*ARGSUSED*/
2265static void
2266dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2267{
2268#pragma unused(arg) /* __APPLE__ */
2269	*oval += nval;
2270}
2271
2272/*
2273 * Aggregate given the tuple in the principal data buffer, and the aggregating
2274 * action denoted by the specified dtrace_aggregation_t.  The aggregation
2275 * buffer is specified as the buf parameter.  This routine does not return
2276 * failure; if there is no space in the aggregation buffer, the data will be
2277 * dropped, and a corresponding counter incremented.
2278 */
2279static void
2280dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2281    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2282{
2283#pragma unused(arg)
2284	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2285	uint32_t i, ndx, size, fsize;
2286	uint32_t align = sizeof (uint64_t) - 1;
2287	dtrace_aggbuffer_t *agb;
2288	dtrace_aggkey_t *key;
2289	uint32_t hashval = 0, limit, isstr;
2290	caddr_t tomax, data, kdata;
2291	dtrace_actkind_t action;
2292	dtrace_action_t *act;
2293	uintptr_t offs;
2294
2295	if (buf == NULL)
2296		return;
2297
2298	if (!agg->dtag_hasarg) {
2299		/*
2300		 * Currently, only quantize() and lquantize() take additional
2301		 * arguments, and they have the same semantics:  an increment
2302		 * value that defaults to 1 when not present.  If additional
2303		 * aggregating actions take arguments, the setting of the
2304		 * default argument value will presumably have to become more
2305		 * sophisticated...
2306		 */
2307		arg = 1;
2308	}
2309
2310	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2311	size = rec->dtrd_offset - agg->dtag_base;
2312	fsize = size + rec->dtrd_size;
2313
2314	ASSERT(dbuf->dtb_tomax != NULL);
2315	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2316
2317	if ((tomax = buf->dtb_tomax) == NULL) {
2318		dtrace_buffer_drop(buf);
2319		return;
2320	}
2321
2322	/*
2323	 * The metastructure is always at the bottom of the buffer.
2324	 */
2325	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2326	    sizeof (dtrace_aggbuffer_t));
2327
2328	if (buf->dtb_offset == 0) {
2329		/*
2330		 * We just kludge up approximately 1/8th of the size to be
2331		 * buckets.  If this guess ends up being routinely
2332		 * off-the-mark, we may need to dynamically readjust this
2333		 * based on past performance.
2334		 */
2335		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2336
2337		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2338		    (uintptr_t)tomax || hashsize == 0) {
2339			/*
2340			 * We've been given a ludicrously small buffer;
2341			 * increment our drop count and leave.
2342			 */
2343			dtrace_buffer_drop(buf);
2344			return;
2345		}
2346
2347		/*
2348		 * And now, a pathetic attempt to try to get a an odd (or
2349		 * perchance, a prime) hash size for better hash distribution.
2350		 */
2351		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2352			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2353
2354		agb->dtagb_hashsize = hashsize;
2355		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2356		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2357		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2358
2359		for (i = 0; i < agb->dtagb_hashsize; i++)
2360			agb->dtagb_hash[i] = NULL;
2361	}
2362
2363	ASSERT(agg->dtag_first != NULL);
2364	ASSERT(agg->dtag_first->dta_intuple);
2365
2366	/*
2367	 * Calculate the hash value based on the key.  Note that we _don't_
2368	 * include the aggid in the hashing (but we will store it as part of
2369	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2370	 * algorithm: a simple, quick algorithm that has no known funnels, and
2371	 * gets good distribution in practice.  The efficacy of the hashing
2372	 * algorithm (and a comparison with other algorithms) may be found by
2373	 * running the ::dtrace_aggstat MDB dcmd.
2374	 */
2375	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2376		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2377		limit = i + act->dta_rec.dtrd_size;
2378		ASSERT(limit <= size);
2379		isstr = DTRACEACT_ISSTRING(act);
2380
2381		for (; i < limit; i++) {
2382			hashval += data[i];
2383			hashval += (hashval << 10);
2384			hashval ^= (hashval >> 6);
2385
2386			if (isstr && data[i] == '\0')
2387				break;
2388		}
2389	}
2390
2391	hashval += (hashval << 3);
2392	hashval ^= (hashval >> 11);
2393	hashval += (hashval << 15);
2394
2395	/*
2396	 * Yes, the divide here is expensive -- but it's generally the least
2397	 * of the performance issues given the amount of data that we iterate
2398	 * over to compute hash values, compare data, etc.
2399	 */
2400	ndx = hashval % agb->dtagb_hashsize;
2401
2402	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2403		ASSERT((caddr_t)key >= tomax);
2404		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2405
2406		if (hashval != key->dtak_hashval || key->dtak_size != size)
2407			continue;
2408
2409		kdata = key->dtak_data;
2410		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2411
2412		for (act = agg->dtag_first; act->dta_intuple;
2413		    act = act->dta_next) {
2414			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2415			limit = i + act->dta_rec.dtrd_size;
2416			ASSERT(limit <= size);
2417			isstr = DTRACEACT_ISSTRING(act);
2418
2419			for (; i < limit; i++) {
2420				if (kdata[i] != data[i])
2421					goto next;
2422
2423				if (isstr && data[i] == '\0')
2424					break;
2425			}
2426		}
2427
2428		if (action != key->dtak_action) {
2429			/*
2430			 * We are aggregating on the same value in the same
2431			 * aggregation with two different aggregating actions.
2432			 * (This should have been picked up in the compiler,
2433			 * so we may be dealing with errant or devious DIF.)
2434			 * This is an error condition; we indicate as much,
2435			 * and return.
2436			 */
2437			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2438			return;
2439		}
2440
2441		/*
2442		 * This is a hit:  we need to apply the aggregator to
2443		 * the value at this key.
2444		 */
2445		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2446		return;
2447next:
2448		continue;
2449	}
2450
2451	/*
2452	 * We didn't find it.  We need to allocate some zero-filled space,
2453	 * link it into the hash table appropriately, and apply the aggregator
2454	 * to the (zero-filled) value.
2455	 */
2456	offs = buf->dtb_offset;
2457	while (offs & (align - 1))
2458		offs += sizeof (uint32_t);
2459
2460	/*
2461	 * If we don't have enough room to both allocate a new key _and_
2462	 * its associated data, increment the drop count and return.
2463	 */
2464	if ((uintptr_t)tomax + offs + fsize >
2465	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2466		dtrace_buffer_drop(buf);
2467		return;
2468	}
2469
2470	/*CONSTCOND*/
2471	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2472	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2473	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2474
2475	key->dtak_data = kdata = tomax + offs;
2476	buf->dtb_offset = offs + fsize;
2477
2478	/*
2479	 * Now copy the data across.
2480	 */
2481	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2482
2483	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2484		kdata[i] = data[i];
2485
2486	/*
2487	 * Because strings are not zeroed out by default, we need to iterate
2488	 * looking for actions that store strings, and we need to explicitly
2489	 * pad these strings out with zeroes.
2490	 */
2491	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2492		int nul;
2493
2494		if (!DTRACEACT_ISSTRING(act))
2495			continue;
2496
2497		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2498		limit = i + act->dta_rec.dtrd_size;
2499		ASSERT(limit <= size);
2500
2501		for (nul = 0; i < limit; i++) {
2502			if (nul) {
2503				kdata[i] = '\0';
2504				continue;
2505			}
2506
2507			if (data[i] != '\0')
2508				continue;
2509
2510			nul = 1;
2511		}
2512	}
2513
2514	for (i = size; i < fsize; i++)
2515		kdata[i] = 0;
2516
2517	key->dtak_hashval = hashval;
2518	key->dtak_size = size;
2519	key->dtak_action = action;
2520	key->dtak_next = agb->dtagb_hash[ndx];
2521	agb->dtagb_hash[ndx] = key;
2522
2523	/*
2524	 * Finally, apply the aggregator.
2525	 */
2526	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2527	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2528}
2529
2530/*
2531 * Given consumer state, this routine finds a speculation in the INACTIVE
2532 * state and transitions it into the ACTIVE state.  If there is no speculation
2533 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2534 * incremented -- it is up to the caller to take appropriate action.
2535 */
2536static int
2537dtrace_speculation(dtrace_state_t *state)
2538{
2539	int i = 0;
2540	dtrace_speculation_state_t current;
2541	uint32_t *stat = &state->dts_speculations_unavail, count;
2542
2543	while (i < state->dts_nspeculations) {
2544		dtrace_speculation_t *spec = &state->dts_speculations[i];
2545
2546		current = spec->dtsp_state;
2547
2548		if (current != DTRACESPEC_INACTIVE) {
2549			if (current == DTRACESPEC_COMMITTINGMANY ||
2550			    current == DTRACESPEC_COMMITTING ||
2551			    current == DTRACESPEC_DISCARDING)
2552				stat = &state->dts_speculations_busy;
2553			i++;
2554			continue;
2555		}
2556
2557		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2558		    current, DTRACESPEC_ACTIVE) == current)
2559			return (i + 1);
2560	}
2561
2562	/*
2563	 * We couldn't find a speculation.  If we found as much as a single
2564	 * busy speculation buffer, we'll attribute this failure as "busy"
2565	 * instead of "unavail".
2566	 */
2567	do {
2568		count = *stat;
2569	} while (dtrace_cas32(stat, count, count + 1) != count);
2570
2571	return (0);
2572}
2573
2574/*
2575 * This routine commits an active speculation.  If the specified speculation
2576 * is not in a valid state to perform a commit(), this routine will silently do
2577 * nothing.  The state of the specified speculation is transitioned according
2578 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2579 */
2580static void
2581dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2582    dtrace_specid_t which)
2583{
2584	dtrace_speculation_t *spec;
2585	dtrace_buffer_t *src, *dest;
2586	uintptr_t daddr, saddr, dlimit;
2587	dtrace_speculation_state_t current,  new = DTRACESPEC_INACTIVE;
2588	intptr_t offs;
2589
2590	if (which == 0)
2591		return;
2592
2593	if (which > (dtrace_specid_t)state->dts_nspeculations) {
2594		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2595		return;
2596	}
2597
2598	spec = &state->dts_speculations[which - 1];
2599	src = &spec->dtsp_buffer[cpu];
2600	dest = &state->dts_buffer[cpu];
2601
2602	do {
2603		current = spec->dtsp_state;
2604
2605		if (current == DTRACESPEC_COMMITTINGMANY)
2606			break;
2607
2608		switch (current) {
2609		case DTRACESPEC_INACTIVE:
2610		case DTRACESPEC_DISCARDING:
2611			return;
2612
2613		case DTRACESPEC_COMMITTING:
2614			/*
2615			 * This is only possible if we are (a) commit()'ing
2616			 * without having done a prior speculate() on this CPU
2617			 * and (b) racing with another commit() on a different
2618			 * CPU.  There's nothing to do -- we just assert that
2619			 * our offset is 0.
2620			 */
2621			ASSERT(src->dtb_offset == 0);
2622			return;
2623
2624		case DTRACESPEC_ACTIVE:
2625			new = DTRACESPEC_COMMITTING;
2626			break;
2627
2628		case DTRACESPEC_ACTIVEONE:
2629			/*
2630			 * This speculation is active on one CPU.  If our
2631			 * buffer offset is non-zero, we know that the one CPU
2632			 * must be us.  Otherwise, we are committing on a
2633			 * different CPU from the speculate(), and we must
2634			 * rely on being asynchronously cleaned.
2635			 */
2636			if (src->dtb_offset != 0) {
2637				new = DTRACESPEC_COMMITTING;
2638				break;
2639			}
2640			/*FALLTHROUGH*/
2641
2642		case DTRACESPEC_ACTIVEMANY:
2643			new = DTRACESPEC_COMMITTINGMANY;
2644			break;
2645
2646		default:
2647			ASSERT(0);
2648		}
2649	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2650	    current, new) != current);
2651
2652	/*
2653	 * We have set the state to indicate that we are committing this
2654	 * speculation.  Now reserve the necessary space in the destination
2655	 * buffer.
2656	 */
2657	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2658	    sizeof (uint64_t), state, NULL)) < 0) {
2659		dtrace_buffer_drop(dest);
2660		goto out;
2661	}
2662
2663	/*
2664	 * We have the space; copy the buffer across.  (Note that this is a
2665	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2666	 * a serious performance issue, a high-performance DTrace-specific
2667	 * bcopy() should obviously be invented.)
2668	 */
2669	daddr = (uintptr_t)dest->dtb_tomax + offs;
2670	dlimit = daddr + src->dtb_offset;
2671	saddr = (uintptr_t)src->dtb_tomax;
2672
2673	/*
2674	 * First, the aligned portion.
2675	 */
2676	while (dlimit - daddr >= sizeof (uint64_t)) {
2677		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2678
2679		daddr += sizeof (uint64_t);
2680		saddr += sizeof (uint64_t);
2681	}
2682
2683	/*
2684	 * Now any left-over bit...
2685	 */
2686	while (dlimit - daddr)
2687		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2688
2689	/*
2690	 * Finally, commit the reserved space in the destination buffer.
2691	 */
2692	dest->dtb_offset = offs + src->dtb_offset;
2693
2694out:
2695	/*
2696	 * If we're lucky enough to be the only active CPU on this speculation
2697	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2698	 */
2699	if (current == DTRACESPEC_ACTIVE ||
2700	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2701		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2702		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2703#pragma unused(rval) /* __APPLE__ */
2704
2705		ASSERT(rval == DTRACESPEC_COMMITTING);
2706	}
2707
2708	src->dtb_offset = 0;
2709	src->dtb_xamot_drops += src->dtb_drops;
2710	src->dtb_drops = 0;
2711}
2712
2713/*
2714 * This routine discards an active speculation.  If the specified speculation
2715 * is not in a valid state to perform a discard(), this routine will silently
2716 * do nothing.  The state of the specified speculation is transitioned
2717 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2718 */
2719static void
2720dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2721    dtrace_specid_t which)
2722{
2723	dtrace_speculation_t *spec;
2724	dtrace_speculation_state_t current, new = DTRACESPEC_INACTIVE;
2725	dtrace_buffer_t *buf;
2726
2727	if (which == 0)
2728		return;
2729
2730	if (which > (dtrace_specid_t)state->dts_nspeculations) {
2731		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2732		return;
2733	}
2734
2735	spec = &state->dts_speculations[which - 1];
2736	buf = &spec->dtsp_buffer[cpu];
2737
2738	do {
2739		current = spec->dtsp_state;
2740
2741		switch (current) {
2742		case DTRACESPEC_INACTIVE:
2743		case DTRACESPEC_COMMITTINGMANY:
2744		case DTRACESPEC_COMMITTING:
2745		case DTRACESPEC_DISCARDING:
2746			return;
2747
2748		case DTRACESPEC_ACTIVE:
2749		case DTRACESPEC_ACTIVEMANY:
2750			new = DTRACESPEC_DISCARDING;
2751			break;
2752
2753		case DTRACESPEC_ACTIVEONE:
2754			if (buf->dtb_offset != 0) {
2755				new = DTRACESPEC_INACTIVE;
2756			} else {
2757				new = DTRACESPEC_DISCARDING;
2758			}
2759			break;
2760
2761		default:
2762			ASSERT(0);
2763		}
2764	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2765	    current, new) != current);
2766
2767	buf->dtb_offset = 0;
2768	buf->dtb_drops = 0;
2769}
2770
2771/*
2772 * Note:  not called from probe context.  This function is called
2773 * asynchronously from cross call context to clean any speculations that are
2774 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2775 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2776 * speculation.
2777 */
2778static void
2779dtrace_speculation_clean_here(dtrace_state_t *state)
2780{
2781	dtrace_icookie_t cookie;
2782	processorid_t cpu = CPU->cpu_id;
2783	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2784	dtrace_specid_t i;
2785
2786	cookie = dtrace_interrupt_disable();
2787
2788	if (dest->dtb_tomax == NULL) {
2789		dtrace_interrupt_enable(cookie);
2790		return;
2791	}
2792
2793	for (i = 0; i < (dtrace_specid_t)state->dts_nspeculations; i++) {
2794		dtrace_speculation_t *spec = &state->dts_speculations[i];
2795		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2796
2797		if (src->dtb_tomax == NULL)
2798			continue;
2799
2800		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2801			src->dtb_offset = 0;
2802			continue;
2803		}
2804
2805		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2806			continue;
2807
2808		if (src->dtb_offset == 0)
2809			continue;
2810
2811		dtrace_speculation_commit(state, cpu, i + 1);
2812	}
2813
2814	dtrace_interrupt_enable(cookie);
2815}
2816
2817/*
2818 * Note:  not called from probe context.  This function is called
2819 * asynchronously (and at a regular interval) to clean any speculations that
2820 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2821 * is work to be done, it cross calls all CPUs to perform that work;
2822 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2823 * INACTIVE state until they have been cleaned by all CPUs.
2824 */
2825static void
2826dtrace_speculation_clean(dtrace_state_t *state)
2827{
2828	int work = 0;
2829	uint32_t rv;
2830	dtrace_specid_t i;
2831
2832	for (i = 0; i < (dtrace_specid_t)state->dts_nspeculations; i++) {
2833		dtrace_speculation_t *spec = &state->dts_speculations[i];
2834
2835		ASSERT(!spec->dtsp_cleaning);
2836
2837		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2838		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2839			continue;
2840
2841		work++;
2842		spec->dtsp_cleaning = 1;
2843	}
2844
2845	if (!work)
2846		return;
2847
2848	dtrace_xcall(DTRACE_CPUALL,
2849	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2850
2851	/*
2852	 * We now know that all CPUs have committed or discarded their
2853	 * speculation buffers, as appropriate.  We can now set the state
2854	 * to inactive.
2855	 */
2856	for (i = 0; i < (dtrace_specid_t)state->dts_nspeculations; i++) {
2857		dtrace_speculation_t *spec = &state->dts_speculations[i];
2858		dtrace_speculation_state_t current, new;
2859
2860		if (!spec->dtsp_cleaning)
2861			continue;
2862
2863		current = spec->dtsp_state;
2864		ASSERT(current == DTRACESPEC_DISCARDING ||
2865		    current == DTRACESPEC_COMMITTINGMANY);
2866
2867		new = DTRACESPEC_INACTIVE;
2868
2869		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2870		ASSERT(rv == current);
2871		spec->dtsp_cleaning = 0;
2872	}
2873}
2874
2875/*
2876 * Called as part of a speculate() to get the speculative buffer associated
2877 * with a given speculation.  Returns NULL if the specified speculation is not
2878 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2879 * the active CPU is not the specified CPU -- the speculation will be
2880 * atomically transitioned into the ACTIVEMANY state.
2881 */
2882static dtrace_buffer_t *
2883dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2884    dtrace_specid_t which)
2885{
2886	dtrace_speculation_t *spec;
2887	dtrace_speculation_state_t current, new = DTRACESPEC_INACTIVE;
2888	dtrace_buffer_t *buf;
2889
2890	if (which == 0)
2891		return (NULL);
2892
2893	if (which > (dtrace_specid_t)state->dts_nspeculations) {
2894		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2895		return (NULL);
2896	}
2897
2898	spec = &state->dts_speculations[which - 1];
2899	buf = &spec->dtsp_buffer[cpuid];
2900
2901	do {
2902		current = spec->dtsp_state;
2903
2904		switch (current) {
2905		case DTRACESPEC_INACTIVE:
2906		case DTRACESPEC_COMMITTINGMANY:
2907		case DTRACESPEC_DISCARDING:
2908			return (NULL);
2909
2910		case DTRACESPEC_COMMITTING:
2911			ASSERT(buf->dtb_offset == 0);
2912			return (NULL);
2913
2914		case DTRACESPEC_ACTIVEONE:
2915			/*
2916			 * This speculation is currently active on one CPU.
2917			 * Check the offset in the buffer; if it's non-zero,
2918			 * that CPU must be us (and we leave the state alone).
2919			 * If it's zero, assume that we're starting on a new
2920			 * CPU -- and change the state to indicate that the
2921			 * speculation is active on more than one CPU.
2922			 */
2923			if (buf->dtb_offset != 0)
2924				return (buf);
2925
2926			new = DTRACESPEC_ACTIVEMANY;
2927			break;
2928
2929		case DTRACESPEC_ACTIVEMANY:
2930			return (buf);
2931
2932		case DTRACESPEC_ACTIVE:
2933			new = DTRACESPEC_ACTIVEONE;
2934			break;
2935
2936		default:
2937			ASSERT(0);
2938		}
2939	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2940	    current, new) != current);
2941
2942	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2943	return (buf);
2944}
2945
2946/*
2947 * Return a string.  In the event that the user lacks the privilege to access
2948 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2949 * don't fail access checking.
2950 *
2951 * dtrace_dif_variable() uses this routine as a helper for various
2952 * builtin values such as 'execname' and 'probefunc.'
2953 */
2954static
2955uintptr_t
2956dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2957    dtrace_mstate_t *mstate)
2958{
2959	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2960	uintptr_t ret;
2961	size_t strsz;
2962
2963	/*
2964	 * The easy case: this probe is allowed to read all of memory, so
2965	 * we can just return this as a vanilla pointer.
2966	 */
2967	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2968		return (addr);
2969
2970	/*
2971	 * This is the tougher case: we copy the string in question from
2972	 * kernel memory into scratch memory and return it that way: this
2973	 * ensures that we won't trip up when access checking tests the
2974	 * BYREF return value.
2975	 */
2976	strsz = dtrace_strlen((char *)addr, size) + 1;
2977
2978	if (mstate->dtms_scratch_ptr + strsz >
2979	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2980		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2981		return (0);
2982	}
2983
2984	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2985	    strsz);
2986	ret = mstate->dtms_scratch_ptr;
2987	mstate->dtms_scratch_ptr += strsz;
2988	return (ret);
2989}
2990
2991/*
2992 * This function implements the DIF emulator's variable lookups.  The emulator
2993 * passes a reserved variable identifier and optional built-in array index.
2994 */
2995static uint64_t
2996dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2997    uint64_t ndx)
2998{
2999	/*
3000	 * If we're accessing one of the uncached arguments, we'll turn this
3001	 * into a reference in the args array.
3002	 */
3003	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3004		ndx = v - DIF_VAR_ARG0;
3005		v = DIF_VAR_ARGS;
3006	}
3007
3008	switch (v) {
3009	case DIF_VAR_ARGS:
3010		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3011		if (ndx >= sizeof (mstate->dtms_arg) /
3012		    sizeof (mstate->dtms_arg[0])) {
3013			/*
3014			 * APPLE NOTE: Account for introduction of __dtrace_probe()
3015			 */
3016			int aframes = mstate->dtms_probe->dtpr_aframes + 3;
3017			dtrace_provider_t *pv;
3018			uint64_t val;
3019
3020			pv = mstate->dtms_probe->dtpr_provider;
3021			if (pv->dtpv_pops.dtps_getargval != NULL)
3022				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3023				    mstate->dtms_probe->dtpr_id,
3024				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3025			/* Special case access of arg5 as passed to dtrace_probe_error() (which see.) */
3026			else if (mstate->dtms_probe->dtpr_id == dtrace_probeid_error && ndx == 5) {
3027			        return ((dtrace_state_t *)(uintptr_t)(mstate->dtms_arg[0]))->dts_arg_error_illval;
3028			}
3029
3030			else
3031				val = dtrace_getarg(ndx, aframes);
3032
3033			/*
3034			 * This is regrettably required to keep the compiler
3035			 * from tail-optimizing the call to dtrace_getarg().
3036			 * The condition always evaluates to true, but the
3037			 * compiler has no way of figuring that out a priori.
3038			 * (None of this would be necessary if the compiler
3039			 * could be relied upon to _always_ tail-optimize
3040			 * the call to dtrace_getarg() -- but it can't.)
3041			 */
3042			if (mstate->dtms_probe != NULL)
3043				return (val);
3044
3045			ASSERT(0);
3046		}
3047
3048		return (mstate->dtms_arg[ndx]);
3049
3050	case DIF_VAR_UREGS: {
3051		thread_t thread;
3052
3053		if (!dtrace_priv_proc(state))
3054			return (0);
3055
3056		if ((thread = current_thread()) == NULL) {
3057			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3058			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0;
3059			return (0);
3060		}
3061
3062		return (dtrace_getreg(find_user_regs(thread), ndx));
3063	}
3064
3065
3066	case DIF_VAR_CURTHREAD:
3067		if (!dtrace_priv_kernel(state))
3068			return (0);
3069
3070		return ((uint64_t)(uintptr_t)current_thread());
3071
3072	case DIF_VAR_TIMESTAMP:
3073		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3074			mstate->dtms_timestamp = dtrace_gethrtime();
3075			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3076		}
3077		return (mstate->dtms_timestamp);
3078
3079	case DIF_VAR_VTIMESTAMP:
3080		ASSERT(dtrace_vtime_references != 0);
3081		return (dtrace_get_thread_vtime(current_thread()));
3082
3083	case DIF_VAR_WALLTIMESTAMP:
3084		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3085			mstate->dtms_walltimestamp = dtrace_gethrestime();
3086			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3087		}
3088		return (mstate->dtms_walltimestamp);
3089
3090	case DIF_VAR_MACHTIMESTAMP:
3091		if (!(mstate->dtms_present & DTRACE_MSTATE_MACHTIMESTAMP)) {
3092			mstate->dtms_machtimestamp = mach_absolute_time();
3093			mstate->dtms_present |= DTRACE_MSTATE_MACHTIMESTAMP;
3094		}
3095		return (mstate->dtms_machtimestamp);
3096
3097	case DIF_VAR_IPL:
3098		if (!dtrace_priv_kernel(state))
3099			return (0);
3100		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3101			mstate->dtms_ipl = dtrace_getipl();
3102			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3103		}
3104		return (mstate->dtms_ipl);
3105
3106	case DIF_VAR_EPID:
3107		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3108		return (mstate->dtms_epid);
3109
3110	case DIF_VAR_ID:
3111		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3112		return (mstate->dtms_probe->dtpr_id);
3113
3114	case DIF_VAR_STACKDEPTH:
3115		if (!dtrace_priv_kernel(state))
3116			return (0);
3117		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3118			/*
3119			 * APPLE NOTE: Account for introduction of __dtrace_probe()
3120			 */
3121			int aframes = mstate->dtms_probe->dtpr_aframes + 3;
3122
3123			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3124			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3125		}
3126		return (mstate->dtms_stackdepth);
3127
3128	case DIF_VAR_USTACKDEPTH:
3129		if (!dtrace_priv_proc(state))
3130			return (0);
3131		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3132			/*
3133			 * See comment in DIF_VAR_PID.
3134			 */
3135			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3136			    CPU_ON_INTR(CPU)) {
3137				mstate->dtms_ustackdepth = 0;
3138			} else {
3139				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3140				mstate->dtms_ustackdepth =
3141				    dtrace_getustackdepth();
3142				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3143			}
3144			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3145		}
3146		return (mstate->dtms_ustackdepth);
3147
3148	case DIF_VAR_CALLER:
3149		if (!dtrace_priv_kernel(state))
3150			return (0);
3151		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3152			/*
3153			 * APPLE NOTE: Account for introduction of __dtrace_probe()
3154			 */
3155			int aframes = mstate->dtms_probe->dtpr_aframes + 3;
3156
3157			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3158				/*
3159				 * If this is an unanchored probe, we are
3160				 * required to go through the slow path:
3161				 * dtrace_caller() only guarantees correct
3162				 * results for anchored probes.
3163				 */
3164				pc_t caller[2];
3165
3166				dtrace_getpcstack(caller, 2, aframes,
3167				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3168				mstate->dtms_caller = caller[1];
3169			} else if ((mstate->dtms_caller =
3170				dtrace_caller(aframes)) == (uintptr_t)-1) {
3171				/*
3172				 * We have failed to do this the quick way;
3173				 * we must resort to the slower approach of
3174				 * calling dtrace_getpcstack().
3175				 */
3176				pc_t caller;
3177
3178				dtrace_getpcstack(&caller, 1, aframes, NULL);
3179				mstate->dtms_caller = caller;
3180			}
3181
3182			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3183		}
3184		return (mstate->dtms_caller);
3185
3186	case DIF_VAR_UCALLER:
3187		if (!dtrace_priv_proc(state))
3188			return (0);
3189
3190		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3191			uint64_t ustack[3];
3192
3193			/*
3194			 * dtrace_getupcstack() fills in the first uint64_t
3195			 * with the current PID.  The second uint64_t will
3196			 * be the program counter at user-level.  The third
3197			 * uint64_t will contain the caller, which is what
3198			 * we're after.
3199			 */
3200			ustack[2] = 0;
3201			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3202			dtrace_getupcstack(ustack, 3);
3203			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3204			mstate->dtms_ucaller = ustack[2];
3205			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3206		}
3207
3208		return (mstate->dtms_ucaller);
3209
3210	case DIF_VAR_PROBEPROV:
3211		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3212		return (dtrace_dif_varstr(
3213		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3214		    state, mstate));
3215
3216	case DIF_VAR_PROBEMOD:
3217		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3218		return (dtrace_dif_varstr(
3219		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3220		    state, mstate));
3221
3222	case DIF_VAR_PROBEFUNC:
3223		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3224		return (dtrace_dif_varstr(
3225		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3226		    state, mstate));
3227
3228	case DIF_VAR_PROBENAME:
3229		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3230		return (dtrace_dif_varstr(
3231		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3232		    state, mstate));
3233
3234	case DIF_VAR_PID:
3235		if (!dtrace_priv_proc_relaxed(state))
3236			return (0);
3237
3238		/*
3239		 * Note that we are assuming that an unanchored probe is
3240		 * always due to a high-level interrupt.  (And we're assuming
3241		 * that there is only a single high level interrupt.)
3242		 */
3243		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3244			/* Anchored probe that fires while on an interrupt accrues to process 0 */
3245			return 0;
3246
3247		return ((uint64_t)dtrace_proc_selfpid());
3248
3249	case DIF_VAR_PPID:
3250		if (!dtrace_priv_proc_relaxed(state))
3251			return (0);
3252
3253		/*
3254		 * See comment in DIF_VAR_PID.
3255		 */
3256		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3257			return (0);
3258
3259		return ((uint64_t)dtrace_proc_selfppid());
3260
3261	case DIF_VAR_TID:
3262		/* We do not need to check for null current_thread() */
3263		return thread_tid(current_thread()); /* globally unique */
3264
3265	case DIF_VAR_PTHREAD_SELF:
3266		if (!dtrace_priv_proc(state))
3267			return (0);
3268
3269		/* Not currently supported, but we should be able to delta the dispatchqaddr and dispatchqoffset to get pthread_self */
3270		return 0;
3271
3272	case DIF_VAR_DISPATCHQADDR:
3273		if (!dtrace_priv_proc(state))
3274			return (0);
3275
3276		/* We do not need to check for null current_thread() */
3277		return thread_dispatchqaddr(current_thread());
3278
3279	case DIF_VAR_EXECNAME:
3280	{
3281		char *xname = (char *)mstate->dtms_scratch_ptr;
3282		size_t scratch_size = MAXCOMLEN+1;
3283
3284		/* The scratch allocation's lifetime is that of the clause. */
3285		if (!DTRACE_INSCRATCH(mstate, scratch_size)) {
3286			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3287			return 0;
3288		}
3289
3290		if (!dtrace_priv_proc_relaxed(state))
3291			return (0);
3292
3293		mstate->dtms_scratch_ptr += scratch_size;
3294		proc_selfname( xname, MAXCOMLEN );
3295
3296		return ((uint64_t)(uintptr_t)xname);
3297	}
3298
3299
3300	case DIF_VAR_ZONENAME:
3301        {
3302                /* scratch_size is equal to length('global') + 1 for the null-terminator. */
3303                char *zname = (char *)mstate->dtms_scratch_ptr;
3304                size_t scratch_size = 6 + 1;
3305
3306		if (!dtrace_priv_proc(state))
3307			return (0);
3308
3309                /* The scratch allocation's lifetime is that of the clause. */
3310                if (!DTRACE_INSCRATCH(mstate, scratch_size)) {
3311                        DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3312                        return 0;
3313                }
3314
3315                mstate->dtms_scratch_ptr += scratch_size;
3316
3317                /* The kernel does not provide zonename, it will always return 'global'. */
3318                strlcpy(zname, "global", scratch_size);
3319
3320                return ((uint64_t)(uintptr_t)zname);
3321        }
3322
3323	case DIF_VAR_UID:
3324		if (!dtrace_priv_proc_relaxed(state))
3325			return (0);
3326
3327		/*
3328		 * See comment in DIF_VAR_PID.
3329		 */
3330		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3331			return (0);
3332
3333		return ((uint64_t) dtrace_proc_selfruid());
3334
3335	case DIF_VAR_GID:
3336		if (!dtrace_priv_proc(state))
3337			return (0);
3338
3339		/*
3340		 * See comment in DIF_VAR_PID.
3341		 */
3342		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3343			return (0);
3344
3345		if (dtrace_CRED() != NULL)
3346			/* Credential does not require lazy initialization. */
3347			return ((uint64_t)kauth_getgid());
3348		else {
3349			/* proc_lock would be taken under kauth_cred_proc_ref() in kauth_cred_get(). */
3350			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3351			return -1ULL;
3352		}
3353
3354	case DIF_VAR_ERRNO: {
3355		uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread());
3356		if (!dtrace_priv_proc(state))
3357			return (0);
3358
3359		/*
3360		 * See comment in DIF_VAR_PID.
3361		 */
3362		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3363			return (0);
3364
3365		if (uthread)
3366			return (uint64_t)uthread->t_dtrace_errno;
3367		else {
3368			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3369			return -1ULL;
3370		}
3371	}
3372
3373	default:
3374		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3375		return (0);
3376	}
3377}
3378
3379/*
3380 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3381 * Notice that we don't bother validating the proper number of arguments or
3382 * their types in the tuple stack.  This isn't needed because all argument
3383 * interpretation is safe because of our load safety -- the worst that can
3384 * happen is that a bogus program can obtain bogus results.
3385 */
3386static void
3387dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3388    dtrace_key_t *tupregs, int nargs,
3389    dtrace_mstate_t *mstate, dtrace_state_t *state)
3390{
3391	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3392	volatile uint64_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3393	dtrace_vstate_t *vstate = &state->dts_vstate;
3394
3395#if !defined(__APPLE__)
3396	union {
3397		mutex_impl_t mi;
3398		uint64_t mx;
3399	} m;
3400
3401	union {
3402		krwlock_t ri;
3403		uintptr_t rw;
3404	} r;
3405#else
3406/* FIXME: awaits lock/mutex work */
3407#endif /* __APPLE__ */
3408
3409	switch (subr) {
3410	case DIF_SUBR_RAND:
3411		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3412		break;
3413
3414#if !defined(__APPLE__)
3415	case DIF_SUBR_MUTEX_OWNED:
3416		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3417		    mstate, vstate)) {
3418			regs[rd] = 0;
3419			break;
3420		}
3421
3422		m.mx = dtrace_load64(tupregs[0].dttk_value);
3423		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3424			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3425		else
3426			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3427		break;
3428
3429	case DIF_SUBR_MUTEX_OWNER:
3430		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3431		    mstate, vstate)) {
3432			regs[rd] = 0;
3433			break;
3434		}
3435
3436		m.mx = dtrace_load64(tupregs[0].dttk_value);
3437		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3438		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3439			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3440		else
3441			regs[rd] = 0;
3442		break;
3443
3444	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3445		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3446		    mstate, vstate)) {
3447			regs[rd] = 0;
3448			break;
3449		}
3450
3451		m.mx = dtrace_load64(tupregs[0].dttk_value);
3452		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3453		break;
3454
3455	case DIF_SUBR_MUTEX_TYPE_SPIN:
3456		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3457		    mstate, vstate)) {
3458			regs[rd] = 0;
3459			break;
3460		}
3461
3462		m.mx = dtrace_load64(tupregs[0].dttk_value);
3463		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3464		break;
3465
3466	case DIF_SUBR_RW_READ_HELD: {
3467		uintptr_t tmp;
3468
3469		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3470		    mstate, vstate)) {
3471			regs[rd] = 0;
3472			break;
3473		}
3474
3475		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3476		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3477		break;
3478	}
3479
3480	case DIF_SUBR_RW_WRITE_HELD:
3481		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3482		    mstate, vstate)) {
3483			regs[rd] = 0;
3484			break;
3485		}
3486
3487		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3488		regs[rd] = _RW_WRITE_HELD(&r.ri);
3489		break;
3490
3491	case DIF_SUBR_RW_ISWRITER:
3492		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3493		    mstate, vstate)) {
3494			regs[rd] = 0;
3495			break;
3496		}
3497
3498		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3499		regs[rd] = _RW_ISWRITER(&r.ri);
3500		break;
3501#else
3502/* FIXME: awaits lock/mutex work */
3503#endif /* __APPLE__ */
3504
3505	case DIF_SUBR_BCOPY: {
3506		/*
3507		 * We need to be sure that the destination is in the scratch
3508		 * region -- no other region is allowed.
3509		 */
3510		uintptr_t src = tupregs[0].dttk_value;
3511		uintptr_t dest = tupregs[1].dttk_value;
3512		size_t size = tupregs[2].dttk_value;
3513
3514		if (!dtrace_inscratch(dest, size, mstate)) {
3515			*flags |= CPU_DTRACE_BADADDR;
3516			*illval = regs[rd];
3517			break;
3518		}
3519
3520		if (!dtrace_canload(src, size, mstate, vstate)) {
3521			regs[rd] = 0;
3522			break;
3523		}
3524
3525		dtrace_bcopy((void *)src, (void *)dest, size);
3526		break;
3527	}
3528
3529	case DIF_SUBR_ALLOCA:
3530	case DIF_SUBR_COPYIN: {
3531		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3532		uint64_t size =
3533		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3534		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3535
3536		/*
3537		 * This action doesn't require any credential checks since
3538		 * probes will not activate in user contexts to which the
3539		 * enabling user does not have permissions.
3540		 */
3541
3542		/*
3543		 * Rounding up the user allocation size could have overflowed
3544		 * a large, bogus allocation (like -1ULL) to 0.
3545		 */
3546		if (scratch_size < size ||
3547		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3548			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3549			regs[rd] = 0;
3550			break;
3551		}
3552
3553		if (subr == DIF_SUBR_COPYIN) {
3554			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3555			if (dtrace_priv_proc(state))
3556				dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3557			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3558		}
3559
3560		mstate->dtms_scratch_ptr += scratch_size;
3561		regs[rd] = dest;
3562		break;
3563	}
3564
3565	case DIF_SUBR_COPYINTO: {
3566		uint64_t size = tupregs[1].dttk_value;
3567		uintptr_t dest = tupregs[2].dttk_value;
3568
3569		/*
3570		 * This action doesn't require any credential checks since
3571		 * probes will not activate in user contexts to which the
3572		 * enabling user does not have permissions.
3573		 */
3574		if (!dtrace_inscratch(dest, size, mstate)) {
3575			*flags |= CPU_DTRACE_BADADDR;
3576			*illval = regs[rd];
3577			break;
3578		}
3579
3580		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3581		if (dtrace_priv_proc(state))
3582			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3583		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3584		break;
3585	}
3586
3587	case DIF_SUBR_COPYINSTR: {
3588		uintptr_t dest = mstate->dtms_scratch_ptr;
3589		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3590
3591		if (nargs > 1 && tupregs[1].dttk_value < size)
3592			size = tupregs[1].dttk_value + 1;
3593
3594		/*
3595		 * This action doesn't require any credential checks since
3596		 * probes will not activate in user contexts to which the
3597		 * enabling user does not have permissions.
3598		 */
3599		if (!DTRACE_INSCRATCH(mstate, size)) {
3600			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3601			regs[rd] = 0;
3602			break;
3603		}
3604
3605		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3606		if (dtrace_priv_proc(state))
3607			dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3608		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3609
3610		((char *)dest)[size - 1] = '\0';
3611		mstate->dtms_scratch_ptr += size;
3612		regs[rd] = dest;
3613		break;
3614	}
3615
3616	case DIF_SUBR_MSGSIZE:
3617	case DIF_SUBR_MSGDSIZE: {
3618		/* Darwin does not implement SysV streams messages */
3619		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3620		regs[rd] = 0;
3621		break;
3622	}
3623
3624	case DIF_SUBR_PROGENYOF: {
3625		pid_t pid = tupregs[0].dttk_value;
3626		struct proc *p = current_proc();
3627		int rval = 0, lim = nprocs;
3628
3629		while(p && (lim-- > 0)) {
3630			pid_t ppid;
3631
3632			ppid = (pid_t)dtrace_load32((uintptr_t)&(p->p_pid));
3633			if (*flags & CPU_DTRACE_FAULT)
3634				break;
3635
3636			if (ppid == pid) {
3637				rval = 1;
3638				break;
3639			}
3640
3641			if (ppid == 0)
3642				break; /* Can't climb process tree any further. */
3643
3644			p = (struct proc *)dtrace_loadptr((uintptr_t)&(p->p_pptr));
3645			if (*flags & CPU_DTRACE_FAULT)
3646				break;
3647		}
3648
3649		regs[rd] = rval;
3650		break;
3651	}
3652
3653	case DIF_SUBR_SPECULATION:
3654		regs[rd] = dtrace_speculation(state);
3655		break;
3656
3657
3658	case DIF_SUBR_COPYOUT: {
3659		uintptr_t kaddr = tupregs[0].dttk_value;
3660		user_addr_t uaddr = tupregs[1].dttk_value;
3661		uint64_t size = tupregs[2].dttk_value;
3662
3663		if (!dtrace_destructive_disallow &&
3664		    dtrace_priv_proc_control(state) &&
3665		    !dtrace_istoxic(kaddr, size)) {
3666			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3667			dtrace_copyout(kaddr, uaddr, size, flags);
3668			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3669		}
3670		break;
3671	}
3672
3673	case DIF_SUBR_COPYOUTSTR: {
3674		uintptr_t kaddr = tupregs[0].dttk_value;
3675		user_addr_t uaddr = tupregs[1].dttk_value;
3676		uint64_t size = tupregs[2].dttk_value;
3677
3678		if (!dtrace_destructive_disallow &&
3679		    dtrace_priv_proc_control(state) &&
3680		    !dtrace_istoxic(kaddr, size)) {
3681			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3682			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3683			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3684		}
3685		break;
3686	}
3687
3688	case DIF_SUBR_STRLEN: {
3689		size_t sz;
3690		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3691		sz = dtrace_strlen((char *)addr,
3692		    state->dts_options[DTRACEOPT_STRSIZE]);
3693
3694		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3695			regs[rd] = 0;
3696			break;
3697		}
3698
3699		regs[rd] = sz;
3700
3701		break;
3702	}
3703
3704	case DIF_SUBR_STRCHR:
3705	case DIF_SUBR_STRRCHR: {
3706		/*
3707		 * We're going to iterate over the string looking for the
3708		 * specified character.  We will iterate until we have reached
3709		 * the string length or we have found the character.  If this
3710		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3711		 * of the specified character instead of the first.
3712		 */
3713		uintptr_t saddr = tupregs[0].dttk_value;
3714		uintptr_t addr = tupregs[0].dttk_value;
3715		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3716		char c, target = (char)tupregs[1].dttk_value;
3717
3718		for (regs[rd] = 0; addr < limit; addr++) {
3719			if ((c = dtrace_load8(addr)) == target) {
3720				regs[rd] = addr;
3721
3722				if (subr == DIF_SUBR_STRCHR)
3723					break;
3724			}
3725
3726			if (c == '\0')
3727				break;
3728		}
3729
3730		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3731			regs[rd] = 0;
3732			break;
3733		}
3734
3735		break;
3736	}
3737
3738	case DIF_SUBR_STRSTR:
3739	case DIF_SUBR_INDEX:
3740	case DIF_SUBR_RINDEX: {
3741		/*
3742		 * We're going to iterate over the string looking for the
3743		 * specified string.  We will iterate until we have reached
3744		 * the string length or we have found the string.  (Yes, this
3745		 * is done in the most naive way possible -- but considering
3746		 * that the string we're searching for is likely to be
3747		 * relatively short, the complexity of Rabin-Karp or similar
3748		 * hardly seems merited.)
3749		 */
3750		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3751		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3752		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3753		size_t len = dtrace_strlen(addr, size);
3754		size_t sublen = dtrace_strlen(substr, size);
3755		char *limit = addr + len, *orig = addr;
3756		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3757		int inc = 1;
3758
3759		regs[rd] = notfound;
3760
3761		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3762			regs[rd] = 0;
3763			break;
3764		}
3765
3766		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3767		    vstate)) {
3768			regs[rd] = 0;
3769			break;
3770		}
3771
3772		/*
3773		 * strstr() and index()/rindex() have similar semantics if
3774		 * both strings are the empty string: strstr() returns a
3775		 * pointer to the (empty) string, and index() and rindex()
3776		 * both return index 0 (regardless of any position argument).
3777		 */
3778		if (sublen == 0 && len == 0) {
3779			if (subr == DIF_SUBR_STRSTR)
3780				regs[rd] = (uintptr_t)addr;
3781			else
3782				regs[rd] = 0;
3783			break;
3784		}
3785
3786		if (subr != DIF_SUBR_STRSTR) {
3787			if (subr == DIF_SUBR_RINDEX) {
3788				limit = orig - 1;
3789				addr += len;
3790				inc = -1;
3791			}
3792
3793			/*
3794			 * Both index() and rindex() take an optional position
3795			 * argument that denotes the starting position.
3796			 */
3797			if (nargs == 3) {
3798				int64_t pos = (int64_t)tupregs[2].dttk_value;
3799
3800				/*
3801				 * If the position argument to index() is
3802				 * negative, Perl implicitly clamps it at
3803				 * zero.  This semantic is a little surprising
3804				 * given the special meaning of negative
3805				 * positions to similar Perl functions like
3806				 * substr(), but it appears to reflect a
3807				 * notion that index() can start from a
3808				 * negative index and increment its way up to
3809				 * the string.  Given this notion, Perl's
3810				 * rindex() is at least self-consistent in
3811				 * that it implicitly clamps positions greater
3812				 * than the string length to be the string
3813				 * length.  Where Perl completely loses
3814				 * coherence, however, is when the specified
3815				 * substring is the empty string ("").  In
3816				 * this case, even if the position is
3817				 * negative, rindex() returns 0 -- and even if
3818				 * the position is greater than the length,
3819				 * index() returns the string length.  These
3820				 * semantics violate the notion that index()
3821				 * should never return a value less than the
3822				 * specified position and that rindex() should
3823				 * never return a value greater than the
3824				 * specified position.  (One assumes that
3825				 * these semantics are artifacts of Perl's
3826				 * implementation and not the results of
3827				 * deliberate design -- it beggars belief that
3828				 * even Larry Wall could desire such oddness.)
3829				 * While in the abstract one would wish for
3830				 * consistent position semantics across
3831				 * substr(), index() and rindex() -- or at the
3832				 * very least self-consistent position
3833				 * semantics for index() and rindex() -- we
3834				 * instead opt to keep with the extant Perl
3835				 * semantics, in all their broken glory.  (Do
3836				 * we have more desire to maintain Perl's
3837				 * semantics than Perl does?  Probably.)
3838				 */
3839				if (subr == DIF_SUBR_RINDEX) {
3840					if (pos < 0) {
3841						if (sublen == 0)
3842							regs[rd] = 0;
3843						break;
3844					}
3845
3846					if ((size_t)pos > len)
3847						pos = len;
3848				} else {
3849					if (pos < 0)
3850						pos = 0;
3851
3852					if ((size_t)pos >= len) {
3853						if (sublen == 0)
3854							regs[rd] = len;
3855						break;
3856					}
3857				}
3858
3859				addr = orig + pos;
3860			}
3861		}
3862
3863		for (regs[rd] = notfound; addr != limit; addr += inc) {
3864			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3865				if (subr != DIF_SUBR_STRSTR) {
3866					/*
3867					 * As D index() and rindex() are
3868					 * modeled on Perl (and not on awk),
3869					 * we return a zero-based (and not a
3870					 * one-based) index.  (For you Perl
3871					 * weenies: no, we're not going to add
3872					 * $[ -- and shouldn't you be at a con
3873					 * or something?)
3874					 */
3875					regs[rd] = (uintptr_t)(addr - orig);
3876					break;
3877				}
3878
3879				ASSERT(subr == DIF_SUBR_STRSTR);
3880				regs[rd] = (uintptr_t)addr;
3881				break;
3882			}
3883		}
3884
3885		break;
3886	}
3887
3888	case DIF_SUBR_STRTOK: {
3889		uintptr_t addr = tupregs[0].dttk_value;
3890		uintptr_t tokaddr = tupregs[1].dttk_value;
3891		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3892		uintptr_t limit, toklimit = tokaddr + size;
3893		char *dest = (char *)mstate->dtms_scratch_ptr;
3894		uint8_t c='\0', tokmap[32];	 /* 256 / 8 */
3895		uint64_t i = 0;
3896
3897		/*
3898		 * Check both the token buffer and (later) the input buffer,
3899		 * since both could be non-scratch addresses.
3900		 */
3901		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3902			regs[rd] = 0;
3903			break;
3904		}
3905
3906		if (!DTRACE_INSCRATCH(mstate, size)) {
3907			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3908			regs[rd] = 0;
3909			break;
3910		}
3911
3912		if (addr == 0) {
3913			/*
3914			 * If the address specified is NULL, we use our saved
3915			 * strtok pointer from the mstate.  Note that this
3916			 * means that the saved strtok pointer is _only_
3917			 * valid within multiple enablings of the same probe --
3918			 * it behaves like an implicit clause-local variable.
3919			 */
3920			addr = mstate->dtms_strtok;
3921		} else {
3922			/*
3923			 * If the user-specified address is non-NULL we must
3924			 * access check it.  This is the only time we have
3925			 * a chance to do so, since this address may reside
3926			 * in the string table of this clause-- future calls
3927			 * (when we fetch addr from mstate->dtms_strtok)
3928			 * would fail this access check.
3929			 */
3930			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3931				regs[rd] = 0;
3932				break;
3933			}
3934		}
3935
3936		/*
3937		 * First, zero the token map, and then process the token
3938		 * string -- setting a bit in the map for every character
3939		 * found in the token string.
3940		 */
3941		for (i = 0; i < (int)sizeof (tokmap); i++)
3942			tokmap[i] = 0;
3943
3944		for (; tokaddr < toklimit; tokaddr++) {
3945			if ((c = dtrace_load8(tokaddr)) == '\0')
3946				break;
3947
3948			ASSERT((c >> 3) < sizeof (tokmap));
3949			tokmap[c >> 3] |= (1 << (c & 0x7));
3950		}
3951
3952		for (limit = addr + size; addr < limit; addr++) {
3953			/*
3954			 * We're looking for a character that is _not_ contained
3955			 * in the token string.
3956			 */
3957			if ((c = dtrace_load8(addr)) == '\0')
3958				break;
3959
3960			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3961				break;
3962		}
3963
3964		if (c == '\0') {
3965			/*
3966			 * We reached the end of the string without finding
3967			 * any character that was not in the token string.
3968			 * We return NULL in this case, and we set the saved
3969			 * address to NULL as well.
3970			 */
3971			regs[rd] = 0;
3972			mstate->dtms_strtok = 0;
3973			break;
3974		}
3975
3976		/*
3977		 * From here on, we're copying into the destination string.
3978		 */
3979		for (i = 0; addr < limit && i < size - 1; addr++) {
3980			if ((c = dtrace_load8(addr)) == '\0')
3981				break;
3982
3983			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3984				break;
3985
3986			ASSERT(i < size);
3987			dest[i++] = c;
3988		}
3989
3990		ASSERT(i < size);
3991		dest[i] = '\0';
3992		regs[rd] = (uintptr_t)dest;
3993		mstate->dtms_scratch_ptr += size;
3994		mstate->dtms_strtok = addr;
3995		break;
3996	}
3997
3998	case DIF_SUBR_SUBSTR: {
3999		uintptr_t s = tupregs[0].dttk_value;
4000		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4001		char *d = (char *)mstate->dtms_scratch_ptr;
4002		int64_t index = (int64_t)tupregs[1].dttk_value;
4003		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4004		size_t len = dtrace_strlen((char *)s, size);
4005		int64_t i = 0;
4006
4007		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4008			regs[rd] = 0;
4009			break;
4010		}
4011
4012		if (!DTRACE_INSCRATCH(mstate, size)) {
4013			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4014			regs[rd] = 0;
4015			break;
4016		}
4017
4018		if (nargs <= 2)
4019			remaining = (int64_t)size;
4020
4021		if (index < 0) {
4022			index += len;
4023
4024			if (index < 0 && index + remaining > 0) {
4025				remaining += index;
4026				index = 0;
4027			}
4028		}
4029
4030		if ((size_t)index >= len || index < 0) {
4031			remaining = 0;
4032		} else if (remaining < 0) {
4033			remaining += len - index;
4034		} else if ((uint64_t)index + (uint64_t)remaining > size) {
4035			remaining = size - index;
4036		}
4037
4038		for (i = 0; i < remaining; i++) {
4039			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4040				break;
4041			}
4042
4043		d[i] = '\0';
4044
4045		mstate->dtms_scratch_ptr += size;
4046		regs[rd] = (uintptr_t)d;
4047		break;
4048	}
4049
4050	case DIF_SUBR_GETMAJOR:
4051		regs[rd] = (uintptr_t)major( (dev_t)tupregs[0].dttk_value );
4052		break;
4053
4054	case DIF_SUBR_GETMINOR:
4055		regs[rd] = (uintptr_t)minor( (dev_t)tupregs[0].dttk_value );
4056		break;
4057
4058	case DIF_SUBR_DDI_PATHNAME: {
4059		/* APPLE NOTE: currently unsupported on Darwin */
4060		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4061		regs[rd] = 0;
4062		break;
4063	}
4064
4065	case DIF_SUBR_STRJOIN: {
4066		char *d = (char *)mstate->dtms_scratch_ptr;
4067		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4068		uintptr_t s1 = tupregs[0].dttk_value;
4069		uintptr_t s2 = tupregs[1].dttk_value;
4070		uint64_t i = 0;
4071
4072		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4073		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4074			regs[rd] = 0;
4075			break;
4076		}
4077
4078		if (!DTRACE_INSCRATCH(mstate, size)) {
4079			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4080			regs[rd] = 0;
4081			break;
4082		}
4083
4084		for (;;) {
4085			if (i >= size) {
4086				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4087				regs[rd] = 0;
4088				break;
4089			}
4090
4091			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4092				i--;
4093				break;
4094			}
4095		}
4096
4097		for (;;) {
4098			if (i >= size) {
4099				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4100				regs[rd] = 0;
4101				break;
4102			}
4103
4104			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4105				break;
4106		}
4107
4108		if (i < size) {
4109			mstate->dtms_scratch_ptr += i;
4110			regs[rd] = (uintptr_t)d;
4111		}
4112
4113		break;
4114	}
4115
4116	case DIF_SUBR_LLTOSTR: {
4117		int64_t i = (int64_t)tupregs[0].dttk_value;
4118		int64_t val = i < 0 ? i * -1 : i;
4119		uint64_t size = 22;	/* enough room for 2^64 in decimal */
4120		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4121
4122		if (!DTRACE_INSCRATCH(mstate, size)) {
4123			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4124			regs[rd] = 0;
4125			break;
4126		}
4127
4128		for (*end-- = '\0'; val; val /= 10)
4129			*end-- = '0' + (val % 10);
4130
4131		if (i == 0)
4132			*end-- = '0';
4133
4134		if (i < 0)
4135			*end-- = '-';
4136
4137		regs[rd] = (uintptr_t)end + 1;
4138		mstate->dtms_scratch_ptr += size;
4139		break;
4140	}
4141
4142	case DIF_SUBR_HTONS:
4143	case DIF_SUBR_NTOHS:
4144#ifdef _BIG_ENDIAN
4145		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4146#else
4147		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4148#endif
4149		break;
4150
4151
4152	case DIF_SUBR_HTONL:
4153	case DIF_SUBR_NTOHL:
4154#ifdef _BIG_ENDIAN
4155		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4156#else
4157		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4158#endif
4159		break;
4160
4161
4162	case DIF_SUBR_HTONLL:
4163	case DIF_SUBR_NTOHLL:
4164#ifdef _BIG_ENDIAN
4165		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4166#else
4167		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4168#endif
4169		break;
4170
4171
4172	case DIF_SUBR_DIRNAME:
4173	case DIF_SUBR_BASENAME: {
4174		char *dest = (char *)mstate->dtms_scratch_ptr;
4175		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4176		uintptr_t src = tupregs[0].dttk_value;
4177		int i, j, len = dtrace_strlen((char *)src, size);
4178		int lastbase = -1, firstbase = -1, lastdir = -1;
4179		int start, end;
4180
4181		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4182			regs[rd] = 0;
4183			break;
4184		}
4185
4186		if (!DTRACE_INSCRATCH(mstate, size)) {
4187			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4188			regs[rd] = 0;
4189			break;
4190		}
4191
4192		/*
4193		 * The basename and dirname for a zero-length string is
4194		 * defined to be "."
4195		 */
4196		if (len == 0) {
4197			len = 1;
4198			src = (uintptr_t)".";
4199		}
4200
4201		/*
4202		 * Start from the back of the string, moving back toward the
4203		 * front until we see a character that isn't a slash.  That
4204		 * character is the last character in the basename.
4205		 */
4206		for (i = len - 1; i >= 0; i--) {
4207			if (dtrace_load8(src + i) != '/')
4208				break;
4209		}
4210
4211		if (i >= 0)
4212			lastbase = i;
4213
4214		/*
4215		 * Starting from the last character in the basename, move
4216		 * towards the front until we find a slash.  The character
4217		 * that we processed immediately before that is the first
4218		 * character in the basename.
4219		 */
4220		for (; i >= 0; i--) {
4221			if (dtrace_load8(src + i) == '/')
4222				break;
4223		}
4224
4225		if (i >= 0)
4226			firstbase = i + 1;
4227
4228		/*
4229		 * Now keep going until we find a non-slash character.  That
4230		 * character is the last character in the dirname.
4231		 */
4232		for (; i >= 0; i--) {
4233			if (dtrace_load8(src + i) != '/')
4234				break;
4235		}
4236
4237		if (i >= 0)
4238			lastdir = i;
4239
4240		ASSERT(!(lastbase == -1 && firstbase != -1));
4241		ASSERT(!(firstbase == -1 && lastdir != -1));
4242
4243		if (lastbase == -1) {
4244			/*
4245			 * We didn't find a non-slash character.  We know that
4246			 * the length is non-zero, so the whole string must be
4247			 * slashes.  In either the dirname or the basename
4248			 * case, we return '/'.
4249			 */
4250			ASSERT(firstbase == -1);
4251			firstbase = lastbase = lastdir = 0;
4252		}
4253
4254		if (firstbase == -1) {
4255			/*
4256			 * The entire string consists only of a basename
4257			 * component.  If we're looking for dirname, we need
4258			 * to change our string to be just "."; if we're
4259			 * looking for a basename, we'll just set the first
4260			 * character of the basename to be 0.
4261			 */
4262			if (subr == DIF_SUBR_DIRNAME) {
4263				ASSERT(lastdir == -1);
4264				src = (uintptr_t)".";
4265				lastdir = 0;
4266			} else {
4267				firstbase = 0;
4268			}
4269		}
4270
4271		if (subr == DIF_SUBR_DIRNAME) {
4272			if (lastdir == -1) {
4273				/*
4274				 * We know that we have a slash in the name --
4275				 * or lastdir would be set to 0, above.  And
4276				 * because lastdir is -1, we know that this
4277				 * slash must be the first character.  (That
4278				 * is, the full string must be of the form
4279				 * "/basename".)  In this case, the last
4280				 * character of the directory name is 0.
4281				 */
4282				lastdir = 0;
4283			}
4284
4285			start = 0;
4286			end = lastdir;
4287		} else {
4288			ASSERT(subr == DIF_SUBR_BASENAME);
4289			ASSERT(firstbase != -1 && lastbase != -1);
4290			start = firstbase;
4291			end = lastbase;
4292		}
4293
4294		for (i = start, j = 0; i <= end && (uint64_t)j < size - 1; i++, j++)
4295			dest[j] = dtrace_load8(src + i);
4296
4297		dest[j] = '\0';
4298		regs[rd] = (uintptr_t)dest;
4299		mstate->dtms_scratch_ptr += size;
4300		break;
4301	}
4302
4303	case DIF_SUBR_CLEANPATH: {
4304		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4305		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4306		uintptr_t src = tupregs[0].dttk_value;
4307		int i = 0, j = 0;
4308
4309		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4310			regs[rd] = 0;
4311			break;
4312		}
4313
4314		if (!DTRACE_INSCRATCH(mstate, size)) {
4315			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4316			regs[rd] = 0;
4317			break;
4318		}
4319
4320		/*
4321		 * Move forward, loading each character.
4322		 */
4323		do {
4324			c = dtrace_load8(src + i++);
4325next:
4326			if ((uint64_t)(j + 5) >= size)	/* 5 = strlen("/..c\0") */
4327				break;
4328
4329			if (c != '/') {
4330				dest[j++] = c;
4331				continue;
4332			}
4333
4334			c = dtrace_load8(src + i++);
4335
4336			if (c == '/') {
4337				/*
4338				 * We have two slashes -- we can just advance
4339				 * to the next character.
4340				 */
4341				goto next;
4342			}
4343
4344			if (c != '.') {
4345				/*
4346				 * This is not "." and it's not ".." -- we can
4347				 * just store the "/" and this character and
4348				 * drive on.
4349				 */
4350				dest[j++] = '/';
4351				dest[j++] = c;
4352				continue;
4353			}
4354
4355			c = dtrace_load8(src + i++);
4356
4357			if (c == '/') {
4358				/*
4359				 * This is a "/./" component.  We're not going
4360				 * to store anything in the destination buffer;
4361				 * we're just going to go to the next component.
4362				 */
4363				goto next;
4364			}
4365
4366			if (c != '.') {
4367				/*
4368				 * This is not ".." -- we can just store the
4369				 * "/." and this character and continue
4370				 * processing.
4371				 */
4372				dest[j++] = '/';
4373				dest[j++] = '.';
4374				dest[j++] = c;
4375				continue;
4376			}
4377
4378			c = dtrace_load8(src + i++);
4379
4380			if (c != '/' && c != '\0') {
4381				/*
4382				 * This is not ".." -- it's "..[mumble]".
4383				 * We'll store the "/.." and this character
4384				 * and continue processing.
4385				 */
4386				dest[j++] = '/';
4387				dest[j++] = '.';
4388				dest[j++] = '.';
4389				dest[j++] = c;
4390				continue;
4391			}
4392
4393			/*
4394			 * This is "/../" or "/..\0".  We need to back up
4395			 * our destination pointer until we find a "/".
4396			 */
4397			i--;
4398			while (j != 0 && dest[--j] != '/')
4399				continue;
4400
4401			if (c == '\0')
4402				dest[++j] = '/';
4403		} while (c != '\0');
4404
4405		dest[j] = '\0';
4406		regs[rd] = (uintptr_t)dest;
4407		mstate->dtms_scratch_ptr += size;
4408		break;
4409	}
4410
4411	case DIF_SUBR_INET_NTOA:
4412	case DIF_SUBR_INET_NTOA6:
4413	case DIF_SUBR_INET_NTOP: {
4414		size_t size;
4415		int af, argi, i;
4416		char *base, *end;
4417
4418		if (subr == DIF_SUBR_INET_NTOP) {
4419			af = (int)tupregs[0].dttk_value;
4420			argi = 1;
4421		} else {
4422			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4423			argi = 0;
4424		}
4425
4426		if (af == AF_INET) {
4427#if !defined(__APPLE__)
4428			ipaddr_t ip4;
4429#else
4430			uint32_t ip4;
4431#endif /* __APPLE__ */
4432			uint8_t *ptr8, val;
4433
4434			/*
4435			 * Safely load the IPv4 address.
4436			 */
4437#if !defined(__APPLE__)
4438			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4439#else
4440			dtrace_bcopy(
4441			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4442			    (void *)(uintptr_t)&ip4, sizeof (ip4));
4443#endif /* __APPLE__ */
4444			/*
4445			 * Check an IPv4 string will fit in scratch.
4446			 */
4447#if !defined(__APPLE__)
4448			size = INET_ADDRSTRLEN;
4449#else
4450			size = MAX_IPv4_STR_LEN;
4451#endif /* __APPLE__ */
4452			if (!DTRACE_INSCRATCH(mstate, size)) {
4453				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4454				regs[rd] = 0;
4455				break;
4456			}
4457			base = (char *)mstate->dtms_scratch_ptr;
4458			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4459
4460			/*
4461			 * Stringify as a dotted decimal quad.
4462			 */
4463			*end-- = '\0';
4464			ptr8 = (uint8_t *)&ip4;
4465			for (i = 3; i >= 0; i--) {
4466				val = ptr8[i];
4467
4468				if (val == 0) {
4469					*end-- = '0';
4470				} else {
4471					for (; val; val /= 10) {
4472						*end-- = '0' + (val % 10);
4473					}
4474				}
4475
4476				if (i > 0)
4477					*end-- = '.';
4478			}
4479			ASSERT(end + 1 >= base);
4480
4481		} else if (af == AF_INET6) {
4482#if defined(__APPLE__)
4483#define _S6_un __u6_addr
4484#define _S6_u8 __u6_addr8
4485#endif /* __APPLE__ */
4486			struct in6_addr ip6;
4487			int firstzero, tryzero, numzero, v6end;
4488			uint16_t val;
4489			const char digits[] = "0123456789abcdef";
4490
4491			/*
4492			 * Stringify using RFC 1884 convention 2 - 16 bit
4493			 * hexadecimal values with a zero-run compression.
4494			 * Lower case hexadecimal digits are used.
4495			 * 	eg, fe80::214:4fff:fe0b:76c8.
4496			 * The IPv4 embedded form is returned for inet_ntop,
4497			 * just the IPv4 string is returned for inet_ntoa6.
4498			 */
4499
4500			/*
4501			 * Safely load the IPv6 address.
4502			 */
4503			dtrace_bcopy(
4504			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4505			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4506
4507			/*
4508			 * Check an IPv6 string will fit in scratch.
4509			 */
4510			size = INET6_ADDRSTRLEN;
4511			if (!DTRACE_INSCRATCH(mstate, size)) {
4512				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4513				regs[rd] = 0;
4514				break;
4515			}
4516			base = (char *)mstate->dtms_scratch_ptr;
4517			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4518			*end-- = '\0';
4519
4520			/*
4521			 * Find the longest run of 16 bit zero values
4522			 * for the single allowed zero compression - "::".
4523			 */
4524			firstzero = -1;
4525			tryzero = -1;
4526			numzero = 1;
4527			for (i = 0; i < (int)sizeof (struct in6_addr); i++) {
4528				if (ip6._S6_un._S6_u8[i] == 0 &&
4529				    tryzero == -1 && i % 2 == 0) {
4530					tryzero = i;
4531					continue;
4532				}
4533
4534				if (tryzero != -1 &&
4535				    (ip6._S6_un._S6_u8[i] != 0 ||
4536				    i == sizeof (struct in6_addr) - 1)) {
4537
4538					if (i - tryzero <= numzero) {
4539						tryzero = -1;
4540						continue;
4541					}
4542
4543					firstzero = tryzero;
4544					numzero = i - i % 2 - tryzero;
4545					tryzero = -1;
4546
4547					if (ip6._S6_un._S6_u8[i] == 0 &&
4548					    i == sizeof (struct in6_addr) - 1)
4549						numzero += 2;
4550				}
4551			}
4552			ASSERT(firstzero + numzero <= (int)sizeof (struct in6_addr));
4553
4554			/*
4555			 * Check for an IPv4 embedded address.
4556			 */
4557			v6end = sizeof (struct in6_addr) - 2;
4558			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4559			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4560				for (i = sizeof (struct in6_addr) - 1;
4561				     i >= (int)DTRACE_V4MAPPED_OFFSET; i--) {
4562					ASSERT(end >= base);
4563
4564					val = ip6._S6_un._S6_u8[i];
4565
4566					if (val == 0) {
4567						*end-- = '0';
4568					} else {
4569						for (; val; val /= 10) {
4570							*end-- = '0' + val % 10;
4571						}
4572					}
4573
4574					if (i > (int)DTRACE_V4MAPPED_OFFSET)
4575						*end-- = '.';
4576				}
4577
4578				if (subr == DIF_SUBR_INET_NTOA6)
4579					goto inetout;
4580
4581				/*
4582				 * Set v6end to skip the IPv4 address that
4583				 * we have already stringified.
4584				 */
4585				v6end = 10;
4586			}
4587
4588			/*
4589			 * Build the IPv6 string by working through the
4590			 * address in reverse.
4591			 */
4592			for (i = v6end; i >= 0; i -= 2) {
4593				ASSERT(end >= base);
4594
4595				if (i == firstzero + numzero - 2) {
4596					*end-- = ':';
4597					*end-- = ':';
4598					i -= numzero - 2;
4599					continue;
4600				}
4601
4602				if (i < 14 && i != firstzero - 2)
4603					*end-- = ':';
4604
4605				val = (ip6._S6_un._S6_u8[i] << 8) +
4606				    ip6._S6_un._S6_u8[i + 1];
4607
4608				if (val == 0) {
4609					*end-- = '0';
4610				} else {
4611					for (; val; val /= 16) {
4612						*end-- = digits[val % 16];
4613					}
4614				}
4615			}
4616			ASSERT(end + 1 >= base);
4617
4618#if defined(__APPLE__)
4619#undef _S6_un
4620#undef _S6_u8
4621#endif /* __APPLE__ */
4622		} else {
4623			/*
4624			 * The user didn't use AH_INET or AH_INET6.
4625			 */
4626			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4627			regs[rd] = 0;
4628			break;
4629		}
4630
4631inetout:	regs[rd] = (uintptr_t)end + 1;
4632		mstate->dtms_scratch_ptr += size;
4633		break;
4634	}
4635
4636	case DIF_SUBR_TOUPPER:
4637	case DIF_SUBR_TOLOWER: {
4638		uintptr_t src = tupregs[0].dttk_value;
4639		char *dest = (char *)mstate->dtms_scratch_ptr;
4640		char lower, upper, base, c;
4641		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4642		size_t len = dtrace_strlen((char*) src, size);
4643		size_t i = 0;
4644
4645		lower = (subr == DIF_SUBR_TOUPPER) ? 'a' : 'A';
4646		upper = (subr == DIF_SUBR_TOUPPER) ? 'z' : 'Z';
4647		base  = (subr == DIF_SUBR_TOUPPER) ? 'A' : 'a';
4648
4649		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4650			regs[rd] = 0;
4651			break;
4652		}
4653
4654		if (!DTRACE_INSCRATCH(mstate, size)) {
4655			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4656			regs[rd] = 0;
4657			break;
4658		}
4659
4660		for (i = 0; i < size - 1; ++i) {
4661			if ((c = dtrace_load8(src + i)) == '\0')
4662				break;
4663			if (c >= lower && c <= upper)
4664				c = base + (c - lower);
4665			dest[i] = c;
4666		}
4667
4668		ASSERT(i < size);
4669
4670		dest[i] = '\0';
4671		regs[rd] = (uintptr_t) dest;
4672		mstate->dtms_scratch_ptr += size;
4673
4674		break;
4675	}
4676
4677/*
4678 * APPLE NOTE:
4679 * CoreProfile callback ('core_profile (uint64_t, [uint64_t], [uint64_t] ...)')
4680 */
4681	case DIF_SUBR_COREPROFILE: {
4682		uint64_t selector = tupregs[0].dttk_value;
4683		uint64_t args[DIF_DTR_NREGS-1] = {0ULL};
4684		uint32_t ii;
4685		uint32_t count = (uint32_t)nargs;
4686
4687		if (count < 1) {
4688		    regs[rd] = KERN_FAILURE;
4689		    break;
4690		}
4691
4692		if(count > DIF_DTR_NREGS)
4693		    count = DIF_DTR_NREGS;
4694
4695		/* copy in any variadic argument list, bounded by DIF_DTR_NREGS */
4696		for(ii = 0; ii < count-1; ii++) {
4697			args[ii] = tupregs[ii+1].dttk_value;
4698		}
4699
4700		kern_return_t ret =
4701			chudxnu_dtrace_callback(selector, args, count-1);
4702		if(KERN_SUCCESS != ret) {
4703			/* error */
4704		}
4705
4706		regs[rd] = ret;
4707		break;
4708	}
4709	}
4710}
4711
4712/*
4713 * Emulate the execution of DTrace IR instructions specified by the given
4714 * DIF object.  This function is deliberately void of assertions as all of
4715 * the necessary checks are handled by a call to dtrace_difo_validate().
4716 */
4717static uint64_t
4718dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4719    dtrace_vstate_t *vstate, dtrace_state_t *state)
4720{
4721	const dif_instr_t *text = difo->dtdo_buf;
4722	const uint_t textlen = difo->dtdo_len;
4723	const char *strtab = difo->dtdo_strtab;
4724	const uint64_t *inttab = difo->dtdo_inttab;
4725
4726	uint64_t rval = 0;
4727	dtrace_statvar_t *svar;
4728	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4729	dtrace_difv_t *v;
4730	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4731	volatile uint64_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4732
4733	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4734	uint64_t regs[DIF_DIR_NREGS];
4735	uint64_t *tmp;
4736
4737	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4738	int64_t cc_r;
4739	uint_t pc = 0, id, opc = 0;
4740	uint8_t ttop = 0;
4741	dif_instr_t instr;
4742	uint_t r1, r2, rd;
4743
4744	/*
4745	 * We stash the current DIF object into the machine state: we need it
4746	 * for subsequent access checking.
4747	 */
4748	mstate->dtms_difo = difo;
4749
4750	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4751
4752	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4753		opc = pc;
4754
4755		instr = text[pc++];
4756		r1 = DIF_INSTR_R1(instr);
4757		r2 = DIF_INSTR_R2(instr);
4758		rd = DIF_INSTR_RD(instr);
4759
4760		switch (DIF_INSTR_OP(instr)) {
4761		case DIF_OP_OR:
4762			regs[rd] = regs[r1] | regs[r2];
4763			break;
4764		case DIF_OP_XOR:
4765			regs[rd] = regs[r1] ^ regs[r2];
4766			break;
4767		case DIF_OP_AND:
4768			regs[rd] = regs[r1] & regs[r2];
4769			break;
4770		case DIF_OP_SLL:
4771			regs[rd] = regs[r1] << regs[r2];
4772			break;
4773		case DIF_OP_SRL:
4774			regs[rd] = regs[r1] >> regs[r2];
4775			break;
4776		case DIF_OP_SUB:
4777			regs[rd] = regs[r1] - regs[r2];
4778			break;
4779		case DIF_OP_ADD:
4780			regs[rd] = regs[r1] + regs[r2];
4781			break;
4782		case DIF_OP_MUL:
4783			regs[rd] = regs[r1] * regs[r2];
4784			break;
4785		case DIF_OP_SDIV:
4786			if (regs[r2] == 0) {
4787				regs[rd] = 0;
4788				*flags |= CPU_DTRACE_DIVZERO;
4789			} else {
4790				regs[rd] = (int64_t)regs[r1] /
4791				    (int64_t)regs[r2];
4792			}
4793			break;
4794
4795		case DIF_OP_UDIV:
4796			if (regs[r2] == 0) {
4797				regs[rd] = 0;
4798				*flags |= CPU_DTRACE_DIVZERO;
4799			} else {
4800				regs[rd] = regs[r1] / regs[r2];
4801			}
4802			break;
4803
4804		case DIF_OP_SREM:
4805			if (regs[r2] == 0) {
4806				regs[rd] = 0;
4807				*flags |= CPU_DTRACE_DIVZERO;
4808			} else {
4809				regs[rd] = (int64_t)regs[r1] %
4810				    (int64_t)regs[r2];
4811			}
4812			break;
4813
4814		case DIF_OP_UREM:
4815			if (regs[r2] == 0) {
4816				regs[rd] = 0;
4817				*flags |= CPU_DTRACE_DIVZERO;
4818			} else {
4819				regs[rd] = regs[r1] % regs[r2];
4820			}
4821			break;
4822
4823		case DIF_OP_NOT:
4824			regs[rd] = ~regs[r1];
4825			break;
4826		case DIF_OP_MOV:
4827			regs[rd] = regs[r1];
4828			break;
4829		case DIF_OP_CMP:
4830			cc_r = regs[r1] - regs[r2];
4831			cc_n = cc_r < 0;
4832			cc_z = cc_r == 0;
4833			cc_v = 0;
4834			cc_c = regs[r1] < regs[r2];
4835			break;
4836		case DIF_OP_TST:
4837			cc_n = cc_v = cc_c = 0;
4838			cc_z = regs[r1] == 0;
4839			break;
4840		case DIF_OP_BA:
4841			pc = DIF_INSTR_LABEL(instr);
4842			break;
4843		case DIF_OP_BE:
4844			if (cc_z)
4845				pc = DIF_INSTR_LABEL(instr);
4846			break;
4847		case DIF_OP_BNE:
4848			if (cc_z == 0)
4849				pc = DIF_INSTR_LABEL(instr);
4850			break;
4851		case DIF_OP_BG:
4852			if ((cc_z | (cc_n ^ cc_v)) == 0)
4853				pc = DIF_INSTR_LABEL(instr);
4854			break;
4855		case DIF_OP_BGU:
4856			if ((cc_c | cc_z) == 0)
4857				pc = DIF_INSTR_LABEL(instr);
4858			break;
4859		case DIF_OP_BGE:
4860			if ((cc_n ^ cc_v) == 0)
4861				pc = DIF_INSTR_LABEL(instr);
4862			break;
4863		case DIF_OP_BGEU:
4864			if (cc_c == 0)
4865				pc = DIF_INSTR_LABEL(instr);
4866			break;
4867		case DIF_OP_BL:
4868			if (cc_n ^ cc_v)
4869				pc = DIF_INSTR_LABEL(instr);
4870			break;
4871		case DIF_OP_BLU:
4872			if (cc_c)
4873				pc = DIF_INSTR_LABEL(instr);
4874			break;
4875		case DIF_OP_BLE:
4876			if (cc_z | (cc_n ^ cc_v))
4877				pc = DIF_INSTR_LABEL(instr);
4878			break;
4879		case DIF_OP_BLEU:
4880			if (cc_c | cc_z)
4881				pc = DIF_INSTR_LABEL(instr);
4882			break;
4883		case DIF_OP_RLDSB:
4884			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4885				*flags |= CPU_DTRACE_KPRIV;
4886				*illval = regs[r1];
4887				break;
4888			}
4889			/*FALLTHROUGH*/
4890		case DIF_OP_LDSB:
4891			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4892			break;
4893		case DIF_OP_RLDSH:
4894			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4895				*flags |= CPU_DTRACE_KPRIV;
4896				*illval = regs[r1];
4897				break;
4898			}
4899			/*FALLTHROUGH*/
4900		case DIF_OP_LDSH:
4901			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4902			break;
4903		case DIF_OP_RLDSW:
4904			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4905				*flags |= CPU_DTRACE_KPRIV;
4906				*illval = regs[r1];
4907				break;
4908			}
4909			/*FALLTHROUGH*/
4910		case DIF_OP_LDSW:
4911			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4912			break;
4913		case DIF_OP_RLDUB:
4914			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4915				*flags |= CPU_DTRACE_KPRIV;
4916				*illval = regs[r1];
4917				break;
4918			}
4919			/*FALLTHROUGH*/
4920		case DIF_OP_LDUB:
4921			regs[rd] = dtrace_load8(regs[r1]);
4922			break;
4923		case DIF_OP_RLDUH:
4924			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4925				*flags |= CPU_DTRACE_KPRIV;
4926				*illval = regs[r1];
4927				break;
4928			}
4929			/*FALLTHROUGH*/
4930		case DIF_OP_LDUH:
4931			regs[rd] = dtrace_load16(regs[r1]);
4932			break;
4933		case DIF_OP_RLDUW:
4934			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4935				*flags |= CPU_DTRACE_KPRIV;
4936				*illval = regs[r1];
4937				break;
4938			}
4939			/*FALLTHROUGH*/
4940		case DIF_OP_LDUW:
4941			regs[rd] = dtrace_load32(regs[r1]);
4942			break;
4943		case DIF_OP_RLDX:
4944			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4945				*flags |= CPU_DTRACE_KPRIV;
4946				*illval = regs[r1];
4947				break;
4948			}
4949			/*FALLTHROUGH*/
4950		case DIF_OP_LDX:
4951			regs[rd] = dtrace_load64(regs[r1]);
4952			break;
4953/*
4954 * Darwin 32-bit kernel may fetch from 64-bit user.
4955 * Do not cast regs to uintptr_t
4956 * DIF_OP_ULDSB,DIF_OP_ULDSH, DIF_OP_ULDSW, DIF_OP_ULDUB
4957 * DIF_OP_ULDUH, DIF_OP_ULDUW, DIF_OP_ULDX
4958 */
4959		case DIF_OP_ULDSB:
4960			regs[rd] = (int8_t)
4961			    dtrace_fuword8(regs[r1]);
4962			break;
4963		case DIF_OP_ULDSH:
4964			regs[rd] = (int16_t)
4965			    dtrace_fuword16(regs[r1]);
4966			break;
4967		case DIF_OP_ULDSW:
4968			regs[rd] = (int32_t)
4969			    dtrace_fuword32(regs[r1]);
4970			break;
4971		case DIF_OP_ULDUB:
4972			regs[rd] =
4973			    dtrace_fuword8(regs[r1]);
4974			break;
4975		case DIF_OP_ULDUH:
4976			regs[rd] =
4977			    dtrace_fuword16(regs[r1]);
4978			break;
4979		case DIF_OP_ULDUW:
4980			regs[rd] =
4981			    dtrace_fuword32(regs[r1]);
4982			break;
4983		case DIF_OP_ULDX:
4984			regs[rd] =
4985			    dtrace_fuword64(regs[r1]);
4986			break;
4987		case DIF_OP_RET:
4988			rval = regs[rd];
4989			pc = textlen;
4990			break;
4991		case DIF_OP_NOP:
4992			break;
4993		case DIF_OP_SETX:
4994			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
4995			break;
4996		case DIF_OP_SETS:
4997			regs[rd] = (uint64_t)(uintptr_t)
4998			    (strtab + DIF_INSTR_STRING(instr));
4999			break;
5000		case DIF_OP_SCMP: {
5001			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5002			uintptr_t s1 = regs[r1];
5003			uintptr_t s2 = regs[r2];
5004
5005			if (s1 != 0 &&
5006			    !dtrace_strcanload(s1, sz, mstate, vstate))
5007				break;
5008			if (s2 != 0 &&
5009			    !dtrace_strcanload(s2, sz, mstate, vstate))
5010				break;
5011
5012			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5013
5014			cc_n = cc_r < 0;
5015			cc_z = cc_r == 0;
5016			cc_v = cc_c = 0;
5017			break;
5018		}
5019		case DIF_OP_LDGA:
5020			regs[rd] = dtrace_dif_variable(mstate, state,
5021			    r1, regs[r2]);
5022			break;
5023		case DIF_OP_LDGS:
5024			id = DIF_INSTR_VAR(instr);
5025
5026			if (id >= DIF_VAR_OTHER_UBASE) {
5027				uintptr_t a;
5028
5029				id -= DIF_VAR_OTHER_UBASE;
5030				svar = vstate->dtvs_globals[id];
5031				ASSERT(svar != NULL);
5032				v = &svar->dtsv_var;
5033
5034				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5035					regs[rd] = svar->dtsv_data;
5036					break;
5037				}
5038
5039				a = (uintptr_t)svar->dtsv_data;
5040
5041				if (*(uint8_t *)a == UINT8_MAX) {
5042					/*
5043					 * If the 0th byte is set to UINT8_MAX
5044					 * then this is to be treated as a
5045					 * reference to a NULL variable.
5046					 */
5047					regs[rd] = 0;
5048				} else {
5049					regs[rd] = a + sizeof (uint64_t);
5050				}
5051
5052				break;
5053			}
5054
5055			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5056			break;
5057
5058		case DIF_OP_STGS:
5059			id = DIF_INSTR_VAR(instr);
5060
5061			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5062			id -= DIF_VAR_OTHER_UBASE;
5063
5064			svar = vstate->dtvs_globals[id];
5065			ASSERT(svar != NULL);
5066			v = &svar->dtsv_var;
5067
5068			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5069				uintptr_t a = (uintptr_t)svar->dtsv_data;
5070
5071				ASSERT(a != 0);
5072				ASSERT(svar->dtsv_size != 0);
5073
5074				if (regs[rd] == 0) {
5075					*(uint8_t *)a = UINT8_MAX;
5076					break;
5077				} else {
5078					*(uint8_t *)a = 0;
5079					a += sizeof (uint64_t);
5080				}
5081				if (!dtrace_vcanload(
5082				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5083				    mstate, vstate))
5084					break;
5085
5086				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5087				    (void *)a, &v->dtdv_type);
5088				break;
5089			}
5090
5091			svar->dtsv_data = regs[rd];
5092			break;
5093
5094		case DIF_OP_LDTA:
5095			/*
5096			 * There are no DTrace built-in thread-local arrays at
5097			 * present.  This opcode is saved for future work.
5098			 */
5099			*flags |= CPU_DTRACE_ILLOP;
5100			regs[rd] = 0;
5101			break;
5102
5103		case DIF_OP_LDLS:
5104			id = DIF_INSTR_VAR(instr);
5105
5106			if (id < DIF_VAR_OTHER_UBASE) {
5107				/*
5108				 * For now, this has no meaning.
5109				 */
5110				regs[rd] = 0;
5111				break;
5112			}
5113
5114			id -= DIF_VAR_OTHER_UBASE;
5115
5116			ASSERT(id < (uint_t)vstate->dtvs_nlocals);
5117			ASSERT(vstate->dtvs_locals != NULL);
5118			svar = vstate->dtvs_locals[id];
5119			ASSERT(svar != NULL);
5120			v = &svar->dtsv_var;
5121
5122			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5123				uintptr_t a = (uintptr_t)svar->dtsv_data;
5124				size_t sz = v->dtdv_type.dtdt_size;
5125
5126				sz += sizeof (uint64_t);
5127				ASSERT(svar->dtsv_size == (int)NCPU * sz);
5128				a += CPU->cpu_id * sz;
5129
5130				if (*(uint8_t *)a == UINT8_MAX) {
5131					/*
5132					 * If the 0th byte is set to UINT8_MAX
5133					 * then this is to be treated as a
5134					 * reference to a NULL variable.
5135					 */
5136					regs[rd] = 0;
5137				} else {
5138					regs[rd] = a + sizeof (uint64_t);
5139				}
5140
5141				break;
5142			}
5143
5144			ASSERT(svar->dtsv_size == (int)NCPU * sizeof (uint64_t));
5145			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5146			regs[rd] = tmp[CPU->cpu_id];
5147			break;
5148
5149		case DIF_OP_STLS:
5150			id = DIF_INSTR_VAR(instr);
5151
5152			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5153			id -= DIF_VAR_OTHER_UBASE;
5154			ASSERT(id < (uint_t)vstate->dtvs_nlocals);
5155			ASSERT(vstate->dtvs_locals != NULL);
5156			svar = vstate->dtvs_locals[id];
5157			ASSERT(svar != NULL);
5158			v = &svar->dtsv_var;
5159
5160			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5161				uintptr_t a = (uintptr_t)svar->dtsv_data;
5162				size_t sz = v->dtdv_type.dtdt_size;
5163
5164				sz += sizeof (uint64_t);
5165				ASSERT(svar->dtsv_size == (int)NCPU * sz);
5166				a += CPU->cpu_id * sz;
5167
5168				if (regs[rd] == 0) {
5169					*(uint8_t *)a = UINT8_MAX;
5170					break;
5171				} else {
5172					*(uint8_t *)a = 0;
5173					a += sizeof (uint64_t);
5174				}
5175
5176				if (!dtrace_vcanload(
5177				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5178				    mstate, vstate))
5179					break;
5180
5181				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5182				    (void *)a, &v->dtdv_type);
5183				break;
5184			}
5185
5186			ASSERT(svar->dtsv_size == (int)NCPU * sizeof (uint64_t));
5187			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5188			tmp[CPU->cpu_id] = regs[rd];
5189			break;
5190
5191		case DIF_OP_LDTS: {
5192			dtrace_dynvar_t *dvar;
5193			dtrace_key_t *key;
5194
5195			id = DIF_INSTR_VAR(instr);
5196			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5197			id -= DIF_VAR_OTHER_UBASE;
5198			v = &vstate->dtvs_tlocals[id];
5199
5200			key = &tupregs[DIF_DTR_NREGS];
5201			key[0].dttk_value = (uint64_t)id;
5202			key[0].dttk_size = 0;
5203			DTRACE_TLS_THRKEY(key[1].dttk_value);
5204			key[1].dttk_size = 0;
5205
5206			dvar = dtrace_dynvar(dstate, 2, key,
5207			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5208			    mstate, vstate);
5209
5210			if (dvar == NULL) {
5211				regs[rd] = 0;
5212				break;
5213			}
5214
5215			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5216				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5217			} else {
5218				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5219			}
5220
5221			break;
5222		}
5223
5224		case DIF_OP_STTS: {
5225			dtrace_dynvar_t *dvar;
5226			dtrace_key_t *key;
5227
5228			id = DIF_INSTR_VAR(instr);
5229			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5230			id -= DIF_VAR_OTHER_UBASE;
5231
5232			key = &tupregs[DIF_DTR_NREGS];
5233			key[0].dttk_value = (uint64_t)id;
5234			key[0].dttk_size = 0;
5235			DTRACE_TLS_THRKEY(key[1].dttk_value);
5236			key[1].dttk_size = 0;
5237			v = &vstate->dtvs_tlocals[id];
5238
5239			dvar = dtrace_dynvar(dstate, 2, key,
5240			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5241			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5242			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5243			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5244
5245			/*
5246			 * Given that we're storing to thread-local data,
5247			 * we need to flush our predicate cache.
5248			 */
5249			dtrace_set_thread_predcache(current_thread(), 0);
5250
5251			if (dvar == NULL)
5252				break;
5253
5254			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5255				if (!dtrace_vcanload(
5256				    (void *)(uintptr_t)regs[rd],
5257				    &v->dtdv_type, mstate, vstate))
5258					break;
5259
5260				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5261				    dvar->dtdv_data, &v->dtdv_type);
5262			} else {
5263				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5264			}
5265
5266			break;
5267		}
5268
5269		case DIF_OP_SRA:
5270			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5271			break;
5272
5273		case DIF_OP_CALL:
5274			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5275			    regs, tupregs, ttop, mstate, state);
5276			break;
5277
5278		case DIF_OP_PUSHTR:
5279			if (ttop == DIF_DTR_NREGS) {
5280				*flags |= CPU_DTRACE_TUPOFLOW;
5281				break;
5282			}
5283
5284			if (r1 == DIF_TYPE_STRING) {
5285				/*
5286				 * If this is a string type and the size is 0,
5287				 * we'll use the system-wide default string
5288				 * size.  Note that we are _not_ looking at
5289				 * the value of the DTRACEOPT_STRSIZE option;
5290				 * had this been set, we would expect to have
5291				 * a non-zero size value in the "pushtr".
5292				 */
5293				tupregs[ttop].dttk_size =
5294				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5295				    regs[r2] ? regs[r2] :
5296				    dtrace_strsize_default) + 1;
5297			} else {
5298				tupregs[ttop].dttk_size = regs[r2];
5299			}
5300
5301			tupregs[ttop++].dttk_value = regs[rd];
5302			break;
5303
5304		case DIF_OP_PUSHTV:
5305			if (ttop == DIF_DTR_NREGS) {
5306				*flags |= CPU_DTRACE_TUPOFLOW;
5307				break;
5308			}
5309
5310			tupregs[ttop].dttk_value = regs[rd];
5311			tupregs[ttop++].dttk_size = 0;
5312			break;
5313
5314		case DIF_OP_POPTS:
5315			if (ttop != 0)
5316				ttop--;
5317			break;
5318
5319		case DIF_OP_FLUSHTS:
5320			ttop = 0;
5321			break;
5322
5323		case DIF_OP_LDGAA:
5324		case DIF_OP_LDTAA: {
5325			dtrace_dynvar_t *dvar;
5326			dtrace_key_t *key = tupregs;
5327			uint_t nkeys = ttop;
5328
5329			id = DIF_INSTR_VAR(instr);
5330			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5331			id -= DIF_VAR_OTHER_UBASE;
5332
5333			key[nkeys].dttk_value = (uint64_t)id;
5334			key[nkeys++].dttk_size = 0;
5335
5336			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5337				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5338				key[nkeys++].dttk_size = 0;
5339				v = &vstate->dtvs_tlocals[id];
5340			} else {
5341				v = &vstate->dtvs_globals[id]->dtsv_var;
5342			}
5343
5344			dvar = dtrace_dynvar(dstate, nkeys, key,
5345			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5346			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5347			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5348
5349			if (dvar == NULL) {
5350				regs[rd] = 0;
5351				break;
5352			}
5353
5354			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5355				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5356			} else {
5357				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5358			}
5359
5360			break;
5361		}
5362
5363		case DIF_OP_STGAA:
5364		case DIF_OP_STTAA: {
5365			dtrace_dynvar_t *dvar;
5366			dtrace_key_t *key = tupregs;
5367			uint_t nkeys = ttop;
5368
5369			id = DIF_INSTR_VAR(instr);
5370			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5371			id -= DIF_VAR_OTHER_UBASE;
5372
5373			key[nkeys].dttk_value = (uint64_t)id;
5374			key[nkeys++].dttk_size = 0;
5375
5376			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5377				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5378				key[nkeys++].dttk_size = 0;
5379				v = &vstate->dtvs_tlocals[id];
5380			} else {
5381				v = &vstate->dtvs_globals[id]->dtsv_var;
5382			}
5383
5384			dvar = dtrace_dynvar(dstate, nkeys, key,
5385			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5386			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5387			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5388			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5389
5390			if (dvar == NULL)
5391				break;
5392
5393			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5394				if (!dtrace_vcanload(
5395				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5396				    mstate, vstate))
5397					break;
5398
5399				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5400				    dvar->dtdv_data, &v->dtdv_type);
5401			} else {
5402				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5403			}
5404
5405			break;
5406		}
5407
5408		case DIF_OP_ALLOCS: {
5409			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5410			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5411
5412			/*
5413			 * Rounding up the user allocation size could have
5414			 * overflowed large, bogus allocations (like -1ULL) to
5415			 * 0.
5416			 */
5417			if (size < regs[r1] ||
5418			    !DTRACE_INSCRATCH(mstate, size)) {
5419				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5420				regs[rd] = 0;
5421				break;
5422			}
5423
5424			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5425				mstate->dtms_scratch_ptr += size;
5426				regs[rd] = ptr;
5427			break;
5428		}
5429
5430		case DIF_OP_COPYS:
5431			if (!dtrace_canstore(regs[rd], regs[r2],
5432			    mstate, vstate)) {
5433				*flags |= CPU_DTRACE_BADADDR;
5434				*illval = regs[rd];
5435				break;
5436			}
5437
5438			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5439				break;
5440
5441			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5442			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5443			break;
5444
5445		case DIF_OP_STB:
5446			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5447				*flags |= CPU_DTRACE_BADADDR;
5448				*illval = regs[rd];
5449				break;
5450			}
5451			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5452			break;
5453
5454		case DIF_OP_STH:
5455			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5456				*flags |= CPU_DTRACE_BADADDR;
5457				*illval = regs[rd];
5458				break;
5459			}
5460			if (regs[rd] & 1) {
5461				*flags |= CPU_DTRACE_BADALIGN;
5462				*illval = regs[rd];
5463				break;
5464			}
5465			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5466			break;
5467
5468		case DIF_OP_STW:
5469			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5470				*flags |= CPU_DTRACE_BADADDR;
5471				*illval = regs[rd];
5472				break;
5473			}
5474			if (regs[rd] & 3) {
5475				*flags |= CPU_DTRACE_BADALIGN;
5476				*illval = regs[rd];
5477				break;
5478			}
5479			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5480			break;
5481
5482		case DIF_OP_STX:
5483			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5484				*flags |= CPU_DTRACE_BADADDR;
5485				*illval = regs[rd];
5486				break;
5487			}
5488
5489			/*
5490			* Darwin kmem_zalloc() called from
5491			* dtrace_difo_init() is 4-byte aligned.
5492			*/
5493			if (regs[rd] & 3) {
5494				*flags |= CPU_DTRACE_BADALIGN;
5495				*illval = regs[rd];
5496				break;
5497			}
5498			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5499			break;
5500		}
5501	}
5502
5503	if (!(*flags & CPU_DTRACE_FAULT))
5504		return (rval);
5505
5506	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5507	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5508
5509	return (0);
5510}
5511
5512static void
5513dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5514{
5515	dtrace_probe_t *probe = ecb->dte_probe;
5516	dtrace_provider_t *prov = probe->dtpr_provider;
5517	char c[DTRACE_FULLNAMELEN + 80], *str;
5518	const char *msg = "dtrace: breakpoint action at probe ";
5519	const char *ecbmsg = " (ecb ";
5520	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5521	uintptr_t val = (uintptr_t)ecb;
5522	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5523
5524	if (dtrace_destructive_disallow)
5525		return;
5526
5527	/*
5528	 * It's impossible to be taking action on the NULL probe.
5529	 */
5530	ASSERT(probe != NULL);
5531
5532	/*
5533	 * This is a poor man's (destitute man's?) sprintf():  we want to
5534	 * print the provider name, module name, function name and name of
5535	 * the probe, along with the hex address of the ECB with the breakpoint
5536	 * action -- all of which we must place in the character buffer by
5537	 * hand.
5538	 */
5539	while (*msg != '\0')
5540		c[i++] = *msg++;
5541
5542	for (str = prov->dtpv_name; *str != '\0'; str++)
5543		c[i++] = *str;
5544	c[i++] = ':';
5545
5546	for (str = probe->dtpr_mod; *str != '\0'; str++)
5547		c[i++] = *str;
5548	c[i++] = ':';
5549
5550	for (str = probe->dtpr_func; *str != '\0'; str++)
5551		c[i++] = *str;
5552	c[i++] = ':';
5553
5554	for (str = probe->dtpr_name; *str != '\0'; str++)
5555		c[i++] = *str;
5556
5557	while (*ecbmsg != '\0')
5558		c[i++] = *ecbmsg++;
5559
5560	while (shift >= 0) {
5561		mask = (uintptr_t)0xf << shift;
5562
5563		if (val >= ((uintptr_t)1 << shift))
5564			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5565		shift -= 4;
5566	}
5567
5568	c[i++] = ')';
5569	c[i] = '\0';
5570
5571	debug_enter(c);
5572}
5573
5574static void
5575dtrace_action_panic(dtrace_ecb_t *ecb)
5576{
5577	dtrace_probe_t *probe = ecb->dte_probe;
5578
5579	/*
5580	 * It's impossible to be taking action on the NULL probe.
5581	 */
5582	ASSERT(probe != NULL);
5583
5584	if (dtrace_destructive_disallow)
5585		return;
5586
5587	if (dtrace_panicked != NULL)
5588		return;
5589
5590	if (dtrace_casptr(&dtrace_panicked, NULL, current_thread()) != NULL)
5591		return;
5592
5593	/*
5594	 * We won the right to panic.  (We want to be sure that only one
5595	 * thread calls panic() from dtrace_probe(), and that panic() is
5596	 * called exactly once.)
5597	 */
5598	panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5599	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5600	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5601
5602	/*
5603	 * APPLE NOTE: this was for an old Mac OS X debug feature
5604	 * allowing a return from panic().  Revisit someday.
5605	 */
5606	dtrace_panicked = NULL;
5607}
5608
5609static void
5610dtrace_action_raise(uint64_t sig)
5611{
5612	if (dtrace_destructive_disallow)
5613		return;
5614
5615	if (sig >= NSIG) {
5616		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5617		return;
5618	}
5619
5620	/*
5621	 * raise() has a queue depth of 1 -- we ignore all subsequent
5622	 * invocations of the raise() action.
5623	 */
5624
5625	uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread());
5626
5627	if (uthread && uthread->t_dtrace_sig == 0) {
5628		uthread->t_dtrace_sig = sig;
5629		act_set_astbsd(current_thread());
5630	}
5631}
5632
5633static void
5634dtrace_action_stop(void)
5635{
5636	if (dtrace_destructive_disallow)
5637		return;
5638
5639        uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread());
5640	if (uthread) {
5641		/*
5642		 * The currently running process will be set to task_suspend
5643		 * when it next leaves the kernel.
5644		*/
5645		uthread->t_dtrace_stop = 1;
5646		act_set_astbsd(current_thread());
5647	}
5648}
5649
5650
5651/*
5652 * APPLE NOTE: pidresume works in conjunction with the dtrace stop action.
5653 * Both activate only when the currently running process next leaves the
5654 * kernel.
5655 */
5656static void
5657dtrace_action_pidresume(uint64_t pid)
5658{
5659	if (dtrace_destructive_disallow)
5660		return;
5661
5662	if (kauth_cred_issuser(kauth_cred_get()) == 0) {
5663		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5664		return;
5665	}
5666        uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread());
5667
5668	/*
5669	 * When the currently running process leaves the kernel, it attempts to
5670	 * task_resume the process (denoted by pid), if that pid appears to have
5671	 * been stopped by dtrace_action_stop().
5672	 * The currently running process has a pidresume() queue depth of 1 --
5673	 * subsequent invocations of the pidresume() action are ignored.
5674	 */
5675
5676	if (pid != 0 && uthread && uthread->t_dtrace_resumepid == 0) {
5677		uthread->t_dtrace_resumepid = pid;
5678		act_set_astbsd(current_thread());
5679	}
5680}
5681
5682static void
5683dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5684{
5685	hrtime_t now;
5686	volatile uint16_t *flags;
5687	dtrace_cpu_t *cpu = CPU;
5688
5689	if (dtrace_destructive_disallow)
5690		return;
5691
5692	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5693
5694	now = dtrace_gethrtime();
5695
5696	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5697		/*
5698		 * We need to advance the mark to the current time.
5699		 */
5700		cpu->cpu_dtrace_chillmark = now;
5701		cpu->cpu_dtrace_chilled = 0;
5702	}
5703
5704	/*
5705	 * Now check to see if the requested chill time would take us over
5706	 * the maximum amount of time allowed in the chill interval.  (Or
5707	 * worse, if the calculation itself induces overflow.)
5708	 */
5709	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5710	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5711		*flags |= CPU_DTRACE_ILLOP;
5712		return;
5713	}
5714
5715	while (dtrace_gethrtime() - now < val)
5716		continue;
5717
5718	/*
5719	 * Normally, we assure that the value of the variable "timestamp" does
5720	 * not change within an ECB.  The presence of chill() represents an
5721	 * exception to this rule, however.
5722	 */
5723	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5724	cpu->cpu_dtrace_chilled += val;
5725}
5726
5727static void
5728dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5729    uint64_t *buf, uint64_t arg)
5730{
5731	int nframes = DTRACE_USTACK_NFRAMES(arg);
5732	int strsize = DTRACE_USTACK_STRSIZE(arg);
5733	uint64_t *pcs = &buf[1], *fps;
5734	char *str = (char *)&pcs[nframes];
5735	int size, offs = 0, i, j;
5736	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5737	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5738	char *sym;
5739
5740	/*
5741	 * Should be taking a faster path if string space has not been
5742	 * allocated.
5743	 */
5744	ASSERT(strsize != 0);
5745
5746	/*
5747	 * We will first allocate some temporary space for the frame pointers.
5748	 */
5749	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5750	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5751	    (nframes * sizeof (uint64_t));
5752
5753	if (!DTRACE_INSCRATCH(mstate, (uintptr_t)size)) {
5754		/*
5755		 * Not enough room for our frame pointers -- need to indicate
5756		 * that we ran out of scratch space.
5757		 */
5758		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5759		return;
5760	}
5761
5762	mstate->dtms_scratch_ptr += size;
5763	saved = mstate->dtms_scratch_ptr;
5764
5765	/*
5766	 * Now get a stack with both program counters and frame pointers.
5767	 */
5768	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5769	dtrace_getufpstack(buf, fps, nframes + 1);
5770	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5771
5772	/*
5773	 * If that faulted, we're cooked.
5774	 */
5775	if (*flags & CPU_DTRACE_FAULT)
5776		goto out;
5777
5778	/*
5779	 * Now we want to walk up the stack, calling the USTACK helper.  For
5780	 * each iteration, we restore the scratch pointer.
5781	 */
5782	for (i = 0; i < nframes; i++) {
5783		mstate->dtms_scratch_ptr = saved;
5784
5785		if (offs >= strsize)
5786			break;
5787
5788		sym = (char *)(uintptr_t)dtrace_helper(
5789		    DTRACE_HELPER_ACTION_USTACK,
5790		    mstate, state, pcs[i], fps[i]);
5791
5792		/*
5793		 * If we faulted while running the helper, we're going to
5794		 * clear the fault and null out the corresponding string.
5795		 */
5796		if (*flags & CPU_DTRACE_FAULT) {
5797			*flags &= ~CPU_DTRACE_FAULT;
5798			str[offs++] = '\0';
5799			continue;
5800		}
5801
5802		if (sym == NULL) {
5803			str[offs++] = '\0';
5804			continue;
5805		}
5806
5807		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5808
5809		/*
5810		 * Now copy in the string that the helper returned to us.
5811		 */
5812		for (j = 0; offs + j < strsize; j++) {
5813			if ((str[offs + j] = sym[j]) == '\0')
5814				break;
5815		}
5816
5817		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5818
5819		offs += j + 1;
5820	}
5821
5822	if (offs >= strsize) {
5823		/*
5824		 * If we didn't have room for all of the strings, we don't
5825		 * abort processing -- this needn't be a fatal error -- but we
5826		 * still want to increment a counter (dts_stkstroverflows) to
5827		 * allow this condition to be warned about.  (If this is from
5828		 * a jstack() action, it is easily tuned via jstackstrsize.)
5829		 */
5830		dtrace_error(&state->dts_stkstroverflows);
5831	}
5832
5833	while (offs < strsize)
5834		str[offs++] = '\0';
5835
5836out:
5837	mstate->dtms_scratch_ptr = old;
5838}
5839
5840/*
5841 * If you're looking for the epicenter of DTrace, you just found it.  This
5842 * is the function called by the provider to fire a probe -- from which all
5843 * subsequent probe-context DTrace activity emanates.
5844 */
5845static void
5846__dtrace_probe(dtrace_id_t id, uint64_t arg0, uint64_t arg1,
5847    uint64_t arg2, uint64_t arg3, uint64_t arg4)
5848{
5849	processorid_t cpuid;
5850	dtrace_icookie_t cookie;
5851	dtrace_probe_t *probe;
5852	dtrace_mstate_t mstate;
5853	dtrace_ecb_t *ecb;
5854	dtrace_action_t *act;
5855	intptr_t offs;
5856	size_t size;
5857	int vtime, onintr;
5858	volatile uint16_t *flags;
5859	hrtime_t now;
5860
5861	cookie = dtrace_interrupt_disable();
5862	probe = dtrace_probes[id - 1];
5863	cpuid = CPU->cpu_id;
5864	onintr = CPU_ON_INTR(CPU);
5865
5866	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5867	    probe->dtpr_predcache == dtrace_get_thread_predcache(current_thread())) {
5868		/*
5869		 * We have hit in the predicate cache; we know that
5870		 * this predicate would evaluate to be false.
5871		 */
5872		dtrace_interrupt_enable(cookie);
5873		return;
5874	}
5875
5876	if (panic_quiesce) {
5877		/*
5878		 * We don't trace anything if we're panicking.
5879		 */
5880		dtrace_interrupt_enable(cookie);
5881		return;
5882	}
5883
5884#if !defined(__APPLE__)
5885	now = dtrace_gethrtime();
5886	vtime = dtrace_vtime_references != 0;
5887
5888	if (vtime && curthread->t_dtrace_start)
5889		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5890#else
5891	/*
5892	 * APPLE NOTE:  The time spent entering DTrace and arriving
5893	 * to this point, is attributed to the current thread.
5894	 * Instead it should accrue to DTrace.  FIXME
5895	 */
5896	vtime = dtrace_vtime_references != 0;
5897
5898	if (vtime)
5899	{
5900		int64_t dtrace_accum_time, recent_vtime;
5901		thread_t thread = current_thread();
5902
5903		dtrace_accum_time = dtrace_get_thread_tracing(thread); /* Time spent inside DTrace so far (nanoseconds) */
5904
5905		if (dtrace_accum_time >= 0) {
5906			recent_vtime = dtrace_abs_to_nano(dtrace_calc_thread_recent_vtime(thread)); /* up to the moment thread vtime */
5907
5908			recent_vtime = recent_vtime - dtrace_accum_time; /* Time without DTrace contribution */
5909
5910			dtrace_set_thread_vtime(thread, recent_vtime);
5911		}
5912	}
5913
5914	now = dtrace_gethrtime(); /* must not precede dtrace_calc_thread_recent_vtime() call! */
5915#endif /* __APPLE__ */
5916
5917	/*
5918	 * APPLE NOTE: A provider may call dtrace_probe_error() in lieu of
5919	 * dtrace_probe() in some circumstances.   See, e.g. fasttrap_isa.c.
5920	 * However the provider has no access to ECB context, so passes
5921	 * 0 through "arg0" and the probe_id of the overridden probe as arg1.
5922	 * Detect that here and cons up a viable state (from the probe_id).
5923	 */
5924	if (dtrace_probeid_error == id && 0 == arg0) {
5925		dtrace_id_t ftp_id = (dtrace_id_t)arg1;
5926		dtrace_probe_t *ftp_probe = dtrace_probes[ftp_id - 1];
5927		dtrace_ecb_t *ftp_ecb = ftp_probe->dtpr_ecb;
5928
5929		if (NULL != ftp_ecb) {
5930			dtrace_state_t *ftp_state = ftp_ecb->dte_state;
5931
5932			arg0 = (uint64_t)(uintptr_t)ftp_state;
5933			arg1 = ftp_ecb->dte_epid;
5934			/*
5935			 * args[2-4] established by caller.
5936			 */
5937			ftp_state->dts_arg_error_illval = -1; /* arg5 */
5938		}
5939	}
5940
5941	mstate.dtms_difo = NULL;
5942	mstate.dtms_probe = probe;
5943	mstate.dtms_strtok = 0;
5944	mstate.dtms_arg[0] = arg0;
5945	mstate.dtms_arg[1] = arg1;
5946	mstate.dtms_arg[2] = arg2;
5947	mstate.dtms_arg[3] = arg3;
5948	mstate.dtms_arg[4] = arg4;
5949
5950	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5951
5952	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5953		dtrace_predicate_t *pred = ecb->dte_predicate;
5954		dtrace_state_t *state = ecb->dte_state;
5955		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5956		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5957		dtrace_vstate_t *vstate = &state->dts_vstate;
5958		dtrace_provider_t *prov = probe->dtpr_provider;
5959		uint64_t tracememsize = 0;
5960		int committed = 0;
5961		caddr_t tomax;
5962
5963		/*
5964		 * A little subtlety with the following (seemingly innocuous)
5965		 * declaration of the automatic 'val':  by looking at the
5966		 * code, you might think that it could be declared in the
5967		 * action processing loop, below.  (That is, it's only used in
5968		 * the action processing loop.)  However, it must be declared
5969		 * out of that scope because in the case of DIF expression
5970		 * arguments to aggregating actions, one iteration of the
5971		 * action loop will use the last iteration's value.
5972		 */
5973#ifdef lint
5974		uint64_t val = 0;
5975#else
5976		uint64_t val = 0;
5977#endif
5978
5979		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5980		*flags &= ~CPU_DTRACE_ERROR;
5981
5982		if (prov == dtrace_provider) {
5983			/*
5984			 * If dtrace itself is the provider of this probe,
5985			 * we're only going to continue processing the ECB if
5986			 * arg0 (the dtrace_state_t) is equal to the ECB's
5987			 * creating state.  (This prevents disjoint consumers
5988			 * from seeing one another's metaprobes.)
5989			 */
5990			if (arg0 != (uint64_t)(uintptr_t)state)
5991				continue;
5992		}
5993
5994		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5995			/*
5996			 * We're not currently active.  If our provider isn't
5997			 * the dtrace pseudo provider, we're not interested.
5998			 */
5999			if (prov != dtrace_provider)
6000				continue;
6001
6002			/*
6003			 * Now we must further check if we are in the BEGIN
6004			 * probe.  If we are, we will only continue processing
6005			 * if we're still in WARMUP -- if one BEGIN enabling
6006			 * has invoked the exit() action, we don't want to
6007			 * evaluate subsequent BEGIN enablings.
6008			 */
6009			if (probe->dtpr_id == dtrace_probeid_begin &&
6010			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6011				ASSERT(state->dts_activity ==
6012				    DTRACE_ACTIVITY_DRAINING);
6013				continue;
6014			}
6015		}
6016
6017		if (ecb->dte_cond) {
6018			/*
6019			 * If the dte_cond bits indicate that this
6020			 * consumer is only allowed to see user-mode firings
6021			 * of this probe, call the provider's dtps_usermode()
6022			 * entry point to check that the probe was fired
6023			 * while in a user context. Skip this ECB if that's
6024			 * not the case.
6025			 */
6026			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6027			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6028			    probe->dtpr_id, probe->dtpr_arg) == 0)
6029				continue;
6030
6031			/*
6032			 * This is more subtle than it looks. We have to be
6033			 * absolutely certain that CRED() isn't going to
6034			 * change out from under us so it's only legit to
6035			 * examine that structure if we're in constrained
6036			 * situations. Currently, the only times we'll this
6037			 * check is if a non-super-user has enabled the
6038			 * profile or syscall providers -- providers that
6039			 * allow visibility of all processes. For the
6040			 * profile case, the check above will ensure that
6041			 * we're examining a user context.
6042			 */
6043			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6044				cred_t *cr;
6045				cred_t *s_cr =
6046				    ecb->dte_state->dts_cred.dcr_cred;
6047				proc_t *proc;
6048#pragma unused(proc) /* __APPLE__ */
6049
6050				ASSERT(s_cr != NULL);
6051
6052			/*
6053			 * XXX this is hackish, but so is setting a variable
6054			 * XXX in a McCarthy OR...
6055			 */
6056				if ((cr = dtrace_CRED()) == NULL ||
6057				    posix_cred_get(s_cr)->cr_uid != posix_cred_get(cr)->cr_uid ||
6058				    posix_cred_get(s_cr)->cr_uid != posix_cred_get(cr)->cr_ruid ||
6059				    posix_cred_get(s_cr)->cr_uid != posix_cred_get(cr)->cr_suid ||
6060				    posix_cred_get(s_cr)->cr_gid != posix_cred_get(cr)->cr_gid ||
6061				    posix_cred_get(s_cr)->cr_gid != posix_cred_get(cr)->cr_rgid ||
6062				    posix_cred_get(s_cr)->cr_gid != posix_cred_get(cr)->cr_sgid ||
6063#if !defined(__APPLE__)
6064				    (proc = ttoproc(curthread)) == NULL ||
6065				    (proc->p_flag & SNOCD))
6066#else
6067					1) /* APPLE NOTE: Darwin omits "No Core Dump" flag */
6068#endif /* __APPLE__ */
6069					continue;
6070			}
6071
6072			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6073				cred_t *cr;
6074				cred_t *s_cr =
6075				    ecb->dte_state->dts_cred.dcr_cred;
6076#pragma unused(cr, s_cr) /* __APPLE__ */
6077
6078				ASSERT(s_cr != NULL);
6079
6080#if !defined(__APPLE__)
6081				if ((cr = CRED()) == NULL ||
6082				    s_cr->cr_zone->zone_id !=
6083				    cr->cr_zone->zone_id)
6084					continue;
6085#else
6086				/* APPLE NOTE: Darwin doesn't do zones. */
6087#endif /* __APPLE__ */
6088			}
6089		}
6090
6091		if (now - state->dts_alive > dtrace_deadman_timeout) {
6092			/*
6093			 * We seem to be dead.  Unless we (a) have kernel
6094			 * destructive permissions (b) have expicitly enabled
6095			 * destructive actions and (c) destructive actions have
6096			 * not been disabled, we're going to transition into
6097			 * the KILLED state, from which no further processing
6098			 * on this state will be performed.
6099			 */
6100			if (!dtrace_priv_kernel_destructive(state) ||
6101			    !state->dts_cred.dcr_destructive ||
6102			    dtrace_destructive_disallow) {
6103				void *activity = &state->dts_activity;
6104				dtrace_activity_t current;
6105
6106				do {
6107					current = state->dts_activity;
6108				} while (dtrace_cas32(activity, current,
6109				    DTRACE_ACTIVITY_KILLED) != current);
6110
6111				continue;
6112			}
6113		}
6114
6115		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6116		    ecb->dte_alignment, state, &mstate)) < 0)
6117			continue;
6118
6119		tomax = buf->dtb_tomax;
6120		ASSERT(tomax != NULL);
6121
6122		if (ecb->dte_size != 0)
6123			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6124
6125		mstate.dtms_epid = ecb->dte_epid;
6126		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6127
6128		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6129			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6130		else
6131			mstate.dtms_access = 0;
6132
6133		if (pred != NULL) {
6134			dtrace_difo_t *dp = pred->dtp_difo;
6135			int rval;
6136
6137			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6138
6139			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6140				dtrace_cacheid_t cid = probe->dtpr_predcache;
6141
6142				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6143					/*
6144					 * Update the predicate cache...
6145					 */
6146					ASSERT(cid == pred->dtp_cacheid);
6147
6148					dtrace_set_thread_predcache(current_thread(), cid);
6149				}
6150
6151				continue;
6152			}
6153		}
6154
6155		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6156		    act != NULL; act = act->dta_next) {
6157			size_t valoffs;
6158			dtrace_difo_t *dp;
6159			dtrace_recdesc_t *rec = &act->dta_rec;
6160
6161			size = rec->dtrd_size;
6162			valoffs = offs + rec->dtrd_offset;
6163
6164			if (DTRACEACT_ISAGG(act->dta_kind)) {
6165				uint64_t v = 0xbad;
6166				dtrace_aggregation_t *agg;
6167
6168				agg = (dtrace_aggregation_t *)act;
6169
6170				if ((dp = act->dta_difo) != NULL)
6171					v = dtrace_dif_emulate(dp,
6172					    &mstate, vstate, state);
6173
6174				if (*flags & CPU_DTRACE_ERROR)
6175					continue;
6176
6177				/*
6178				 * Note that we always pass the expression
6179				 * value from the previous iteration of the
6180				 * action loop.  This value will only be used
6181				 * if there is an expression argument to the
6182				 * aggregating action, denoted by the
6183				 * dtag_hasarg field.
6184				 */
6185				dtrace_aggregate(agg, buf,
6186				    offs, aggbuf, v, val);
6187				continue;
6188			}
6189
6190			switch (act->dta_kind) {
6191			case DTRACEACT_STOP:
6192				if (dtrace_priv_proc_destructive(state))
6193					dtrace_action_stop();
6194				continue;
6195
6196			case DTRACEACT_BREAKPOINT:
6197				if (dtrace_priv_kernel_destructive(state))
6198					dtrace_action_breakpoint(ecb);
6199				continue;
6200
6201			case DTRACEACT_PANIC:
6202				if (dtrace_priv_kernel_destructive(state))
6203					dtrace_action_panic(ecb);
6204				continue;
6205
6206			case DTRACEACT_STACK:
6207				if (!dtrace_priv_kernel(state))
6208					continue;
6209
6210				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6211				    size / sizeof (pc_t), probe->dtpr_aframes,
6212				    DTRACE_ANCHORED(probe) ? NULL :
6213				  (uint32_t *)(uintptr_t)arg0);
6214				continue;
6215
6216			case DTRACEACT_JSTACK:
6217			case DTRACEACT_USTACK:
6218				if (!dtrace_priv_proc(state))
6219					continue;
6220
6221				/*
6222				 * See comment in DIF_VAR_PID.
6223				 */
6224				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6225				    CPU_ON_INTR(CPU)) {
6226					int depth = DTRACE_USTACK_NFRAMES(
6227					    rec->dtrd_arg) + 1;
6228
6229					dtrace_bzero((void *)(tomax + valoffs),
6230					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6231					    + depth * sizeof (uint64_t));
6232
6233					continue;
6234				}
6235
6236				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6237				    curproc->p_dtrace_helpers != NULL) {
6238					/*
6239					 * This is the slow path -- we have
6240					 * allocated string space, and we're
6241					 * getting the stack of a process that
6242					 * has helpers.  Call into a separate
6243					 * routine to perform this processing.
6244					 */
6245					dtrace_action_ustack(&mstate, state,
6246					    (uint64_t *)(tomax + valoffs),
6247					    rec->dtrd_arg);
6248					continue;
6249				}
6250
6251				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6252				dtrace_getupcstack((uint64_t *)
6253				    (tomax + valoffs),
6254				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6255				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6256				continue;
6257
6258			default:
6259				break;
6260			}
6261
6262			dp = act->dta_difo;
6263			ASSERT(dp != NULL);
6264
6265			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6266
6267			if (*flags & CPU_DTRACE_ERROR)
6268				continue;
6269
6270			switch (act->dta_kind) {
6271			case DTRACEACT_SPECULATE:
6272				ASSERT(buf == &state->dts_buffer[cpuid]);
6273				buf = dtrace_speculation_buffer(state,
6274				    cpuid, val);
6275
6276				if (buf == NULL) {
6277					*flags |= CPU_DTRACE_DROP;
6278					continue;
6279				}
6280
6281				offs = dtrace_buffer_reserve(buf,
6282				    ecb->dte_needed, ecb->dte_alignment,
6283				    state, NULL);
6284
6285				if (offs < 0) {
6286					*flags |= CPU_DTRACE_DROP;
6287					continue;
6288				}
6289
6290				tomax = buf->dtb_tomax;
6291				ASSERT(tomax != NULL);
6292
6293				if (ecb->dte_size != 0)
6294					DTRACE_STORE(uint32_t, tomax, offs,
6295					    ecb->dte_epid);
6296				continue;
6297
6298			case DTRACEACT_CHILL:
6299				if (dtrace_priv_kernel_destructive(state))
6300					dtrace_action_chill(&mstate, val);
6301				continue;
6302
6303			case DTRACEACT_RAISE:
6304				if (dtrace_priv_proc_destructive(state))
6305					dtrace_action_raise(val);
6306				continue;
6307
6308			case DTRACEACT_PIDRESUME:   /* __APPLE__ */
6309				if (dtrace_priv_proc_destructive(state))
6310					dtrace_action_pidresume(val);
6311				continue;
6312
6313			case DTRACEACT_COMMIT:
6314				ASSERT(!committed);
6315
6316				/*
6317				 * We need to commit our buffer state.
6318				 */
6319				if (ecb->dte_size)
6320					buf->dtb_offset = offs + ecb->dte_size;
6321				buf = &state->dts_buffer[cpuid];
6322				dtrace_speculation_commit(state, cpuid, val);
6323				committed = 1;
6324				continue;
6325
6326			case DTRACEACT_DISCARD:
6327				dtrace_speculation_discard(state, cpuid, val);
6328				continue;
6329
6330			case DTRACEACT_DIFEXPR:
6331			case DTRACEACT_LIBACT:
6332			case DTRACEACT_PRINTF:
6333			case DTRACEACT_PRINTA:
6334			case DTRACEACT_SYSTEM:
6335			case DTRACEACT_FREOPEN:
6336			case DTRACEACT_APPLEBINARY:   /* __APPLE__ */
6337			case DTRACEACT_TRACEMEM:
6338				break;
6339
6340			case DTRACEACT_TRACEMEM_DYNSIZE:
6341				tracememsize = val;
6342				break;
6343
6344			case DTRACEACT_SYM:
6345			case DTRACEACT_MOD:
6346				if (!dtrace_priv_kernel(state))
6347					continue;
6348				break;
6349
6350			case DTRACEACT_USYM:
6351			case DTRACEACT_UMOD:
6352			case DTRACEACT_UADDR: {
6353				if (!dtrace_priv_proc(state))
6354					continue;
6355
6356				DTRACE_STORE(uint64_t, tomax,
6357				    valoffs, (uint64_t)dtrace_proc_selfpid());
6358				DTRACE_STORE(uint64_t, tomax,
6359				    valoffs + sizeof (uint64_t), val);
6360
6361				continue;
6362			}
6363
6364			case DTRACEACT_EXIT: {
6365				/*
6366				 * For the exit action, we are going to attempt
6367				 * to atomically set our activity to be
6368				 * draining.  If this fails (either because
6369				 * another CPU has beat us to the exit action,
6370				 * or because our current activity is something
6371				 * other than ACTIVE or WARMUP), we will
6372				 * continue.  This assures that the exit action
6373				 * can be successfully recorded at most once
6374				 * when we're in the ACTIVE state.  If we're
6375				 * encountering the exit() action while in
6376				 * COOLDOWN, however, we want to honor the new
6377				 * status code.  (We know that we're the only
6378				 * thread in COOLDOWN, so there is no race.)
6379				 */
6380				void *activity = &state->dts_activity;
6381				dtrace_activity_t current = state->dts_activity;
6382
6383				if (current == DTRACE_ACTIVITY_COOLDOWN)
6384					break;
6385
6386				if (current != DTRACE_ACTIVITY_WARMUP)
6387					current = DTRACE_ACTIVITY_ACTIVE;
6388
6389				if (dtrace_cas32(activity, current,
6390				    DTRACE_ACTIVITY_DRAINING) != current) {
6391					*flags |= CPU_DTRACE_DROP;
6392					continue;
6393				}
6394
6395				break;
6396			}
6397
6398			default:
6399				ASSERT(0);
6400			}
6401
6402			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6403				uintptr_t end = valoffs + size;
6404
6405				if (tracememsize != 0 &&
6406                                    valoffs + tracememsize < end)
6407				{
6408                                        end = valoffs + tracememsize;
6409                                        tracememsize = 0;
6410                                }
6411
6412				if (!dtrace_vcanload((void *)(uintptr_t)val,
6413				    &dp->dtdo_rtype, &mstate, vstate))
6414					continue;
6415
6416				/*
6417				 * If this is a string, we're going to only
6418				 * load until we find the zero byte -- after
6419				 * which we'll store zero bytes.
6420				 */
6421				if (dp->dtdo_rtype.dtdt_kind ==
6422				    DIF_TYPE_STRING) {
6423					char c = '\0' + 1;
6424					int intuple = act->dta_intuple;
6425					size_t s;
6426
6427					for (s = 0; s < size; s++) {
6428						if (c != '\0')
6429							c = dtrace_load8(val++);
6430
6431						DTRACE_STORE(uint8_t, tomax,
6432						    valoffs++, c);
6433
6434						if (c == '\0' && intuple)
6435							break;
6436					}
6437
6438					continue;
6439				}
6440
6441				while (valoffs < end) {
6442					DTRACE_STORE(uint8_t, tomax, valoffs++,
6443					    dtrace_load8(val++));
6444				}
6445
6446				continue;
6447			}
6448
6449			switch (size) {
6450			case 0:
6451				break;
6452
6453			case sizeof (uint8_t):
6454				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6455				break;
6456			case sizeof (uint16_t):
6457				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6458				break;
6459			case sizeof (uint32_t):
6460				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6461				break;
6462			case sizeof (uint64_t):
6463				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6464				break;
6465			default:
6466				/*
6467				 * Any other size should have been returned by
6468				 * reference, not by value.
6469				 */
6470				ASSERT(0);
6471				break;
6472			}
6473		}
6474
6475		if (*flags & CPU_DTRACE_DROP)
6476			continue;
6477
6478		if (*flags & CPU_DTRACE_FAULT) {
6479			int ndx;
6480			dtrace_action_t *err;
6481
6482			buf->dtb_errors++;
6483
6484			if (probe->dtpr_id == dtrace_probeid_error) {
6485				/*
6486				 * There's nothing we can do -- we had an
6487				 * error on the error probe.  We bump an
6488				 * error counter to at least indicate that
6489				 * this condition happened.
6490				 */
6491				dtrace_error(&state->dts_dblerrors);
6492				continue;
6493			}
6494
6495			if (vtime) {
6496				/*
6497				 * Before recursing on dtrace_probe(), we
6498				 * need to explicitly clear out our start
6499				 * time to prevent it from being accumulated
6500				 * into t_dtrace_vtime.
6501				 */
6502
6503				/*
6504				 * Darwin sets the sign bit on t_dtrace_tracing
6505				 * to suspend accumulation to it.
6506				 */
6507				dtrace_set_thread_tracing(current_thread(),
6508				    (1ULL<<63) | dtrace_get_thread_tracing(current_thread()));
6509
6510			}
6511
6512			/*
6513			 * Iterate over the actions to figure out which action
6514			 * we were processing when we experienced the error.
6515			 * Note that act points _past_ the faulting action; if
6516			 * act is ecb->dte_action, the fault was in the
6517			 * predicate, if it's ecb->dte_action->dta_next it's
6518			 * in action #1, and so on.
6519			 */
6520			for (err = ecb->dte_action, ndx = 0;
6521			    err != act; err = err->dta_next, ndx++)
6522				continue;
6523
6524			dtrace_probe_error(state, ecb->dte_epid, ndx,
6525			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6526			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6527			    cpu_core[cpuid].cpuc_dtrace_illval);
6528
6529			continue;
6530		}
6531
6532		if (!committed)
6533			buf->dtb_offset = offs + ecb->dte_size;
6534	}
6535
6536	/* FIXME: On Darwin the time spent leaving DTrace from this point to the rti is attributed
6537	   to the current thread. Instead it should accrue to DTrace. */
6538	if (vtime) {
6539		thread_t thread = current_thread();
6540		int64_t t = dtrace_get_thread_tracing(thread);
6541
6542		if (t >= 0) {
6543			/* Usual case, accumulate time spent here into t_dtrace_tracing */
6544			dtrace_set_thread_tracing(thread, t + (dtrace_gethrtime() - now));
6545		} else {
6546			/* Return from error recursion. No accumulation, just clear the sign bit on t_dtrace_tracing. */
6547			dtrace_set_thread_tracing(thread, (~(1ULL<<63)) & t);
6548		}
6549	}
6550
6551	dtrace_interrupt_enable(cookie);
6552}
6553
6554/*
6555 * APPLE NOTE:  Don't allow a thread to re-enter dtrace_probe().
6556 * This could occur if a probe is encountered on some function in the
6557 * transitive closure of the call to dtrace_probe().
6558 * Solaris has some strong guarantees that this won't happen.
6559 * The Darwin implementation is not so mature as to make those guarantees.
6560 * Hence, the introduction of __dtrace_probe() on xnu.
6561 */
6562
6563void
6564dtrace_probe(dtrace_id_t id, uint64_t arg0, uint64_t arg1,
6565    uint64_t arg2, uint64_t arg3, uint64_t arg4)
6566{
6567	thread_t thread = current_thread();
6568	disable_preemption();
6569	if (id == dtrace_probeid_error) {
6570		__dtrace_probe(id, arg0, arg1, arg2, arg3, arg4);
6571		dtrace_getipl(); /* Defeat tail-call optimization of __dtrace_probe() */
6572	} else if (!dtrace_get_thread_reentering(thread)) {
6573		dtrace_set_thread_reentering(thread, TRUE);
6574		__dtrace_probe(id, arg0, arg1, arg2, arg3, arg4);
6575		dtrace_set_thread_reentering(thread, FALSE);
6576	}
6577#if DEBUG
6578	else __dtrace_probe(dtrace_probeid_error, 0, id, 1, -1, DTRACEFLT_UNKNOWN);
6579#endif
6580	enable_preemption();
6581}
6582
6583/*
6584 * DTrace Probe Hashing Functions
6585 *
6586 * The functions in this section (and indeed, the functions in remaining
6587 * sections) are not _called_ from probe context.  (Any exceptions to this are
6588 * marked with a "Note:".)  Rather, they are called from elsewhere in the
6589 * DTrace framework to look-up probes in, add probes to and remove probes from
6590 * the DTrace probe hashes.  (Each probe is hashed by each element of the
6591 * probe tuple -- allowing for fast lookups, regardless of what was
6592 * specified.)
6593 */
6594static uint_t
6595dtrace_hash_str(const char *p)
6596{
6597	unsigned int g;
6598	uint_t hval = 0;
6599
6600	while (*p) {
6601		hval = (hval << 4) + *p++;
6602		if ((g = (hval & 0xf0000000)) != 0)
6603			hval ^= g >> 24;
6604		hval &= ~g;
6605	}
6606	return (hval);
6607}
6608
6609static dtrace_hash_t *
6610dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6611{
6612	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6613
6614	hash->dth_stroffs = stroffs;
6615	hash->dth_nextoffs = nextoffs;
6616	hash->dth_prevoffs = prevoffs;
6617
6618	hash->dth_size = 1;
6619	hash->dth_mask = hash->dth_size - 1;
6620
6621	hash->dth_tab = kmem_zalloc(hash->dth_size *
6622	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6623
6624	return (hash);
6625}
6626
6627/*
6628 * APPLE NOTE: dtrace_hash_destroy is not used.
6629 * It is called by dtrace_detach which is not
6630 * currently implemented.  Revisit someday.
6631 */
6632#if !defined(__APPLE__)
6633static void
6634dtrace_hash_destroy(dtrace_hash_t *hash)
6635{
6636#if DEBUG
6637	int i;
6638
6639	for (i = 0; i < hash->dth_size; i++)
6640		ASSERT(hash->dth_tab[i] == NULL);
6641#endif
6642
6643	kmem_free(hash->dth_tab,
6644	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6645	kmem_free(hash, sizeof (dtrace_hash_t));
6646}
6647#endif /* __APPLE__ */
6648
6649static void
6650dtrace_hash_resize(dtrace_hash_t *hash)
6651{
6652	int size = hash->dth_size, i, ndx;
6653	int new_size = hash->dth_size << 1;
6654	int new_mask = new_size - 1;
6655	dtrace_hashbucket_t **new_tab, *bucket, *next;
6656
6657	ASSERT((new_size & new_mask) == 0);
6658
6659	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6660
6661	for (i = 0; i < size; i++) {
6662		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6663			dtrace_probe_t *probe = bucket->dthb_chain;
6664
6665			ASSERT(probe != NULL);
6666			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6667
6668			next = bucket->dthb_next;
6669			bucket->dthb_next = new_tab[ndx];
6670			new_tab[ndx] = bucket;
6671		}
6672	}
6673
6674	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6675	hash->dth_tab = new_tab;
6676	hash->dth_size = new_size;
6677	hash->dth_mask = new_mask;
6678}
6679
6680static void
6681dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6682{
6683	int hashval = DTRACE_HASHSTR(hash, new);
6684	int ndx = hashval & hash->dth_mask;
6685	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6686	dtrace_probe_t **nextp, **prevp;
6687
6688	for (; bucket != NULL; bucket = bucket->dthb_next) {
6689		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6690			goto add;
6691	}
6692
6693	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6694		dtrace_hash_resize(hash);
6695		dtrace_hash_add(hash, new);
6696		return;
6697	}
6698
6699	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6700	bucket->dthb_next = hash->dth_tab[ndx];
6701	hash->dth_tab[ndx] = bucket;
6702	hash->dth_nbuckets++;
6703
6704add:
6705	nextp = DTRACE_HASHNEXT(hash, new);
6706	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6707	*nextp = bucket->dthb_chain;
6708
6709	if (bucket->dthb_chain != NULL) {
6710		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6711		ASSERT(*prevp == NULL);
6712		*prevp = new;
6713	}
6714
6715	bucket->dthb_chain = new;
6716	bucket->dthb_len++;
6717}
6718
6719static dtrace_probe_t *
6720dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6721{
6722	int hashval = DTRACE_HASHSTR(hash, template);
6723	int ndx = hashval & hash->dth_mask;
6724	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6725
6726	for (; bucket != NULL; bucket = bucket->dthb_next) {
6727		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6728			return (bucket->dthb_chain);
6729	}
6730
6731	return (NULL);
6732}
6733
6734static int
6735dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6736{
6737	int hashval = DTRACE_HASHSTR(hash, template);
6738	int ndx = hashval & hash->dth_mask;
6739	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6740
6741	for (; bucket != NULL; bucket = bucket->dthb_next) {
6742		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6743			return (bucket->dthb_len);
6744	}
6745
6746	return (0);
6747}
6748
6749static void
6750dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6751{
6752	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6753	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6754
6755	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6756	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6757
6758	/*
6759	 * Find the bucket that we're removing this probe from.
6760	 */
6761	for (; bucket != NULL; bucket = bucket->dthb_next) {
6762		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6763			break;
6764	}
6765
6766	ASSERT(bucket != NULL);
6767
6768	if (*prevp == NULL) {
6769		if (*nextp == NULL) {
6770			/*
6771			 * The removed probe was the only probe on this
6772			 * bucket; we need to remove the bucket.
6773			 */
6774			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6775
6776			ASSERT(bucket->dthb_chain == probe);
6777			ASSERT(b != NULL);
6778
6779			if (b == bucket) {
6780				hash->dth_tab[ndx] = bucket->dthb_next;
6781			} else {
6782				while (b->dthb_next != bucket)
6783					b = b->dthb_next;
6784				b->dthb_next = bucket->dthb_next;
6785			}
6786
6787			ASSERT(hash->dth_nbuckets > 0);
6788			hash->dth_nbuckets--;
6789			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6790			return;
6791		}
6792
6793		bucket->dthb_chain = *nextp;
6794	} else {
6795		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6796	}
6797
6798	if (*nextp != NULL)
6799		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6800}
6801
6802/*
6803 * DTrace Utility Functions
6804 *
6805 * These are random utility functions that are _not_ called from probe context.
6806 */
6807static int
6808dtrace_badattr(const dtrace_attribute_t *a)
6809{
6810	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6811	    a->dtat_data > DTRACE_STABILITY_MAX ||
6812	    a->dtat_class > DTRACE_CLASS_MAX);
6813}
6814
6815/*
6816 * Return a duplicate copy of a string.  If the specified string is NULL,
6817 * this function returns a zero-length string.
6818 * APPLE NOTE: Darwin employs size bounded string operation.
6819 */
6820static char *
6821dtrace_strdup(const char *str)
6822{
6823	size_t bufsize = (str != NULL ? strlen(str) : 0) + 1;
6824	char *new = kmem_zalloc(bufsize, KM_SLEEP);
6825
6826	if (str != NULL)
6827		(void) strlcpy(new, str, bufsize);
6828
6829	return (new);
6830}
6831
6832#define	DTRACE_ISALPHA(c)	\
6833	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6834
6835static int
6836dtrace_badname(const char *s)
6837{
6838	char c;
6839
6840	if (s == NULL || (c = *s++) == '\0')
6841		return (0);
6842
6843	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6844		return (1);
6845
6846	while ((c = *s++) != '\0') {
6847		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6848		    c != '-' && c != '_' && c != '.' && c != '`')
6849			return (1);
6850	}
6851
6852	return (0);
6853}
6854
6855static void
6856dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6857{
6858	uint32_t priv;
6859
6860	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6861		/*
6862		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6863		 */
6864		priv = DTRACE_PRIV_ALL;
6865	} else {
6866		*uidp = crgetuid(cr);
6867		*zoneidp = crgetzoneid(cr);
6868
6869		priv = 0;
6870		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6871			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6872		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6873			priv |= DTRACE_PRIV_USER;
6874		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6875			priv |= DTRACE_PRIV_PROC;
6876		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6877			priv |= DTRACE_PRIV_OWNER;
6878		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6879			priv |= DTRACE_PRIV_ZONEOWNER;
6880	}
6881
6882	*privp = priv;
6883}
6884
6885#ifdef DTRACE_ERRDEBUG
6886static void
6887dtrace_errdebug(const char *str)
6888{
6889	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
6890	int occupied = 0;
6891
6892	lck_mtx_lock(&dtrace_errlock);
6893	dtrace_errlast = str;
6894	dtrace_errthread = (kthread_t *)current_thread();
6895
6896	while (occupied++ < DTRACE_ERRHASHSZ) {
6897		if (dtrace_errhash[hval].dter_msg == str) {
6898			dtrace_errhash[hval].dter_count++;
6899			goto out;
6900		}
6901
6902		if (dtrace_errhash[hval].dter_msg != NULL) {
6903			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6904			continue;
6905		}
6906
6907		dtrace_errhash[hval].dter_msg = str;
6908		dtrace_errhash[hval].dter_count = 1;
6909		goto out;
6910	}
6911
6912	panic("dtrace: undersized error hash");
6913out:
6914	lck_mtx_unlock(&dtrace_errlock);
6915}
6916#endif
6917
6918/*
6919 * DTrace Matching Functions
6920 *
6921 * These functions are used to match groups of probes, given some elements of
6922 * a probe tuple, or some globbed expressions for elements of a probe tuple.
6923 */
6924static int
6925dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6926    zoneid_t zoneid)
6927{
6928	if (priv != DTRACE_PRIV_ALL) {
6929		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6930		uint32_t match = priv & ppriv;
6931
6932		/*
6933		 * No PRIV_DTRACE_* privileges...
6934		 */
6935		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6936		    DTRACE_PRIV_KERNEL)) == 0)
6937			return (0);
6938
6939		/*
6940		 * No matching bits, but there were bits to match...
6941		 */
6942		if (match == 0 && ppriv != 0)
6943			return (0);
6944
6945		/*
6946		 * Need to have permissions to the process, but don't...
6947		 */
6948		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6949		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6950			return (0);
6951		}
6952
6953		/*
6954		 * Need to be in the same zone unless we possess the
6955		 * privilege to examine all zones.
6956		 */
6957		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6958		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6959			return (0);
6960		}
6961	}
6962
6963	return (1);
6964}
6965
6966/*
6967 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6968 * consists of input pattern strings and an ops-vector to evaluate them.
6969 * This function returns >0 for match, 0 for no match, and <0 for error.
6970 */
6971static int
6972dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6973    uint32_t priv, uid_t uid, zoneid_t zoneid)
6974{
6975	dtrace_provider_t *pvp = prp->dtpr_provider;
6976	int rv;
6977
6978	if (pvp->dtpv_defunct)
6979		return (0);
6980
6981	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6982		return (rv);
6983
6984	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6985		return (rv);
6986
6987	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6988		return (rv);
6989
6990	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6991		return (rv);
6992
6993	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6994		return (0);
6995
6996	return (rv);
6997}
6998
6999/*
7000 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7001 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7002 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7003 * In addition, all of the recursion cases except for '*' matching have been
7004 * unwound.  For '*', we still implement recursive evaluation, but a depth
7005 * counter is maintained and matching is aborted if we recurse too deep.
7006 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7007 */
7008static int
7009dtrace_match_glob(const char *s, const char *p, int depth)
7010{
7011	const char *olds;
7012	char s1, c;
7013	int gs;
7014
7015	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7016		return (-1);
7017
7018	if (s == NULL)
7019		s = ""; /* treat NULL as empty string */
7020
7021top:
7022	olds = s;
7023	s1 = *s++;
7024
7025	if (p == NULL)
7026		return (0);
7027
7028	if ((c = *p++) == '\0')
7029		return (s1 == '\0');
7030
7031	switch (c) {
7032	case '[': {
7033		int ok = 0, notflag = 0;
7034		char lc = '\0';
7035
7036		if (s1 == '\0')
7037			return (0);
7038
7039		if (*p == '!') {
7040			notflag = 1;
7041			p++;
7042		}
7043
7044		if ((c = *p++) == '\0')
7045			return (0);
7046
7047		do {
7048			if (c == '-' && lc != '\0' && *p != ']') {
7049				if ((c = *p++) == '\0')
7050					return (0);
7051				if (c == '\\' && (c = *p++) == '\0')
7052					return (0);
7053
7054				if (notflag) {
7055					if (s1 < lc || s1 > c)
7056						ok++;
7057					else
7058						return (0);
7059				} else if (lc <= s1 && s1 <= c)
7060					ok++;
7061
7062			} else if (c == '\\' && (c = *p++) == '\0')
7063				return (0);
7064
7065			lc = c; /* save left-hand 'c' for next iteration */
7066
7067			if (notflag) {
7068				if (s1 != c)
7069					ok++;
7070				else
7071					return (0);
7072			} else if (s1 == c)
7073				ok++;
7074
7075			if ((c = *p++) == '\0')
7076				return (0);
7077
7078		} while (c != ']');
7079
7080		if (ok)
7081			goto top;
7082
7083		return (0);
7084	}
7085
7086	case '\\':
7087		if ((c = *p++) == '\0')
7088			return (0);
7089		/*FALLTHRU*/
7090
7091	default:
7092		if (c != s1)
7093			return (0);
7094		/*FALLTHRU*/
7095
7096	case '?':
7097		if (s1 != '\0')
7098			goto top;
7099		return (0);
7100
7101	case '*':
7102		while (*p == '*')
7103			p++; /* consecutive *'s are identical to a single one */
7104
7105		if (*p == '\0')
7106			return (1);
7107
7108		for (s = olds; *s != '\0'; s++) {
7109			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7110				return (gs);
7111		}
7112
7113		return (0);
7114	}
7115}
7116
7117/*ARGSUSED*/
7118static int
7119dtrace_match_string(const char *s, const char *p, int depth)
7120{
7121#pragma unused(depth) /* __APPLE__ */
7122
7123	/* APPLE NOTE: Darwin employs size bounded string operation. */
7124	return (s != NULL && strncmp(s, p, strlen(s) + 1) == 0);
7125}
7126
7127/*ARGSUSED*/
7128static int
7129dtrace_match_nul(const char *s, const char *p, int depth)
7130{
7131#pragma unused(s, p, depth) /* __APPLE__ */
7132	return (1); /* always match the empty pattern */
7133}
7134
7135/*ARGSUSED*/
7136static int
7137dtrace_match_nonzero(const char *s, const char *p, int depth)
7138{
7139#pragma unused(p, depth) /* __APPLE__ */
7140	return (s != NULL && s[0] != '\0');
7141}
7142
7143static int
7144dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7145    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7146{
7147	dtrace_probe_t template, *probe;
7148	dtrace_hash_t *hash = NULL;
7149	int len, rc, best = INT_MAX, nmatched = 0;
7150	dtrace_id_t i;
7151
7152	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
7153
7154	/*
7155	 * If the probe ID is specified in the key, just lookup by ID and
7156	 * invoke the match callback once if a matching probe is found.
7157	 */
7158	if (pkp->dtpk_id != DTRACE_IDNONE) {
7159		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7160		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7161		        if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
7162                               return (DTRACE_MATCH_FAIL);
7163			nmatched++;
7164		}
7165		return (nmatched);
7166	}
7167
7168	template.dtpr_mod =  (char *)(uintptr_t)pkp->dtpk_mod;
7169	template.dtpr_func = (char *)(uintptr_t)pkp->dtpk_func;
7170	template.dtpr_name = (char *)(uintptr_t)pkp->dtpk_name;
7171
7172	/*
7173	 * We want to find the most distinct of the module name, function
7174	 * name, and name.  So for each one that is not a glob pattern or
7175	 * empty string, we perform a lookup in the corresponding hash and
7176	 * use the hash table with the fewest collisions to do our search.
7177	 */
7178	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7179	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7180		best = len;
7181		hash = dtrace_bymod;
7182	}
7183
7184	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7185	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7186		best = len;
7187		hash = dtrace_byfunc;
7188	}
7189
7190	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7191	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7192		best = len;
7193		hash = dtrace_byname;
7194	}
7195
7196	/*
7197	 * If we did not select a hash table, iterate over every probe and
7198	 * invoke our callback for each one that matches our input probe key.
7199	 */
7200	if (hash == NULL) {
7201		for (i = 0; i < (dtrace_id_t)dtrace_nprobes; i++) {
7202			if ((probe = dtrace_probes[i]) == NULL ||
7203			    dtrace_match_probe(probe, pkp, priv, uid,
7204			    zoneid) <= 0)
7205				continue;
7206
7207			nmatched++;
7208
7209                       if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7210			       if (rc == DTRACE_MATCH_FAIL)
7211                                       return (DTRACE_MATCH_FAIL);
7212			       break;
7213                       }
7214		}
7215
7216		return (nmatched);
7217	}
7218
7219	/*
7220	 * If we selected a hash table, iterate over each probe of the same key
7221	 * name and invoke the callback for every probe that matches the other
7222	 * attributes of our input probe key.
7223	 */
7224	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7225	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7226
7227		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7228			continue;
7229
7230		nmatched++;
7231
7232		if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7233		    if (rc == DTRACE_MATCH_FAIL)
7234			return (DTRACE_MATCH_FAIL);
7235		    break;
7236		}
7237	}
7238
7239	return (nmatched);
7240}
7241
7242/*
7243 * Return the function pointer dtrace_probecmp() should use to compare the
7244 * specified pattern with a string.  For NULL or empty patterns, we select
7245 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7246 * For non-empty non-glob strings, we use dtrace_match_string().
7247 */
7248static dtrace_probekey_f *
7249dtrace_probekey_func(const char *p)
7250{
7251	char c;
7252
7253	if (p == NULL || *p == '\0')
7254		return (&dtrace_match_nul);
7255
7256	while ((c = *p++) != '\0') {
7257		if (c == '[' || c == '?' || c == '*' || c == '\\')
7258			return (&dtrace_match_glob);
7259	}
7260
7261	return (&dtrace_match_string);
7262}
7263
7264/*
7265 * Build a probe comparison key for use with dtrace_match_probe() from the
7266 * given probe description.  By convention, a null key only matches anchored
7267 * probes: if each field is the empty string, reset dtpk_fmatch to
7268 * dtrace_match_nonzero().
7269 */
7270static void
7271dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7272{
7273	pkp->dtpk_prov = pdp->dtpd_provider;
7274	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7275
7276	pkp->dtpk_mod = pdp->dtpd_mod;
7277	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7278
7279	pkp->dtpk_func = pdp->dtpd_func;
7280	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7281
7282	pkp->dtpk_name = pdp->dtpd_name;
7283	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7284
7285	pkp->dtpk_id = pdp->dtpd_id;
7286
7287	if (pkp->dtpk_id == DTRACE_IDNONE &&
7288	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7289	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7290	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7291	    pkp->dtpk_nmatch == &dtrace_match_nul)
7292		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7293}
7294
7295/*
7296 * DTrace Provider-to-Framework API Functions
7297 *
7298 * These functions implement much of the Provider-to-Framework API, as
7299 * described in <sys/dtrace.h>.  The parts of the API not in this section are
7300 * the functions in the API for probe management (found below), and
7301 * dtrace_probe() itself (found above).
7302 */
7303
7304/*
7305 * Register the calling provider with the DTrace framework.  This should
7306 * generally be called by DTrace providers in their attach(9E) entry point.
7307 */
7308int
7309dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7310    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7311{
7312	dtrace_provider_t *provider;
7313
7314	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7315		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7316		    "arguments", name ? name : "<NULL>");
7317		return (EINVAL);
7318	}
7319
7320	if (name[0] == '\0' || dtrace_badname(name)) {
7321		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7322		    "provider name", name);
7323		return (EINVAL);
7324	}
7325
7326	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7327	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7328	    pops->dtps_destroy == NULL ||
7329	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7330		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7331		    "provider ops", name);
7332		return (EINVAL);
7333	}
7334
7335	if (dtrace_badattr(&pap->dtpa_provider) ||
7336	    dtrace_badattr(&pap->dtpa_mod) ||
7337	    dtrace_badattr(&pap->dtpa_func) ||
7338	    dtrace_badattr(&pap->dtpa_name) ||
7339	    dtrace_badattr(&pap->dtpa_args)) {
7340		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7341		    "provider attributes", name);
7342		return (EINVAL);
7343	}
7344
7345	if (priv & ~DTRACE_PRIV_ALL) {
7346		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7347		    "privilege attributes", name);
7348		return (EINVAL);
7349	}
7350
7351	if ((priv & DTRACE_PRIV_KERNEL) &&
7352	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7353	    pops->dtps_usermode == NULL) {
7354		cmn_err(CE_WARN, "failed to register provider '%s': need "
7355		    "dtps_usermode() op for given privilege attributes", name);
7356		return (EINVAL);
7357	}
7358
7359	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7360
7361	/* APPLE NOTE: Darwin employs size bounded string operation. */
7362	{
7363	size_t bufsize = strlen(name) + 1;
7364	provider->dtpv_name = kmem_alloc(bufsize, KM_SLEEP);
7365	(void) strlcpy(provider->dtpv_name, name, bufsize);
7366	}
7367
7368	provider->dtpv_attr = *pap;
7369	provider->dtpv_priv.dtpp_flags = priv;
7370	if (cr != NULL) {
7371		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7372		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7373	}
7374	provider->dtpv_pops = *pops;
7375
7376	if (pops->dtps_provide == NULL) {
7377		ASSERT(pops->dtps_provide_module != NULL);
7378		provider->dtpv_pops.dtps_provide =
7379		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
7380	}
7381
7382	if (pops->dtps_provide_module == NULL) {
7383		ASSERT(pops->dtps_provide != NULL);
7384		provider->dtpv_pops.dtps_provide_module =
7385		    (void (*)(void *, struct modctl *))dtrace_nullop;
7386	}
7387
7388	if (pops->dtps_suspend == NULL) {
7389		ASSERT(pops->dtps_resume == NULL);
7390		provider->dtpv_pops.dtps_suspend =
7391		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7392		provider->dtpv_pops.dtps_resume =
7393		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7394	}
7395
7396	provider->dtpv_arg = arg;
7397	*idp = (dtrace_provider_id_t)provider;
7398
7399	if (pops == &dtrace_provider_ops) {
7400		lck_mtx_assert(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED);
7401		lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
7402		ASSERT(dtrace_anon.dta_enabling == NULL);
7403
7404		/*
7405		 * We make sure that the DTrace provider is at the head of
7406		 * the provider chain.
7407		 */
7408		provider->dtpv_next = dtrace_provider;
7409		dtrace_provider = provider;
7410		return (0);
7411	}
7412
7413	lck_mtx_lock(&dtrace_provider_lock);
7414	lck_mtx_lock(&dtrace_lock);
7415
7416	/*
7417	 * If there is at least one provider registered, we'll add this
7418	 * provider after the first provider.
7419	 */
7420	if (dtrace_provider != NULL) {
7421		provider->dtpv_next = dtrace_provider->dtpv_next;
7422		dtrace_provider->dtpv_next = provider;
7423	} else {
7424		dtrace_provider = provider;
7425	}
7426
7427	if (dtrace_retained != NULL) {
7428		dtrace_enabling_provide(provider);
7429
7430		/*
7431		 * Now we need to call dtrace_enabling_matchall() -- which
7432		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7433		 * to drop all of our locks before calling into it...
7434		 */
7435		lck_mtx_unlock(&dtrace_lock);
7436		lck_mtx_unlock(&dtrace_provider_lock);
7437		dtrace_enabling_matchall();
7438
7439		return (0);
7440	}
7441
7442	lck_mtx_unlock(&dtrace_lock);
7443	lck_mtx_unlock(&dtrace_provider_lock);
7444
7445	return (0);
7446}
7447
7448/*
7449 * Unregister the specified provider from the DTrace framework.  This should
7450 * generally be called by DTrace providers in their detach(9E) entry point.
7451 */
7452int
7453dtrace_unregister(dtrace_provider_id_t id)
7454{
7455	dtrace_provider_t *old = (dtrace_provider_t *)id;
7456	dtrace_provider_t *prev = NULL;
7457	int i, self = 0;
7458	dtrace_probe_t *probe, *first = NULL;
7459
7460	if (old->dtpv_pops.dtps_enable ==
7461	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
7462		/*
7463		 * If DTrace itself is the provider, we're called with locks
7464		 * already held.
7465		 */
7466		ASSERT(old == dtrace_provider);
7467		ASSERT(dtrace_devi != NULL);
7468		lck_mtx_assert(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED);
7469		lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
7470		self = 1;
7471
7472		if (dtrace_provider->dtpv_next != NULL) {
7473			/*
7474			 * There's another provider here; return failure.
7475			 */
7476			return (EBUSY);
7477		}
7478	} else {
7479		lck_mtx_lock(&dtrace_provider_lock);
7480		lck_mtx_lock(&mod_lock);
7481		lck_mtx_lock(&dtrace_lock);
7482	}
7483
7484	/*
7485	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7486	 * probes, we refuse to let providers slither away, unless this
7487	 * provider has already been explicitly invalidated.
7488	 */
7489	if (!old->dtpv_defunct &&
7490	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7491	    dtrace_anon.dta_state->dts_necbs > 0))) {
7492		if (!self) {
7493			lck_mtx_unlock(&dtrace_lock);
7494			lck_mtx_unlock(&mod_lock);
7495			lck_mtx_unlock(&dtrace_provider_lock);
7496		}
7497		return (EBUSY);
7498	}
7499
7500	/*
7501	 * Attempt to destroy the probes associated with this provider.
7502	 */
7503	if (old->dtpv_ecb_count!=0) {
7504		/*
7505		 * We have at least one ECB; we can't remove this provider.
7506		 */
7507		if (!self) {
7508			lck_mtx_unlock(&dtrace_lock);
7509			lck_mtx_unlock(&mod_lock);
7510			lck_mtx_unlock(&dtrace_provider_lock);
7511		}
7512		return (EBUSY);
7513	}
7514
7515	/*
7516	 * All of the probes for this provider are disabled; we can safely
7517	 * remove all of them from their hash chains and from the probe array.
7518	 */
7519	for (i = 0; i < dtrace_nprobes && old->dtpv_probe_count!=0; i++) {
7520		if ((probe = dtrace_probes[i]) == NULL)
7521			continue;
7522
7523		if (probe->dtpr_provider != old)
7524			continue;
7525
7526		dtrace_probes[i] = NULL;
7527		old->dtpv_probe_count--;
7528
7529		dtrace_hash_remove(dtrace_bymod, probe);
7530		dtrace_hash_remove(dtrace_byfunc, probe);
7531		dtrace_hash_remove(dtrace_byname, probe);
7532
7533		if (first == NULL) {
7534			first = probe;
7535			probe->dtpr_nextmod = NULL;
7536		} else {
7537			probe->dtpr_nextmod = first;
7538			first = probe;
7539		}
7540	}
7541
7542	/*
7543	 * The provider's probes have been removed from the hash chains and
7544	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7545	 * everyone has cleared out from any probe array processing.
7546	 */
7547	dtrace_sync();
7548
7549	for (probe = first; probe != NULL; probe = first) {
7550		first = probe->dtpr_nextmod;
7551
7552		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7553		    probe->dtpr_arg);
7554		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7555		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7556		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7557		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7558		zfree(dtrace_probe_t_zone, probe);
7559	}
7560
7561	if ((prev = dtrace_provider) == old) {
7562		ASSERT(self || dtrace_devi == NULL);
7563		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7564		dtrace_provider = old->dtpv_next;
7565	} else {
7566		while (prev != NULL && prev->dtpv_next != old)
7567			prev = prev->dtpv_next;
7568
7569		if (prev == NULL) {
7570			panic("attempt to unregister non-existent "
7571			    "dtrace provider %p\n", (void *)id);
7572		}
7573
7574		prev->dtpv_next = old->dtpv_next;
7575	}
7576
7577	if (!self) {
7578		lck_mtx_unlock(&dtrace_lock);
7579		lck_mtx_unlock(&mod_lock);
7580		lck_mtx_unlock(&dtrace_provider_lock);
7581	}
7582
7583	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7584	kmem_free(old, sizeof (dtrace_provider_t));
7585
7586	return (0);
7587}
7588
7589/*
7590 * Invalidate the specified provider.  All subsequent probe lookups for the
7591 * specified provider will fail, but its probes will not be removed.
7592 */
7593void
7594dtrace_invalidate(dtrace_provider_id_t id)
7595{
7596	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7597
7598	ASSERT(pvp->dtpv_pops.dtps_enable !=
7599	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7600
7601	lck_mtx_lock(&dtrace_provider_lock);
7602	lck_mtx_lock(&dtrace_lock);
7603
7604	pvp->dtpv_defunct = 1;
7605
7606	lck_mtx_unlock(&dtrace_lock);
7607	lck_mtx_unlock(&dtrace_provider_lock);
7608}
7609
7610/*
7611 * Indicate whether or not DTrace has attached.
7612 */
7613int
7614dtrace_attached(void)
7615{
7616	/*
7617	 * dtrace_provider will be non-NULL iff the DTrace driver has
7618	 * attached.  (It's non-NULL because DTrace is always itself a
7619	 * provider.)
7620	 */
7621	return (dtrace_provider != NULL);
7622}
7623
7624/*
7625 * Remove all the unenabled probes for the given provider.  This function is
7626 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7627 * -- just as many of its associated probes as it can.
7628 */
7629int
7630dtrace_condense(dtrace_provider_id_t id)
7631{
7632	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7633	int i;
7634	dtrace_probe_t *probe;
7635
7636	/*
7637	 * Make sure this isn't the dtrace provider itself.
7638	 */
7639	ASSERT(prov->dtpv_pops.dtps_enable !=
7640	  (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7641
7642	lck_mtx_lock(&dtrace_provider_lock);
7643	lck_mtx_lock(&dtrace_lock);
7644
7645	/*
7646	 * Attempt to destroy the probes associated with this provider.
7647	 */
7648	for (i = 0; i < dtrace_nprobes; i++) {
7649		if ((probe = dtrace_probes[i]) == NULL)
7650			continue;
7651
7652		if (probe->dtpr_provider != prov)
7653			continue;
7654
7655		if (probe->dtpr_ecb != NULL)
7656			continue;
7657
7658		dtrace_probes[i] = NULL;
7659		prov->dtpv_probe_count--;
7660
7661		dtrace_hash_remove(dtrace_bymod, probe);
7662		dtrace_hash_remove(dtrace_byfunc, probe);
7663		dtrace_hash_remove(dtrace_byname, probe);
7664
7665		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7666		    probe->dtpr_arg);
7667		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7668		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7669		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7670		zfree(dtrace_probe_t_zone, probe);
7671		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7672	}
7673
7674	lck_mtx_unlock(&dtrace_lock);
7675	lck_mtx_unlock(&dtrace_provider_lock);
7676
7677	return (0);
7678}
7679
7680/*
7681 * DTrace Probe Management Functions
7682 *
7683 * The functions in this section perform the DTrace probe management,
7684 * including functions to create probes, look-up probes, and call into the
7685 * providers to request that probes be provided.  Some of these functions are
7686 * in the Provider-to-Framework API; these functions can be identified by the
7687 * fact that they are not declared "static".
7688 */
7689
7690/*
7691 * Create a probe with the specified module name, function name, and name.
7692 */
7693dtrace_id_t
7694dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7695    const char *func, const char *name, int aframes, void *arg)
7696{
7697	dtrace_probe_t *probe, **probes;
7698	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7699	dtrace_id_t id;
7700
7701	if (provider == dtrace_provider) {
7702		lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
7703	} else {
7704		lck_mtx_lock(&dtrace_lock);
7705	}
7706
7707	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7708	    VM_BESTFIT | VM_SLEEP);
7709
7710	probe = zalloc(dtrace_probe_t_zone);
7711	bzero(probe, sizeof (dtrace_probe_t));
7712
7713	probe->dtpr_id = id;
7714	probe->dtpr_gen = dtrace_probegen++;
7715	probe->dtpr_mod = dtrace_strdup(mod);
7716	probe->dtpr_func = dtrace_strdup(func);
7717	probe->dtpr_name = dtrace_strdup(name);
7718	probe->dtpr_arg = arg;
7719	probe->dtpr_aframes = aframes;
7720	probe->dtpr_provider = provider;
7721
7722	dtrace_hash_add(dtrace_bymod, probe);
7723	dtrace_hash_add(dtrace_byfunc, probe);
7724	dtrace_hash_add(dtrace_byname, probe);
7725
7726	if (id - 1 >= (dtrace_id_t)dtrace_nprobes) {
7727		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7728		size_t nsize = osize << 1;
7729
7730		if (nsize == 0) {
7731			ASSERT(osize == 0);
7732			ASSERT(dtrace_probes == NULL);
7733			nsize = sizeof (dtrace_probe_t *);
7734		}
7735
7736		probes = kmem_zalloc(nsize, KM_SLEEP);
7737
7738		if (dtrace_probes == NULL) {
7739			ASSERT(osize == 0);
7740			dtrace_probes = probes;
7741			dtrace_nprobes = 1;
7742		} else {
7743			dtrace_probe_t **oprobes = dtrace_probes;
7744
7745			bcopy(oprobes, probes, osize);
7746			dtrace_membar_producer();
7747			dtrace_probes = probes;
7748
7749			dtrace_sync();
7750
7751			/*
7752			 * All CPUs are now seeing the new probes array; we can
7753			 * safely free the old array.
7754			 */
7755			kmem_free(oprobes, osize);
7756			dtrace_nprobes <<= 1;
7757		}
7758
7759		ASSERT(id - 1 < (dtrace_id_t)dtrace_nprobes);
7760	}
7761
7762	ASSERT(dtrace_probes[id - 1] == NULL);
7763	dtrace_probes[id - 1] = probe;
7764	provider->dtpv_probe_count++;
7765
7766	if (provider != dtrace_provider)
7767		lck_mtx_unlock(&dtrace_lock);
7768
7769	return (id);
7770}
7771
7772static dtrace_probe_t *
7773dtrace_probe_lookup_id(dtrace_id_t id)
7774{
7775	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
7776
7777	if (id == 0 || id > (dtrace_id_t)dtrace_nprobes)
7778		return (NULL);
7779
7780	return (dtrace_probes[id - 1]);
7781}
7782
7783static int
7784dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7785{
7786	*((dtrace_id_t *)arg) = probe->dtpr_id;
7787
7788	return (DTRACE_MATCH_DONE);
7789}
7790
7791/*
7792 * Look up a probe based on provider and one or more of module name, function
7793 * name and probe name.
7794 */
7795dtrace_id_t
7796dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
7797    const char *func, const char *name)
7798{
7799	dtrace_probekey_t pkey;
7800	dtrace_id_t id;
7801	int match;
7802
7803	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7804	pkey.dtpk_pmatch = &dtrace_match_string;
7805	pkey.dtpk_mod = mod;
7806	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7807	pkey.dtpk_func = func;
7808	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7809	pkey.dtpk_name = name;
7810	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7811	pkey.dtpk_id = DTRACE_IDNONE;
7812
7813	lck_mtx_lock(&dtrace_lock);
7814	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7815	    dtrace_probe_lookup_match, &id);
7816	lck_mtx_unlock(&dtrace_lock);
7817
7818	ASSERT(match == 1 || match == 0);
7819	return (match ? id : 0);
7820}
7821
7822/*
7823 * Returns the probe argument associated with the specified probe.
7824 */
7825void *
7826dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7827{
7828	dtrace_probe_t *probe;
7829	void *rval = NULL;
7830
7831	lck_mtx_lock(&dtrace_lock);
7832
7833	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7834	    probe->dtpr_provider == (dtrace_provider_t *)id)
7835		rval = probe->dtpr_arg;
7836
7837	lck_mtx_unlock(&dtrace_lock);
7838
7839	return (rval);
7840}
7841
7842/*
7843 * Copy a probe into a probe description.
7844 */
7845static void
7846dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7847{
7848	bzero(pdp, sizeof (dtrace_probedesc_t));
7849	pdp->dtpd_id = prp->dtpr_id;
7850
7851	/* APPLE NOTE: Darwin employs size bounded string operation. */
7852	(void) strlcpy(pdp->dtpd_provider,
7853	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN);
7854
7855	(void) strlcpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN);
7856	(void) strlcpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN);
7857	(void) strlcpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN);
7858}
7859
7860/*
7861 * Called to indicate that a probe -- or probes -- should be provided by a
7862 * specfied provider.  If the specified description is NULL, the provider will
7863 * be told to provide all of its probes.  (This is done whenever a new
7864 * consumer comes along, or whenever a retained enabling is to be matched.) If
7865 * the specified description is non-NULL, the provider is given the
7866 * opportunity to dynamically provide the specified probe, allowing providers
7867 * to support the creation of probes on-the-fly.  (So-called _autocreated_
7868 * probes.)  If the provider is NULL, the operations will be applied to all
7869 * providers; if the provider is non-NULL the operations will only be applied
7870 * to the specified provider.  The dtrace_provider_lock must be held, and the
7871 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7872 * will need to grab the dtrace_lock when it reenters the framework through
7873 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7874 */
7875static void
7876dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7877{
7878	struct modctl *ctl;
7879	int all = 0;
7880
7881	lck_mtx_assert(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED);
7882
7883	if (prv == NULL) {
7884		all = 1;
7885		prv = dtrace_provider;
7886	}
7887
7888	do {
7889		/*
7890		 * First, call the blanket provide operation.
7891		 */
7892		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7893
7894		/*
7895		 * Now call the per-module provide operation.  We will grab
7896		 * mod_lock to prevent the list from being modified.  Note
7897		 * that this also prevents the mod_busy bits from changing.
7898		 * (mod_busy can only be changed with mod_lock held.)
7899		 */
7900		lck_mtx_lock(&mod_lock);
7901
7902		ctl = dtrace_modctl_list;
7903		while (ctl) {
7904			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7905			ctl = ctl->mod_next;
7906		}
7907
7908		lck_mtx_unlock(&mod_lock);
7909	} while (all && (prv = prv->dtpv_next) != NULL);
7910}
7911
7912/*
7913 * Iterate over each probe, and call the Framework-to-Provider API function
7914 * denoted by offs.
7915 */
7916static void
7917dtrace_probe_foreach(uintptr_t offs)
7918{
7919	dtrace_provider_t *prov;
7920	void (*func)(void *, dtrace_id_t, void *);
7921	dtrace_probe_t *probe;
7922	dtrace_icookie_t cookie;
7923	int i;
7924
7925	/*
7926	 * We disable interrupts to walk through the probe array.  This is
7927	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7928	 * won't see stale data.
7929	 */
7930	cookie = dtrace_interrupt_disable();
7931
7932	for (i = 0; i < dtrace_nprobes; i++) {
7933		if ((probe = dtrace_probes[i]) == NULL)
7934			continue;
7935
7936		if (probe->dtpr_ecb == NULL) {
7937			/*
7938			 * This probe isn't enabled -- don't call the function.
7939			 */
7940			continue;
7941		}
7942
7943		prov = probe->dtpr_provider;
7944		func = *((void(**)(void *, dtrace_id_t, void *))
7945		    ((uintptr_t)&prov->dtpv_pops + offs));
7946
7947		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7948	}
7949
7950	dtrace_interrupt_enable(cookie);
7951}
7952
7953static int
7954dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7955{
7956	dtrace_probekey_t pkey;
7957	uint32_t priv;
7958	uid_t uid;
7959	zoneid_t zoneid;
7960
7961	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
7962
7963	dtrace_ecb_create_cache = NULL;
7964
7965	if (desc == NULL) {
7966		/*
7967		 * If we're passed a NULL description, we're being asked to
7968		 * create an ECB with a NULL probe.
7969		 */
7970		(void) dtrace_ecb_create_enable(NULL, enab);
7971		return (0);
7972	}
7973
7974	dtrace_probekey(desc, &pkey);
7975	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7976	    &priv, &uid, &zoneid);
7977
7978	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7979	    enab));
7980}
7981
7982/*
7983 * DTrace Helper Provider Functions
7984 */
7985static void
7986dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
7987{
7988	attr->dtat_name = DOF_ATTR_NAME(dofattr);
7989	attr->dtat_data = DOF_ATTR_DATA(dofattr);
7990	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
7991}
7992
7993static void
7994dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
7995    const dof_provider_t *dofprov, char *strtab)
7996{
7997	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
7998	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
7999	    dofprov->dofpv_provattr);
8000	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8001	    dofprov->dofpv_modattr);
8002	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8003	    dofprov->dofpv_funcattr);
8004	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8005	    dofprov->dofpv_nameattr);
8006	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8007	    dofprov->dofpv_argsattr);
8008}
8009
8010static void
8011dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8012{
8013	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8014	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8015	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8016	dof_provider_t *provider;
8017	dof_probe_t *probe;
8018	uint32_t *off, *enoff;
8019	uint8_t *arg;
8020	char *strtab;
8021	uint_t i, nprobes;
8022	dtrace_helper_provdesc_t dhpv;
8023	dtrace_helper_probedesc_t dhpb;
8024	dtrace_meta_t *meta = dtrace_meta_pid;
8025	dtrace_mops_t *mops = &meta->dtm_mops;
8026	void *parg;
8027
8028	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8029	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8030	    provider->dofpv_strtab * dof->dofh_secsize);
8031	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8032	    provider->dofpv_probes * dof->dofh_secsize);
8033	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8034	    provider->dofpv_prargs * dof->dofh_secsize);
8035	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8036	    provider->dofpv_proffs * dof->dofh_secsize);
8037
8038	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8039	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8040	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8041	enoff = NULL;
8042
8043	/*
8044	 * See dtrace_helper_provider_validate().
8045	 */
8046	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8047	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8048		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8049		    provider->dofpv_prenoffs * dof->dofh_secsize);
8050		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8051	}
8052
8053	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8054
8055	/*
8056	 * Create the provider.
8057	 */
8058	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8059
8060	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8061		return;
8062
8063	meta->dtm_count++;
8064
8065	/*
8066	 * Create the probes.
8067	 */
8068	for (i = 0; i < nprobes; i++) {
8069		probe = (dof_probe_t *)(uintptr_t)(daddr +
8070		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8071
8072		dhpb.dthpb_mod = dhp->dofhp_mod;
8073		dhpb.dthpb_func = strtab + probe->dofpr_func;
8074		dhpb.dthpb_name = strtab + probe->dofpr_name;
8075#if !defined(__APPLE__)
8076		dhpb.dthpb_base = probe->dofpr_addr;
8077#else
8078		dhpb.dthpb_base = dhp->dofhp_addr; /* FIXME: James, why? */
8079#endif
8080		dhpb.dthpb_offs = (int32_t *)(off + probe->dofpr_offidx);
8081		dhpb.dthpb_noffs = probe->dofpr_noffs;
8082		if (enoff != NULL) {
8083			dhpb.dthpb_enoffs = (int32_t *)(enoff + probe->dofpr_enoffidx);
8084			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8085		} else {
8086			dhpb.dthpb_enoffs = NULL;
8087			dhpb.dthpb_nenoffs = 0;
8088		}
8089		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8090		dhpb.dthpb_nargc = probe->dofpr_nargc;
8091		dhpb.dthpb_xargc = probe->dofpr_xargc;
8092		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8093		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8094
8095		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8096	}
8097}
8098
8099static void
8100dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8101{
8102	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8103	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8104	uint32_t i;
8105
8106	lck_mtx_assert(&dtrace_meta_lock, LCK_MTX_ASSERT_OWNED);
8107
8108	for (i = 0; i < dof->dofh_secnum; i++) {
8109		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8110		    dof->dofh_secoff + i * dof->dofh_secsize);
8111
8112		if (sec->dofs_type != DOF_SECT_PROVIDER)
8113			continue;
8114
8115		dtrace_helper_provide_one(dhp, sec, pid);
8116	}
8117
8118	/*
8119	 * We may have just created probes, so we must now rematch against
8120	 * any retained enablings.  Note that this call will acquire both
8121	 * cpu_lock and dtrace_lock; the fact that we are holding
8122	 * dtrace_meta_lock now is what defines the ordering with respect to
8123	 * these three locks.
8124	 */
8125	dtrace_enabling_matchall();
8126}
8127
8128static void
8129dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8130{
8131	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8132	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8133	dof_sec_t *str_sec;
8134	dof_provider_t *provider;
8135	char *strtab;
8136	dtrace_helper_provdesc_t dhpv;
8137	dtrace_meta_t *meta = dtrace_meta_pid;
8138	dtrace_mops_t *mops = &meta->dtm_mops;
8139
8140	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8141	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8142	    provider->dofpv_strtab * dof->dofh_secsize);
8143
8144	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8145
8146	/*
8147	 * Create the provider.
8148	 */
8149	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8150
8151	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8152
8153	meta->dtm_count--;
8154}
8155
8156static void
8157dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8158{
8159	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8160	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8161	uint32_t i;
8162
8163	lck_mtx_assert(&dtrace_meta_lock, LCK_MTX_ASSERT_OWNED);
8164
8165	for (i = 0; i < dof->dofh_secnum; i++) {
8166		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8167		    dof->dofh_secoff + i * dof->dofh_secsize);
8168
8169		if (sec->dofs_type != DOF_SECT_PROVIDER)
8170			continue;
8171
8172		dtrace_helper_provider_remove_one(dhp, sec, pid);
8173	}
8174}
8175
8176/*
8177 * DTrace Meta Provider-to-Framework API Functions
8178 *
8179 * These functions implement the Meta Provider-to-Framework API, as described
8180 * in <sys/dtrace.h>.
8181 */
8182int
8183dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8184    dtrace_meta_provider_id_t *idp)
8185{
8186	dtrace_meta_t *meta;
8187	dtrace_helpers_t *help, *next;
8188	uint_t i;
8189
8190	*idp = DTRACE_METAPROVNONE;
8191
8192	/*
8193	 * We strictly don't need the name, but we hold onto it for
8194	 * debuggability. All hail error queues!
8195	 */
8196	if (name == NULL) {
8197		cmn_err(CE_WARN, "failed to register meta-provider: "
8198		    "invalid name");
8199		return (EINVAL);
8200	}
8201
8202	if (mops == NULL ||
8203	    mops->dtms_create_probe == NULL ||
8204	    mops->dtms_provide_pid == NULL ||
8205	    mops->dtms_remove_pid == NULL) {
8206		cmn_err(CE_WARN, "failed to register meta-register %s: "
8207		    "invalid ops", name);
8208		return (EINVAL);
8209	}
8210
8211	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8212	meta->dtm_mops = *mops;
8213
8214	/* APPLE NOTE: Darwin employs size bounded string operation. */
8215	{
8216	size_t bufsize = strlen(name) + 1;
8217	meta->dtm_name = kmem_alloc(bufsize, KM_SLEEP);
8218	(void) strlcpy(meta->dtm_name, name, bufsize);
8219	}
8220
8221	meta->dtm_arg = arg;
8222
8223	lck_mtx_lock(&dtrace_meta_lock);
8224	lck_mtx_lock(&dtrace_lock);
8225
8226	if (dtrace_meta_pid != NULL) {
8227		lck_mtx_unlock(&dtrace_lock);
8228		lck_mtx_unlock(&dtrace_meta_lock);
8229		cmn_err(CE_WARN, "failed to register meta-register %s: "
8230		    "user-land meta-provider exists", name);
8231		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8232		kmem_free(meta, sizeof (dtrace_meta_t));
8233		return (EINVAL);
8234	}
8235
8236	dtrace_meta_pid = meta;
8237	*idp = (dtrace_meta_provider_id_t)meta;
8238
8239	/*
8240	 * If there are providers and probes ready to go, pass them
8241	 * off to the new meta provider now.
8242	 */
8243
8244	help = dtrace_deferred_pid;
8245	dtrace_deferred_pid = NULL;
8246
8247	lck_mtx_unlock(&dtrace_lock);
8248
8249	while (help != NULL) {
8250		for (i = 0; i < help->dthps_nprovs; i++) {
8251			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8252			    help->dthps_pid);
8253		}
8254
8255		next = help->dthps_next;
8256		help->dthps_next = NULL;
8257		help->dthps_prev = NULL;
8258		help->dthps_deferred = 0;
8259		help = next;
8260	}
8261
8262	lck_mtx_unlock(&dtrace_meta_lock);
8263
8264	return (0);
8265}
8266
8267int
8268dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8269{
8270	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8271
8272	lck_mtx_lock(&dtrace_meta_lock);
8273	lck_mtx_lock(&dtrace_lock);
8274
8275	if (old == dtrace_meta_pid) {
8276		pp = &dtrace_meta_pid;
8277	} else {
8278		panic("attempt to unregister non-existent "
8279		    "dtrace meta-provider %p\n", (void *)old);
8280	}
8281
8282	if (old->dtm_count != 0) {
8283		lck_mtx_unlock(&dtrace_lock);
8284		lck_mtx_unlock(&dtrace_meta_lock);
8285		return (EBUSY);
8286	}
8287
8288	*pp = NULL;
8289
8290	lck_mtx_unlock(&dtrace_lock);
8291	lck_mtx_unlock(&dtrace_meta_lock);
8292
8293	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8294	kmem_free(old, sizeof (dtrace_meta_t));
8295
8296	return (0);
8297}
8298
8299
8300/*
8301 * DTrace DIF Object Functions
8302 */
8303static int
8304dtrace_difo_err(uint_t pc, const char *format, ...)
8305{
8306	if (dtrace_err_verbose) {
8307		va_list alist;
8308
8309		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8310		va_start(alist, format);
8311		(void) vuprintf(format, alist);
8312		va_end(alist);
8313	}
8314
8315#ifdef DTRACE_ERRDEBUG
8316	dtrace_errdebug(format);
8317#endif
8318	return (1);
8319}
8320
8321/*
8322 * Validate a DTrace DIF object by checking the IR instructions.  The following
8323 * rules are currently enforced by dtrace_difo_validate():
8324 *
8325 * 1. Each instruction must have a valid opcode
8326 * 2. Each register, string, variable, or subroutine reference must be valid
8327 * 3. No instruction can modify register %r0 (must be zero)
8328 * 4. All instruction reserved bits must be set to zero
8329 * 5. The last instruction must be a "ret" instruction
8330 * 6. All branch targets must reference a valid instruction _after_ the branch
8331 */
8332static int
8333dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8334    cred_t *cr)
8335{
8336	int err = 0;
8337	uint_t i;
8338
8339	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8340	int kcheckload;
8341	uint_t pc;
8342
8343	kcheckload = cr == NULL ||
8344	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8345
8346	dp->dtdo_destructive = 0;
8347
8348	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8349		dif_instr_t instr = dp->dtdo_buf[pc];
8350
8351		uint_t r1 = DIF_INSTR_R1(instr);
8352		uint_t r2 = DIF_INSTR_R2(instr);
8353		uint_t rd = DIF_INSTR_RD(instr);
8354		uint_t rs = DIF_INSTR_RS(instr);
8355		uint_t label = DIF_INSTR_LABEL(instr);
8356		uint_t v = DIF_INSTR_VAR(instr);
8357		uint_t subr = DIF_INSTR_SUBR(instr);
8358		uint_t type = DIF_INSTR_TYPE(instr);
8359		uint_t op = DIF_INSTR_OP(instr);
8360
8361		switch (op) {
8362		case DIF_OP_OR:
8363		case DIF_OP_XOR:
8364		case DIF_OP_AND:
8365		case DIF_OP_SLL:
8366		case DIF_OP_SRL:
8367		case DIF_OP_SRA:
8368		case DIF_OP_SUB:
8369		case DIF_OP_ADD:
8370		case DIF_OP_MUL:
8371		case DIF_OP_SDIV:
8372		case DIF_OP_UDIV:
8373		case DIF_OP_SREM:
8374		case DIF_OP_UREM:
8375		case DIF_OP_COPYS:
8376			if (r1 >= nregs)
8377				err += efunc(pc, "invalid register %u\n", r1);
8378			if (r2 >= nregs)
8379				err += efunc(pc, "invalid register %u\n", r2);
8380			if (rd >= nregs)
8381				err += efunc(pc, "invalid register %u\n", rd);
8382			if (rd == 0)
8383				err += efunc(pc, "cannot write to %r0\n");
8384			break;
8385		case DIF_OP_NOT:
8386		case DIF_OP_MOV:
8387		case DIF_OP_ALLOCS:
8388			if (r1 >= nregs)
8389				err += efunc(pc, "invalid register %u\n", r1);
8390			if (r2 != 0)
8391				err += efunc(pc, "non-zero reserved bits\n");
8392			if (rd >= nregs)
8393				err += efunc(pc, "invalid register %u\n", rd);
8394			if (rd == 0)
8395				err += efunc(pc, "cannot write to %r0\n");
8396			break;
8397		case DIF_OP_LDSB:
8398		case DIF_OP_LDSH:
8399		case DIF_OP_LDSW:
8400		case DIF_OP_LDUB:
8401		case DIF_OP_LDUH:
8402		case DIF_OP_LDUW:
8403		case DIF_OP_LDX:
8404			if (r1 >= nregs)
8405				err += efunc(pc, "invalid register %u\n", r1);
8406			if (r2 != 0)
8407				err += efunc(pc, "non-zero reserved bits\n");
8408			if (rd >= nregs)
8409				err += efunc(pc, "invalid register %u\n", rd);
8410			if (rd == 0)
8411				err += efunc(pc, "cannot write to %r0\n");
8412			if (kcheckload)
8413				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8414				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8415			break;
8416		case DIF_OP_RLDSB:
8417		case DIF_OP_RLDSH:
8418		case DIF_OP_RLDSW:
8419		case DIF_OP_RLDUB:
8420		case DIF_OP_RLDUH:
8421		case DIF_OP_RLDUW:
8422		case DIF_OP_RLDX:
8423			if (r1 >= nregs)
8424				err += efunc(pc, "invalid register %u\n", r1);
8425			if (r2 != 0)
8426				err += efunc(pc, "non-zero reserved bits\n");
8427			if (rd >= nregs)
8428				err += efunc(pc, "invalid register %u\n", rd);
8429			if (rd == 0)
8430				err += efunc(pc, "cannot write to %r0\n");
8431			break;
8432		case DIF_OP_ULDSB:
8433		case DIF_OP_ULDSH:
8434		case DIF_OP_ULDSW:
8435		case DIF_OP_ULDUB:
8436		case DIF_OP_ULDUH:
8437		case DIF_OP_ULDUW:
8438		case DIF_OP_ULDX:
8439			if (r1 >= nregs)
8440				err += efunc(pc, "invalid register %u\n", r1);
8441			if (r2 != 0)
8442				err += efunc(pc, "non-zero reserved bits\n");
8443			if (rd >= nregs)
8444				err += efunc(pc, "invalid register %u\n", rd);
8445			if (rd == 0)
8446				err += efunc(pc, "cannot write to %r0\n");
8447			break;
8448		case DIF_OP_STB:
8449		case DIF_OP_STH:
8450		case DIF_OP_STW:
8451		case DIF_OP_STX:
8452			if (r1 >= nregs)
8453				err += efunc(pc, "invalid register %u\n", r1);
8454			if (r2 != 0)
8455				err += efunc(pc, "non-zero reserved bits\n");
8456			if (rd >= nregs)
8457				err += efunc(pc, "invalid register %u\n", rd);
8458			if (rd == 0)
8459				err += efunc(pc, "cannot write to 0 address\n");
8460			break;
8461		case DIF_OP_CMP:
8462		case DIF_OP_SCMP:
8463			if (r1 >= nregs)
8464				err += efunc(pc, "invalid register %u\n", r1);
8465			if (r2 >= nregs)
8466				err += efunc(pc, "invalid register %u\n", r2);
8467			if (rd != 0)
8468				err += efunc(pc, "non-zero reserved bits\n");
8469			break;
8470		case DIF_OP_TST:
8471			if (r1 >= nregs)
8472				err += efunc(pc, "invalid register %u\n", r1);
8473			if (r2 != 0 || rd != 0)
8474				err += efunc(pc, "non-zero reserved bits\n");
8475			break;
8476		case DIF_OP_BA:
8477		case DIF_OP_BE:
8478		case DIF_OP_BNE:
8479		case DIF_OP_BG:
8480		case DIF_OP_BGU:
8481		case DIF_OP_BGE:
8482		case DIF_OP_BGEU:
8483		case DIF_OP_BL:
8484		case DIF_OP_BLU:
8485		case DIF_OP_BLE:
8486		case DIF_OP_BLEU:
8487			if (label >= dp->dtdo_len) {
8488				err += efunc(pc, "invalid branch target %u\n",
8489				    label);
8490			}
8491			if (label <= pc) {
8492				err += efunc(pc, "backward branch to %u\n",
8493				    label);
8494			}
8495			break;
8496		case DIF_OP_RET:
8497			if (r1 != 0 || r2 != 0)
8498				err += efunc(pc, "non-zero reserved bits\n");
8499			if (rd >= nregs)
8500				err += efunc(pc, "invalid register %u\n", rd);
8501			break;
8502		case DIF_OP_NOP:
8503		case DIF_OP_POPTS:
8504		case DIF_OP_FLUSHTS:
8505			if (r1 != 0 || r2 != 0 || rd != 0)
8506				err += efunc(pc, "non-zero reserved bits\n");
8507			break;
8508		case DIF_OP_SETX:
8509			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8510				err += efunc(pc, "invalid integer ref %u\n",
8511				    DIF_INSTR_INTEGER(instr));
8512			}
8513			if (rd >= nregs)
8514				err += efunc(pc, "invalid register %u\n", rd);
8515			if (rd == 0)
8516				err += efunc(pc, "cannot write to %r0\n");
8517			break;
8518		case DIF_OP_SETS:
8519			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8520				err += efunc(pc, "invalid string ref %u\n",
8521				    DIF_INSTR_STRING(instr));
8522			}
8523			if (rd >= nregs)
8524				err += efunc(pc, "invalid register %u\n", rd);
8525			if (rd == 0)
8526				err += efunc(pc, "cannot write to %r0\n");
8527			break;
8528		case DIF_OP_LDGA:
8529		case DIF_OP_LDTA:
8530			if (r1 > DIF_VAR_ARRAY_MAX)
8531				err += efunc(pc, "invalid array %u\n", r1);
8532			if (r2 >= nregs)
8533				err += efunc(pc, "invalid register %u\n", r2);
8534			if (rd >= nregs)
8535				err += efunc(pc, "invalid register %u\n", rd);
8536			if (rd == 0)
8537				err += efunc(pc, "cannot write to %r0\n");
8538			break;
8539		case DIF_OP_LDGS:
8540		case DIF_OP_LDTS:
8541		case DIF_OP_LDLS:
8542		case DIF_OP_LDGAA:
8543		case DIF_OP_LDTAA:
8544			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8545				err += efunc(pc, "invalid variable %u\n", v);
8546			if (rd >= nregs)
8547				err += efunc(pc, "invalid register %u\n", rd);
8548			if (rd == 0)
8549				err += efunc(pc, "cannot write to %r0\n");
8550			break;
8551		case DIF_OP_STGS:
8552		case DIF_OP_STTS:
8553		case DIF_OP_STLS:
8554		case DIF_OP_STGAA:
8555		case DIF_OP_STTAA:
8556			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8557				err += efunc(pc, "invalid variable %u\n", v);
8558			if (rs >= nregs)
8559				err += efunc(pc, "invalid register %u\n", rd);
8560			break;
8561		case DIF_OP_CALL:
8562			if (subr > DIF_SUBR_MAX)
8563				err += efunc(pc, "invalid subr %u\n", subr);
8564			if (rd >= nregs)
8565				err += efunc(pc, "invalid register %u\n", rd);
8566			if (rd == 0)
8567				err += efunc(pc, "cannot write to %r0\n");
8568
8569			if (subr == DIF_SUBR_COPYOUT ||
8570			    subr == DIF_SUBR_COPYOUTSTR) {
8571				dp->dtdo_destructive = 1;
8572			}
8573			break;
8574		case DIF_OP_PUSHTR:
8575			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8576				err += efunc(pc, "invalid ref type %u\n", type);
8577			if (r2 >= nregs)
8578				err += efunc(pc, "invalid register %u\n", r2);
8579			if (rs >= nregs)
8580				err += efunc(pc, "invalid register %u\n", rs);
8581			break;
8582		case DIF_OP_PUSHTV:
8583			if (type != DIF_TYPE_CTF)
8584				err += efunc(pc, "invalid val type %u\n", type);
8585			if (r2 >= nregs)
8586				err += efunc(pc, "invalid register %u\n", r2);
8587			if (rs >= nregs)
8588				err += efunc(pc, "invalid register %u\n", rs);
8589			break;
8590		default:
8591			err += efunc(pc, "invalid opcode %u\n",
8592			    DIF_INSTR_OP(instr));
8593		}
8594	}
8595
8596	if (dp->dtdo_len != 0 &&
8597	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8598		err += efunc(dp->dtdo_len - 1,
8599		    "expected 'ret' as last DIF instruction\n");
8600	}
8601
8602	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8603		/*
8604		 * If we're not returning by reference, the size must be either
8605		 * 0 or the size of one of the base types.
8606		 */
8607		switch (dp->dtdo_rtype.dtdt_size) {
8608		case 0:
8609		case sizeof (uint8_t):
8610		case sizeof (uint16_t):
8611		case sizeof (uint32_t):
8612		case sizeof (uint64_t):
8613			break;
8614
8615		default:
8616			err += efunc(dp->dtdo_len - 1, "bad return size\n");
8617		}
8618	}
8619
8620	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8621		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8622		dtrace_diftype_t *vt, *et;
8623		uint_t id;
8624		int ndx;
8625
8626		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8627		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8628		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8629			err += efunc(i, "unrecognized variable scope %d\n",
8630			    v->dtdv_scope);
8631			break;
8632		}
8633
8634		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8635		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8636			err += efunc(i, "unrecognized variable type %d\n",
8637			    v->dtdv_kind);
8638			break;
8639		}
8640
8641		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8642			err += efunc(i, "%d exceeds variable id limit\n", id);
8643			break;
8644		}
8645
8646		if (id < DIF_VAR_OTHER_UBASE)
8647			continue;
8648
8649		/*
8650		 * For user-defined variables, we need to check that this
8651		 * definition is identical to any previous definition that we
8652		 * encountered.
8653		 */
8654		ndx = id - DIF_VAR_OTHER_UBASE;
8655
8656		switch (v->dtdv_scope) {
8657		case DIFV_SCOPE_GLOBAL:
8658			if (ndx < vstate->dtvs_nglobals) {
8659				dtrace_statvar_t *svar;
8660
8661				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8662					existing = &svar->dtsv_var;
8663			}
8664
8665			break;
8666
8667		case DIFV_SCOPE_THREAD:
8668			if (ndx < vstate->dtvs_ntlocals)
8669				existing = &vstate->dtvs_tlocals[ndx];
8670			break;
8671
8672		case DIFV_SCOPE_LOCAL:
8673			if (ndx < vstate->dtvs_nlocals) {
8674				dtrace_statvar_t *svar;
8675
8676				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8677					existing = &svar->dtsv_var;
8678			}
8679
8680			break;
8681		}
8682
8683		vt = &v->dtdv_type;
8684
8685		if (vt->dtdt_flags & DIF_TF_BYREF) {
8686			if (vt->dtdt_size == 0) {
8687				err += efunc(i, "zero-sized variable\n");
8688				break;
8689			}
8690
8691			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8692			    vt->dtdt_size > dtrace_global_maxsize) {
8693				err += efunc(i, "oversized by-ref global\n");
8694				break;
8695			}
8696		}
8697
8698		if (existing == NULL || existing->dtdv_id == 0)
8699			continue;
8700
8701		ASSERT(existing->dtdv_id == v->dtdv_id);
8702		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8703
8704		if (existing->dtdv_kind != v->dtdv_kind)
8705			err += efunc(i, "%d changed variable kind\n", id);
8706
8707		et = &existing->dtdv_type;
8708
8709		if (vt->dtdt_flags != et->dtdt_flags) {
8710			err += efunc(i, "%d changed variable type flags\n", id);
8711			break;
8712		}
8713
8714		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8715			err += efunc(i, "%d changed variable type size\n", id);
8716			break;
8717		}
8718	}
8719
8720	return (err);
8721}
8722
8723/*
8724 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8725 * are much more constrained than normal DIFOs.  Specifically, they may
8726 * not:
8727 *
8728 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8729 *    miscellaneous string routines
8730 * 2. Access DTrace variables other than the args[] array, and the
8731 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8732 * 3. Have thread-local variables.
8733 * 4. Have dynamic variables.
8734 */
8735static int
8736dtrace_difo_validate_helper(dtrace_difo_t *dp)
8737{
8738	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8739	int err = 0;
8740	uint_t pc;
8741
8742	for (pc = 0; pc < dp->dtdo_len; pc++) {
8743		dif_instr_t instr = dp->dtdo_buf[pc];
8744
8745		uint_t v = DIF_INSTR_VAR(instr);
8746		uint_t subr = DIF_INSTR_SUBR(instr);
8747		uint_t op = DIF_INSTR_OP(instr);
8748
8749		switch (op) {
8750		case DIF_OP_OR:
8751		case DIF_OP_XOR:
8752		case DIF_OP_AND:
8753		case DIF_OP_SLL:
8754		case DIF_OP_SRL:
8755		case DIF_OP_SRA:
8756		case DIF_OP_SUB:
8757		case DIF_OP_ADD:
8758		case DIF_OP_MUL:
8759		case DIF_OP_SDIV:
8760		case DIF_OP_UDIV:
8761		case DIF_OP_SREM:
8762		case DIF_OP_UREM:
8763		case DIF_OP_COPYS:
8764		case DIF_OP_NOT:
8765		case DIF_OP_MOV:
8766		case DIF_OP_RLDSB:
8767		case DIF_OP_RLDSH:
8768		case DIF_OP_RLDSW:
8769		case DIF_OP_RLDUB:
8770		case DIF_OP_RLDUH:
8771		case DIF_OP_RLDUW:
8772		case DIF_OP_RLDX:
8773		case DIF_OP_ULDSB:
8774		case DIF_OP_ULDSH:
8775		case DIF_OP_ULDSW:
8776		case DIF_OP_ULDUB:
8777		case DIF_OP_ULDUH:
8778		case DIF_OP_ULDUW:
8779		case DIF_OP_ULDX:
8780		case DIF_OP_STB:
8781		case DIF_OP_STH:
8782		case DIF_OP_STW:
8783		case DIF_OP_STX:
8784		case DIF_OP_ALLOCS:
8785		case DIF_OP_CMP:
8786		case DIF_OP_SCMP:
8787		case DIF_OP_TST:
8788		case DIF_OP_BA:
8789		case DIF_OP_BE:
8790		case DIF_OP_BNE:
8791		case DIF_OP_BG:
8792		case DIF_OP_BGU:
8793		case DIF_OP_BGE:
8794		case DIF_OP_BGEU:
8795		case DIF_OP_BL:
8796		case DIF_OP_BLU:
8797		case DIF_OP_BLE:
8798		case DIF_OP_BLEU:
8799		case DIF_OP_RET:
8800		case DIF_OP_NOP:
8801		case DIF_OP_POPTS:
8802		case DIF_OP_FLUSHTS:
8803		case DIF_OP_SETX:
8804		case DIF_OP_SETS:
8805		case DIF_OP_LDGA:
8806		case DIF_OP_LDLS:
8807		case DIF_OP_STGS:
8808		case DIF_OP_STLS:
8809		case DIF_OP_PUSHTR:
8810		case DIF_OP_PUSHTV:
8811			break;
8812
8813		case DIF_OP_LDGS:
8814			if (v >= DIF_VAR_OTHER_UBASE)
8815				break;
8816
8817			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8818				break;
8819
8820			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8821			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8822			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8823			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8824				break;
8825
8826			err += efunc(pc, "illegal variable %u\n", v);
8827			break;
8828
8829		case DIF_OP_LDTA:
8830		case DIF_OP_LDTS:
8831		case DIF_OP_LDGAA:
8832		case DIF_OP_LDTAA:
8833			err += efunc(pc, "illegal dynamic variable load\n");
8834			break;
8835
8836		case DIF_OP_STTS:
8837		case DIF_OP_STGAA:
8838		case DIF_OP_STTAA:
8839			err += efunc(pc, "illegal dynamic variable store\n");
8840			break;
8841
8842		case DIF_OP_CALL:
8843			if (subr == DIF_SUBR_ALLOCA ||
8844			    subr == DIF_SUBR_BCOPY ||
8845			    subr == DIF_SUBR_COPYIN ||
8846			    subr == DIF_SUBR_COPYINTO ||
8847			    subr == DIF_SUBR_COPYINSTR ||
8848			    subr == DIF_SUBR_INDEX ||
8849			    subr == DIF_SUBR_INET_NTOA ||
8850			    subr == DIF_SUBR_INET_NTOA6 ||
8851			    subr == DIF_SUBR_INET_NTOP ||
8852			    subr == DIF_SUBR_LLTOSTR ||
8853			    subr == DIF_SUBR_RINDEX ||
8854			    subr == DIF_SUBR_STRCHR ||
8855			    subr == DIF_SUBR_STRJOIN ||
8856			    subr == DIF_SUBR_STRRCHR ||
8857			    subr == DIF_SUBR_STRSTR ||
8858			    subr == DIF_SUBR_COREPROFILE ||
8859			    subr == DIF_SUBR_HTONS ||
8860			    subr == DIF_SUBR_HTONL ||
8861			    subr == DIF_SUBR_HTONLL ||
8862			    subr == DIF_SUBR_NTOHS ||
8863			    subr == DIF_SUBR_NTOHL ||
8864			    subr == DIF_SUBR_NTOHLL)
8865				break;
8866
8867			err += efunc(pc, "invalid subr %u\n", subr);
8868			break;
8869
8870		default:
8871			err += efunc(pc, "invalid opcode %u\n",
8872			    DIF_INSTR_OP(instr));
8873		}
8874	}
8875
8876	return (err);
8877}
8878
8879/*
8880 * Returns 1 if the expression in the DIF object can be cached on a per-thread
8881 * basis; 0 if not.
8882 */
8883static int
8884dtrace_difo_cacheable(dtrace_difo_t *dp)
8885{
8886	uint_t i;
8887
8888	if (dp == NULL)
8889		return (0);
8890
8891	for (i = 0; i < dp->dtdo_varlen; i++) {
8892		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8893
8894		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8895			continue;
8896
8897		switch (v->dtdv_id) {
8898		case DIF_VAR_CURTHREAD:
8899		case DIF_VAR_PID:
8900		case DIF_VAR_TID:
8901		case DIF_VAR_EXECNAME:
8902		case DIF_VAR_ZONENAME:
8903			break;
8904
8905		default:
8906			return (0);
8907		}
8908	}
8909
8910	/*
8911	 * This DIF object may be cacheable.  Now we need to look for any
8912	 * array loading instructions, any memory loading instructions, or
8913	 * any stores to thread-local variables.
8914	 */
8915	for (i = 0; i < dp->dtdo_len; i++) {
8916		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8917
8918		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8919		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8920		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8921		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8922			return (0);
8923	}
8924
8925	return (1);
8926}
8927
8928static void
8929dtrace_difo_hold(dtrace_difo_t *dp)
8930{
8931	uint_t i;
8932
8933	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
8934
8935	dp->dtdo_refcnt++;
8936	ASSERT(dp->dtdo_refcnt != 0);
8937
8938	/*
8939	 * We need to check this DIF object for references to the variable
8940	 * DIF_VAR_VTIMESTAMP.
8941	 */
8942	for (i = 0; i < dp->dtdo_varlen; i++) {
8943		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8944
8945		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8946			continue;
8947
8948		if (dtrace_vtime_references++ == 0)
8949			dtrace_vtime_enable();
8950	}
8951}
8952
8953/*
8954 * This routine calculates the dynamic variable chunksize for a given DIF
8955 * object.  The calculation is not fool-proof, and can probably be tricked by
8956 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8957 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8958 * if a dynamic variable size exceeds the chunksize.
8959 */
8960static void
8961dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8962{
8963	uint64_t sval = 0;
8964	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8965	const dif_instr_t *text = dp->dtdo_buf;
8966	uint_t pc, srd = 0;
8967	uint_t ttop = 0;
8968	size_t size, ksize;
8969	uint_t id, i;
8970
8971	for (pc = 0; pc < dp->dtdo_len; pc++) {
8972		dif_instr_t instr = text[pc];
8973		uint_t op = DIF_INSTR_OP(instr);
8974		uint_t rd = DIF_INSTR_RD(instr);
8975		uint_t r1 = DIF_INSTR_R1(instr);
8976		uint_t nkeys = 0;
8977		uchar_t scope;
8978
8979		dtrace_key_t *key = tupregs;
8980
8981		switch (op) {
8982		case DIF_OP_SETX:
8983			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8984			srd = rd;
8985			continue;
8986
8987		case DIF_OP_STTS:
8988			key = &tupregs[DIF_DTR_NREGS];
8989			key[0].dttk_size = 0;
8990			key[1].dttk_size = 0;
8991			nkeys = 2;
8992			scope = DIFV_SCOPE_THREAD;
8993			break;
8994
8995		case DIF_OP_STGAA:
8996		case DIF_OP_STTAA:
8997			nkeys = ttop;
8998
8999			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9000				key[nkeys++].dttk_size = 0;
9001
9002			key[nkeys++].dttk_size = 0;
9003
9004			if (op == DIF_OP_STTAA) {
9005				scope = DIFV_SCOPE_THREAD;
9006			} else {
9007				scope = DIFV_SCOPE_GLOBAL;
9008			}
9009
9010			break;
9011
9012		case DIF_OP_PUSHTR:
9013			if (ttop == DIF_DTR_NREGS)
9014				return;
9015
9016			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9017				/*
9018				 * If the register for the size of the "pushtr"
9019				 * is %r0 (or the value is 0) and the type is
9020				 * a string, we'll use the system-wide default
9021				 * string size.
9022				 */
9023				tupregs[ttop++].dttk_size =
9024				    dtrace_strsize_default;
9025			} else {
9026				if (srd == 0)
9027					return;
9028
9029				tupregs[ttop++].dttk_size = sval;
9030			}
9031
9032			break;
9033
9034		case DIF_OP_PUSHTV:
9035			if (ttop == DIF_DTR_NREGS)
9036				return;
9037
9038			tupregs[ttop++].dttk_size = 0;
9039			break;
9040
9041		case DIF_OP_FLUSHTS:
9042			ttop = 0;
9043			break;
9044
9045		case DIF_OP_POPTS:
9046			if (ttop != 0)
9047				ttop--;
9048			break;
9049		}
9050
9051		sval = 0;
9052		srd = 0;
9053
9054		if (nkeys == 0)
9055			continue;
9056
9057		/*
9058		 * We have a dynamic variable allocation; calculate its size.
9059		 */
9060		for (ksize = 0, i = 0; i < nkeys; i++)
9061			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9062
9063		size = sizeof (dtrace_dynvar_t);
9064		size += sizeof (dtrace_key_t) * (nkeys - 1);
9065		size += ksize;
9066
9067		/*
9068		 * Now we need to determine the size of the stored data.
9069		 */
9070		id = DIF_INSTR_VAR(instr);
9071
9072		for (i = 0; i < dp->dtdo_varlen; i++) {
9073			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9074
9075			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9076				size += v->dtdv_type.dtdt_size;
9077				break;
9078			}
9079		}
9080
9081		if (i == dp->dtdo_varlen)
9082			return;
9083
9084		/*
9085		 * We have the size.  If this is larger than the chunk size
9086		 * for our dynamic variable state, reset the chunk size.
9087		 */
9088		size = P2ROUNDUP(size, sizeof (uint64_t));
9089
9090		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9091			vstate->dtvs_dynvars.dtds_chunksize = size;
9092	}
9093}
9094
9095static void
9096dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9097{
9098	int oldsvars, osz, nsz, otlocals, ntlocals;
9099	uint_t i, id;
9100
9101	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9102	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9103
9104	for (i = 0; i < dp->dtdo_varlen; i++) {
9105		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9106		dtrace_statvar_t *svar;
9107		dtrace_statvar_t ***svarp = NULL;
9108		size_t dsize = 0;
9109		uint8_t scope = v->dtdv_scope;
9110		int *np = (int *)NULL;
9111
9112		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9113			continue;
9114
9115		id -= DIF_VAR_OTHER_UBASE;
9116
9117		switch (scope) {
9118		case DIFV_SCOPE_THREAD:
9119			while (id >= (uint_t)(otlocals = vstate->dtvs_ntlocals)) {
9120				dtrace_difv_t *tlocals;
9121
9122				if ((ntlocals = (otlocals << 1)) == 0)
9123					ntlocals = 1;
9124
9125				osz = otlocals * sizeof (dtrace_difv_t);
9126				nsz = ntlocals * sizeof (dtrace_difv_t);
9127
9128				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9129
9130				if (osz != 0) {
9131					bcopy(vstate->dtvs_tlocals,
9132					    tlocals, osz);
9133					kmem_free(vstate->dtvs_tlocals, osz);
9134				}
9135
9136				vstate->dtvs_tlocals = tlocals;
9137				vstate->dtvs_ntlocals = ntlocals;
9138			}
9139
9140			vstate->dtvs_tlocals[id] = *v;
9141			continue;
9142
9143		case DIFV_SCOPE_LOCAL:
9144			np = &vstate->dtvs_nlocals;
9145			svarp = &vstate->dtvs_locals;
9146
9147			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9148				dsize = (int)NCPU * (v->dtdv_type.dtdt_size +
9149				    sizeof (uint64_t));
9150			else
9151				dsize = (int)NCPU * sizeof (uint64_t);
9152
9153			break;
9154
9155		case DIFV_SCOPE_GLOBAL:
9156			np = &vstate->dtvs_nglobals;
9157			svarp = &vstate->dtvs_globals;
9158
9159			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9160				dsize = v->dtdv_type.dtdt_size +
9161				    sizeof (uint64_t);
9162
9163			break;
9164
9165		default:
9166			ASSERT(0);
9167		}
9168
9169		while (id >= (uint_t)(oldsvars = *np)) {
9170			dtrace_statvar_t **statics;
9171			int newsvars, oldsize, newsize;
9172
9173			if ((newsvars = (oldsvars << 1)) == 0)
9174				newsvars = 1;
9175
9176			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9177			newsize = newsvars * sizeof (dtrace_statvar_t *);
9178
9179			statics = kmem_zalloc(newsize, KM_SLEEP);
9180
9181			if (oldsize != 0) {
9182				bcopy(*svarp, statics, oldsize);
9183				kmem_free(*svarp, oldsize);
9184			}
9185
9186			*svarp = statics;
9187			*np = newsvars;
9188		}
9189
9190		if ((svar = (*svarp)[id]) == NULL) {
9191			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9192			svar->dtsv_var = *v;
9193
9194			if ((svar->dtsv_size = dsize) != 0) {
9195				svar->dtsv_data = (uint64_t)(uintptr_t)
9196				    kmem_zalloc(dsize, KM_SLEEP);
9197			}
9198
9199			(*svarp)[id] = svar;
9200		}
9201
9202		svar->dtsv_refcnt++;
9203	}
9204
9205	dtrace_difo_chunksize(dp, vstate);
9206	dtrace_difo_hold(dp);
9207}
9208
9209static dtrace_difo_t *
9210dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9211{
9212	dtrace_difo_t *new;
9213	size_t sz;
9214
9215	ASSERT(dp->dtdo_buf != NULL);
9216	ASSERT(dp->dtdo_refcnt != 0);
9217
9218	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9219
9220	ASSERT(dp->dtdo_buf != NULL);
9221	sz = dp->dtdo_len * sizeof (dif_instr_t);
9222	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9223	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9224	new->dtdo_len = dp->dtdo_len;
9225
9226	if (dp->dtdo_strtab != NULL) {
9227		ASSERT(dp->dtdo_strlen != 0);
9228		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9229		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9230		new->dtdo_strlen = dp->dtdo_strlen;
9231	}
9232
9233	if (dp->dtdo_inttab != NULL) {
9234		ASSERT(dp->dtdo_intlen != 0);
9235		sz = dp->dtdo_intlen * sizeof (uint64_t);
9236		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9237		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9238		new->dtdo_intlen = dp->dtdo_intlen;
9239	}
9240
9241	if (dp->dtdo_vartab != NULL) {
9242		ASSERT(dp->dtdo_varlen != 0);
9243		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9244		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9245		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9246		new->dtdo_varlen = dp->dtdo_varlen;
9247	}
9248
9249	dtrace_difo_init(new, vstate);
9250	return (new);
9251}
9252
9253static void
9254dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9255{
9256	uint_t i;
9257
9258	ASSERT(dp->dtdo_refcnt == 0);
9259
9260	for (i = 0; i < dp->dtdo_varlen; i++) {
9261		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9262		dtrace_statvar_t *svar;
9263		dtrace_statvar_t **svarp = NULL;
9264		uint_t id;
9265		uint8_t scope = v->dtdv_scope;
9266		int *np = NULL;
9267
9268		switch (scope) {
9269		case DIFV_SCOPE_THREAD:
9270			continue;
9271
9272		case DIFV_SCOPE_LOCAL:
9273			np = &vstate->dtvs_nlocals;
9274			svarp = vstate->dtvs_locals;
9275			break;
9276
9277		case DIFV_SCOPE_GLOBAL:
9278			np = &vstate->dtvs_nglobals;
9279			svarp = vstate->dtvs_globals;
9280			break;
9281
9282		default:
9283			ASSERT(0);
9284		}
9285
9286		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9287			continue;
9288
9289		id -= DIF_VAR_OTHER_UBASE;
9290
9291		ASSERT(id < (uint_t)*np);
9292
9293		svar = svarp[id];
9294		ASSERT(svar != NULL);
9295		ASSERT(svar->dtsv_refcnt > 0);
9296
9297		if (--svar->dtsv_refcnt > 0)
9298			continue;
9299
9300		if (svar->dtsv_size != 0) {
9301			ASSERT(svar->dtsv_data != 0);
9302			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9303			    svar->dtsv_size);
9304		}
9305
9306		kmem_free(svar, sizeof (dtrace_statvar_t));
9307		svarp[id] = NULL;
9308	}
9309
9310	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9311	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9312	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9313	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9314
9315	kmem_free(dp, sizeof (dtrace_difo_t));
9316}
9317
9318static void
9319dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9320{
9321	uint_t i;
9322
9323	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9324	ASSERT(dp->dtdo_refcnt != 0);
9325
9326	for (i = 0; i < dp->dtdo_varlen; i++) {
9327		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9328
9329		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9330			continue;
9331
9332		ASSERT(dtrace_vtime_references > 0);
9333		if (--dtrace_vtime_references == 0)
9334			dtrace_vtime_disable();
9335	}
9336
9337	if (--dp->dtdo_refcnt == 0)
9338		dtrace_difo_destroy(dp, vstate);
9339}
9340
9341/*
9342 * DTrace Format Functions
9343 */
9344static uint16_t
9345dtrace_format_add(dtrace_state_t *state, char *str)
9346{
9347	char *fmt, **new;
9348	uint16_t ndx, len = strlen(str) + 1;
9349
9350	fmt = kmem_zalloc(len, KM_SLEEP);
9351	bcopy(str, fmt, len);
9352
9353	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9354		if (state->dts_formats[ndx] == NULL) {
9355			state->dts_formats[ndx] = fmt;
9356			return (ndx + 1);
9357		}
9358	}
9359
9360	if (state->dts_nformats == USHRT_MAX) {
9361		/*
9362		 * This is only likely if a denial-of-service attack is being
9363		 * attempted.  As such, it's okay to fail silently here.
9364		 */
9365		kmem_free(fmt, len);
9366		return (0);
9367	}
9368
9369	/*
9370	 * For simplicity, we always resize the formats array to be exactly the
9371	 * number of formats.
9372	 */
9373	ndx = state->dts_nformats++;
9374	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9375
9376	if (state->dts_formats != NULL) {
9377		ASSERT(ndx != 0);
9378		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9379		kmem_free(state->dts_formats, ndx * sizeof (char *));
9380	}
9381
9382	state->dts_formats = new;
9383	state->dts_formats[ndx] = fmt;
9384
9385	return (ndx + 1);
9386}
9387
9388static void
9389dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9390{
9391	char *fmt;
9392
9393	ASSERT(state->dts_formats != NULL);
9394	ASSERT(format <= state->dts_nformats);
9395	ASSERT(state->dts_formats[format - 1] != NULL);
9396
9397	fmt = state->dts_formats[format - 1];
9398	kmem_free(fmt, strlen(fmt) + 1);
9399	state->dts_formats[format - 1] = NULL;
9400}
9401
9402static void
9403dtrace_format_destroy(dtrace_state_t *state)
9404{
9405	int i;
9406
9407	if (state->dts_nformats == 0) {
9408		ASSERT(state->dts_formats == NULL);
9409		return;
9410	}
9411
9412	ASSERT(state->dts_formats != NULL);
9413
9414	for (i = 0; i < state->dts_nformats; i++) {
9415		char *fmt = state->dts_formats[i];
9416
9417		if (fmt == NULL)
9418			continue;
9419
9420		kmem_free(fmt, strlen(fmt) + 1);
9421	}
9422
9423	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9424	state->dts_nformats = 0;
9425	state->dts_formats = NULL;
9426}
9427
9428/*
9429 * DTrace Predicate Functions
9430 */
9431static dtrace_predicate_t *
9432dtrace_predicate_create(dtrace_difo_t *dp)
9433{
9434	dtrace_predicate_t *pred;
9435
9436	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9437	ASSERT(dp->dtdo_refcnt != 0);
9438
9439	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9440	pred->dtp_difo = dp;
9441	pred->dtp_refcnt = 1;
9442
9443	if (!dtrace_difo_cacheable(dp))
9444		return (pred);
9445
9446	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9447		/*
9448		 * This is only theoretically possible -- we have had 2^32
9449		 * cacheable predicates on this machine.  We cannot allow any
9450		 * more predicates to become cacheable:  as unlikely as it is,
9451		 * there may be a thread caching a (now stale) predicate cache
9452		 * ID. (N.B.: the temptation is being successfully resisted to
9453		 * have this cmn_err() "Holy shit -- we executed this code!")
9454		 */
9455		return (pred);
9456	}
9457
9458	pred->dtp_cacheid = dtrace_predcache_id++;
9459
9460	return (pred);
9461}
9462
9463static void
9464dtrace_predicate_hold(dtrace_predicate_t *pred)
9465{
9466	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9467	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9468	ASSERT(pred->dtp_refcnt > 0);
9469
9470	pred->dtp_refcnt++;
9471}
9472
9473static void
9474dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9475{
9476	dtrace_difo_t *dp = pred->dtp_difo;
9477#pragma unused(dp) /* __APPLE__ */
9478
9479	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9480	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9481	ASSERT(pred->dtp_refcnt > 0);
9482
9483	if (--pred->dtp_refcnt == 0) {
9484		dtrace_difo_release(pred->dtp_difo, vstate);
9485		kmem_free(pred, sizeof (dtrace_predicate_t));
9486	}
9487}
9488
9489/*
9490 * DTrace Action Description Functions
9491 */
9492static dtrace_actdesc_t *
9493dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9494    uint64_t uarg, uint64_t arg)
9495{
9496	dtrace_actdesc_t *act;
9497
9498	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != 0 &&
9499	    arg >= KERNELBASE) || (arg == 0 && kind == DTRACEACT_PRINTA));
9500
9501	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9502	act->dtad_kind = kind;
9503	act->dtad_ntuple = ntuple;
9504	act->dtad_uarg = uarg;
9505	act->dtad_arg = arg;
9506	act->dtad_refcnt = 1;
9507
9508	return (act);
9509}
9510
9511static void
9512dtrace_actdesc_hold(dtrace_actdesc_t *act)
9513{
9514	ASSERT(act->dtad_refcnt >= 1);
9515	act->dtad_refcnt++;
9516}
9517
9518static void
9519dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9520{
9521	dtrace_actkind_t kind = act->dtad_kind;
9522	dtrace_difo_t *dp;
9523
9524	ASSERT(act->dtad_refcnt >= 1);
9525
9526	if (--act->dtad_refcnt != 0)
9527		return;
9528
9529	if ((dp = act->dtad_difo) != NULL)
9530		dtrace_difo_release(dp, vstate);
9531
9532	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9533		char *str = (char *)(uintptr_t)act->dtad_arg;
9534
9535		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9536		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9537
9538		if (str != NULL)
9539			kmem_free(str, strlen(str) + 1);
9540	}
9541
9542	kmem_free(act, sizeof (dtrace_actdesc_t));
9543}
9544
9545/*
9546 * DTrace ECB Functions
9547 */
9548static dtrace_ecb_t *
9549dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9550{
9551	dtrace_ecb_t *ecb;
9552	dtrace_epid_t epid;
9553
9554	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9555
9556	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9557	ecb->dte_predicate = NULL;
9558	ecb->dte_probe = probe;
9559
9560	/*
9561	 * The default size is the size of the default action: recording
9562	 * the epid.
9563	 */
9564	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9565	ecb->dte_alignment = sizeof (dtrace_epid_t);
9566
9567	epid = state->dts_epid++;
9568
9569	if (epid - 1 >= (dtrace_epid_t)state->dts_necbs) {
9570		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9571		int necbs = state->dts_necbs << 1;
9572
9573		ASSERT(epid == (dtrace_epid_t)state->dts_necbs + 1);
9574
9575		if (necbs == 0) {
9576			ASSERT(oecbs == NULL);
9577			necbs = 1;
9578		}
9579
9580		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9581
9582		if (oecbs != NULL)
9583			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9584
9585		dtrace_membar_producer();
9586		state->dts_ecbs = ecbs;
9587
9588		if (oecbs != NULL) {
9589			/*
9590			 * If this state is active, we must dtrace_sync()
9591			 * before we can free the old dts_ecbs array:  we're
9592			 * coming in hot, and there may be active ring
9593			 * buffer processing (which indexes into the dts_ecbs
9594			 * array) on another CPU.
9595			 */
9596			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9597				dtrace_sync();
9598
9599			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9600		}
9601
9602		dtrace_membar_producer();
9603		state->dts_necbs = necbs;
9604	}
9605
9606	ecb->dte_state = state;
9607
9608	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9609	dtrace_membar_producer();
9610	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9611
9612	return (ecb);
9613}
9614
9615static int
9616dtrace_ecb_enable(dtrace_ecb_t *ecb)
9617{
9618	dtrace_probe_t *probe = ecb->dte_probe;
9619
9620	lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
9621	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9622	ASSERT(ecb->dte_next == NULL);
9623
9624	if (probe == NULL) {
9625		/*
9626		 * This is the NULL probe -- there's nothing to do.
9627		 */
9628	    return(0);
9629	}
9630
9631	probe->dtpr_provider->dtpv_ecb_count++;
9632	if (probe->dtpr_ecb == NULL) {
9633		dtrace_provider_t *prov = probe->dtpr_provider;
9634
9635		/*
9636		 * We're the first ECB on this probe.
9637		 */
9638		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9639
9640		if (ecb->dte_predicate != NULL)
9641			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9642
9643		return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9644                    probe->dtpr_id, probe->dtpr_arg));
9645	} else {
9646		/*
9647		 * This probe is already active.  Swing the last pointer to
9648		 * point to the new ECB, and issue a dtrace_sync() to assure
9649		 * that all CPUs have seen the change.
9650		 */
9651		ASSERT(probe->dtpr_ecb_last != NULL);
9652		probe->dtpr_ecb_last->dte_next = ecb;
9653		probe->dtpr_ecb_last = ecb;
9654		probe->dtpr_predcache = 0;
9655
9656		dtrace_sync();
9657		return(0);
9658	}
9659}
9660
9661static void
9662dtrace_ecb_resize(dtrace_ecb_t *ecb)
9663{
9664	uint32_t maxalign = sizeof (dtrace_epid_t);
9665	uint32_t align = sizeof (uint8_t), offs, diff;
9666	dtrace_action_t *act;
9667	int wastuple = 0;
9668	uint32_t aggbase = UINT32_MAX;
9669	dtrace_state_t *state = ecb->dte_state;
9670
9671	/*
9672	 * If we record anything, we always record the epid.  (And we always
9673	 * record it first.)
9674	 */
9675	offs = sizeof (dtrace_epid_t);
9676	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9677
9678	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9679		dtrace_recdesc_t *rec = &act->dta_rec;
9680
9681		if ((align = rec->dtrd_alignment) > maxalign)
9682			maxalign = align;
9683
9684		if (!wastuple && act->dta_intuple) {
9685			/*
9686			 * This is the first record in a tuple.  Align the
9687			 * offset to be at offset 4 in an 8-byte aligned
9688			 * block.
9689			 */
9690			diff = offs + sizeof (dtrace_aggid_t);
9691
9692			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9693				offs += sizeof (uint64_t) - diff;
9694
9695			aggbase = offs - sizeof (dtrace_aggid_t);
9696			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9697		}
9698
9699		/*LINTED*/
9700		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9701			/*
9702			 * The current offset is not properly aligned; align it.
9703			 */
9704			offs += align - diff;
9705		}
9706
9707		rec->dtrd_offset = offs;
9708
9709		if (offs + rec->dtrd_size > ecb->dte_needed) {
9710			ecb->dte_needed = offs + rec->dtrd_size;
9711
9712			if (ecb->dte_needed > state->dts_needed)
9713				state->dts_needed = ecb->dte_needed;
9714		}
9715
9716		if (DTRACEACT_ISAGG(act->dta_kind)) {
9717			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9718			dtrace_action_t *first = agg->dtag_first, *prev;
9719
9720			ASSERT(rec->dtrd_size != 0 && first != NULL);
9721			ASSERT(wastuple);
9722			ASSERT(aggbase != UINT32_MAX);
9723
9724			agg->dtag_base = aggbase;
9725
9726			while ((prev = first->dta_prev) != NULL &&
9727			    DTRACEACT_ISAGG(prev->dta_kind)) {
9728				agg = (dtrace_aggregation_t *)prev;
9729				first = agg->dtag_first;
9730			}
9731
9732			if (prev != NULL) {
9733				offs = prev->dta_rec.dtrd_offset +
9734				    prev->dta_rec.dtrd_size;
9735			} else {
9736				offs = sizeof (dtrace_epid_t);
9737			}
9738			wastuple = 0;
9739		} else {
9740			if (!act->dta_intuple)
9741				ecb->dte_size = offs + rec->dtrd_size;
9742
9743			offs += rec->dtrd_size;
9744		}
9745
9746		wastuple = act->dta_intuple;
9747	}
9748
9749	if ((act = ecb->dte_action) != NULL &&
9750	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9751	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9752		/*
9753		 * If the size is still sizeof (dtrace_epid_t), then all
9754		 * actions store no data; set the size to 0.
9755		 */
9756		ecb->dte_alignment = maxalign;
9757		ecb->dte_size = 0;
9758
9759		/*
9760		 * If the needed space is still sizeof (dtrace_epid_t), then
9761		 * all actions need no additional space; set the needed
9762		 * size to 0.
9763		 */
9764		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9765			ecb->dte_needed = 0;
9766
9767		return;
9768	}
9769
9770	/*
9771	 * Set our alignment, and make sure that the dte_size and dte_needed
9772	 * are aligned to the size of an EPID.
9773	 */
9774	ecb->dte_alignment = maxalign;
9775	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9776	    ~(sizeof (dtrace_epid_t) - 1);
9777	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9778	    ~(sizeof (dtrace_epid_t) - 1);
9779	ASSERT(ecb->dte_size <= ecb->dte_needed);
9780}
9781
9782static dtrace_action_t *
9783dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9784{
9785	dtrace_aggregation_t *agg;
9786	size_t size = sizeof (uint64_t);
9787	int ntuple = desc->dtad_ntuple;
9788	dtrace_action_t *act;
9789	dtrace_recdesc_t *frec;
9790	dtrace_aggid_t aggid;
9791	dtrace_state_t *state = ecb->dte_state;
9792
9793	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9794	agg->dtag_ecb = ecb;
9795
9796	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9797
9798	switch (desc->dtad_kind) {
9799	case DTRACEAGG_MIN:
9800		agg->dtag_initial = INT64_MAX;
9801		agg->dtag_aggregate = dtrace_aggregate_min;
9802		break;
9803
9804	case DTRACEAGG_MAX:
9805		agg->dtag_initial = INT64_MIN;
9806		agg->dtag_aggregate = dtrace_aggregate_max;
9807		break;
9808
9809	case DTRACEAGG_COUNT:
9810		agg->dtag_aggregate = dtrace_aggregate_count;
9811		break;
9812
9813	case DTRACEAGG_QUANTIZE:
9814		agg->dtag_aggregate = dtrace_aggregate_quantize;
9815		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9816		    sizeof (uint64_t);
9817		break;
9818
9819	case DTRACEAGG_LQUANTIZE: {
9820		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9821		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9822
9823		agg->dtag_initial = desc->dtad_arg;
9824		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9825
9826		if (step == 0 || levels == 0)
9827			goto err;
9828
9829		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9830		break;
9831	}
9832
9833	case DTRACEAGG_LLQUANTIZE: {
9834		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
9835		uint16_t low    = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
9836		uint16_t high   = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
9837		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
9838		int64_t v;
9839
9840		agg->dtag_initial = desc->dtad_arg;
9841		agg->dtag_aggregate = dtrace_aggregate_llquantize;
9842
9843		if (factor < 2 || low >= high || nsteps < factor)
9844			goto err;
9845
9846		/*
9847		 * Now check that the number of steps evenly divides a power
9848		 * of the factor.  (This assures both integer bucket size and
9849		 * linearity within each magnitude.)
9850		 */
9851		for (v = factor; v < nsteps; v *= factor)
9852			continue;
9853
9854		if ((v % nsteps) || (nsteps % factor))
9855			goto err;
9856
9857 		size = (dtrace_aggregate_llquantize_bucket(factor, low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
9858		break;
9859  }
9860
9861	case DTRACEAGG_AVG:
9862		agg->dtag_aggregate = dtrace_aggregate_avg;
9863		size = sizeof (uint64_t) * 2;
9864		break;
9865
9866	case DTRACEAGG_STDDEV:
9867		agg->dtag_aggregate = dtrace_aggregate_stddev;
9868		size = sizeof (uint64_t) * 4;
9869		break;
9870
9871	case DTRACEAGG_SUM:
9872		agg->dtag_aggregate = dtrace_aggregate_sum;
9873		break;
9874
9875	default:
9876		goto err;
9877	}
9878
9879	agg->dtag_action.dta_rec.dtrd_size = size;
9880
9881	if (ntuple == 0)
9882		goto err;
9883
9884	/*
9885	 * We must make sure that we have enough actions for the n-tuple.
9886	 */
9887	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9888		if (DTRACEACT_ISAGG(act->dta_kind))
9889			break;
9890
9891		if (--ntuple == 0) {
9892			/*
9893			 * This is the action with which our n-tuple begins.
9894			 */
9895			agg->dtag_first = act;
9896			goto success;
9897		}
9898	}
9899
9900	/*
9901	 * This n-tuple is short by ntuple elements.  Return failure.
9902	 */
9903	ASSERT(ntuple != 0);
9904err:
9905	kmem_free(agg, sizeof (dtrace_aggregation_t));
9906	return (NULL);
9907
9908success:
9909	/*
9910	 * If the last action in the tuple has a size of zero, it's actually
9911	 * an expression argument for the aggregating action.
9912	 */
9913	ASSERT(ecb->dte_action_last != NULL);
9914	act = ecb->dte_action_last;
9915
9916	if (act->dta_kind == DTRACEACT_DIFEXPR) {
9917		ASSERT(act->dta_difo != NULL);
9918
9919		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9920			agg->dtag_hasarg = 1;
9921	}
9922
9923	/*
9924	 * We need to allocate an id for this aggregation.
9925	 */
9926	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9927	    VM_BESTFIT | VM_SLEEP);
9928
9929	if (aggid - 1 >= (dtrace_aggid_t)state->dts_naggregations) {
9930		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9931		dtrace_aggregation_t **aggs;
9932		int naggs = state->dts_naggregations << 1;
9933		int onaggs = state->dts_naggregations;
9934
9935		ASSERT(aggid == (dtrace_aggid_t)state->dts_naggregations + 1);
9936
9937		if (naggs == 0) {
9938			ASSERT(oaggs == NULL);
9939			naggs = 1;
9940		}
9941
9942		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9943
9944		if (oaggs != NULL) {
9945			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9946			kmem_free(oaggs, onaggs * sizeof (*aggs));
9947		}
9948
9949		state->dts_aggregations = aggs;
9950		state->dts_naggregations = naggs;
9951	}
9952
9953	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9954	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9955
9956	frec = &agg->dtag_first->dta_rec;
9957	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9958		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9959
9960	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9961		ASSERT(!act->dta_intuple);
9962		act->dta_intuple = 1;
9963	}
9964
9965	return (&agg->dtag_action);
9966}
9967
9968static void
9969dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9970{
9971	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9972	dtrace_state_t *state = ecb->dte_state;
9973	dtrace_aggid_t aggid = agg->dtag_id;
9974
9975	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9976	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9977
9978	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9979	state->dts_aggregations[aggid - 1] = NULL;
9980
9981	kmem_free(agg, sizeof (dtrace_aggregation_t));
9982}
9983
9984static int
9985dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9986{
9987	dtrace_action_t *action, *last;
9988	dtrace_difo_t *dp = desc->dtad_difo;
9989	uint32_t size = 0, align = sizeof (uint8_t), mask;
9990	uint16_t format = 0;
9991	dtrace_recdesc_t *rec;
9992	dtrace_state_t *state = ecb->dte_state;
9993	dtrace_optval_t *opt = state->dts_options;
9994	dtrace_optval_t nframes=0, strsize;
9995	uint64_t arg = desc->dtad_arg;
9996
9997	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9998	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9999
10000	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10001		/*
10002		 * If this is an aggregating action, there must be neither
10003		 * a speculate nor a commit on the action chain.
10004		 */
10005		dtrace_action_t *act;
10006
10007		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10008			if (act->dta_kind == DTRACEACT_COMMIT)
10009				return (EINVAL);
10010
10011			if (act->dta_kind == DTRACEACT_SPECULATE)
10012				return (EINVAL);
10013		}
10014
10015		action = dtrace_ecb_aggregation_create(ecb, desc);
10016
10017		if (action == NULL)
10018			return (EINVAL);
10019	} else {
10020		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10021		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10022		    dp != NULL && dp->dtdo_destructive)) {
10023			state->dts_destructive = 1;
10024		}
10025
10026		switch (desc->dtad_kind) {
10027		case DTRACEACT_PRINTF:
10028		case DTRACEACT_PRINTA:
10029		case DTRACEACT_SYSTEM:
10030		case DTRACEACT_FREOPEN:
10031			/*
10032			 * We know that our arg is a string -- turn it into a
10033			 * format.
10034			 */
10035			if (arg == 0) {
10036				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
10037				format = 0;
10038			} else {
10039				ASSERT(arg != 0);
10040				ASSERT(arg > KERNELBASE);
10041				format = dtrace_format_add(state,
10042				    (char *)(uintptr_t)arg);
10043			}
10044
10045			/*FALLTHROUGH*/
10046		case DTRACEACT_LIBACT:
10047		case DTRACEACT_DIFEXPR:
10048		case DTRACEACT_TRACEMEM:
10049		case DTRACEACT_TRACEMEM_DYNSIZE:
10050		case DTRACEACT_APPLEBINARY:	/* __APPLE__ */
10051			if (dp == NULL)
10052				return (EINVAL);
10053
10054			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10055				break;
10056
10057			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10058				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10059					return (EINVAL);
10060
10061				size = opt[DTRACEOPT_STRSIZE];
10062			}
10063
10064			break;
10065
10066		case DTRACEACT_STACK:
10067			if ((nframes = arg) == 0) {
10068				nframes = opt[DTRACEOPT_STACKFRAMES];
10069				ASSERT(nframes > 0);
10070				arg = nframes;
10071			}
10072
10073			size = nframes * sizeof (pc_t);
10074			break;
10075
10076		case DTRACEACT_JSTACK:
10077			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10078				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10079
10080			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10081				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10082
10083			arg = DTRACE_USTACK_ARG(nframes, strsize);
10084
10085			/*FALLTHROUGH*/
10086		case DTRACEACT_USTACK:
10087			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10088			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10089				strsize = DTRACE_USTACK_STRSIZE(arg);
10090				nframes = opt[DTRACEOPT_USTACKFRAMES];
10091				ASSERT(nframes > 0);
10092				arg = DTRACE_USTACK_ARG(nframes, strsize);
10093			}
10094
10095			/*
10096			 * Save a slot for the pid.
10097			 */
10098			size = (nframes + 1) * sizeof (uint64_t);
10099			size += DTRACE_USTACK_STRSIZE(arg);
10100			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10101
10102			break;
10103
10104		case DTRACEACT_SYM:
10105		case DTRACEACT_MOD:
10106			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10107			    sizeof (uint64_t)) ||
10108			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10109				return (EINVAL);
10110			break;
10111
10112		case DTRACEACT_USYM:
10113		case DTRACEACT_UMOD:
10114		case DTRACEACT_UADDR:
10115			if (dp == NULL ||
10116			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10117			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10118				return (EINVAL);
10119
10120			/*
10121			 * We have a slot for the pid, plus a slot for the
10122			 * argument.  To keep things simple (aligned with
10123			 * bitness-neutral sizing), we store each as a 64-bit
10124			 * quantity.
10125			 */
10126			size = 2 * sizeof (uint64_t);
10127			break;
10128
10129		case DTRACEACT_STOP:
10130		case DTRACEACT_BREAKPOINT:
10131		case DTRACEACT_PANIC:
10132			break;
10133
10134		case DTRACEACT_CHILL:
10135		case DTRACEACT_DISCARD:
10136		case DTRACEACT_RAISE:
10137		case DTRACEACT_PIDRESUME:	/* __APPLE__ */
10138			if (dp == NULL)
10139				return (EINVAL);
10140			break;
10141
10142		case DTRACEACT_EXIT:
10143			if (dp == NULL ||
10144			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10145			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10146				return (EINVAL);
10147			break;
10148
10149		case DTRACEACT_SPECULATE:
10150			if (ecb->dte_size > sizeof (dtrace_epid_t))
10151				return (EINVAL);
10152
10153			if (dp == NULL)
10154				return (EINVAL);
10155
10156			state->dts_speculates = 1;
10157			break;
10158
10159		case DTRACEACT_COMMIT: {
10160			dtrace_action_t *act = ecb->dte_action;
10161
10162			for (; act != NULL; act = act->dta_next) {
10163				if (act->dta_kind == DTRACEACT_COMMIT)
10164					return (EINVAL);
10165			}
10166
10167			if (dp == NULL)
10168				return (EINVAL);
10169			break;
10170		}
10171
10172		default:
10173			return (EINVAL);
10174		}
10175
10176		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10177			/*
10178			 * If this is a data-storing action or a speculate,
10179			 * we must be sure that there isn't a commit on the
10180			 * action chain.
10181			 */
10182			dtrace_action_t *act = ecb->dte_action;
10183
10184			for (; act != NULL; act = act->dta_next) {
10185				if (act->dta_kind == DTRACEACT_COMMIT)
10186					return (EINVAL);
10187			}
10188		}
10189
10190		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10191		action->dta_rec.dtrd_size = size;
10192	}
10193
10194	action->dta_refcnt = 1;
10195	rec = &action->dta_rec;
10196	size = rec->dtrd_size;
10197
10198	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10199		if (!(size & mask)) {
10200			align = mask + 1;
10201			break;
10202		}
10203	}
10204
10205	action->dta_kind = desc->dtad_kind;
10206
10207	if ((action->dta_difo = dp) != NULL)
10208		dtrace_difo_hold(dp);
10209
10210	rec->dtrd_action = action->dta_kind;
10211	rec->dtrd_arg = arg;
10212	rec->dtrd_uarg = desc->dtad_uarg;
10213	rec->dtrd_alignment = (uint16_t)align;
10214	rec->dtrd_format = format;
10215
10216	if ((last = ecb->dte_action_last) != NULL) {
10217		ASSERT(ecb->dte_action != NULL);
10218		action->dta_prev = last;
10219		last->dta_next = action;
10220	} else {
10221		ASSERT(ecb->dte_action == NULL);
10222		ecb->dte_action = action;
10223	}
10224
10225	ecb->dte_action_last = action;
10226
10227	return (0);
10228}
10229
10230static void
10231dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10232{
10233	dtrace_action_t *act = ecb->dte_action, *next;
10234	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10235	dtrace_difo_t *dp;
10236	uint16_t format;
10237
10238	if (act != NULL && act->dta_refcnt > 1) {
10239		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10240		act->dta_refcnt--;
10241	} else {
10242		for (; act != NULL; act = next) {
10243			next = act->dta_next;
10244			ASSERT(next != NULL || act == ecb->dte_action_last);
10245			ASSERT(act->dta_refcnt == 1);
10246
10247			if ((format = act->dta_rec.dtrd_format) != 0)
10248				dtrace_format_remove(ecb->dte_state, format);
10249
10250			if ((dp = act->dta_difo) != NULL)
10251				dtrace_difo_release(dp, vstate);
10252
10253			if (DTRACEACT_ISAGG(act->dta_kind)) {
10254				dtrace_ecb_aggregation_destroy(ecb, act);
10255			} else {
10256				kmem_free(act, sizeof (dtrace_action_t));
10257			}
10258		}
10259	}
10260
10261	ecb->dte_action = NULL;
10262	ecb->dte_action_last = NULL;
10263	ecb->dte_size = sizeof (dtrace_epid_t);
10264}
10265
10266static void
10267dtrace_ecb_disable(dtrace_ecb_t *ecb)
10268{
10269	/*
10270	 * We disable the ECB by removing it from its probe.
10271	 */
10272	dtrace_ecb_t *pecb, *prev = NULL;
10273	dtrace_probe_t *probe = ecb->dte_probe;
10274
10275	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
10276
10277	if (probe == NULL) {
10278		/*
10279		 * This is the NULL probe; there is nothing to disable.
10280		 */
10281		return;
10282	}
10283
10284	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10285		if (pecb == ecb)
10286			break;
10287		prev = pecb;
10288	}
10289
10290	ASSERT(pecb != NULL);
10291
10292	if (prev == NULL) {
10293		probe->dtpr_ecb = ecb->dte_next;
10294	} else {
10295		prev->dte_next = ecb->dte_next;
10296	}
10297
10298	if (ecb == probe->dtpr_ecb_last) {
10299		ASSERT(ecb->dte_next == NULL);
10300		probe->dtpr_ecb_last = prev;
10301	}
10302
10303	probe->dtpr_provider->dtpv_ecb_count--;
10304	/*
10305	 * The ECB has been disconnected from the probe; now sync to assure
10306	 * that all CPUs have seen the change before returning.
10307	 */
10308	dtrace_sync();
10309
10310	if (probe->dtpr_ecb == NULL) {
10311		/*
10312		 * That was the last ECB on the probe; clear the predicate
10313		 * cache ID for the probe, disable it and sync one more time
10314		 * to assure that we'll never hit it again.
10315		 */
10316		dtrace_provider_t *prov = probe->dtpr_provider;
10317
10318		ASSERT(ecb->dte_next == NULL);
10319		ASSERT(probe->dtpr_ecb_last == NULL);
10320		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10321		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10322		    probe->dtpr_id, probe->dtpr_arg);
10323		dtrace_sync();
10324	} else {
10325		/*
10326		 * There is at least one ECB remaining on the probe.  If there
10327		 * is _exactly_ one, set the probe's predicate cache ID to be
10328		 * the predicate cache ID of the remaining ECB.
10329		 */
10330		ASSERT(probe->dtpr_ecb_last != NULL);
10331		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10332
10333		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10334			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10335
10336			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10337
10338			if (p != NULL)
10339				probe->dtpr_predcache = p->dtp_cacheid;
10340		}
10341
10342		ecb->dte_next = NULL;
10343	}
10344}
10345
10346static void
10347dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10348{
10349	dtrace_state_t *state = ecb->dte_state;
10350	dtrace_vstate_t *vstate = &state->dts_vstate;
10351	dtrace_predicate_t *pred;
10352	dtrace_epid_t epid = ecb->dte_epid;
10353
10354	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
10355	ASSERT(ecb->dte_next == NULL);
10356	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10357
10358	if ((pred = ecb->dte_predicate) != NULL)
10359		dtrace_predicate_release(pred, vstate);
10360
10361	dtrace_ecb_action_remove(ecb);
10362
10363	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10364	state->dts_ecbs[epid - 1] = NULL;
10365
10366	kmem_free(ecb, sizeof (dtrace_ecb_t));
10367}
10368
10369static dtrace_ecb_t *
10370dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10371    dtrace_enabling_t *enab)
10372{
10373	dtrace_ecb_t *ecb;
10374	dtrace_predicate_t *pred;
10375	dtrace_actdesc_t *act;
10376	dtrace_provider_t *prov;
10377	dtrace_ecbdesc_t *desc = enab->dten_current;
10378
10379	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
10380	ASSERT(state != NULL);
10381
10382	ecb = dtrace_ecb_add(state, probe);
10383	ecb->dte_uarg = desc->dted_uarg;
10384
10385	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10386		dtrace_predicate_hold(pred);
10387		ecb->dte_predicate = pred;
10388	}
10389
10390	if (probe != NULL) {
10391		/*
10392		 * If the provider shows more leg than the consumer is old
10393		 * enough to see, we need to enable the appropriate implicit
10394		 * predicate bits to prevent the ecb from activating at
10395		 * revealing times.
10396		 *
10397		 * Providers specifying DTRACE_PRIV_USER at register time
10398		 * are stating that they need the /proc-style privilege
10399		 * model to be enforced, and this is what DTRACE_COND_OWNER
10400		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10401		 */
10402		prov = probe->dtpr_provider;
10403		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10404		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10405			ecb->dte_cond |= DTRACE_COND_OWNER;
10406
10407		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10408		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10409			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10410
10411		/*
10412		 * If the provider shows us kernel innards and the user
10413		 * is lacking sufficient privilege, enable the
10414		 * DTRACE_COND_USERMODE implicit predicate.
10415		 */
10416		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10417		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10418			ecb->dte_cond |= DTRACE_COND_USERMODE;
10419	}
10420
10421	if (dtrace_ecb_create_cache != NULL) {
10422		/*
10423		 * If we have a cached ecb, we'll use its action list instead
10424		 * of creating our own (saving both time and space).
10425		 */
10426		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10427		dtrace_action_t *act_if = cached->dte_action;
10428
10429		if (act_if != NULL) {
10430			ASSERT(act_if->dta_refcnt > 0);
10431			act_if->dta_refcnt++;
10432			ecb->dte_action = act_if;
10433			ecb->dte_action_last = cached->dte_action_last;
10434			ecb->dte_needed = cached->dte_needed;
10435			ecb->dte_size = cached->dte_size;
10436			ecb->dte_alignment = cached->dte_alignment;
10437		}
10438
10439		return (ecb);
10440	}
10441
10442	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10443		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10444			dtrace_ecb_destroy(ecb);
10445			return (NULL);
10446		}
10447	}
10448
10449	dtrace_ecb_resize(ecb);
10450
10451	return (dtrace_ecb_create_cache = ecb);
10452}
10453
10454static int
10455dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10456{
10457	dtrace_ecb_t *ecb;
10458	dtrace_enabling_t *enab = arg;
10459	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10460
10461	ASSERT(state != NULL);
10462
10463	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10464		/*
10465		 * This probe was created in a generation for which this
10466		 * enabling has previously created ECBs; we don't want to
10467		 * enable it again, so just kick out.
10468		 */
10469		return (DTRACE_MATCH_NEXT);
10470	}
10471
10472	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10473		return (DTRACE_MATCH_DONE);
10474
10475	if (dtrace_ecb_enable(ecb) < 0)
10476               return (DTRACE_MATCH_FAIL);
10477
10478	return (DTRACE_MATCH_NEXT);
10479}
10480
10481static dtrace_ecb_t *
10482dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10483{
10484	dtrace_ecb_t *ecb;
10485#pragma unused(ecb) /* __APPLE__ */
10486
10487	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
10488
10489	if (id == 0 || id > (dtrace_epid_t)state->dts_necbs)
10490		return (NULL);
10491
10492	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10493	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10494
10495	return (state->dts_ecbs[id - 1]);
10496}
10497
10498static dtrace_aggregation_t *
10499dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10500{
10501	dtrace_aggregation_t *agg;
10502#pragma unused(agg) /* __APPLE__ */
10503
10504	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
10505
10506	if (id == 0 || id > (dtrace_aggid_t)state->dts_naggregations)
10507		return (NULL);
10508
10509	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10510	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10511	    agg->dtag_id == id);
10512
10513	return (state->dts_aggregations[id - 1]);
10514}
10515
10516/*
10517 * DTrace Buffer Functions
10518 *
10519 * The following functions manipulate DTrace buffers.  Most of these functions
10520 * are called in the context of establishing or processing consumer state;
10521 * exceptions are explicitly noted.
10522 */
10523
10524/*
10525 * Note:  called from cross call context.  This function switches the two
10526 * buffers on a given CPU.  The atomicity of this operation is assured by
10527 * disabling interrupts while the actual switch takes place; the disabling of
10528 * interrupts serializes the execution with any execution of dtrace_probe() on
10529 * the same CPU.
10530 */
10531static void
10532dtrace_buffer_switch(dtrace_buffer_t *buf)
10533{
10534	caddr_t tomax = buf->dtb_tomax;
10535	caddr_t xamot = buf->dtb_xamot;
10536	dtrace_icookie_t cookie;
10537
10538	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10539	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10540
10541	cookie = dtrace_interrupt_disable();
10542	buf->dtb_tomax = xamot;
10543	buf->dtb_xamot = tomax;
10544	buf->dtb_xamot_drops = buf->dtb_drops;
10545	buf->dtb_xamot_offset = buf->dtb_offset;
10546	buf->dtb_xamot_errors = buf->dtb_errors;
10547	buf->dtb_xamot_flags = buf->dtb_flags;
10548	buf->dtb_offset = 0;
10549	buf->dtb_drops = 0;
10550	buf->dtb_errors = 0;
10551	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10552	dtrace_interrupt_enable(cookie);
10553}
10554
10555/*
10556 * Note:  called from cross call context.  This function activates a buffer
10557 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10558 * is guaranteed by the disabling of interrupts.
10559 */
10560static void
10561dtrace_buffer_activate(dtrace_state_t *state)
10562{
10563	dtrace_buffer_t *buf;
10564	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10565
10566	buf = &state->dts_buffer[CPU->cpu_id];
10567
10568	if (buf->dtb_tomax != NULL) {
10569		/*
10570		 * We might like to assert that the buffer is marked inactive,
10571		 * but this isn't necessarily true:  the buffer for the CPU
10572		 * that processes the BEGIN probe has its buffer activated
10573		 * manually.  In this case, we take the (harmless) action
10574		 * re-clearing the bit INACTIVE bit.
10575		 */
10576		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10577	}
10578
10579	dtrace_interrupt_enable(cookie);
10580}
10581
10582static int
10583dtrace_buffer_canalloc(size_t size)
10584{
10585	if (size > (UINT64_MAX - dtrace_buffer_memory_inuse))
10586		return (B_FALSE);
10587	if ((size + dtrace_buffer_memory_inuse) > dtrace_buffer_memory_maxsize)
10588		return (B_FALSE);
10589
10590	return (B_TRUE);
10591}
10592
10593static int
10594dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10595    processorid_t cpu)
10596{
10597	dtrace_cpu_t *cp;
10598	dtrace_buffer_t *buf;
10599	size_t size_before_alloc = dtrace_buffer_memory_inuse;
10600
10601	lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
10602	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
10603
10604	if (size > (size_t)dtrace_nonroot_maxsize &&
10605	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10606		return (EFBIG);
10607
10608	cp = cpu_list;
10609
10610	do {
10611		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10612			continue;
10613
10614		buf = &bufs[cp->cpu_id];
10615
10616		/*
10617		 * If there is already a buffer allocated for this CPU, it
10618		 * is only possible that this is a DR event.  In this case,
10619		 * the buffer size must match our specified size.
10620		 */
10621		if (buf->dtb_tomax != NULL) {
10622			ASSERT(buf->dtb_size == size);
10623			continue;
10624		}
10625
10626		ASSERT(buf->dtb_xamot == NULL);
10627
10628		/* DTrace, please do not eat all the memory. */
10629		if (dtrace_buffer_canalloc(size) == B_FALSE)
10630			goto err;
10631		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10632			goto err;
10633		dtrace_buffer_memory_inuse += size;
10634
10635		buf->dtb_size = size;
10636		buf->dtb_flags = flags;
10637		buf->dtb_offset = 0;
10638		buf->dtb_drops = 0;
10639
10640		if (flags & DTRACEBUF_NOSWITCH)
10641			continue;
10642
10643		/* DTrace, please do not eat all the memory. */
10644		if (dtrace_buffer_canalloc(size) == B_FALSE)
10645			goto err;
10646		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10647			goto err;
10648		dtrace_buffer_memory_inuse += size;
10649	} while ((cp = cp->cpu_next) != cpu_list);
10650
10651	ASSERT(dtrace_buffer_memory_inuse <= dtrace_buffer_memory_maxsize);
10652
10653	return (0);
10654
10655err:
10656	cp = cpu_list;
10657
10658	do {
10659		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10660			continue;
10661
10662		buf = &bufs[cp->cpu_id];
10663
10664		if (buf->dtb_xamot != NULL) {
10665			ASSERT(buf->dtb_tomax != NULL);
10666			ASSERT(buf->dtb_size == size);
10667			kmem_free(buf->dtb_xamot, size);
10668		}
10669
10670		if (buf->dtb_tomax != NULL) {
10671			ASSERT(buf->dtb_size == size);
10672			kmem_free(buf->dtb_tomax, size);
10673		}
10674
10675		buf->dtb_tomax = NULL;
10676		buf->dtb_xamot = NULL;
10677		buf->dtb_size = 0;
10678	} while ((cp = cp->cpu_next) != cpu_list);
10679
10680	/* Restore the size saved before allocating memory */
10681	dtrace_buffer_memory_inuse = size_before_alloc;
10682
10683	return (ENOMEM);
10684}
10685
10686/*
10687 * Note:  called from probe context.  This function just increments the drop
10688 * count on a buffer.  It has been made a function to allow for the
10689 * possibility of understanding the source of mysterious drop counts.  (A
10690 * problem for which one may be particularly disappointed that DTrace cannot
10691 * be used to understand DTrace.)
10692 */
10693static void
10694dtrace_buffer_drop(dtrace_buffer_t *buf)
10695{
10696	buf->dtb_drops++;
10697}
10698
10699/*
10700 * Note:  called from probe context.  This function is called to reserve space
10701 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10702 * mstate.  Returns the new offset in the buffer, or a negative value if an
10703 * error has occurred.
10704 */
10705static intptr_t
10706dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10707    dtrace_state_t *state, dtrace_mstate_t *mstate)
10708{
10709	intptr_t offs = buf->dtb_offset, soffs;
10710	intptr_t woffs;
10711	caddr_t tomax;
10712	size_t total_off;
10713
10714	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10715		return (-1);
10716
10717	if ((tomax = buf->dtb_tomax) == NULL) {
10718		dtrace_buffer_drop(buf);
10719		return (-1);
10720	}
10721
10722	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10723		while (offs & (align - 1)) {
10724			/*
10725			 * Assert that our alignment is off by a number which
10726			 * is itself sizeof (uint32_t) aligned.
10727			 */
10728			ASSERT(!((align - (offs & (align - 1))) &
10729			    (sizeof (uint32_t) - 1)));
10730			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10731			offs += sizeof (uint32_t);
10732		}
10733
10734		if ((uint64_t)(soffs = offs + needed) > buf->dtb_size) {
10735			dtrace_buffer_drop(buf);
10736			return (-1);
10737		}
10738
10739		if (mstate == NULL)
10740			return (offs);
10741
10742		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10743		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10744		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10745
10746		return (offs);
10747	}
10748
10749	if (buf->dtb_flags & DTRACEBUF_FILL) {
10750		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10751		    (buf->dtb_flags & DTRACEBUF_FULL))
10752			return (-1);
10753		goto out;
10754	}
10755
10756	total_off = needed + (offs & (align - 1));
10757
10758	/*
10759	 * For a ring buffer, life is quite a bit more complicated.  Before
10760	 * we can store any padding, we need to adjust our wrapping offset.
10761	 * (If we've never before wrapped or we're not about to, no adjustment
10762	 * is required.)
10763	 */
10764	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10765	    offs + total_off > buf->dtb_size) {
10766		woffs = buf->dtb_xamot_offset;
10767
10768		if (offs + total_off > buf->dtb_size) {
10769			/*
10770			 * We can't fit in the end of the buffer.  First, a
10771			 * sanity check that we can fit in the buffer at all.
10772			 */
10773			if (total_off > buf->dtb_size) {
10774				dtrace_buffer_drop(buf);
10775				return (-1);
10776			}
10777
10778			/*
10779			 * We're going to be storing at the top of the buffer,
10780			 * so now we need to deal with the wrapped offset.  We
10781			 * only reset our wrapped offset to 0 if it is
10782			 * currently greater than the current offset.  If it
10783			 * is less than the current offset, it is because a
10784			 * previous allocation induced a wrap -- but the
10785			 * allocation didn't subsequently take the space due
10786			 * to an error or false predicate evaluation.  In this
10787			 * case, we'll just leave the wrapped offset alone: if
10788			 * the wrapped offset hasn't been advanced far enough
10789			 * for this allocation, it will be adjusted in the
10790			 * lower loop.
10791			 */
10792			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10793				if (woffs >= offs)
10794					woffs = 0;
10795			} else {
10796				woffs = 0;
10797			}
10798
10799			/*
10800			 * Now we know that we're going to be storing to the
10801			 * top of the buffer and that there is room for us
10802			 * there.  We need to clear the buffer from the current
10803			 * offset to the end (there may be old gunk there).
10804			 */
10805			while ((uint64_t)offs < buf->dtb_size)
10806				tomax[offs++] = 0;
10807
10808			/*
10809			 * We need to set our offset to zero.  And because we
10810			 * are wrapping, we need to set the bit indicating as
10811			 * much.  We can also adjust our needed space back
10812			 * down to the space required by the ECB -- we know
10813			 * that the top of the buffer is aligned.
10814			 */
10815			offs = 0;
10816			total_off = needed;
10817			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10818		} else {
10819			/*
10820			 * There is room for us in the buffer, so we simply
10821			 * need to check the wrapped offset.
10822			 */
10823			if (woffs < offs) {
10824				/*
10825				 * The wrapped offset is less than the offset.
10826				 * This can happen if we allocated buffer space
10827				 * that induced a wrap, but then we didn't
10828				 * subsequently take the space due to an error
10829				 * or false predicate evaluation.  This is
10830				 * okay; we know that _this_ allocation isn't
10831				 * going to induce a wrap.  We still can't
10832				 * reset the wrapped offset to be zero,
10833				 * however: the space may have been trashed in
10834				 * the previous failed probe attempt.  But at
10835				 * least the wrapped offset doesn't need to
10836				 * be adjusted at all...
10837				 */
10838				goto out;
10839			}
10840		}
10841
10842		while (offs + total_off > (size_t)woffs) {
10843			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10844			size_t size;
10845
10846			if (epid == DTRACE_EPIDNONE) {
10847				size = sizeof (uint32_t);
10848			} else {
10849				ASSERT(epid <= (dtrace_epid_t)state->dts_necbs);
10850				ASSERT(state->dts_ecbs[epid - 1] != NULL);
10851
10852				size = state->dts_ecbs[epid - 1]->dte_size;
10853			}
10854
10855			ASSERT(woffs + size <= buf->dtb_size);
10856			ASSERT(size != 0);
10857
10858			if (woffs + size == buf->dtb_size) {
10859				/*
10860				 * We've reached the end of the buffer; we want
10861				 * to set the wrapped offset to 0 and break
10862				 * out.  However, if the offs is 0, then we're
10863				 * in a strange edge-condition:  the amount of
10864				 * space that we want to reserve plus the size
10865				 * of the record that we're overwriting is
10866				 * greater than the size of the buffer.  This
10867				 * is problematic because if we reserve the
10868				 * space but subsequently don't consume it (due
10869				 * to a failed predicate or error) the wrapped
10870				 * offset will be 0 -- yet the EPID at offset 0
10871				 * will not be committed.  This situation is
10872				 * relatively easy to deal with:  if we're in
10873				 * this case, the buffer is indistinguishable
10874				 * from one that hasn't wrapped; we need only
10875				 * finish the job by clearing the wrapped bit,
10876				 * explicitly setting the offset to be 0, and
10877				 * zero'ing out the old data in the buffer.
10878				 */
10879				if (offs == 0) {
10880					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10881					buf->dtb_offset = 0;
10882					woffs = total_off;
10883
10884					while ((uint64_t)woffs < buf->dtb_size)
10885						tomax[woffs++] = 0;
10886				}
10887
10888				woffs = 0;
10889				break;
10890			}
10891
10892			woffs += size;
10893		}
10894
10895		/*
10896		 * We have a wrapped offset.  It may be that the wrapped offset
10897		 * has become zero -- that's okay.
10898		 */
10899		buf->dtb_xamot_offset = woffs;
10900	}
10901
10902out:
10903	/*
10904	 * Now we can plow the buffer with any necessary padding.
10905	 */
10906	while (offs & (align - 1)) {
10907		/*
10908		 * Assert that our alignment is off by a number which
10909		 * is itself sizeof (uint32_t) aligned.
10910		 */
10911		ASSERT(!((align - (offs & (align - 1))) &
10912		    (sizeof (uint32_t) - 1)));
10913		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10914		offs += sizeof (uint32_t);
10915	}
10916
10917	if (buf->dtb_flags & DTRACEBUF_FILL) {
10918		if (offs + needed > buf->dtb_size - state->dts_reserve) {
10919			buf->dtb_flags |= DTRACEBUF_FULL;
10920			return (-1);
10921		}
10922	}
10923
10924	if (mstate == NULL)
10925		return (offs);
10926
10927	/*
10928	 * For ring buffers and fill buffers, the scratch space is always
10929	 * the inactive buffer.
10930	 */
10931	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10932	mstate->dtms_scratch_size = buf->dtb_size;
10933	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10934
10935	return (offs);
10936}
10937
10938static void
10939dtrace_buffer_polish(dtrace_buffer_t *buf)
10940{
10941	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10942	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
10943
10944	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10945		return;
10946
10947	/*
10948	 * We need to polish the ring buffer.  There are three cases:
10949	 *
10950	 * - The first (and presumably most common) is that there is no gap
10951	 *   between the buffer offset and the wrapped offset.  In this case,
10952	 *   there is nothing in the buffer that isn't valid data; we can
10953	 *   mark the buffer as polished and return.
10954	 *
10955	 * - The second (less common than the first but still more common
10956	 *   than the third) is that there is a gap between the buffer offset
10957	 *   and the wrapped offset, and the wrapped offset is larger than the
10958	 *   buffer offset.  This can happen because of an alignment issue, or
10959	 *   can happen because of a call to dtrace_buffer_reserve() that
10960	 *   didn't subsequently consume the buffer space.  In this case,
10961	 *   we need to zero the data from the buffer offset to the wrapped
10962	 *   offset.
10963	 *
10964	 * - The third (and least common) is that there is a gap between the
10965	 *   buffer offset and the wrapped offset, but the wrapped offset is
10966	 *   _less_ than the buffer offset.  This can only happen because a
10967	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
10968	 *   was not subsequently consumed.  In this case, we need to zero the
10969	 *   space from the offset to the end of the buffer _and_ from the
10970	 *   top of the buffer to the wrapped offset.
10971	 */
10972	if (buf->dtb_offset < buf->dtb_xamot_offset) {
10973		bzero(buf->dtb_tomax + buf->dtb_offset,
10974		    buf->dtb_xamot_offset - buf->dtb_offset);
10975	}
10976
10977	if (buf->dtb_offset > buf->dtb_xamot_offset) {
10978		bzero(buf->dtb_tomax + buf->dtb_offset,
10979		    buf->dtb_size - buf->dtb_offset);
10980		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
10981	}
10982}
10983
10984static void
10985dtrace_buffer_free(dtrace_buffer_t *bufs)
10986{
10987	int i;
10988
10989	for (i = 0; i < (int)NCPU; i++) {
10990		dtrace_buffer_t *buf = &bufs[i];
10991
10992		if (buf->dtb_tomax == NULL) {
10993			ASSERT(buf->dtb_xamot == NULL);
10994			ASSERT(buf->dtb_size == 0);
10995			continue;
10996		}
10997
10998		if (buf->dtb_xamot != NULL) {
10999			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11000			kmem_free(buf->dtb_xamot, buf->dtb_size);
11001
11002			ASSERT(dtrace_buffer_memory_inuse >= buf->dtb_size);
11003			dtrace_buffer_memory_inuse -= buf->dtb_size;
11004		}
11005
11006		kmem_free(buf->dtb_tomax, buf->dtb_size);
11007		ASSERT(dtrace_buffer_memory_inuse >= buf->dtb_size);
11008		dtrace_buffer_memory_inuse -= buf->dtb_size;
11009
11010		buf->dtb_size = 0;
11011		buf->dtb_tomax = NULL;
11012		buf->dtb_xamot = NULL;
11013	}
11014}
11015
11016/*
11017 * DTrace Enabling Functions
11018 */
11019static dtrace_enabling_t *
11020dtrace_enabling_create(dtrace_vstate_t *vstate)
11021{
11022	dtrace_enabling_t *enab;
11023
11024	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11025	enab->dten_vstate = vstate;
11026
11027	return (enab);
11028}
11029
11030static void
11031dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11032{
11033	dtrace_ecbdesc_t **ndesc;
11034	size_t osize, nsize;
11035
11036	/*
11037	 * We can't add to enablings after we've enabled them, or after we've
11038	 * retained them.
11039	 */
11040	ASSERT(enab->dten_probegen == 0);
11041	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11042
11043	/* APPLE NOTE: this protects against gcc 4.0 botch on x86 */
11044	if (ecb == NULL) return;
11045
11046	if (enab->dten_ndesc < enab->dten_maxdesc) {
11047		enab->dten_desc[enab->dten_ndesc++] = ecb;
11048		return;
11049	}
11050
11051	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11052
11053	if (enab->dten_maxdesc == 0) {
11054		enab->dten_maxdesc = 1;
11055	} else {
11056		enab->dten_maxdesc <<= 1;
11057	}
11058
11059	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11060
11061	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11062	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11063	bcopy(enab->dten_desc, ndesc, osize);
11064	kmem_free(enab->dten_desc, osize);
11065
11066	enab->dten_desc = ndesc;
11067	enab->dten_desc[enab->dten_ndesc++] = ecb;
11068}
11069
11070static void
11071dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11072    dtrace_probedesc_t *pd)
11073{
11074	dtrace_ecbdesc_t *new;
11075	dtrace_predicate_t *pred;
11076	dtrace_actdesc_t *act;
11077
11078	/*
11079	 * We're going to create a new ECB description that matches the
11080	 * specified ECB in every way, but has the specified probe description.
11081	 */
11082	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11083
11084	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11085		dtrace_predicate_hold(pred);
11086
11087	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11088		dtrace_actdesc_hold(act);
11089
11090	new->dted_action = ecb->dted_action;
11091	new->dted_pred = ecb->dted_pred;
11092	new->dted_probe = *pd;
11093	new->dted_uarg = ecb->dted_uarg;
11094
11095	dtrace_enabling_add(enab, new);
11096}
11097
11098static void
11099dtrace_enabling_dump(dtrace_enabling_t *enab)
11100{
11101	int i;
11102
11103	for (i = 0; i < enab->dten_ndesc; i++) {
11104		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11105
11106		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11107		    desc->dtpd_provider, desc->dtpd_mod,
11108		    desc->dtpd_func, desc->dtpd_name);
11109	}
11110}
11111
11112static void
11113dtrace_enabling_destroy(dtrace_enabling_t *enab)
11114{
11115	int i;
11116	dtrace_ecbdesc_t *ep;
11117	dtrace_vstate_t *vstate = enab->dten_vstate;
11118
11119	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
11120
11121	for (i = 0; i < enab->dten_ndesc; i++) {
11122		dtrace_actdesc_t *act, *next;
11123		dtrace_predicate_t *pred;
11124
11125		ep = enab->dten_desc[i];
11126
11127		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11128			dtrace_predicate_release(pred, vstate);
11129
11130		for (act = ep->dted_action; act != NULL; act = next) {
11131			next = act->dtad_next;
11132			dtrace_actdesc_release(act, vstate);
11133		}
11134
11135		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11136	}
11137
11138	kmem_free(enab->dten_desc,
11139	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11140
11141	/*
11142	 * If this was a retained enabling, decrement the dts_nretained count
11143	 * and take it off of the dtrace_retained list.
11144	 */
11145	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11146	    dtrace_retained == enab) {
11147		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11148		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11149		enab->dten_vstate->dtvs_state->dts_nretained--;
11150                dtrace_retained_gen++;
11151	}
11152
11153	if (enab->dten_prev == NULL) {
11154		if (dtrace_retained == enab) {
11155			dtrace_retained = enab->dten_next;
11156
11157			if (dtrace_retained != NULL)
11158				dtrace_retained->dten_prev = NULL;
11159		}
11160	} else {
11161		ASSERT(enab != dtrace_retained);
11162		ASSERT(dtrace_retained != NULL);
11163		enab->dten_prev->dten_next = enab->dten_next;
11164	}
11165
11166	if (enab->dten_next != NULL) {
11167		ASSERT(dtrace_retained != NULL);
11168		enab->dten_next->dten_prev = enab->dten_prev;
11169	}
11170
11171	kmem_free(enab, sizeof (dtrace_enabling_t));
11172}
11173
11174static int
11175dtrace_enabling_retain(dtrace_enabling_t *enab)
11176{
11177	dtrace_state_t *state;
11178
11179	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
11180	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11181	ASSERT(enab->dten_vstate != NULL);
11182
11183	state = enab->dten_vstate->dtvs_state;
11184	ASSERT(state != NULL);
11185
11186	/*
11187	 * We only allow each state to retain dtrace_retain_max enablings.
11188	 */
11189	if (state->dts_nretained >= dtrace_retain_max)
11190		return (ENOSPC);
11191
11192	state->dts_nretained++;
11193        dtrace_retained_gen++;
11194
11195	if (dtrace_retained == NULL) {
11196		dtrace_retained = enab;
11197		return (0);
11198	}
11199
11200	enab->dten_next = dtrace_retained;
11201	dtrace_retained->dten_prev = enab;
11202	dtrace_retained = enab;
11203
11204	return (0);
11205}
11206
11207static int
11208dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11209    dtrace_probedesc_t *create)
11210{
11211	dtrace_enabling_t *new, *enab;
11212	int found = 0, err = ENOENT;
11213
11214	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
11215	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11216	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11217	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11218	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11219
11220	new = dtrace_enabling_create(&state->dts_vstate);
11221
11222	/*
11223	 * Iterate over all retained enablings, looking for enablings that
11224	 * match the specified state.
11225	 */
11226	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11227		int i;
11228
11229		/*
11230		 * dtvs_state can only be NULL for helper enablings -- and
11231		 * helper enablings can't be retained.
11232		 */
11233		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11234
11235		if (enab->dten_vstate->dtvs_state != state)
11236			continue;
11237
11238		/*
11239		 * Now iterate over each probe description; we're looking for
11240		 * an exact match to the specified probe description.
11241		 */
11242		for (i = 0; i < enab->dten_ndesc; i++) {
11243			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11244			dtrace_probedesc_t *pd = &ep->dted_probe;
11245
11246			/* APPLE NOTE: Darwin employs size bounded string operation. */
11247			if (strncmp(pd->dtpd_provider, match->dtpd_provider, DTRACE_PROVNAMELEN))
11248				continue;
11249
11250			if (strncmp(pd->dtpd_mod, match->dtpd_mod, DTRACE_MODNAMELEN))
11251				continue;
11252
11253			if (strncmp(pd->dtpd_func, match->dtpd_func, DTRACE_FUNCNAMELEN))
11254				continue;
11255
11256			if (strncmp(pd->dtpd_name, match->dtpd_name, DTRACE_NAMELEN))
11257				continue;
11258
11259			/*
11260			 * We have a winning probe!  Add it to our growing
11261			 * enabling.
11262			 */
11263			found = 1;
11264			dtrace_enabling_addlike(new, ep, create);
11265		}
11266	}
11267
11268	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11269		dtrace_enabling_destroy(new);
11270		return (err);
11271	}
11272
11273	return (0);
11274}
11275
11276static void
11277dtrace_enabling_retract(dtrace_state_t *state)
11278{
11279	dtrace_enabling_t *enab, *next;
11280
11281	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
11282
11283	/*
11284	 * Iterate over all retained enablings, destroy the enablings retained
11285	 * for the specified state.
11286	 */
11287	for (enab = dtrace_retained; enab != NULL; enab = next) {
11288		next = enab->dten_next;
11289
11290		/*
11291		 * dtvs_state can only be NULL for helper enablings -- and
11292		 * helper enablings can't be retained.
11293		 */
11294		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11295
11296		if (enab->dten_vstate->dtvs_state == state) {
11297			ASSERT(state->dts_nretained > 0);
11298			dtrace_enabling_destroy(enab);
11299		}
11300	}
11301
11302	ASSERT(state->dts_nretained == 0);
11303}
11304
11305static int
11306dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11307{
11308	int i = 0;
11309	int total_matched = 0, matched = 0;
11310
11311	lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
11312	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
11313
11314	for (i = 0; i < enab->dten_ndesc; i++) {
11315		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11316
11317		enab->dten_current = ep;
11318		enab->dten_error = 0;
11319
11320		/*
11321		 * If a provider failed to enable a probe then get out and
11322		 * let the consumer know we failed.
11323		 */
11324		if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11325			return (EBUSY);
11326
11327		total_matched += matched;
11328
11329		if (enab->dten_error != 0) {
11330			/*
11331			 * If we get an error half-way through enabling the
11332			 * probes, we kick out -- perhaps with some number of
11333			 * them enabled.  Leaving enabled probes enabled may
11334			 * be slightly confusing for user-level, but we expect
11335			 * that no one will attempt to actually drive on in
11336			 * the face of such errors.  If this is an anonymous
11337			 * enabling (indicated with a NULL nmatched pointer),
11338			 * we cmn_err() a message.  We aren't expecting to
11339			 * get such an error -- such as it can exist at all,
11340			 * it would be a result of corrupted DOF in the driver
11341			 * properties.
11342			 */
11343			if (nmatched == NULL) {
11344				cmn_err(CE_WARN, "dtrace_enabling_match() "
11345				    "error on %p: %d", (void *)ep,
11346				    enab->dten_error);
11347			}
11348
11349			return (enab->dten_error);
11350		}
11351	}
11352
11353	enab->dten_probegen = dtrace_probegen;
11354	if (nmatched != NULL)
11355		*nmatched = total_matched;
11356
11357	return (0);
11358}
11359
11360static void
11361dtrace_enabling_matchall(void)
11362{
11363	dtrace_enabling_t *enab;
11364
11365	lck_mtx_lock(&cpu_lock);
11366	lck_mtx_lock(&dtrace_lock);
11367
11368	/*
11369	 * Iterate over all retained enablings to see if any probes match
11370	 * against them.  We only perform this operation on enablings for which
11371	 * we have sufficient permissions by virtue of being in the global zone
11372	 * or in the same zone as the DTrace client.  Because we can be called
11373	 * after dtrace_detach() has been called, we cannot assert that there
11374	 * are retained enablings.  We can safely load from dtrace_retained,
11375	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11376	 * block pending our completion.
11377	 */
11378
11379	/*
11380	 * Darwin doesn't do zones.
11381	 * Behave as if always in "global" zone."
11382	 */
11383	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11384		(void) dtrace_enabling_match(enab, NULL);
11385	}
11386
11387	lck_mtx_unlock(&dtrace_lock);
11388	lck_mtx_unlock(&cpu_lock);
11389}
11390
11391/*
11392 * If an enabling is to be enabled without having matched probes (that is, if
11393 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11394 * enabling must be _primed_ by creating an ECB for every ECB description.
11395 * This must be done to assure that we know the number of speculations, the
11396 * number of aggregations, the minimum buffer size needed, etc. before we
11397 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11398 * enabling any probes, we create ECBs for every ECB decription, but with a
11399 * NULL probe -- which is exactly what this function does.
11400 */
11401static void
11402dtrace_enabling_prime(dtrace_state_t *state)
11403{
11404	dtrace_enabling_t *enab;
11405	int i;
11406
11407	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11408		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11409
11410		if (enab->dten_vstate->dtvs_state != state)
11411			continue;
11412
11413		/*
11414		 * We don't want to prime an enabling more than once, lest
11415		 * we allow a malicious user to induce resource exhaustion.
11416		 * (The ECBs that result from priming an enabling aren't
11417		 * leaked -- but they also aren't deallocated until the
11418		 * consumer state is destroyed.)
11419		 */
11420		if (enab->dten_primed)
11421			continue;
11422
11423		for (i = 0; i < enab->dten_ndesc; i++) {
11424			enab->dten_current = enab->dten_desc[i];
11425			(void) dtrace_probe_enable(NULL, enab);
11426		}
11427
11428		enab->dten_primed = 1;
11429	}
11430}
11431
11432/*
11433 * Called to indicate that probes should be provided due to retained
11434 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11435 * must take an initial lap through the enabling calling the dtps_provide()
11436 * entry point explicitly to allow for autocreated probes.
11437 */
11438static void
11439dtrace_enabling_provide(dtrace_provider_t *prv)
11440{
11441	int i, all = 0;
11442	dtrace_probedesc_t desc;
11443        dtrace_genid_t gen;
11444
11445	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
11446	lck_mtx_assert(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED);
11447
11448	if (prv == NULL) {
11449		all = 1;
11450		prv = dtrace_provider;
11451	}
11452
11453	do {
11454		dtrace_enabling_t *enab;
11455		void *parg = prv->dtpv_arg;
11456
11457retry:
11458		gen = dtrace_retained_gen;
11459		for (enab = dtrace_retained; enab != NULL;
11460		    enab = enab->dten_next) {
11461			for (i = 0; i < enab->dten_ndesc; i++) {
11462				desc = enab->dten_desc[i]->dted_probe;
11463				lck_mtx_unlock(&dtrace_lock);
11464				prv->dtpv_pops.dtps_provide(parg, &desc);
11465				lck_mtx_lock(&dtrace_lock);
11466				/*
11467				 * Process the retained enablings again if
11468				 * they have changed while we weren't holding
11469				 * dtrace_lock.
11470				 */
11471				if (gen != dtrace_retained_gen)
11472					goto retry;
11473			}
11474		}
11475	} while (all && (prv = prv->dtpv_next) != NULL);
11476
11477	lck_mtx_unlock(&dtrace_lock);
11478	dtrace_probe_provide(NULL, all ? NULL : prv);
11479	lck_mtx_lock(&dtrace_lock);
11480}
11481
11482/*
11483 * DTrace DOF Functions
11484 */
11485/*ARGSUSED*/
11486static void
11487dtrace_dof_error(dof_hdr_t *dof, const char *str)
11488{
11489#pragma unused(dof) /* __APPLE__ */
11490	if (dtrace_err_verbose)
11491		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11492
11493#ifdef DTRACE_ERRDEBUG
11494	dtrace_errdebug(str);
11495#endif
11496}
11497
11498/*
11499 * Create DOF out of a currently enabled state.  Right now, we only create
11500 * DOF containing the run-time options -- but this could be expanded to create
11501 * complete DOF representing the enabled state.
11502 */
11503static dof_hdr_t *
11504dtrace_dof_create(dtrace_state_t *state)
11505{
11506	dof_hdr_t *dof;
11507	dof_sec_t *sec;
11508	dof_optdesc_t *opt;
11509	int i, len = sizeof (dof_hdr_t) +
11510	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11511	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11512
11513	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
11514
11515	dof = dt_kmem_zalloc_aligned(len, 8, KM_SLEEP);
11516	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11517	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11518	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11519	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11520
11521	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11522	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11523	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11524	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11525	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11526	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11527
11528	dof->dofh_flags = 0;
11529	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11530	dof->dofh_secsize = sizeof (dof_sec_t);
11531	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11532	dof->dofh_secoff = sizeof (dof_hdr_t);
11533	dof->dofh_loadsz = len;
11534	dof->dofh_filesz = len;
11535	dof->dofh_pad = 0;
11536
11537	/*
11538	 * Fill in the option section header...
11539	 */
11540	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11541	sec->dofs_type = DOF_SECT_OPTDESC;
11542	sec->dofs_align = sizeof (uint64_t);
11543	sec->dofs_flags = DOF_SECF_LOAD;
11544	sec->dofs_entsize = sizeof (dof_optdesc_t);
11545
11546	opt = (dof_optdesc_t *)((uintptr_t)sec +
11547	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11548
11549	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11550	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11551
11552	for (i = 0; i < DTRACEOPT_MAX; i++) {
11553		opt[i].dofo_option = i;
11554		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11555		opt[i].dofo_value = state->dts_options[i];
11556	}
11557
11558	return (dof);
11559}
11560
11561static dof_hdr_t *
11562dtrace_dof_copyin(user_addr_t uarg, int *errp)
11563{
11564	dof_hdr_t hdr, *dof;
11565
11566	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED);
11567
11568	/*
11569	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11570	 */
11571	if (copyin(uarg, &hdr, sizeof (hdr)) != 0) {
11572		dtrace_dof_error(NULL, "failed to copyin DOF header");
11573		*errp = EFAULT;
11574		return (NULL);
11575	}
11576
11577	/*
11578	 * Now we'll allocate the entire DOF and copy it in -- provided
11579	 * that the length isn't outrageous.
11580	 */
11581	if (hdr.dofh_loadsz >= (uint64_t)dtrace_dof_maxsize) {
11582		dtrace_dof_error(&hdr, "load size exceeds maximum");
11583		*errp = E2BIG;
11584		return (NULL);
11585	}
11586
11587	if (hdr.dofh_loadsz < sizeof (hdr)) {
11588		dtrace_dof_error(&hdr, "invalid load size");
11589		*errp = EINVAL;
11590		return (NULL);
11591	}
11592
11593	dof = dt_kmem_alloc_aligned(hdr.dofh_loadsz, 8, KM_SLEEP);
11594
11595        if (copyin(uarg, dof, hdr.dofh_loadsz) != 0  ||
11596	  dof->dofh_loadsz != hdr.dofh_loadsz) {
11597	    dt_kmem_free_aligned(dof, hdr.dofh_loadsz);
11598	    *errp = EFAULT;
11599	    return (NULL);
11600	}
11601
11602	return (dof);
11603}
11604
11605static dof_hdr_t *
11606dtrace_dof_copyin_from_proc(proc_t* p, user_addr_t uarg, int *errp)
11607{
11608	dof_hdr_t hdr, *dof;
11609
11610	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED);
11611
11612	/*
11613	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11614	 */
11615	if (uread(p, &hdr, sizeof(hdr), uarg) != KERN_SUCCESS) {
11616		dtrace_dof_error(NULL, "failed to copyin DOF header");
11617		*errp = EFAULT;
11618		return (NULL);
11619	}
11620
11621	/*
11622	 * Now we'll allocate the entire DOF and copy it in -- provided
11623	 * that the length isn't outrageous.
11624	 */
11625	if (hdr.dofh_loadsz >= (uint64_t)dtrace_dof_maxsize) {
11626		dtrace_dof_error(&hdr, "load size exceeds maximum");
11627		*errp = E2BIG;
11628		return (NULL);
11629	}
11630
11631	if (hdr.dofh_loadsz < sizeof (hdr)) {
11632		dtrace_dof_error(&hdr, "invalid load size");
11633		*errp = EINVAL;
11634		return (NULL);
11635	}
11636
11637	dof = dt_kmem_alloc_aligned(hdr.dofh_loadsz, 8, KM_SLEEP);
11638
11639	if (uread(p, dof, hdr.dofh_loadsz, uarg) != KERN_SUCCESS) {
11640		dt_kmem_free_aligned(dof, hdr.dofh_loadsz);
11641		*errp = EFAULT;
11642		return (NULL);
11643	}
11644
11645	return (dof);
11646}
11647
11648static dof_hdr_t *
11649dtrace_dof_property(const char *name)
11650{
11651	uchar_t *buf;
11652	uint64_t loadsz;
11653	unsigned int len, i;
11654	dof_hdr_t *dof;
11655
11656	/*
11657	 * Unfortunately, array of values in .conf files are always (and
11658	 * only) interpreted to be integer arrays.  We must read our DOF
11659	 * as an integer array, and then squeeze it into a byte array.
11660	 */
11661	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11662	    name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11663		return (NULL);
11664
11665	for (i = 0; i < len; i++)
11666		buf[i] = (uchar_t)(((int *)buf)[i]);
11667
11668	if (len < sizeof (dof_hdr_t)) {
11669		ddi_prop_free(buf);
11670		dtrace_dof_error(NULL, "truncated header");
11671		return (NULL);
11672	}
11673
11674	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11675		ddi_prop_free(buf);
11676		dtrace_dof_error(NULL, "truncated DOF");
11677		return (NULL);
11678	}
11679
11680	if (loadsz >= (uint64_t)dtrace_dof_maxsize) {
11681		ddi_prop_free(buf);
11682		dtrace_dof_error(NULL, "oversized DOF");
11683		return (NULL);
11684	}
11685
11686	dof = dt_kmem_alloc_aligned(loadsz, 8, KM_SLEEP);
11687	bcopy(buf, dof, loadsz);
11688	ddi_prop_free(buf);
11689
11690	return (dof);
11691}
11692
11693static void
11694dtrace_dof_destroy(dof_hdr_t *dof)
11695{
11696	dt_kmem_free_aligned(dof, dof->dofh_loadsz);
11697}
11698
11699/*
11700 * Return the dof_sec_t pointer corresponding to a given section index.  If the
11701 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11702 * a type other than DOF_SECT_NONE is specified, the header is checked against
11703 * this type and NULL is returned if the types do not match.
11704 */
11705static dof_sec_t *
11706dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11707{
11708	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11709	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11710
11711	if (i >= dof->dofh_secnum) {
11712		dtrace_dof_error(dof, "referenced section index is invalid");
11713		return (NULL);
11714	}
11715
11716	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11717		dtrace_dof_error(dof, "referenced section is not loadable");
11718		return (NULL);
11719	}
11720
11721	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11722		dtrace_dof_error(dof, "referenced section is the wrong type");
11723		return (NULL);
11724	}
11725
11726	return (sec);
11727}
11728
11729static dtrace_probedesc_t *
11730dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11731{
11732	dof_probedesc_t *probe;
11733	dof_sec_t *strtab;
11734	uintptr_t daddr = (uintptr_t)dof;
11735	uintptr_t str;
11736	size_t size;
11737
11738	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11739		dtrace_dof_error(dof, "invalid probe section");
11740		return (NULL);
11741	}
11742
11743	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11744		dtrace_dof_error(dof, "bad alignment in probe description");
11745		return (NULL);
11746	}
11747
11748	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11749		dtrace_dof_error(dof, "truncated probe description");
11750		return (NULL);
11751	}
11752
11753	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11754	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11755
11756	if (strtab == NULL)
11757		return (NULL);
11758
11759	str = daddr + strtab->dofs_offset;
11760	size = strtab->dofs_size;
11761
11762	if (probe->dofp_provider >= strtab->dofs_size) {
11763		dtrace_dof_error(dof, "corrupt probe provider");
11764		return (NULL);
11765	}
11766
11767	(void) strncpy(desc->dtpd_provider,
11768	    (char *)(str + probe->dofp_provider),
11769	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11770
11771	/* APPLE NOTE: Darwin employs size bounded string operation. */
11772	desc->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
11773
11774	if (probe->dofp_mod >= strtab->dofs_size) {
11775		dtrace_dof_error(dof, "corrupt probe module");
11776		return (NULL);
11777	}
11778
11779	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11780	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11781
11782	/* APPLE NOTE: Darwin employs size bounded string operation. */
11783	desc->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
11784
11785	if (probe->dofp_func >= strtab->dofs_size) {
11786		dtrace_dof_error(dof, "corrupt probe function");
11787		return (NULL);
11788	}
11789
11790	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11791	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11792
11793	/* APPLE NOTE: Darwin employs size bounded string operation. */
11794	desc->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
11795
11796	if (probe->dofp_name >= strtab->dofs_size) {
11797		dtrace_dof_error(dof, "corrupt probe name");
11798		return (NULL);
11799	}
11800
11801	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11802	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11803
11804	/* APPLE NOTE: Darwin employs size bounded string operation. */
11805	desc->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
11806
11807	return (desc);
11808}
11809
11810static dtrace_difo_t *
11811dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11812    cred_t *cr)
11813{
11814	dtrace_difo_t *dp;
11815	size_t ttl = 0;
11816	dof_difohdr_t *dofd;
11817	uintptr_t daddr = (uintptr_t)dof;
11818	size_t max_size = dtrace_difo_maxsize;
11819	uint_t i;
11820	int l, n;
11821
11822
11823	static const struct {
11824		int section;
11825		int bufoffs;
11826		int lenoffs;
11827		int entsize;
11828		int align;
11829		const char *msg;
11830	} difo[] = {
11831		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11832		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11833		sizeof (dif_instr_t), "multiple DIF sections" },
11834
11835		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11836		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11837		sizeof (uint64_t), "multiple integer tables" },
11838
11839		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11840		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11841		sizeof (char), "multiple string tables" },
11842
11843		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11844		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11845		sizeof (uint_t), "multiple variable tables" },
11846
11847		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
11848	};
11849
11850	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11851		dtrace_dof_error(dof, "invalid DIFO header section");
11852		return (NULL);
11853	}
11854
11855	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11856		dtrace_dof_error(dof, "bad alignment in DIFO header");
11857		return (NULL);
11858	}
11859
11860	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11861	    sec->dofs_size % sizeof (dof_secidx_t)) {
11862		dtrace_dof_error(dof, "bad size in DIFO header");
11863		return (NULL);
11864	}
11865
11866	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11867	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11868
11869	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11870	dp->dtdo_rtype = dofd->dofd_rtype;
11871
11872	for (l = 0; l < n; l++) {
11873		dof_sec_t *subsec;
11874		void **bufp;
11875		uint32_t *lenp;
11876
11877		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11878		    dofd->dofd_links[l])) == NULL)
11879			goto err; /* invalid section link */
11880
11881		if (ttl + subsec->dofs_size > max_size) {
11882			dtrace_dof_error(dof, "exceeds maximum size");
11883			goto err;
11884		}
11885
11886		ttl += subsec->dofs_size;
11887
11888		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11889
11890			if (subsec->dofs_type != (uint32_t)difo[i].section)
11891				continue;
11892
11893			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11894				dtrace_dof_error(dof, "section not loaded");
11895				goto err;
11896			}
11897
11898			if (subsec->dofs_align != (uint32_t)difo[i].align) {
11899				dtrace_dof_error(dof, "bad alignment");
11900				goto err;
11901			}
11902
11903			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11904			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11905
11906			if (*bufp != NULL) {
11907				dtrace_dof_error(dof, difo[i].msg);
11908				goto err;
11909			}
11910
11911			if ((uint32_t)difo[i].entsize != subsec->dofs_entsize) {
11912				dtrace_dof_error(dof, "entry size mismatch");
11913				goto err;
11914			}
11915
11916			if (subsec->dofs_entsize != 0 &&
11917			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11918				dtrace_dof_error(dof, "corrupt entry size");
11919				goto err;
11920			}
11921
11922			*lenp = subsec->dofs_size;
11923			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11924			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11925			    *bufp, subsec->dofs_size);
11926
11927			if (subsec->dofs_entsize != 0)
11928				*lenp /= subsec->dofs_entsize;
11929
11930			break;
11931		}
11932
11933		/*
11934		 * If we encounter a loadable DIFO sub-section that is not
11935		 * known to us, assume this is a broken program and fail.
11936		 */
11937		if (difo[i].section == DOF_SECT_NONE &&
11938		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
11939			dtrace_dof_error(dof, "unrecognized DIFO subsection");
11940			goto err;
11941		}
11942	}
11943
11944	if (dp->dtdo_buf == NULL) {
11945		/*
11946		 * We can't have a DIF object without DIF text.
11947		 */
11948		dtrace_dof_error(dof, "missing DIF text");
11949		goto err;
11950	}
11951
11952	/*
11953	 * Before we validate the DIF object, run through the variable table
11954	 * looking for the strings -- if any of their size are under, we'll set
11955	 * their size to be the system-wide default string size.  Note that
11956	 * this should _not_ happen if the "strsize" option has been set --
11957	 * in this case, the compiler should have set the size to reflect the
11958	 * setting of the option.
11959	 */
11960	for (i = 0; i < dp->dtdo_varlen; i++) {
11961		dtrace_difv_t *v = &dp->dtdo_vartab[i];
11962		dtrace_diftype_t *t = &v->dtdv_type;
11963
11964		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
11965			continue;
11966
11967		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
11968			t->dtdt_size = dtrace_strsize_default;
11969	}
11970
11971	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
11972		goto err;
11973
11974	dtrace_difo_init(dp, vstate);
11975	return (dp);
11976
11977err:
11978	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
11979	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
11980	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
11981	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
11982
11983	kmem_free(dp, sizeof (dtrace_difo_t));
11984	return (NULL);
11985}
11986
11987static dtrace_predicate_t *
11988dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11989    cred_t *cr)
11990{
11991	dtrace_difo_t *dp;
11992
11993	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
11994		return (NULL);
11995
11996	return (dtrace_predicate_create(dp));
11997}
11998
11999static dtrace_actdesc_t *
12000dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12001    cred_t *cr)
12002{
12003	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12004	dof_actdesc_t *desc;
12005	dof_sec_t *difosec;
12006	size_t offs;
12007	uintptr_t daddr = (uintptr_t)dof;
12008	uint64_t arg;
12009	dtrace_actkind_t kind;
12010
12011	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12012		dtrace_dof_error(dof, "invalid action section");
12013		return (NULL);
12014	}
12015
12016	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12017		dtrace_dof_error(dof, "truncated action description");
12018		return (NULL);
12019	}
12020
12021	if (sec->dofs_align != sizeof (uint64_t)) {
12022		dtrace_dof_error(dof, "bad alignment in action description");
12023		return (NULL);
12024	}
12025
12026	if (sec->dofs_size < sec->dofs_entsize) {
12027		dtrace_dof_error(dof, "section entry size exceeds total size");
12028		return (NULL);
12029	}
12030
12031	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12032		dtrace_dof_error(dof, "bad entry size in action description");
12033		return (NULL);
12034	}
12035
12036	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12037		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12038		return (NULL);
12039	}
12040
12041	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12042		desc = (dof_actdesc_t *)(daddr +
12043		    (uintptr_t)sec->dofs_offset + offs);
12044		kind = (dtrace_actkind_t)desc->dofa_kind;
12045
12046		if (DTRACEACT_ISPRINTFLIKE(kind) &&
12047		    (kind != DTRACEACT_PRINTA ||
12048		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12049			dof_sec_t *strtab;
12050			char *str, *fmt;
12051			uint64_t i;
12052
12053			/*
12054			 * printf()-like actions must have a format string.
12055			 */
12056			if ((strtab = dtrace_dof_sect(dof,
12057			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12058				goto err;
12059
12060			str = (char *)((uintptr_t)dof +
12061			    (uintptr_t)strtab->dofs_offset);
12062
12063			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12064				if (str[i] == '\0')
12065					break;
12066			}
12067
12068			if (i >= strtab->dofs_size) {
12069				dtrace_dof_error(dof, "bogus format string");
12070				goto err;
12071			}
12072
12073			if (i == desc->dofa_arg) {
12074				dtrace_dof_error(dof, "empty format string");
12075				goto err;
12076			}
12077
12078			i -= desc->dofa_arg;
12079			fmt = kmem_alloc(i + 1, KM_SLEEP);
12080			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12081			arg = (uint64_t)(uintptr_t)fmt;
12082		} else {
12083			if (kind == DTRACEACT_PRINTA) {
12084				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12085				arg = 0;
12086			} else {
12087				arg = desc->dofa_arg;
12088			}
12089		}
12090
12091		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12092		    desc->dofa_uarg, arg);
12093
12094		if (last != NULL) {
12095			last->dtad_next = act;
12096		} else {
12097			first = act;
12098		}
12099
12100		last = act;
12101
12102		if (desc->dofa_difo == DOF_SECIDX_NONE)
12103			continue;
12104
12105		if ((difosec = dtrace_dof_sect(dof,
12106		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12107			goto err;
12108
12109		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12110
12111		if (act->dtad_difo == NULL)
12112			goto err;
12113	}
12114
12115	ASSERT(first != NULL);
12116	return (first);
12117
12118err:
12119	for (act = first; act != NULL; act = next) {
12120		next = act->dtad_next;
12121		dtrace_actdesc_release(act, vstate);
12122	}
12123
12124	return (NULL);
12125}
12126
12127static dtrace_ecbdesc_t *
12128dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12129    cred_t *cr)
12130{
12131	dtrace_ecbdesc_t *ep;
12132	dof_ecbdesc_t *ecb;
12133	dtrace_probedesc_t *desc;
12134	dtrace_predicate_t *pred = NULL;
12135
12136	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12137		dtrace_dof_error(dof, "truncated ECB description");
12138		return (NULL);
12139	}
12140
12141	if (sec->dofs_align != sizeof (uint64_t)) {
12142		dtrace_dof_error(dof, "bad alignment in ECB description");
12143		return (NULL);
12144	}
12145
12146	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12147	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12148
12149	if (sec == NULL)
12150		return (NULL);
12151
12152	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12153	ep->dted_uarg = ecb->dofe_uarg;
12154	desc = &ep->dted_probe;
12155
12156	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12157		goto err;
12158
12159	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12160		if ((sec = dtrace_dof_sect(dof,
12161		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12162			goto err;
12163
12164		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12165			goto err;
12166
12167		ep->dted_pred.dtpdd_predicate = pred;
12168	}
12169
12170	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12171		if ((sec = dtrace_dof_sect(dof,
12172		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12173			goto err;
12174
12175		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12176
12177		if (ep->dted_action == NULL)
12178			goto err;
12179	}
12180
12181	return (ep);
12182
12183err:
12184	if (pred != NULL)
12185		dtrace_predicate_release(pred, vstate);
12186	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12187	return (NULL);
12188}
12189
12190/*
12191 * APPLE NOTE: dyld handles dof relocation.
12192 * Darwin does not need dtrace_dof_relocate()
12193 */
12194
12195/*
12196 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12197 * header:  it should be at the front of a memory region that is at least
12198 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12199 * size.  It need not be validated in any other way.
12200 */
12201static int
12202dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12203    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12204{
12205#pragma unused(ubase) /* __APPLE__ */
12206	uint64_t len = dof->dofh_loadsz, seclen;
12207	uintptr_t daddr = (uintptr_t)dof;
12208	dtrace_ecbdesc_t *ep;
12209	dtrace_enabling_t *enab;
12210	uint_t i;
12211
12212	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
12213	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12214
12215	/*
12216	 * Check the DOF header identification bytes.  In addition to checking
12217	 * valid settings, we also verify that unused bits/bytes are zeroed so
12218	 * we can use them later without fear of regressing existing binaries.
12219	 */
12220	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12221	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12222		dtrace_dof_error(dof, "DOF magic string mismatch");
12223		return (-1);
12224	}
12225
12226	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12227	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12228		dtrace_dof_error(dof, "DOF has invalid data model");
12229		return (-1);
12230	}
12231
12232	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12233		dtrace_dof_error(dof, "DOF encoding mismatch");
12234		return (-1);
12235	}
12236
12237	/*
12238	 * APPLE NOTE: Darwin only supports DOF_VERSION_3 for now.
12239	 */
12240	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_3) {
12241		dtrace_dof_error(dof, "DOF version mismatch");
12242		return (-1);
12243	}
12244
12245	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12246		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12247		return (-1);
12248	}
12249
12250	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12251		dtrace_dof_error(dof, "DOF uses too many integer registers");
12252		return (-1);
12253	}
12254
12255	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12256		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12257		return (-1);
12258	}
12259
12260	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12261		if (dof->dofh_ident[i] != 0) {
12262			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12263			return (-1);
12264		}
12265	}
12266
12267	if (dof->dofh_flags & ~DOF_FL_VALID) {
12268		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12269		return (-1);
12270	}
12271
12272	if (dof->dofh_secsize == 0) {
12273		dtrace_dof_error(dof, "zero section header size");
12274		return (-1);
12275	}
12276
12277	/*
12278	 * Check that the section headers don't exceed the amount of DOF
12279	 * data.  Note that we cast the section size and number of sections
12280	 * to uint64_t's to prevent possible overflow in the multiplication.
12281	 */
12282	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12283
12284	if (dof->dofh_secoff > len || seclen > len ||
12285	    dof->dofh_secoff + seclen > len) {
12286		dtrace_dof_error(dof, "truncated section headers");
12287		return (-1);
12288	}
12289
12290	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12291		dtrace_dof_error(dof, "misaligned section headers");
12292		return (-1);
12293	}
12294
12295	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12296		dtrace_dof_error(dof, "misaligned section size");
12297		return (-1);
12298	}
12299
12300	/*
12301	 * Take an initial pass through the section headers to be sure that
12302	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12303	 * set, do not permit sections relating to providers, probes, or args.
12304	 */
12305	for (i = 0; i < dof->dofh_secnum; i++) {
12306		dof_sec_t *sec = (dof_sec_t *)(daddr +
12307		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12308
12309		if (noprobes) {
12310			switch (sec->dofs_type) {
12311			case DOF_SECT_PROVIDER:
12312			case DOF_SECT_PROBES:
12313			case DOF_SECT_PRARGS:
12314			case DOF_SECT_PROFFS:
12315				dtrace_dof_error(dof, "illegal sections "
12316				    "for enabling");
12317				return (-1);
12318			}
12319		}
12320
12321		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12322			continue; /* just ignore non-loadable sections */
12323
12324		if (sec->dofs_align & (sec->dofs_align - 1)) {
12325			dtrace_dof_error(dof, "bad section alignment");
12326			return (-1);
12327		}
12328
12329		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12330			dtrace_dof_error(dof, "misaligned section");
12331			return (-1);
12332		}
12333
12334		if (sec->dofs_offset > len || sec->dofs_size > len ||
12335		    sec->dofs_offset + sec->dofs_size > len) {
12336			dtrace_dof_error(dof, "corrupt section header");
12337			return (-1);
12338		}
12339
12340		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12341		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12342			dtrace_dof_error(dof, "non-terminating string table");
12343			return (-1);
12344		}
12345	}
12346
12347	/*
12348	 * APPLE NOTE: We have no further relocation to perform.
12349	 * All dof values are relative offsets.
12350	 */
12351
12352	if ((enab = *enabp) == NULL)
12353		enab = *enabp = dtrace_enabling_create(vstate);
12354
12355	for (i = 0; i < dof->dofh_secnum; i++) {
12356		dof_sec_t *sec = (dof_sec_t *)(daddr +
12357		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12358
12359		if (sec->dofs_type != DOF_SECT_ECBDESC)
12360			continue;
12361
12362		/*
12363		 * APPLE NOTE: Defend against gcc 4.0 botch on x86.
12364		 * not all paths out of inlined dtrace_dof_ecbdesc
12365		 * are checked for the NULL return value.
12366		 * Check for NULL explicitly here.
12367		*/
12368		ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr);
12369		if (ep == NULL) {
12370			dtrace_enabling_destroy(enab);
12371			*enabp = NULL;
12372			return (-1);
12373		}
12374
12375		dtrace_enabling_add(enab, ep);
12376	}
12377
12378	return (0);
12379}
12380
12381/*
12382 * Process DOF for any options.  This routine assumes that the DOF has been
12383 * at least processed by dtrace_dof_slurp().
12384 */
12385static int
12386dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12387{
12388	uint_t i;
12389	int rval;
12390	uint32_t entsize;
12391	size_t offs;
12392	dof_optdesc_t *desc;
12393
12394	for (i = 0; i < dof->dofh_secnum; i++) {
12395		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12396		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12397
12398		if (sec->dofs_type != DOF_SECT_OPTDESC)
12399			continue;
12400
12401		if (sec->dofs_align != sizeof (uint64_t)) {
12402			dtrace_dof_error(dof, "bad alignment in "
12403			    "option description");
12404			return (EINVAL);
12405		}
12406
12407		if ((entsize = sec->dofs_entsize) == 0) {
12408			dtrace_dof_error(dof, "zeroed option entry size");
12409			return (EINVAL);
12410		}
12411
12412		if (entsize < sizeof (dof_optdesc_t)) {
12413			dtrace_dof_error(dof, "bad option entry size");
12414			return (EINVAL);
12415		}
12416
12417		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12418			desc = (dof_optdesc_t *)((uintptr_t)dof +
12419			    (uintptr_t)sec->dofs_offset + offs);
12420
12421			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12422				dtrace_dof_error(dof, "non-zero option string");
12423				return (EINVAL);
12424			}
12425
12426			if (desc->dofo_value == (uint64_t)DTRACEOPT_UNSET) {
12427				dtrace_dof_error(dof, "unset option");
12428				return (EINVAL);
12429			}
12430
12431			if ((rval = dtrace_state_option(state,
12432			    desc->dofo_option, desc->dofo_value)) != 0) {
12433				dtrace_dof_error(dof, "rejected option");
12434				return (rval);
12435			}
12436		}
12437	}
12438
12439	return (0);
12440}
12441
12442/*
12443 * DTrace Consumer State Functions
12444 */
12445static int
12446dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12447{
12448	size_t hashsize, maxper, min_size, chunksize = dstate->dtds_chunksize;
12449	void *base;
12450	uintptr_t limit;
12451	dtrace_dynvar_t *dvar, *next, *start;
12452	size_t i;
12453
12454	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
12455	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12456
12457	bzero(dstate, sizeof (dtrace_dstate_t));
12458
12459	if ((dstate->dtds_chunksize = chunksize) == 0)
12460		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12461
12462	if (size < (min_size = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12463		size = min_size;
12464
12465	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12466		return (ENOMEM);
12467
12468	dstate->dtds_size = size;
12469	dstate->dtds_base = base;
12470	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12471	bzero(dstate->dtds_percpu, (int)NCPU * sizeof (dtrace_dstate_percpu_t));
12472
12473	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12474
12475	if (hashsize != 1 && (hashsize & 1))
12476		hashsize--;
12477
12478	dstate->dtds_hashsize = hashsize;
12479	dstate->dtds_hash = dstate->dtds_base;
12480
12481	/*
12482	 * Set all of our hash buckets to point to the single sink, and (if
12483	 * it hasn't already been set), set the sink's hash value to be the
12484	 * sink sentinel value.  The sink is needed for dynamic variable
12485	 * lookups to know that they have iterated over an entire, valid hash
12486	 * chain.
12487	 */
12488	for (i = 0; i < hashsize; i++)
12489		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12490
12491	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12492		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12493
12494	/*
12495	 * Determine number of active CPUs.  Divide free list evenly among
12496	 * active CPUs.
12497	 */
12498	start = (dtrace_dynvar_t *)
12499	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12500	limit = (uintptr_t)base + size;
12501
12502	maxper = (limit - (uintptr_t)start) / (int)NCPU;
12503	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12504
12505	for (i = 0; i < NCPU; i++) {
12506		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12507
12508		/*
12509		 * If we don't even have enough chunks to make it once through
12510		 * NCPUs, we're just going to allocate everything to the first
12511		 * CPU.  And if we're on the last CPU, we're going to allocate
12512		 * whatever is left over.  In either case, we set the limit to
12513		 * be the limit of the dynamic variable space.
12514		 */
12515		if (maxper == 0 || i == NCPU - 1) {
12516			limit = (uintptr_t)base + size;
12517			start = NULL;
12518		} else {
12519			limit = (uintptr_t)start + maxper;
12520			start = (dtrace_dynvar_t *)limit;
12521		}
12522
12523		ASSERT(limit <= (uintptr_t)base + size);
12524
12525		for (;;) {
12526			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12527			    dstate->dtds_chunksize);
12528
12529			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12530				break;
12531
12532			dvar->dtdv_next = next;
12533			dvar = next;
12534		}
12535
12536		if (maxper == 0)
12537			break;
12538	}
12539
12540	return (0);
12541}
12542
12543static void
12544dtrace_dstate_fini(dtrace_dstate_t *dstate)
12545{
12546	lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
12547
12548	if (dstate->dtds_base == NULL)
12549		return;
12550
12551	kmem_free(dstate->dtds_base, dstate->dtds_size);
12552	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12553}
12554
12555static void
12556dtrace_vstate_fini(dtrace_vstate_t *vstate)
12557{
12558	/*
12559	 * Logical XOR, where are you?
12560	 */
12561	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12562
12563	if (vstate->dtvs_nglobals > 0) {
12564		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12565		    sizeof (dtrace_statvar_t *));
12566	}
12567
12568	if (vstate->dtvs_ntlocals > 0) {
12569		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12570		    sizeof (dtrace_difv_t));
12571	}
12572
12573	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12574
12575	if (vstate->dtvs_nlocals > 0) {
12576		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12577		    sizeof (dtrace_statvar_t *));
12578	}
12579}
12580
12581static void
12582dtrace_state_clean(dtrace_state_t *state)
12583{
12584	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12585		return;
12586
12587	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12588	dtrace_speculation_clean(state);
12589}
12590
12591static void
12592dtrace_state_deadman(dtrace_state_t *state)
12593{
12594	hrtime_t now;
12595
12596	dtrace_sync();
12597
12598	now = dtrace_gethrtime();
12599
12600	if (state != dtrace_anon.dta_state &&
12601	    now - state->dts_laststatus >= dtrace_deadman_user)
12602		return;
12603
12604	/*
12605	 * We must be sure that dts_alive never appears to be less than the
12606	 * value upon entry to dtrace_state_deadman(), and because we lack a
12607	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12608	 * store INT64_MAX to it, followed by a memory barrier, followed by
12609	 * the new value.  This assures that dts_alive never appears to be
12610	 * less than its true value, regardless of the order in which the
12611	 * stores to the underlying storage are issued.
12612	 */
12613	state->dts_alive = INT64_MAX;
12614	dtrace_membar_producer();
12615	state->dts_alive = now;
12616}
12617
12618static int
12619dtrace_state_create(dev_t *devp, cred_t *cr, dtrace_state_t **new_state)
12620{
12621	minor_t minor;
12622	major_t major;
12623	char c[30];
12624	dtrace_state_t *state;
12625	dtrace_optval_t *opt;
12626	int bufsize = (int)NCPU * sizeof (dtrace_buffer_t), i;
12627
12628	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
12629	lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
12630
12631	/* Cause restart */
12632	*new_state = NULL;
12633
12634	/*
12635	 * Darwin's DEVFS layer acquired the minor number for this "device" when it called
12636	 * dtrace_devfs_clone_func(). At that time, dtrace_devfs_clone_func() proposed a minor number
12637	 * (next unused according to vmem_alloc()) and then immediately put the number back in play
12638	 * (by calling vmem_free()). Now that minor number is being used for an open, so committing it
12639	 * to use. The following vmem_alloc() must deliver that same minor number. FIXME.
12640	 */
12641
12642	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12643	    VM_BESTFIT | VM_SLEEP);
12644
12645	if (NULL != devp) {
12646    	ASSERT(getminor(*devp) == minor);
12647		if (getminor(*devp) != minor) {
12648			printf("dtrace_open: couldn't re-acquire vended minor number %d. Instead got %d\n",
12649					getminor(*devp), minor);
12650			vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12651			return (ERESTART);	/* can't reacquire */
12652		}
12653	} else {
12654        /* NULL==devp iff "Anonymous state" (see dtrace_anon_property),
12655		 * so just vend the minor device number here de novo since no "open" has occurred. */
12656	}
12657
12658	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12659		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12660		return (EAGAIN);	/* temporary resource shortage */
12661	}
12662
12663	state = ddi_get_soft_state(dtrace_softstate, minor);
12664	state->dts_epid = DTRACE_EPIDNONE + 1;
12665
12666	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
12667	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12668	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12669
12670	if (devp != NULL) {
12671		major = getemajor(*devp);
12672	} else {
12673		major = ddi_driver_major(dtrace_devi);
12674	}
12675
12676	state->dts_dev = makedevice(major, minor);
12677
12678	if (devp != NULL)
12679		*devp = state->dts_dev;
12680
12681	/*
12682	 * We allocate NCPU buffers.  On the one hand, this can be quite
12683	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12684	 * other hand, it saves an additional memory reference in the probe
12685	 * path.
12686	 */
12687	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12688	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12689	state->dts_cleaner = CYCLIC_NONE;
12690	state->dts_deadman = CYCLIC_NONE;
12691	state->dts_vstate.dtvs_state = state;
12692
12693	for (i = 0; i < DTRACEOPT_MAX; i++)
12694		state->dts_options[i] = DTRACEOPT_UNSET;
12695
12696	/*
12697	 * Set the default options.
12698	 */
12699	opt = state->dts_options;
12700	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12701	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12702	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12703	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12704	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12705	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12706	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12707	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12708	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12709	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12710	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12711	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12712	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12713	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12714
12715	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12716
12717	/*
12718	 * Depending on the user credentials, we set flag bits which alter probe
12719	 * visibility or the amount of destructiveness allowed.  In the case of
12720	 * actual anonymous tracing, or the possession of all privileges, all of
12721	 * the normal checks are bypassed.
12722	 */
12723	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12724		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12725		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12726	} else {
12727		/*
12728		 * Set up the credentials for this instantiation.  We take a
12729		 * hold on the credential to prevent it from disappearing on
12730		 * us; this in turn prevents the zone_t referenced by this
12731		 * credential from disappearing.  This means that we can
12732		 * examine the credential and the zone from probe context.
12733		 */
12734		crhold(cr);
12735		state->dts_cred.dcr_cred = cr;
12736
12737		/*
12738		 * CRA_PROC means "we have *some* privilege for dtrace" and
12739		 * unlocks the use of variables like pid, zonename, etc.
12740		 */
12741		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12742		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12743			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12744		}
12745
12746		/*
12747		 * dtrace_user allows use of syscall and profile providers.
12748		 * If the user also has proc_owner and/or proc_zone, we
12749		 * extend the scope to include additional visibility and
12750		 * destructive power.
12751		 */
12752		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12753			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12754				state->dts_cred.dcr_visible |=
12755				    DTRACE_CRV_ALLPROC;
12756
12757				state->dts_cred.dcr_action |=
12758				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12759			}
12760
12761			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12762				state->dts_cred.dcr_visible |=
12763				    DTRACE_CRV_ALLZONE;
12764
12765				state->dts_cred.dcr_action |=
12766				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12767			}
12768
12769			/*
12770			 * If we have all privs in whatever zone this is,
12771			 * we can do destructive things to processes which
12772			 * have altered credentials.
12773			 *
12774			 * APPLE NOTE: Darwin doesn't do zones.
12775			 * Behave as if zone always has destructive privs.
12776			 */
12777
12778			state->dts_cred.dcr_action |=
12779				DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12780		}
12781
12782		/*
12783		 * Holding the dtrace_kernel privilege also implies that
12784		 * the user has the dtrace_user privilege from a visibility
12785		 * perspective.  But without further privileges, some
12786		 * destructive actions are not available.
12787		 */
12788		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12789			/*
12790			 * Make all probes in all zones visible.  However,
12791			 * this doesn't mean that all actions become available
12792			 * to all zones.
12793			 */
12794			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12795			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12796
12797			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12798			    DTRACE_CRA_PROC;
12799			/*
12800			 * Holding proc_owner means that destructive actions
12801			 * for *this* zone are allowed.
12802			 */
12803			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12804				state->dts_cred.dcr_action |=
12805				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12806
12807			/*
12808			 * Holding proc_zone means that destructive actions
12809			 * for this user/group ID in all zones is allowed.
12810			 */
12811			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12812				state->dts_cred.dcr_action |=
12813				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12814
12815			/*
12816			 * If we have all privs in whatever zone this is,
12817			 * we can do destructive things to processes which
12818			 * have altered credentials.
12819			 *
12820			 * APPLE NOTE: Darwin doesn't do zones.
12821			 * Behave as if zone always has destructive privs.
12822			 */
12823			state->dts_cred.dcr_action |=
12824				DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12825		}
12826
12827		/*
12828		 * Holding the dtrace_proc privilege gives control over fasttrap
12829		 * and pid providers.  We need to grant wider destructive
12830		 * privileges in the event that the user has proc_owner and/or
12831		 * proc_zone.
12832		 */
12833		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12834			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12835				state->dts_cred.dcr_action |=
12836				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12837
12838			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12839				state->dts_cred.dcr_action |=
12840				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12841		}
12842	}
12843
12844	*new_state = state;
12845	return(0);  /* Success */
12846}
12847
12848static int
12849dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
12850{
12851	dtrace_optval_t *opt = state->dts_options, size;
12852	processorid_t cpu = 0;
12853	int flags = 0, rval;
12854
12855	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
12856	lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
12857	ASSERT(which < DTRACEOPT_MAX);
12858	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
12859	    (state == dtrace_anon.dta_state &&
12860	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
12861
12862	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
12863		return (0);
12864
12865	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
12866		cpu = opt[DTRACEOPT_CPU];
12867
12868	if (which == DTRACEOPT_SPECSIZE)
12869		flags |= DTRACEBUF_NOSWITCH;
12870
12871	if (which == DTRACEOPT_BUFSIZE) {
12872		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
12873			flags |= DTRACEBUF_RING;
12874
12875		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
12876			flags |= DTRACEBUF_FILL;
12877
12878		if (state != dtrace_anon.dta_state ||
12879		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12880			flags |= DTRACEBUF_INACTIVE;
12881	}
12882
12883	for (size = opt[which]; (size_t)size >= sizeof (uint64_t); size >>= 1) {
12884		/*
12885		 * The size must be 8-byte aligned.  If the size is not 8-byte
12886		 * aligned, drop it down by the difference.
12887		 */
12888		if (size & (sizeof (uint64_t) - 1))
12889			size -= size & (sizeof (uint64_t) - 1);
12890
12891		if (size < state->dts_reserve) {
12892			/*
12893			 * Buffers always must be large enough to accommodate
12894			 * their prereserved space.  We return E2BIG instead
12895			 * of ENOMEM in this case to allow for user-level
12896			 * software to differentiate the cases.
12897			 */
12898			return (E2BIG);
12899		}
12900
12901		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
12902
12903		if (rval != ENOMEM) {
12904			opt[which] = size;
12905			return (rval);
12906		}
12907
12908		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12909			return (rval);
12910	}
12911
12912	return (ENOMEM);
12913}
12914
12915static int
12916dtrace_state_buffers(dtrace_state_t *state)
12917{
12918	dtrace_speculation_t *spec = state->dts_speculations;
12919	int rval, i;
12920
12921	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
12922	    DTRACEOPT_BUFSIZE)) != 0)
12923		return (rval);
12924
12925	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
12926	    DTRACEOPT_AGGSIZE)) != 0)
12927		return (rval);
12928
12929	for (i = 0; i < state->dts_nspeculations; i++) {
12930		if ((rval = dtrace_state_buffer(state,
12931		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
12932			return (rval);
12933	}
12934
12935	return (0);
12936}
12937
12938static void
12939dtrace_state_prereserve(dtrace_state_t *state)
12940{
12941	dtrace_ecb_t *ecb;
12942	dtrace_probe_t *probe;
12943
12944	state->dts_reserve = 0;
12945
12946	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
12947		return;
12948
12949	/*
12950	 * If our buffer policy is a "fill" buffer policy, we need to set the
12951	 * prereserved space to be the space required by the END probes.
12952	 */
12953	probe = dtrace_probes[dtrace_probeid_end - 1];
12954	ASSERT(probe != NULL);
12955
12956	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
12957		if (ecb->dte_state != state)
12958			continue;
12959
12960		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
12961	}
12962}
12963
12964static int
12965dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
12966{
12967	dtrace_optval_t *opt = state->dts_options, sz, nspec;
12968	dtrace_speculation_t *spec;
12969	dtrace_buffer_t *buf;
12970	cyc_handler_t hdlr;
12971	cyc_time_t when;
12972	int rval = 0, i, bufsize = (int)NCPU * sizeof (dtrace_buffer_t);
12973	dtrace_icookie_t cookie;
12974
12975	lck_mtx_lock(&cpu_lock);
12976	lck_mtx_lock(&dtrace_lock);
12977
12978	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
12979		rval = EBUSY;
12980		goto out;
12981	}
12982
12983	/*
12984	 * Before we can perform any checks, we must prime all of the
12985	 * retained enablings that correspond to this state.
12986	 */
12987	dtrace_enabling_prime(state);
12988
12989	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
12990		rval = EACCES;
12991		goto out;
12992	}
12993
12994	dtrace_state_prereserve(state);
12995
12996	/*
12997	 * Now we want to do is try to allocate our speculations.
12998	 * We do not automatically resize the number of speculations; if
12999	 * this fails, we will fail the operation.
13000	 */
13001	nspec = opt[DTRACEOPT_NSPEC];
13002	ASSERT(nspec != DTRACEOPT_UNSET);
13003
13004	if (nspec > INT_MAX) {
13005		rval = ENOMEM;
13006		goto out;
13007	}
13008
13009	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13010
13011	if (spec == NULL) {
13012		rval = ENOMEM;
13013		goto out;
13014	}
13015
13016	state->dts_speculations = spec;
13017	state->dts_nspeculations = (int)nspec;
13018
13019	for (i = 0; i < nspec; i++) {
13020		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13021			rval = ENOMEM;
13022			goto err;
13023		}
13024
13025		spec[i].dtsp_buffer = buf;
13026	}
13027
13028	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13029		if (dtrace_anon.dta_state == NULL) {
13030			rval = ENOENT;
13031			goto out;
13032		}
13033
13034		if (state->dts_necbs != 0) {
13035			rval = EALREADY;
13036			goto out;
13037		}
13038
13039		state->dts_anon = dtrace_anon_grab();
13040		ASSERT(state->dts_anon != NULL);
13041		state = state->dts_anon;
13042
13043		/*
13044		 * We want "grabanon" to be set in the grabbed state, so we'll
13045		 * copy that option value from the grabbing state into the
13046		 * grabbed state.
13047		 */
13048		state->dts_options[DTRACEOPT_GRABANON] =
13049		    opt[DTRACEOPT_GRABANON];
13050
13051		*cpu = dtrace_anon.dta_beganon;
13052
13053		/*
13054		 * If the anonymous state is active (as it almost certainly
13055		 * is if the anonymous enabling ultimately matched anything),
13056		 * we don't allow any further option processing -- but we
13057		 * don't return failure.
13058		 */
13059		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13060			goto out;
13061	}
13062
13063	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13064	    opt[DTRACEOPT_AGGSIZE] != 0) {
13065		if (state->dts_aggregations == NULL) {
13066			/*
13067			 * We're not going to create an aggregation buffer
13068			 * because we don't have any ECBs that contain
13069			 * aggregations -- set this option to 0.
13070			 */
13071			opt[DTRACEOPT_AGGSIZE] = 0;
13072		} else {
13073			/*
13074			 * If we have an aggregation buffer, we must also have
13075			 * a buffer to use as scratch.
13076			 */
13077			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13078			  (size_t)opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13079				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13080			}
13081		}
13082	}
13083
13084	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13085	    opt[DTRACEOPT_SPECSIZE] != 0) {
13086		if (!state->dts_speculates) {
13087			/*
13088			 * We're not going to create speculation buffers
13089			 * because we don't have any ECBs that actually
13090			 * speculate -- set the speculation size to 0.
13091			 */
13092			opt[DTRACEOPT_SPECSIZE] = 0;
13093		}
13094	}
13095
13096	/*
13097	 * The bare minimum size for any buffer that we're actually going to
13098	 * do anything to is sizeof (uint64_t).
13099	 */
13100	sz = sizeof (uint64_t);
13101
13102	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13103	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13104	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13105		/*
13106		 * A buffer size has been explicitly set to 0 (or to a size
13107		 * that will be adjusted to 0) and we need the space -- we
13108		 * need to return failure.  We return ENOSPC to differentiate
13109		 * it from failing to allocate a buffer due to failure to meet
13110		 * the reserve (for which we return E2BIG).
13111		 */
13112		rval = ENOSPC;
13113		goto out;
13114	}
13115
13116	if ((rval = dtrace_state_buffers(state)) != 0)
13117		goto err;
13118
13119	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13120		sz = dtrace_dstate_defsize;
13121
13122	do {
13123		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13124
13125		if (rval == 0)
13126			break;
13127
13128		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13129			goto err;
13130	} while (sz >>= 1);
13131
13132	opt[DTRACEOPT_DYNVARSIZE] = sz;
13133
13134	if (rval != 0)
13135		goto err;
13136
13137	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13138		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13139
13140	if (opt[DTRACEOPT_CLEANRATE] == 0)
13141		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13142
13143	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13144		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13145
13146	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13147		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13148
13149	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13150	hdlr.cyh_arg = state;
13151	hdlr.cyh_level = CY_LOW_LEVEL;
13152
13153	when.cyt_when = 0;
13154	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13155
13156	state->dts_cleaner = cyclic_add(&hdlr, &when);
13157
13158	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13159	hdlr.cyh_arg = state;
13160	hdlr.cyh_level = CY_LOW_LEVEL;
13161
13162	when.cyt_when = 0;
13163	when.cyt_interval = dtrace_deadman_interval;
13164
13165	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13166	state->dts_deadman = cyclic_add(&hdlr, &when);
13167
13168	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13169
13170	/*
13171	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13172	 * interrupts here both to record the CPU on which we fired the BEGIN
13173	 * probe (the data from this CPU will be processed first at user
13174	 * level) and to manually activate the buffer for this CPU.
13175	 */
13176	cookie = dtrace_interrupt_disable();
13177	*cpu = CPU->cpu_id;
13178	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13179	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13180
13181	dtrace_probe(dtrace_probeid_begin,
13182	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13183	dtrace_interrupt_enable(cookie);
13184	/*
13185	 * We may have had an exit action from a BEGIN probe; only change our
13186	 * state to ACTIVE if we're still in WARMUP.
13187	 */
13188	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13189	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13190
13191	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13192		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13193
13194	/*
13195	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13196	 * want each CPU to transition its principal buffer out of the
13197	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13198	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13199	 * atomically transition from processing none of a state's ECBs to
13200	 * processing all of them.
13201	 */
13202	dtrace_xcall(DTRACE_CPUALL,
13203	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13204	goto out;
13205
13206err:
13207	dtrace_buffer_free(state->dts_buffer);
13208	dtrace_buffer_free(state->dts_aggbuffer);
13209
13210	if ((nspec = state->dts_nspeculations) == 0) {
13211		ASSERT(state->dts_speculations == NULL);
13212		goto out;
13213	}
13214
13215	spec = state->dts_speculations;
13216	ASSERT(spec != NULL);
13217
13218	for (i = 0; i < state->dts_nspeculations; i++) {
13219		if ((buf = spec[i].dtsp_buffer) == NULL)
13220			break;
13221
13222		dtrace_buffer_free(buf);
13223		kmem_free(buf, bufsize);
13224	}
13225
13226	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13227	state->dts_nspeculations = 0;
13228	state->dts_speculations = NULL;
13229
13230out:
13231	lck_mtx_unlock(&dtrace_lock);
13232	lck_mtx_unlock(&cpu_lock);
13233
13234	return (rval);
13235}
13236
13237static int
13238dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13239{
13240	dtrace_icookie_t cookie;
13241
13242	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
13243
13244	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13245	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13246		return (EINVAL);
13247
13248	/*
13249	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13250	 * to be sure that every CPU has seen it.  See below for the details
13251	 * on why this is done.
13252	 */
13253	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13254	dtrace_sync();
13255
13256	/*
13257	 * By this point, it is impossible for any CPU to be still processing
13258	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13259	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13260	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13261	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13262	 * iff we're in the END probe.
13263	 */
13264	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13265	dtrace_sync();
13266	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13267
13268	/*
13269	 * Finally, we can release the reserve and call the END probe.  We
13270	 * disable interrupts across calling the END probe to allow us to
13271	 * return the CPU on which we actually called the END probe.  This
13272	 * allows user-land to be sure that this CPU's principal buffer is
13273	 * processed last.
13274	 */
13275	state->dts_reserve = 0;
13276
13277	cookie = dtrace_interrupt_disable();
13278	*cpu = CPU->cpu_id;
13279	dtrace_probe(dtrace_probeid_end,
13280	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13281	dtrace_interrupt_enable(cookie);
13282
13283	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13284	dtrace_sync();
13285
13286	return (0);
13287}
13288
13289static int
13290dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13291    dtrace_optval_t val)
13292{
13293	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
13294
13295	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13296		return (EBUSY);
13297
13298	if (option >= DTRACEOPT_MAX)
13299		return (EINVAL);
13300
13301	if (option != DTRACEOPT_CPU && val < 0)
13302		return (EINVAL);
13303
13304	switch (option) {
13305	case DTRACEOPT_DESTRUCTIVE:
13306		/*
13307		 * Prevent consumers from enabling destructive actions if DTrace
13308		 * is running in a restricted environment, or if actions are
13309		 * disallowed.
13310		 */
13311		if (dtrace_is_restricted() || dtrace_destructive_disallow)
13312			return (EACCES);
13313
13314		state->dts_cred.dcr_destructive = 1;
13315		break;
13316
13317	case DTRACEOPT_BUFSIZE:
13318	case DTRACEOPT_DYNVARSIZE:
13319	case DTRACEOPT_AGGSIZE:
13320	case DTRACEOPT_SPECSIZE:
13321	case DTRACEOPT_STRSIZE:
13322		if (val < 0)
13323			return (EINVAL);
13324
13325		if (val >= LONG_MAX) {
13326			/*
13327			 * If this is an otherwise negative value, set it to
13328			 * the highest multiple of 128m less than LONG_MAX.
13329			 * Technically, we're adjusting the size without
13330			 * regard to the buffer resizing policy, but in fact,
13331			 * this has no effect -- if we set the buffer size to
13332			 * ~LONG_MAX and the buffer policy is ultimately set to
13333			 * be "manual", the buffer allocation is guaranteed to
13334			 * fail, if only because the allocation requires two
13335			 * buffers.  (We set the the size to the highest
13336			 * multiple of 128m because it ensures that the size
13337			 * will remain a multiple of a megabyte when
13338			 * repeatedly halved -- all the way down to 15m.)
13339			 */
13340			val = LONG_MAX - (1 << 27) + 1;
13341		}
13342	}
13343
13344	state->dts_options[option] = val;
13345
13346	return (0);
13347}
13348
13349static void
13350dtrace_state_destroy(dtrace_state_t *state)
13351{
13352	dtrace_ecb_t *ecb;
13353	dtrace_vstate_t *vstate = &state->dts_vstate;
13354	minor_t minor = getminor(state->dts_dev);
13355	int i, bufsize = (int)NCPU * sizeof (dtrace_buffer_t);
13356	dtrace_speculation_t *spec = state->dts_speculations;
13357	int nspec = state->dts_nspeculations;
13358	uint32_t match;
13359
13360	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
13361	lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
13362
13363	/*
13364	 * First, retract any retained enablings for this state.
13365	 */
13366	dtrace_enabling_retract(state);
13367	ASSERT(state->dts_nretained == 0);
13368
13369	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13370	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13371		/*
13372		 * We have managed to come into dtrace_state_destroy() on a
13373		 * hot enabling -- almost certainly because of a disorderly
13374		 * shutdown of a consumer.  (That is, a consumer that is
13375		 * exiting without having called dtrace_stop().) In this case,
13376		 * we're going to set our activity to be KILLED, and then
13377		 * issue a sync to be sure that everyone is out of probe
13378		 * context before we start blowing away ECBs.
13379		 */
13380		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13381		dtrace_sync();
13382	}
13383
13384	/*
13385	 * Release the credential hold we took in dtrace_state_create().
13386	 */
13387	if (state->dts_cred.dcr_cred != NULL)
13388		crfree(state->dts_cred.dcr_cred);
13389
13390	/*
13391	 * Now we can safely disable and destroy any enabled probes.  Because
13392	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13393	 * (especially if they're all enabled), we take two passes through the
13394	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13395	 * in the second we disable whatever is left over.
13396	 */
13397	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13398		for (i = 0; i < state->dts_necbs; i++) {
13399			if ((ecb = state->dts_ecbs[i]) == NULL)
13400				continue;
13401
13402			if (match && ecb->dte_probe != NULL) {
13403				dtrace_probe_t *probe = ecb->dte_probe;
13404				dtrace_provider_t *prov = probe->dtpr_provider;
13405
13406				if (!(prov->dtpv_priv.dtpp_flags & match))
13407					continue;
13408			}
13409
13410			dtrace_ecb_disable(ecb);
13411			dtrace_ecb_destroy(ecb);
13412		}
13413
13414		if (!match)
13415			break;
13416	}
13417
13418	/*
13419	 * Before we free the buffers, perform one more sync to assure that
13420	 * every CPU is out of probe context.
13421	 */
13422	dtrace_sync();
13423
13424	dtrace_buffer_free(state->dts_buffer);
13425	dtrace_buffer_free(state->dts_aggbuffer);
13426
13427	for (i = 0; i < nspec; i++)
13428		dtrace_buffer_free(spec[i].dtsp_buffer);
13429
13430	if (state->dts_cleaner != CYCLIC_NONE)
13431		cyclic_remove(state->dts_cleaner);
13432
13433	if (state->dts_deadman != CYCLIC_NONE)
13434		cyclic_remove(state->dts_deadman);
13435
13436	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13437	dtrace_vstate_fini(vstate);
13438	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13439
13440	if (state->dts_aggregations != NULL) {
13441#if DEBUG
13442		for (i = 0; i < state->dts_naggregations; i++)
13443			ASSERT(state->dts_aggregations[i] == NULL);
13444#endif
13445		ASSERT(state->dts_naggregations > 0);
13446		kmem_free(state->dts_aggregations,
13447		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13448	}
13449
13450	kmem_free(state->dts_buffer, bufsize);
13451	kmem_free(state->dts_aggbuffer, bufsize);
13452
13453	for (i = 0; i < nspec; i++)
13454		kmem_free(spec[i].dtsp_buffer, bufsize);
13455
13456	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13457
13458	dtrace_format_destroy(state);
13459
13460	vmem_destroy(state->dts_aggid_arena);
13461	ddi_soft_state_free(dtrace_softstate, minor);
13462	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13463}
13464
13465/*
13466 * DTrace Anonymous Enabling Functions
13467 */
13468static dtrace_state_t *
13469dtrace_anon_grab(void)
13470{
13471	dtrace_state_t *state;
13472
13473	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
13474
13475	if ((state = dtrace_anon.dta_state) == NULL) {
13476		ASSERT(dtrace_anon.dta_enabling == NULL);
13477		return (NULL);
13478	}
13479
13480	ASSERT(dtrace_anon.dta_enabling != NULL);
13481	ASSERT(dtrace_retained != NULL);
13482
13483	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13484	dtrace_anon.dta_enabling = NULL;
13485	dtrace_anon.dta_state = NULL;
13486
13487	return (state);
13488}
13489
13490static void
13491dtrace_anon_property(void)
13492{
13493	int i, rv;
13494	dtrace_state_t *state;
13495	dof_hdr_t *dof;
13496	char c[32];		/* enough for "dof-data-" + digits */
13497
13498	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
13499	lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
13500
13501	for (i = 0; ; i++) {
13502		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13503
13504		dtrace_err_verbose = 1;
13505
13506		if ((dof = dtrace_dof_property(c)) == NULL) {
13507			dtrace_err_verbose = 0;
13508			break;
13509		}
13510
13511		/*
13512		 * We want to create anonymous state, so we need to transition
13513		 * the kernel debugger to indicate that DTrace is active.  If
13514		 * this fails (e.g. because the debugger has modified text in
13515		 * some way), we won't continue with the processing.
13516		 */
13517		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13518			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13519			    "enabling ignored.");
13520			dtrace_dof_destroy(dof);
13521			break;
13522		}
13523
13524		/*
13525		 * If we haven't allocated an anonymous state, we'll do so now.
13526		 */
13527		if ((state = dtrace_anon.dta_state) == NULL) {
13528			rv = dtrace_state_create(NULL, NULL, &state);
13529			dtrace_anon.dta_state = state;
13530			if (rv != 0 || state == NULL) {
13531				/*
13532				 * This basically shouldn't happen:  the only
13533				 * failure mode from dtrace_state_create() is a
13534				 * failure of ddi_soft_state_zalloc() that
13535				 * itself should never happen.  Still, the
13536				 * interface allows for a failure mode, and
13537				 * we want to fail as gracefully as possible:
13538				 * we'll emit an error message and cease
13539				 * processing anonymous state in this case.
13540				 */
13541				cmn_err(CE_WARN, "failed to create "
13542				    "anonymous state");
13543				dtrace_dof_destroy(dof);
13544				break;
13545			}
13546		}
13547
13548		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13549		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13550
13551		if (rv == 0)
13552			rv = dtrace_dof_options(dof, state);
13553
13554		dtrace_err_verbose = 0;
13555		dtrace_dof_destroy(dof);
13556
13557		if (rv != 0) {
13558			/*
13559			 * This is malformed DOF; chuck any anonymous state
13560			 * that we created.
13561			 */
13562			ASSERT(dtrace_anon.dta_enabling == NULL);
13563			dtrace_state_destroy(state);
13564			dtrace_anon.dta_state = NULL;
13565			break;
13566		}
13567
13568		ASSERT(dtrace_anon.dta_enabling != NULL);
13569	}
13570
13571	if (dtrace_anon.dta_enabling != NULL) {
13572		int rval;
13573
13574		/*
13575		 * dtrace_enabling_retain() can only fail because we are
13576		 * trying to retain more enablings than are allowed -- but
13577		 * we only have one anonymous enabling, and we are guaranteed
13578		 * to be allowed at least one retained enabling; we assert
13579		 * that dtrace_enabling_retain() returns success.
13580		 */
13581		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13582		ASSERT(rval == 0);
13583
13584		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13585	}
13586}
13587
13588/*
13589 * DTrace Helper Functions
13590 */
13591static void
13592dtrace_helper_trace(dtrace_helper_action_t *helper,
13593    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13594{
13595	uint32_t size, next, nnext;
13596	int i;
13597	dtrace_helptrace_t *ent;
13598	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13599
13600	if (!dtrace_helptrace_enabled)
13601		return;
13602
13603	ASSERT((uint32_t)vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13604
13605	/*
13606	 * What would a tracing framework be without its own tracing
13607	 * framework?  (Well, a hell of a lot simpler, for starters...)
13608	 */
13609	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13610	    sizeof (uint64_t) - sizeof (uint64_t);
13611
13612	/*
13613	 * Iterate until we can allocate a slot in the trace buffer.
13614	 */
13615	do {
13616		next = dtrace_helptrace_next;
13617
13618		if (next + size < dtrace_helptrace_bufsize) {
13619			nnext = next + size;
13620		} else {
13621			nnext = size;
13622		}
13623	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13624
13625	/*
13626	 * We have our slot; fill it in.
13627	 */
13628	if (nnext == size)
13629		next = 0;
13630
13631	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13632	ent->dtht_helper = helper;
13633	ent->dtht_where = where;
13634	ent->dtht_nlocals = vstate->dtvs_nlocals;
13635
13636	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13637	    mstate->dtms_fltoffs : -1;
13638	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13639	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
13640
13641	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13642		dtrace_statvar_t *svar;
13643
13644		if ((svar = vstate->dtvs_locals[i]) == NULL)
13645			continue;
13646
13647		ASSERT(svar->dtsv_size >= (int)NCPU * sizeof (uint64_t));
13648		ent->dtht_locals[i] =
13649		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
13650	}
13651}
13652
13653static uint64_t
13654dtrace_helper(int which, dtrace_mstate_t *mstate,
13655    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13656{
13657	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13658	uint64_t sarg0 = mstate->dtms_arg[0];
13659	uint64_t sarg1 = mstate->dtms_arg[1];
13660	uint64_t rval = 0;
13661	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13662	dtrace_helper_action_t *helper;
13663	dtrace_vstate_t *vstate;
13664	dtrace_difo_t *pred;
13665	int i, trace = dtrace_helptrace_enabled;
13666
13667	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13668
13669	if (helpers == NULL)
13670		return (0);
13671
13672	if ((helper = helpers->dthps_actions[which]) == NULL)
13673		return (0);
13674
13675	vstate = &helpers->dthps_vstate;
13676	mstate->dtms_arg[0] = arg0;
13677	mstate->dtms_arg[1] = arg1;
13678
13679	/*
13680	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13681	 * we'll call the corresponding actions.  Note that the below calls
13682	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13683	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13684	 * the stored DIF offset with its own (which is the desired behavior).
13685	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13686	 * from machine state; this is okay, too.
13687	 */
13688	for (; helper != NULL; helper = helper->dtha_next) {
13689		if ((pred = helper->dtha_predicate) != NULL) {
13690			if (trace)
13691				dtrace_helper_trace(helper, mstate, vstate, 0);
13692
13693			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13694				goto next;
13695
13696			if (*flags & CPU_DTRACE_FAULT)
13697				goto err;
13698		}
13699
13700		for (i = 0; i < helper->dtha_nactions; i++) {
13701			if (trace)
13702				dtrace_helper_trace(helper,
13703				    mstate, vstate, i + 1);
13704
13705			rval = dtrace_dif_emulate(helper->dtha_actions[i],
13706			    mstate, vstate, state);
13707
13708			if (*flags & CPU_DTRACE_FAULT)
13709				goto err;
13710		}
13711
13712next:
13713		if (trace)
13714			dtrace_helper_trace(helper, mstate, vstate,
13715			    DTRACE_HELPTRACE_NEXT);
13716	}
13717
13718	if (trace)
13719		dtrace_helper_trace(helper, mstate, vstate,
13720		    DTRACE_HELPTRACE_DONE);
13721
13722	/*
13723	 * Restore the arg0 that we saved upon entry.
13724	 */
13725	mstate->dtms_arg[0] = sarg0;
13726	mstate->dtms_arg[1] = sarg1;
13727
13728	return (rval);
13729
13730err:
13731	if (trace)
13732		dtrace_helper_trace(helper, mstate, vstate,
13733		    DTRACE_HELPTRACE_ERR);
13734
13735	/*
13736	 * Restore the arg0 that we saved upon entry.
13737	 */
13738	mstate->dtms_arg[0] = sarg0;
13739	mstate->dtms_arg[1] = sarg1;
13740
13741	return (0);
13742}
13743
13744static void
13745dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13746    dtrace_vstate_t *vstate)
13747{
13748	int i;
13749
13750	if (helper->dtha_predicate != NULL)
13751		dtrace_difo_release(helper->dtha_predicate, vstate);
13752
13753	for (i = 0; i < helper->dtha_nactions; i++) {
13754		ASSERT(helper->dtha_actions[i] != NULL);
13755		dtrace_difo_release(helper->dtha_actions[i], vstate);
13756	}
13757
13758	kmem_free(helper->dtha_actions,
13759	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
13760	kmem_free(helper, sizeof (dtrace_helper_action_t));
13761}
13762
13763static int
13764dtrace_helper_destroygen(proc_t* p, int gen)
13765{
13766	dtrace_helpers_t *help = p->p_dtrace_helpers;
13767	dtrace_vstate_t *vstate;
13768	uint_t i;
13769
13770	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
13771
13772	if (help == NULL || gen > help->dthps_generation)
13773		return (EINVAL);
13774
13775	vstate = &help->dthps_vstate;
13776
13777	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13778		dtrace_helper_action_t *last = NULL, *h, *next;
13779
13780		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13781			next = h->dtha_next;
13782
13783			if (h->dtha_generation == gen) {
13784				if (last != NULL) {
13785					last->dtha_next = next;
13786				} else {
13787					help->dthps_actions[i] = next;
13788				}
13789
13790				dtrace_helper_action_destroy(h, vstate);
13791			} else {
13792				last = h;
13793			}
13794		}
13795	}
13796
13797	/*
13798	 * Interate until we've cleared out all helper providers with the
13799	 * given generation number.
13800	 */
13801	for (;;) {
13802		dtrace_helper_provider_t *prov = NULL;
13803
13804		/*
13805		 * Look for a helper provider with the right generation. We
13806		 * have to start back at the beginning of the list each time
13807		 * because we drop dtrace_lock. It's unlikely that we'll make
13808		 * more than two passes.
13809		 */
13810		for (i = 0; i < help->dthps_nprovs; i++) {
13811			prov = help->dthps_provs[i];
13812
13813			if (prov->dthp_generation == gen)
13814				break;
13815		}
13816
13817		/*
13818		 * If there were no matches, we're done.
13819		 */
13820		if (i == help->dthps_nprovs)
13821			break;
13822
13823		/*
13824		 * Move the last helper provider into this slot.
13825		 */
13826		help->dthps_nprovs--;
13827		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
13828		help->dthps_provs[help->dthps_nprovs] = NULL;
13829
13830		lck_mtx_unlock(&dtrace_lock);
13831
13832		/*
13833		 * If we have a meta provider, remove this helper provider.
13834		 */
13835		lck_mtx_lock(&dtrace_meta_lock);
13836		if (dtrace_meta_pid != NULL) {
13837			ASSERT(dtrace_deferred_pid == NULL);
13838			dtrace_helper_provider_remove(&prov->dthp_prov,
13839			    p->p_pid);
13840		}
13841		lck_mtx_unlock(&dtrace_meta_lock);
13842
13843		dtrace_helper_provider_destroy(prov);
13844
13845		lck_mtx_lock(&dtrace_lock);
13846	}
13847
13848	return (0);
13849}
13850
13851static int
13852dtrace_helper_validate(dtrace_helper_action_t *helper)
13853{
13854	int err = 0, i;
13855	dtrace_difo_t *dp;
13856
13857	if ((dp = helper->dtha_predicate) != NULL)
13858		err += dtrace_difo_validate_helper(dp);
13859
13860	for (i = 0; i < helper->dtha_nactions; i++)
13861		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
13862
13863	return (err == 0);
13864}
13865
13866static int
13867dtrace_helper_action_add(proc_t* p, int which, dtrace_ecbdesc_t *ep)
13868{
13869	dtrace_helpers_t *help;
13870	dtrace_helper_action_t *helper, *last;
13871	dtrace_actdesc_t *act;
13872	dtrace_vstate_t *vstate;
13873	dtrace_predicate_t *pred;
13874	int count = 0, nactions = 0, i;
13875
13876	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
13877		return (EINVAL);
13878
13879	help = p->p_dtrace_helpers;
13880	last = help->dthps_actions[which];
13881	vstate = &help->dthps_vstate;
13882
13883	for (count = 0; last != NULL; last = last->dtha_next) {
13884		count++;
13885		if (last->dtha_next == NULL)
13886			break;
13887	}
13888
13889	/*
13890	 * If we already have dtrace_helper_actions_max helper actions for this
13891	 * helper action type, we'll refuse to add a new one.
13892	 */
13893	if (count >= dtrace_helper_actions_max)
13894		return (ENOSPC);
13895
13896	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
13897	helper->dtha_generation = help->dthps_generation;
13898
13899	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
13900		ASSERT(pred->dtp_difo != NULL);
13901		dtrace_difo_hold(pred->dtp_difo);
13902		helper->dtha_predicate = pred->dtp_difo;
13903	}
13904
13905	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
13906		if (act->dtad_kind != DTRACEACT_DIFEXPR)
13907			goto err;
13908
13909		if (act->dtad_difo == NULL)
13910			goto err;
13911
13912		nactions++;
13913	}
13914
13915	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
13916	    (helper->dtha_nactions = nactions), KM_SLEEP);
13917
13918	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
13919		dtrace_difo_hold(act->dtad_difo);
13920		helper->dtha_actions[i++] = act->dtad_difo;
13921	}
13922
13923	if (!dtrace_helper_validate(helper))
13924		goto err;
13925
13926	if (last == NULL) {
13927		help->dthps_actions[which] = helper;
13928	} else {
13929		last->dtha_next = helper;
13930	}
13931
13932	if ((uint32_t)vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
13933		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
13934		dtrace_helptrace_next = 0;
13935	}
13936
13937	return (0);
13938err:
13939	dtrace_helper_action_destroy(helper, vstate);
13940	return (EINVAL);
13941}
13942
13943static void
13944dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
13945    dof_helper_t *dofhp)
13946{
13947	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED);
13948
13949	lck_mtx_lock(&dtrace_meta_lock);
13950	lck_mtx_lock(&dtrace_lock);
13951
13952	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
13953		/*
13954		 * If the dtrace module is loaded but not attached, or if
13955		 * there aren't isn't a meta provider registered to deal with
13956		 * these provider descriptions, we need to postpone creating
13957		 * the actual providers until later.
13958		 */
13959
13960		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
13961		    dtrace_deferred_pid != help) {
13962			help->dthps_deferred = 1;
13963			help->dthps_pid = p->p_pid;
13964			help->dthps_next = dtrace_deferred_pid;
13965			help->dthps_prev = NULL;
13966			if (dtrace_deferred_pid != NULL)
13967				dtrace_deferred_pid->dthps_prev = help;
13968			dtrace_deferred_pid = help;
13969		}
13970
13971		lck_mtx_unlock(&dtrace_lock);
13972
13973	} else if (dofhp != NULL) {
13974		/*
13975		 * If the dtrace module is loaded and we have a particular
13976		 * helper provider description, pass that off to the
13977		 * meta provider.
13978		 */
13979
13980		lck_mtx_unlock(&dtrace_lock);
13981
13982		dtrace_helper_provide(dofhp, p->p_pid);
13983
13984	} else {
13985		/*
13986		 * Otherwise, just pass all the helper provider descriptions
13987		 * off to the meta provider.
13988		 */
13989
13990		uint_t i;
13991		lck_mtx_unlock(&dtrace_lock);
13992
13993		for (i = 0; i < help->dthps_nprovs; i++) {
13994			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
13995			    p->p_pid);
13996		}
13997	}
13998
13999	lck_mtx_unlock(&dtrace_meta_lock);
14000}
14001
14002static int
14003dtrace_helper_provider_add(proc_t* p, dof_helper_t *dofhp, int gen)
14004{
14005	dtrace_helpers_t *help;
14006	dtrace_helper_provider_t *hprov, **tmp_provs;
14007	uint_t tmp_maxprovs, i;
14008
14009	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
14010	help = p->p_dtrace_helpers;
14011	ASSERT(help != NULL);
14012
14013	/*
14014	 * If we already have dtrace_helper_providers_max helper providers,
14015	 * we're refuse to add a new one.
14016	 */
14017	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14018		return (ENOSPC);
14019
14020	/*
14021	 * Check to make sure this isn't a duplicate.
14022	 */
14023	for (i = 0; i < help->dthps_nprovs; i++) {
14024		if (dofhp->dofhp_addr ==
14025		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14026			return (EALREADY);
14027	}
14028
14029	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14030	hprov->dthp_prov = *dofhp;
14031	hprov->dthp_ref = 1;
14032	hprov->dthp_generation = gen;
14033
14034	/*
14035	 * Allocate a bigger table for helper providers if it's already full.
14036	 */
14037	if (help->dthps_maxprovs == help->dthps_nprovs) {
14038		tmp_maxprovs = help->dthps_maxprovs;
14039		tmp_provs = help->dthps_provs;
14040
14041		if (help->dthps_maxprovs == 0)
14042			help->dthps_maxprovs = 2;
14043		else
14044			help->dthps_maxprovs *= 2;
14045		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14046			help->dthps_maxprovs = dtrace_helper_providers_max;
14047
14048		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14049
14050		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14051		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14052
14053		if (tmp_provs != NULL) {
14054			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14055			    sizeof (dtrace_helper_provider_t *));
14056			kmem_free(tmp_provs, tmp_maxprovs *
14057			    sizeof (dtrace_helper_provider_t *));
14058		}
14059	}
14060
14061	help->dthps_provs[help->dthps_nprovs] = hprov;
14062	help->dthps_nprovs++;
14063
14064	return (0);
14065}
14066
14067static void
14068dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14069{
14070	lck_mtx_lock(&dtrace_lock);
14071
14072	if (--hprov->dthp_ref == 0) {
14073		dof_hdr_t *dof;
14074		lck_mtx_unlock(&dtrace_lock);
14075		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14076		dtrace_dof_destroy(dof);
14077		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14078	} else {
14079		lck_mtx_unlock(&dtrace_lock);
14080	}
14081}
14082
14083static int
14084dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14085{
14086	uintptr_t daddr = (uintptr_t)dof;
14087	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14088	dof_provider_t *provider;
14089	dof_probe_t *probe;
14090	uint8_t *arg;
14091	char *strtab, *typestr;
14092	dof_stridx_t typeidx;
14093	size_t typesz;
14094	uint_t nprobes, j, k;
14095
14096	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14097
14098	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14099		dtrace_dof_error(dof, "misaligned section offset");
14100		return (-1);
14101	}
14102
14103	/*
14104	 * The section needs to be large enough to contain the DOF provider
14105	 * structure appropriate for the given version.
14106	 */
14107	if (sec->dofs_size <
14108	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14109	    offsetof(dof_provider_t, dofpv_prenoffs) :
14110	    sizeof (dof_provider_t))) {
14111		dtrace_dof_error(dof, "provider section too small");
14112		return (-1);
14113	}
14114
14115	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14116	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14117	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14118	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14119	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14120
14121	if (str_sec == NULL || prb_sec == NULL ||
14122	    arg_sec == NULL || off_sec == NULL)
14123		return (-1);
14124
14125	enoff_sec = NULL;
14126
14127	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14128	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14129	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14130	    provider->dofpv_prenoffs)) == NULL)
14131		return (-1);
14132
14133	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14134
14135	if (provider->dofpv_name >= str_sec->dofs_size ||
14136	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14137		dtrace_dof_error(dof, "invalid provider name");
14138		return (-1);
14139	}
14140
14141	if (prb_sec->dofs_entsize == 0 ||
14142	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14143		dtrace_dof_error(dof, "invalid entry size");
14144		return (-1);
14145	}
14146
14147	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14148		dtrace_dof_error(dof, "misaligned entry size");
14149		return (-1);
14150	}
14151
14152	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14153		dtrace_dof_error(dof, "invalid entry size");
14154		return (-1);
14155	}
14156
14157	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14158		dtrace_dof_error(dof, "misaligned section offset");
14159		return (-1);
14160	}
14161
14162	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14163		dtrace_dof_error(dof, "invalid entry size");
14164		return (-1);
14165	}
14166
14167	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14168
14169	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14170
14171	/*
14172	 * Take a pass through the probes to check for errors.
14173	 */
14174	for (j = 0; j < nprobes; j++) {
14175		probe = (dof_probe_t *)(uintptr_t)(daddr +
14176		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14177
14178		if (probe->dofpr_func >= str_sec->dofs_size) {
14179			dtrace_dof_error(dof, "invalid function name");
14180			return (-1);
14181		}
14182
14183		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14184			dtrace_dof_error(dof, "function name too long");
14185			return (-1);
14186		}
14187
14188		if (probe->dofpr_name >= str_sec->dofs_size ||
14189		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14190			dtrace_dof_error(dof, "invalid probe name");
14191			return (-1);
14192		}
14193
14194		/*
14195		 * The offset count must not wrap the index, and the offsets
14196		 * must also not overflow the section's data.
14197		 */
14198		if (probe->dofpr_offidx + probe->dofpr_noffs <
14199		    probe->dofpr_offidx ||
14200		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14201		    off_sec->dofs_entsize > off_sec->dofs_size) {
14202			dtrace_dof_error(dof, "invalid probe offset");
14203			return (-1);
14204		}
14205
14206		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14207			/*
14208			 * If there's no is-enabled offset section, make sure
14209			 * there aren't any is-enabled offsets. Otherwise
14210			 * perform the same checks as for probe offsets
14211			 * (immediately above).
14212			 */
14213			if (enoff_sec == NULL) {
14214				if (probe->dofpr_enoffidx != 0 ||
14215				    probe->dofpr_nenoffs != 0) {
14216					dtrace_dof_error(dof, "is-enabled "
14217					    "offsets with null section");
14218					return (-1);
14219				}
14220			} else if (probe->dofpr_enoffidx +
14221			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14222			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14223			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14224				dtrace_dof_error(dof, "invalid is-enabled "
14225				    "offset");
14226				return (-1);
14227			}
14228
14229			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14230				dtrace_dof_error(dof, "zero probe and "
14231				    "is-enabled offsets");
14232				return (-1);
14233			}
14234		} else if (probe->dofpr_noffs == 0) {
14235			dtrace_dof_error(dof, "zero probe offsets");
14236			return (-1);
14237		}
14238
14239		if (probe->dofpr_argidx + probe->dofpr_xargc <
14240		    probe->dofpr_argidx ||
14241		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14242		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14243			dtrace_dof_error(dof, "invalid args");
14244			return (-1);
14245		}
14246
14247		typeidx = probe->dofpr_nargv;
14248		typestr = strtab + probe->dofpr_nargv;
14249		for (k = 0; k < probe->dofpr_nargc; k++) {
14250			if (typeidx >= str_sec->dofs_size) {
14251				dtrace_dof_error(dof, "bad "
14252				    "native argument type");
14253				return (-1);
14254			}
14255
14256			typesz = strlen(typestr) + 1;
14257			if (typesz > DTRACE_ARGTYPELEN) {
14258				dtrace_dof_error(dof, "native "
14259				    "argument type too long");
14260				return (-1);
14261			}
14262			typeidx += typesz;
14263			typestr += typesz;
14264		}
14265
14266		typeidx = probe->dofpr_xargv;
14267		typestr = strtab + probe->dofpr_xargv;
14268		for (k = 0; k < probe->dofpr_xargc; k++) {
14269			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14270				dtrace_dof_error(dof, "bad "
14271				    "native argument index");
14272				return (-1);
14273			}
14274
14275			if (typeidx >= str_sec->dofs_size) {
14276				dtrace_dof_error(dof, "bad "
14277				    "translated argument type");
14278				return (-1);
14279			}
14280
14281			typesz = strlen(typestr) + 1;
14282			if (typesz > DTRACE_ARGTYPELEN) {
14283				dtrace_dof_error(dof, "translated argument "
14284				    "type too long");
14285				return (-1);
14286			}
14287
14288			typeidx += typesz;
14289			typestr += typesz;
14290		}
14291	}
14292
14293	return (0);
14294}
14295
14296static int
14297dtrace_helper_slurp(proc_t* p, dof_hdr_t *dof, dof_helper_t *dhp)
14298{
14299	dtrace_helpers_t *help;
14300	dtrace_vstate_t *vstate;
14301	dtrace_enabling_t *enab = NULL;
14302	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14303	uintptr_t daddr = (uintptr_t)dof;
14304
14305	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
14306
14307	if ((help = p->p_dtrace_helpers) == NULL)
14308		help = dtrace_helpers_create(p);
14309
14310	vstate = &help->dthps_vstate;
14311
14312	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14313	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14314		dtrace_dof_destroy(dof);
14315		return (rv);
14316	}
14317
14318	/*
14319	 * Look for helper providers and validate their descriptions.
14320	 */
14321	if (dhp != NULL) {
14322		for (i = 0; (uint32_t)i < dof->dofh_secnum; i++) {
14323			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14324			    dof->dofh_secoff + i * dof->dofh_secsize);
14325
14326			if (sec->dofs_type != DOF_SECT_PROVIDER)
14327				continue;
14328
14329			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14330				dtrace_enabling_destroy(enab);
14331				dtrace_dof_destroy(dof);
14332				return (-1);
14333			}
14334
14335			nprovs++;
14336		}
14337	}
14338
14339	/*
14340	 * Now we need to walk through the ECB descriptions in the enabling.
14341	 */
14342	for (i = 0; i < enab->dten_ndesc; i++) {
14343		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14344		dtrace_probedesc_t *desc = &ep->dted_probe;
14345
14346		/* APPLE NOTE: Darwin employs size bounded string operation. */
14347		if (!LIT_STRNEQL(desc->dtpd_provider, "dtrace"))
14348			continue;
14349
14350		if (!LIT_STRNEQL(desc->dtpd_mod, "helper"))
14351			continue;
14352
14353		if (!LIT_STRNEQL(desc->dtpd_func, "ustack"))
14354			continue;
14355
14356		if ((rv = dtrace_helper_action_add(p, DTRACE_HELPER_ACTION_USTACK,
14357		    ep)) != 0) {
14358			/*
14359			 * Adding this helper action failed -- we are now going
14360			 * to rip out the entire generation and return failure.
14361			 */
14362			(void) dtrace_helper_destroygen(p, help->dthps_generation);
14363			dtrace_enabling_destroy(enab);
14364			dtrace_dof_destroy(dof);
14365			return (-1);
14366		}
14367
14368		nhelpers++;
14369	}
14370
14371	if (nhelpers < enab->dten_ndesc)
14372		dtrace_dof_error(dof, "unmatched helpers");
14373
14374	gen = help->dthps_generation++;
14375	dtrace_enabling_destroy(enab);
14376
14377	if (dhp != NULL && nprovs > 0) {
14378		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14379		if (dtrace_helper_provider_add(p, dhp, gen) == 0) {
14380			lck_mtx_unlock(&dtrace_lock);
14381			dtrace_helper_provider_register(p, help, dhp);
14382			lck_mtx_lock(&dtrace_lock);
14383
14384			destroy = 0;
14385		}
14386	}
14387
14388	if (destroy)
14389		dtrace_dof_destroy(dof);
14390
14391	return (gen);
14392}
14393
14394/*
14395 * APPLE NOTE:  DTrace lazy dof implementation
14396 *
14397 * DTrace user static probes (USDT probes) and helper actions are loaded
14398 * in a process by proccessing dof sections. The dof sections are passed
14399 * into the kernel by dyld, in a dof_ioctl_data_t block. It is rather
14400 * expensive to process dof for a process that will never use it. There
14401 * is a memory cost (allocating the providers/probes), and a cpu cost
14402 * (creating the providers/probes).
14403 *
14404 * To reduce this cost, we use "lazy dof". The normal proceedure for
14405 * dof processing is to copyin the dof(s) pointed to by the dof_ioctl_data_t
14406 * block, and invoke dof_slurp_helper() on them. When "lazy dof" is
14407 * used, each process retains the dof_ioctl_data_t block, instead of
14408 * copying in the data it points to.
14409 *
14410 * The dof_ioctl_data_t blocks are managed as if they were the actual
14411 * processed dof; on fork the block is copied to the child, on exec and
14412 * exit the block is freed.
14413 *
14414 * If the process loads library(s) containing additional dof, the
14415 * new dof_ioctl_data_t is merged with the existing block.
14416 *
14417 * There are a few catches that make this slightly more difficult.
14418 * When dyld registers dof_ioctl_data_t blocks, it expects a unique
14419 * identifier value for each dof in the block. In non-lazy dof terms,
14420 * this is the generation that dof was loaded in. If we hand back
14421 * a UID for a lazy dof, that same UID must be able to unload the
14422 * dof once it has become non-lazy. To meet this requirement, the
14423 * code that loads lazy dof requires that the UID's for dof(s) in
14424 * the lazy dof be sorted, and in ascending order. It is okay to skip
14425 * UID's, I.E., 1 -> 5 -> 6 is legal.
14426 *
14427 * Once a process has become non-lazy, it will stay non-lazy. All
14428 * future dof operations for that process will be non-lazy, even
14429 * if the dof mode transitions back to lazy.
14430 *
14431 * Always do lazy dof checks before non-lazy (I.E. In fork, exit, exec.).
14432 * That way if the lazy check fails due to transitioning to non-lazy, the
14433 * right thing is done with the newly faulted in dof.
14434 */
14435
14436/*
14437 * This method is a bit squicky. It must handle:
14438 *
14439 * dof should not be lazy.
14440 * dof should have been handled lazily, but there was an error
14441 * dof was handled lazily, and needs to be freed.
14442 * dof was handled lazily, and must not be freed.
14443 *
14444 *
14445 * Returns EACCESS if dof should be handled non-lazily.
14446 *
14447 * KERN_SUCCESS and all other return codes indicate lazy handling of dof.
14448 *
14449 * If the dofs data is claimed by this method, dofs_claimed will be set.
14450 * Callers should not free claimed dofs.
14451 */
14452static int
14453dtrace_lazy_dofs_add(proc_t *p, dof_ioctl_data_t* incoming_dofs, int *dofs_claimed)
14454{
14455	ASSERT(p);
14456	ASSERT(incoming_dofs && incoming_dofs->dofiod_count > 0);
14457
14458	int rval = 0;
14459	*dofs_claimed = 0;
14460
14461	lck_rw_lock_shared(&dtrace_dof_mode_lock);
14462
14463	/*
14464	 * If we have lazy dof, dof mode better be LAZY_ON.
14465	 */
14466	ASSERT(p->p_dtrace_lazy_dofs == NULL || dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON);
14467	ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL);
14468	ASSERT(dtrace_dof_mode != DTRACE_DOF_MODE_NEVER);
14469
14470	/*
14471	 * Any existing helpers force non-lazy behavior.
14472	 */
14473	if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON && (p->p_dtrace_helpers == NULL)) {
14474		lck_mtx_lock(&p->p_dtrace_sprlock);
14475
14476		dof_ioctl_data_t* existing_dofs = p->p_dtrace_lazy_dofs;
14477		unsigned int existing_dofs_count = (existing_dofs) ? existing_dofs->dofiod_count : 0;
14478		unsigned int i, merged_dofs_count = incoming_dofs->dofiod_count + existing_dofs_count;
14479
14480		/*
14481		 * Range check...
14482		 */
14483		if (merged_dofs_count == 0 || merged_dofs_count > 1024) {
14484			dtrace_dof_error(NULL, "lazy_dofs_add merged_dofs_count out of range");
14485			rval = EINVAL;
14486			goto unlock;
14487		}
14488
14489		/*
14490		 * Each dof being added must be assigned a unique generation.
14491		 */
14492		uint64_t generation = (existing_dofs) ? existing_dofs->dofiod_helpers[existing_dofs_count - 1].dofhp_dof + 1 : 1;
14493		for (i=0; i<incoming_dofs->dofiod_count; i++) {
14494			/*
14495			 * We rely on these being the same so we can overwrite dofhp_dof and not lose info.
14496			 */
14497			ASSERT(incoming_dofs->dofiod_helpers[i].dofhp_dof == incoming_dofs->dofiod_helpers[i].dofhp_addr);
14498			incoming_dofs->dofiod_helpers[i].dofhp_dof = generation++;
14499		}
14500
14501
14502		if (existing_dofs) {
14503			/*
14504			 * Merge the existing and incoming dofs
14505			 */
14506			size_t merged_dofs_size = DOF_IOCTL_DATA_T_SIZE(merged_dofs_count);
14507			dof_ioctl_data_t* merged_dofs = kmem_alloc(merged_dofs_size, KM_SLEEP);
14508
14509			bcopy(&existing_dofs->dofiod_helpers[0],
14510			      &merged_dofs->dofiod_helpers[0],
14511			      sizeof(dof_helper_t) * existing_dofs_count);
14512			bcopy(&incoming_dofs->dofiod_helpers[0],
14513			      &merged_dofs->dofiod_helpers[existing_dofs_count],
14514			      sizeof(dof_helper_t) * incoming_dofs->dofiod_count);
14515
14516			merged_dofs->dofiod_count = merged_dofs_count;
14517
14518			kmem_free(existing_dofs, DOF_IOCTL_DATA_T_SIZE(existing_dofs_count));
14519
14520			p->p_dtrace_lazy_dofs = merged_dofs;
14521		} else {
14522			/*
14523			 * Claim the incoming dofs
14524			 */
14525			*dofs_claimed = 1;
14526			p->p_dtrace_lazy_dofs = incoming_dofs;
14527		}
14528
14529#if DEBUG
14530		dof_ioctl_data_t* all_dofs = p->p_dtrace_lazy_dofs;
14531		for (i=0; i<all_dofs->dofiod_count-1; i++) {
14532			ASSERT(all_dofs->dofiod_helpers[i].dofhp_dof < all_dofs->dofiod_helpers[i+1].dofhp_dof);
14533		}
14534#endif /* DEBUG */
14535
14536unlock:
14537		lck_mtx_unlock(&p->p_dtrace_sprlock);
14538	} else {
14539		rval = EACCES;
14540	}
14541
14542 	lck_rw_unlock_shared(&dtrace_dof_mode_lock);
14543
14544	return rval;
14545}
14546
14547/*
14548 * Returns:
14549 *
14550 * EINVAL: lazy dof is enabled, but the requested generation was not found.
14551 * EACCES: This removal needs to be handled non-lazily.
14552 */
14553static int
14554dtrace_lazy_dofs_remove(proc_t *p, int generation)
14555{
14556	int rval = EINVAL;
14557
14558	lck_rw_lock_shared(&dtrace_dof_mode_lock);
14559
14560	/*
14561	 * If we have lazy dof, dof mode better be LAZY_ON.
14562	 */
14563	ASSERT(p->p_dtrace_lazy_dofs == NULL || dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON);
14564	ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL);
14565	ASSERT(dtrace_dof_mode != DTRACE_DOF_MODE_NEVER);
14566
14567	/*
14568	 * Any existing helpers force non-lazy behavior.
14569	 */
14570	if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON && (p->p_dtrace_helpers == NULL)) {
14571		lck_mtx_lock(&p->p_dtrace_sprlock);
14572
14573		dof_ioctl_data_t* existing_dofs = p->p_dtrace_lazy_dofs;
14574
14575		if (existing_dofs) {
14576			int index, existing_dofs_count = existing_dofs->dofiod_count;
14577			for (index=0; index<existing_dofs_count; index++) {
14578				if ((int)existing_dofs->dofiod_helpers[index].dofhp_dof == generation) {
14579					dof_ioctl_data_t* removed_dofs = NULL;
14580
14581					/*
14582					 * If there is only 1 dof, we'll delete it and swap in NULL.
14583					 */
14584					if (existing_dofs_count > 1) {
14585						int removed_dofs_count = existing_dofs_count - 1;
14586						size_t removed_dofs_size = DOF_IOCTL_DATA_T_SIZE(removed_dofs_count);
14587
14588						removed_dofs = kmem_alloc(removed_dofs_size, KM_SLEEP);
14589						removed_dofs->dofiod_count = removed_dofs_count;
14590
14591						/*
14592						 * copy the remaining data.
14593						 */
14594						if (index > 0) {
14595							bcopy(&existing_dofs->dofiod_helpers[0],
14596							      &removed_dofs->dofiod_helpers[0],
14597							      index * sizeof(dof_helper_t));
14598						}
14599
14600						if (index < existing_dofs_count-1) {
14601							bcopy(&existing_dofs->dofiod_helpers[index+1],
14602							      &removed_dofs->dofiod_helpers[index],
14603							      (existing_dofs_count - index - 1) * sizeof(dof_helper_t));
14604						}
14605					}
14606
14607					kmem_free(existing_dofs, DOF_IOCTL_DATA_T_SIZE(existing_dofs_count));
14608
14609					p->p_dtrace_lazy_dofs = removed_dofs;
14610
14611					rval = KERN_SUCCESS;
14612
14613					break;
14614				}
14615			}
14616
14617#if DEBUG
14618			dof_ioctl_data_t* all_dofs = p->p_dtrace_lazy_dofs;
14619			if (all_dofs) {
14620				unsigned int i;
14621				for (i=0; i<all_dofs->dofiod_count-1; i++) {
14622					ASSERT(all_dofs->dofiod_helpers[i].dofhp_dof < all_dofs->dofiod_helpers[i+1].dofhp_dof);
14623				}
14624			}
14625#endif
14626
14627		}
14628
14629		lck_mtx_unlock(&p->p_dtrace_sprlock);
14630	} else {
14631		rval = EACCES;
14632	}
14633
14634	lck_rw_unlock_shared(&dtrace_dof_mode_lock);
14635
14636	return rval;
14637}
14638
14639void
14640dtrace_lazy_dofs_destroy(proc_t *p)
14641{
14642	lck_rw_lock_shared(&dtrace_dof_mode_lock);
14643	lck_mtx_lock(&p->p_dtrace_sprlock);
14644
14645	/*
14646	 * If we have lazy dof, dof mode better be LAZY_ON, or we must be exiting.
14647	 * We cannot assert against DTRACE_DOF_MODE_NEVER here, because we are called from
14648	 * kern_exit.c and kern_exec.c.
14649	 */
14650	ASSERT(p->p_dtrace_lazy_dofs == NULL || dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON || p->p_lflag & P_LEXIT);
14651	ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL);
14652
14653	dof_ioctl_data_t* lazy_dofs = p->p_dtrace_lazy_dofs;
14654	p->p_dtrace_lazy_dofs = NULL;
14655
14656	lck_mtx_unlock(&p->p_dtrace_sprlock);
14657	lck_rw_unlock_shared(&dtrace_dof_mode_lock);
14658
14659	if (lazy_dofs) {
14660		kmem_free(lazy_dofs, DOF_IOCTL_DATA_T_SIZE(lazy_dofs->dofiod_count));
14661	}
14662}
14663
14664void
14665dtrace_lazy_dofs_duplicate(proc_t *parent, proc_t *child)
14666{
14667	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED);
14668	lck_mtx_assert(&parent->p_dtrace_sprlock, LCK_MTX_ASSERT_NOTOWNED);
14669	lck_mtx_assert(&child->p_dtrace_sprlock, LCK_MTX_ASSERT_NOTOWNED);
14670
14671	lck_rw_lock_shared(&dtrace_dof_mode_lock);
14672	lck_mtx_lock(&parent->p_dtrace_sprlock);
14673
14674	/*
14675	 * If we have lazy dof, dof mode better be LAZY_ON, or we must be exiting.
14676	 * We cannot assert against DTRACE_DOF_MODE_NEVER here, because we are called from
14677	 * kern_fork.c
14678	 */
14679	ASSERT(parent->p_dtrace_lazy_dofs == NULL || dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON);
14680	ASSERT(parent->p_dtrace_lazy_dofs == NULL || parent->p_dtrace_helpers == NULL);
14681	/*
14682	 * In theory we should hold the child sprlock, but this is safe...
14683	 */
14684	ASSERT(child->p_dtrace_lazy_dofs == NULL && child->p_dtrace_helpers == NULL);
14685
14686	dof_ioctl_data_t* parent_dofs = parent->p_dtrace_lazy_dofs;
14687	dof_ioctl_data_t* child_dofs = NULL;
14688	if (parent_dofs) {
14689		size_t parent_dofs_size = DOF_IOCTL_DATA_T_SIZE(parent_dofs->dofiod_count);
14690		child_dofs = kmem_alloc(parent_dofs_size, KM_SLEEP);
14691		bcopy(parent_dofs, child_dofs, parent_dofs_size);
14692	}
14693
14694	lck_mtx_unlock(&parent->p_dtrace_sprlock);
14695
14696	if (child_dofs) {
14697		lck_mtx_lock(&child->p_dtrace_sprlock);
14698		child->p_dtrace_lazy_dofs = child_dofs;
14699		lck_mtx_unlock(&child->p_dtrace_sprlock);
14700	}
14701
14702	lck_rw_unlock_shared(&dtrace_dof_mode_lock);
14703}
14704
14705static int
14706dtrace_lazy_dofs_proc_iterate_filter(proc_t *p, void* ignored)
14707{
14708#pragma unused(ignored)
14709	/*
14710	 * Okay to NULL test without taking the sprlock.
14711	 */
14712	return p->p_dtrace_lazy_dofs != NULL;
14713}
14714
14715static int
14716dtrace_lazy_dofs_proc_iterate_doit(proc_t *p, void* ignored)
14717{
14718#pragma unused(ignored)
14719	/*
14720	 * It is possible this process may exit during our attempt to
14721	 * fault in the dof. We could fix this by holding locks longer,
14722	 * but the errors are benign.
14723	 */
14724	lck_mtx_lock(&p->p_dtrace_sprlock);
14725
14726	/*
14727	 * In this case only, it is okay to have lazy dof when dof mode is DTRACE_DOF_MODE_LAZY_OFF
14728	 */
14729	ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL);
14730	ASSERT(dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_OFF);
14731
14732
14733	dof_ioctl_data_t* lazy_dofs = p->p_dtrace_lazy_dofs;
14734	p->p_dtrace_lazy_dofs = NULL;
14735
14736	lck_mtx_unlock(&p->p_dtrace_sprlock);
14737
14738	/*
14739	 * Process each dof_helper_t
14740	 */
14741	if (lazy_dofs != NULL) {
14742		unsigned int i;
14743		int rval;
14744
14745		for (i=0; i<lazy_dofs->dofiod_count; i++) {
14746			/*
14747			 * When loading lazy dof, we depend on the generations being sorted in ascending order.
14748			 */
14749			ASSERT(i >= (lazy_dofs->dofiod_count - 1) || lazy_dofs->dofiod_helpers[i].dofhp_dof < lazy_dofs->dofiod_helpers[i+1].dofhp_dof);
14750
14751			dof_helper_t *dhp = &lazy_dofs->dofiod_helpers[i];
14752
14753			/*
14754			 * We stored the generation in dofhp_dof. Save it, and restore the original value.
14755			 */
14756			int generation = dhp->dofhp_dof;
14757			dhp->dofhp_dof = dhp->dofhp_addr;
14758
14759			dof_hdr_t *dof = dtrace_dof_copyin_from_proc(p, dhp->dofhp_dof, &rval);
14760
14761			if (dof != NULL) {
14762				dtrace_helpers_t *help;
14763
14764				lck_mtx_lock(&dtrace_lock);
14765
14766				/*
14767				 * This must be done with the dtrace_lock held
14768				 */
14769				if ((help = p->p_dtrace_helpers) == NULL)
14770					help = dtrace_helpers_create(p);
14771
14772				/*
14773				 * If the generation value has been bumped, someone snuck in
14774				 * when we released the dtrace lock. We have to dump this generation,
14775				 * there is no safe way to load it.
14776				 */
14777				if (help->dthps_generation <= generation) {
14778					help->dthps_generation = generation;
14779
14780					/*
14781					 * dtrace_helper_slurp() takes responsibility for the dof --
14782					 * it may free it now or it may save it and free it later.
14783					 */
14784					if ((rval = dtrace_helper_slurp(p, dof, dhp)) != generation) {
14785						dtrace_dof_error(NULL, "returned value did not match expected generation");
14786					}
14787				}
14788
14789				lck_mtx_unlock(&dtrace_lock);
14790			}
14791		}
14792
14793		kmem_free(lazy_dofs, DOF_IOCTL_DATA_T_SIZE(lazy_dofs->dofiod_count));
14794	}
14795
14796	return PROC_RETURNED;
14797}
14798
14799static dtrace_helpers_t *
14800dtrace_helpers_create(proc_t *p)
14801{
14802	dtrace_helpers_t *help;
14803
14804	lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
14805	ASSERT(p->p_dtrace_helpers == NULL);
14806
14807	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14808	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14809	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14810
14811	p->p_dtrace_helpers = help;
14812	dtrace_helpers++;
14813
14814	return (help);
14815}
14816
14817static void
14818dtrace_helpers_destroy(proc_t* p)
14819{
14820	dtrace_helpers_t *help;
14821	dtrace_vstate_t *vstate;
14822	uint_t i;
14823
14824	lck_mtx_lock(&dtrace_lock);
14825
14826	ASSERT(p->p_dtrace_helpers != NULL);
14827	ASSERT(dtrace_helpers > 0);
14828
14829	help = p->p_dtrace_helpers;
14830	vstate = &help->dthps_vstate;
14831
14832	/*
14833	 * We're now going to lose the help from this process.
14834	 */
14835	p->p_dtrace_helpers = NULL;
14836	dtrace_sync();
14837
14838	/*
14839	 * Destory the helper actions.
14840	 */
14841	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14842		dtrace_helper_action_t *h, *next;
14843
14844		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14845			next = h->dtha_next;
14846			dtrace_helper_action_destroy(h, vstate);
14847			h = next;
14848		}
14849	}
14850
14851	lck_mtx_unlock(&dtrace_lock);
14852
14853	/*
14854	 * Destroy the helper providers.
14855	 */
14856	if (help->dthps_maxprovs > 0) {
14857		lck_mtx_lock(&dtrace_meta_lock);
14858		if (dtrace_meta_pid != NULL) {
14859			ASSERT(dtrace_deferred_pid == NULL);
14860
14861			for (i = 0; i < help->dthps_nprovs; i++) {
14862				dtrace_helper_provider_remove(
14863				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14864			}
14865		} else {
14866			lck_mtx_lock(&dtrace_lock);
14867			ASSERT(help->dthps_deferred == 0 ||
14868			    help->dthps_next != NULL ||
14869			    help->dthps_prev != NULL ||
14870			    help == dtrace_deferred_pid);
14871
14872			/*
14873			 * Remove the helper from the deferred list.
14874			 */
14875			if (help->dthps_next != NULL)
14876				help->dthps_next->dthps_prev = help->dthps_prev;
14877			if (help->dthps_prev != NULL)
14878				help->dthps_prev->dthps_next = help->dthps_next;
14879			if (dtrace_deferred_pid == help) {
14880				dtrace_deferred_pid = help->dthps_next;
14881				ASSERT(help->dthps_prev == NULL);
14882			}
14883
14884			lck_mtx_unlock(&dtrace_lock);
14885		}
14886
14887		lck_mtx_unlock(&dtrace_meta_lock);
14888
14889		for (i = 0; i < help->dthps_nprovs; i++) {
14890			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14891		}
14892
14893		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14894		    sizeof (dtrace_helper_provider_t *));
14895	}
14896
14897	lck_mtx_lock(&dtrace_lock);
14898
14899	dtrace_vstate_fini(&help->dthps_vstate);
14900	kmem_free(help->dthps_actions,
14901	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14902	kmem_free(help, sizeof (dtrace_helpers_t));
14903
14904	--dtrace_helpers;
14905	lck_mtx_unlock(&dtrace_lock);
14906}
14907
14908static void
14909dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14910{
14911	dtrace_helpers_t *help, *newhelp;
14912	dtrace_helper_action_t *helper, *new, *last;
14913	dtrace_difo_t *dp;
14914	dtrace_vstate_t *vstate;
14915	uint_t i;
14916	int j, sz, hasprovs = 0;
14917
14918	lck_mtx_lock(&dtrace_lock);
14919	ASSERT(from->p_dtrace_helpers != NULL);
14920	ASSERT(dtrace_helpers > 0);
14921
14922	help = from->p_dtrace_helpers;
14923	newhelp = dtrace_helpers_create(to);
14924	ASSERT(to->p_dtrace_helpers != NULL);
14925
14926	newhelp->dthps_generation = help->dthps_generation;
14927	vstate = &newhelp->dthps_vstate;
14928
14929	/*
14930	 * Duplicate the helper actions.
14931	 */
14932	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14933		if ((helper = help->dthps_actions[i]) == NULL)
14934			continue;
14935
14936		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14937			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14938			    KM_SLEEP);
14939			new->dtha_generation = helper->dtha_generation;
14940
14941			if ((dp = helper->dtha_predicate) != NULL) {
14942				dp = dtrace_difo_duplicate(dp, vstate);
14943				new->dtha_predicate = dp;
14944			}
14945
14946			new->dtha_nactions = helper->dtha_nactions;
14947			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14948			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14949
14950			for (j = 0; j < new->dtha_nactions; j++) {
14951				dtrace_difo_t *dpj = helper->dtha_actions[j];
14952
14953				ASSERT(dpj != NULL);
14954				dpj = dtrace_difo_duplicate(dpj, vstate);
14955				new->dtha_actions[j] = dpj;
14956			}
14957
14958			if (last != NULL) {
14959				last->dtha_next = new;
14960			} else {
14961				newhelp->dthps_actions[i] = new;
14962			}
14963
14964			last = new;
14965		}
14966	}
14967
14968	/*
14969	 * Duplicate the helper providers and register them with the
14970	 * DTrace framework.
14971	 */
14972	if (help->dthps_nprovs > 0) {
14973		newhelp->dthps_nprovs = help->dthps_nprovs;
14974		newhelp->dthps_maxprovs = help->dthps_nprovs;
14975		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14976		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14977		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14978			newhelp->dthps_provs[i] = help->dthps_provs[i];
14979			newhelp->dthps_provs[i]->dthp_ref++;
14980		}
14981
14982		hasprovs = 1;
14983	}
14984
14985	lck_mtx_unlock(&dtrace_lock);
14986
14987	if (hasprovs)
14988		dtrace_helper_provider_register(to, newhelp, NULL);
14989}
14990
14991/*
14992 * DTrace Hook Functions
14993 */
14994
14995/*
14996 * APPLE NOTE:  dtrace_modctl_* routines for kext support.
14997 * Used to manipulate the modctl list within dtrace xnu.
14998 */
14999
15000modctl_t *dtrace_modctl_list;
15001
15002static void
15003dtrace_modctl_add(struct modctl * newctl)
15004{
15005	struct modctl *nextp, *prevp;
15006
15007	ASSERT(newctl != NULL);
15008	lck_mtx_assert(&mod_lock, LCK_MTX_ASSERT_OWNED);
15009
15010	// Insert new module at the front of the list,
15011
15012	newctl->mod_next = dtrace_modctl_list;
15013	dtrace_modctl_list = newctl;
15014
15015	/*
15016	 * If a module exists with the same name, then that module
15017	 * must have been unloaded with enabled probes. We will move
15018	 * the unloaded module to the new module's stale chain and
15019	 * then stop traversing the list.
15020	 */
15021
15022	prevp = newctl;
15023	nextp = newctl->mod_next;
15024
15025	while (nextp != NULL) {
15026		if (nextp->mod_loaded) {
15027			/* This is a loaded module. Keep traversing. */
15028			prevp = nextp;
15029			nextp = nextp->mod_next;
15030			continue;
15031		}
15032		else {
15033			/* Found an unloaded module */
15034			if (strncmp (newctl->mod_modname, nextp->mod_modname, KMOD_MAX_NAME)) {
15035				/* Names don't match. Keep traversing. */
15036				prevp = nextp;
15037				nextp = nextp->mod_next;
15038				continue;
15039			}
15040			else {
15041				/* We found a stale entry, move it. We're done. */
15042				prevp->mod_next = nextp->mod_next;
15043				newctl->mod_stale = nextp;
15044				nextp->mod_next = NULL;
15045				break;
15046			}
15047		}
15048	}
15049}
15050
15051static modctl_t *
15052dtrace_modctl_lookup(struct kmod_info * kmod)
15053{
15054    lck_mtx_assert(&mod_lock, LCK_MTX_ASSERT_OWNED);
15055
15056    struct modctl * ctl;
15057
15058    for (ctl = dtrace_modctl_list; ctl; ctl=ctl->mod_next) {
15059	if (ctl->mod_id == kmod->id)
15060	    return(ctl);
15061    }
15062    return (NULL);
15063}
15064
15065/*
15066 * This routine is called from dtrace_module_unloaded().
15067 * It removes a modctl structure and its stale chain
15068 * from the kext shadow list.
15069 */
15070static void
15071dtrace_modctl_remove(struct modctl * ctl)
15072{
15073	ASSERT(ctl != NULL);
15074	lck_mtx_assert(&mod_lock, LCK_MTX_ASSERT_OWNED);
15075	modctl_t *prevp, *nextp, *curp;
15076
15077	// Remove stale chain first
15078	for (curp=ctl->mod_stale; curp != NULL; curp=nextp) {
15079		nextp = curp->mod_stale;
15080		/* There should NEVER be user symbols allocated at this point */
15081		ASSERT(curp->mod_user_symbols == NULL);
15082		kmem_free(curp, sizeof(modctl_t));
15083	}
15084
15085	prevp = NULL;
15086	curp = dtrace_modctl_list;
15087
15088	while (curp != ctl) {
15089		prevp = curp;
15090		curp = curp->mod_next;
15091	}
15092
15093	if (prevp != NULL) {
15094		prevp->mod_next = ctl->mod_next;
15095	}
15096	else {
15097		dtrace_modctl_list = ctl->mod_next;
15098	}
15099
15100	/* There should NEVER be user symbols allocated at this point */
15101	ASSERT(ctl->mod_user_symbols == NULL);
15102
15103	kmem_free (ctl, sizeof(modctl_t));
15104}
15105
15106/*
15107 * APPLE NOTE: The kext loader will call dtrace_module_loaded
15108 * when the kext is loaded in memory, but before calling the
15109 * kext's start routine.
15110 *
15111 * Return 0 on success
15112 * Return -1 on failure
15113 */
15114
15115static int
15116dtrace_module_loaded(struct kmod_info *kmod, uint32_t flag)
15117{
15118	dtrace_provider_t *prv;
15119
15120	/*
15121	 * If kernel symbols have been disabled, return immediately
15122	 * DTRACE_KERNEL_SYMBOLS_NEVER is a permanent mode, it is safe to test without holding locks
15123	 */
15124	if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_NEVER)
15125		return 0;
15126
15127	struct modctl *ctl = NULL;
15128	if (!kmod || kmod->address == 0 || kmod->size == 0)
15129		return(-1);
15130
15131	lck_mtx_lock(&dtrace_provider_lock);
15132	lck_mtx_lock(&mod_lock);
15133
15134	/*
15135	 * Have we seen this kext before?
15136	 */
15137
15138	ctl = dtrace_modctl_lookup(kmod);
15139
15140	if (ctl != NULL) {
15141		/* bail... we already have this kext in the modctl list */
15142		lck_mtx_unlock(&mod_lock);
15143		lck_mtx_unlock(&dtrace_provider_lock);
15144		if (dtrace_err_verbose)
15145			cmn_err(CE_WARN, "dtrace load module already exists '%s %u' is failing against '%s %u'", kmod->name, (uint_t)kmod->id, ctl->mod_modname, ctl->mod_id);
15146		return(-1);
15147	}
15148	else {
15149		ctl = kmem_alloc(sizeof(struct modctl), KM_SLEEP);
15150		if (ctl == NULL) {
15151			if (dtrace_err_verbose)
15152				cmn_err(CE_WARN, "dtrace module load '%s %u' is failing ", kmod->name, (uint_t)kmod->id);
15153			lck_mtx_unlock(&mod_lock);
15154			lck_mtx_unlock(&dtrace_provider_lock);
15155			return (-1);
15156		}
15157		ctl->mod_next = NULL;
15158		ctl->mod_stale = NULL;
15159		strlcpy (ctl->mod_modname, kmod->name, sizeof(ctl->mod_modname));
15160		ctl->mod_loadcnt = kmod->id;
15161		ctl->mod_nenabled = 0;
15162		ctl->mod_address  = kmod->address;
15163		ctl->mod_size = kmod->size;
15164		ctl->mod_id = kmod->id;
15165		ctl->mod_loaded = 1;
15166		ctl->mod_flags = 0;
15167		ctl->mod_user_symbols = NULL;
15168
15169		/*
15170		 * Find the UUID for this module, if it has one
15171		 */
15172		kernel_mach_header_t* header = (kernel_mach_header_t *)ctl->mod_address;
15173		struct load_command* load_cmd = (struct load_command *)&header[1];
15174		uint32_t i;
15175		for (i = 0; i < header->ncmds; i++) {
15176			if (load_cmd->cmd == LC_UUID) {
15177				struct uuid_command* uuid_cmd = (struct uuid_command *)load_cmd;
15178				memcpy(ctl->mod_uuid, uuid_cmd->uuid, sizeof(uuid_cmd->uuid));
15179				ctl->mod_flags |= MODCTL_HAS_UUID;
15180				break;
15181			}
15182			load_cmd = (struct load_command *)((caddr_t)load_cmd + load_cmd->cmdsize);
15183		}
15184
15185		if (ctl->mod_address == g_kernel_kmod_info.address) {
15186			ctl->mod_flags |= MODCTL_IS_MACH_KERNEL;
15187		}
15188	}
15189	dtrace_modctl_add(ctl);
15190
15191	/*
15192	 * We must hold the dtrace_lock to safely test non permanent dtrace_fbt_symbol_mode(s)
15193	 */
15194	lck_mtx_lock(&dtrace_lock);
15195
15196	/*
15197	 * DTrace must decide if it will instrument modules lazily via
15198	 * userspace symbols (default mode), or instrument immediately via
15199	 * kernel symbols (non-default mode)
15200	 *
15201	 * When in default/lazy mode, DTrace will only support modules
15202	 * built with a valid UUID.
15203	 *
15204	 * Overriding the default can be done explicitly in one of
15205	 * the following two ways.
15206	 *
15207	 * A module can force symbols from kernel space using the plist key,
15208	 * OSBundleForceDTraceInit (see kmod.h).  If this per kext state is set,
15209	 * we fall through and instrument this module now.
15210	 *
15211	 * Or, the boot-arg, dtrace_kernel_symbol_mode, can be set to force symbols
15212	 * from kernel space (see dtrace_impl.h).  If this system state is set
15213	 * to a non-userspace mode, we fall through and instrument the module now.
15214	 */
15215
15216	if ((dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE) &&
15217	    (!(flag & KMOD_DTRACE_FORCE_INIT)))
15218	{
15219		/* We will instrument the module lazily -- this is the default */
15220		lck_mtx_unlock(&dtrace_lock);
15221		lck_mtx_unlock(&mod_lock);
15222		lck_mtx_unlock(&dtrace_provider_lock);
15223		return 0;
15224	}
15225
15226	/* We will instrument the module immediately using kernel symbols */
15227	ctl->mod_flags |= MODCTL_HAS_KERNEL_SYMBOLS;
15228
15229	lck_mtx_unlock(&dtrace_lock);
15230
15231	/*
15232	 * We're going to call each providers per-module provide operation
15233	 * specifying only this module.
15234	 */
15235	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15236		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15237
15238	/*
15239	 * APPLE NOTE: The contract with the kext loader is that once this function
15240	 * has completed, it may delete kernel symbols at will.
15241	 * We must set this while still holding the mod_lock.
15242	 */
15243	ctl->mod_flags &= ~MODCTL_HAS_KERNEL_SYMBOLS;
15244
15245	lck_mtx_unlock(&mod_lock);
15246	lck_mtx_unlock(&dtrace_provider_lock);
15247
15248	/*
15249	 * If we have any retained enablings, we need to match against them.
15250	 * Enabling probes requires that cpu_lock be held, and we cannot hold
15251	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15252	 * module.  (In particular, this happens when loading scheduling
15253	 * classes.)  So if we have any retained enablings, we need to dispatch
15254	 * our task queue to do the match for us.
15255	 */
15256	lck_mtx_lock(&dtrace_lock);
15257
15258	if (dtrace_retained == NULL) {
15259		lck_mtx_unlock(&dtrace_lock);
15260		return 0;
15261	}
15262
15263	/* APPLE NOTE!
15264	 *
15265	 * The cpu_lock mentioned above is only held by dtrace code, Apple's xnu never actually
15266	 * holds it for any reason. Thus the comment above is invalid, we can directly invoke
15267	 * dtrace_enabling_matchall without jumping through all the hoops, and we can avoid
15268	 * the delay call as well.
15269	 */
15270	lck_mtx_unlock(&dtrace_lock);
15271
15272	dtrace_enabling_matchall();
15273
15274	return 0;
15275}
15276
15277/*
15278 * Return 0 on success
15279 * Return -1 on failure
15280 */
15281static int
15282dtrace_module_unloaded(struct kmod_info *kmod)
15283{
15284	dtrace_probe_t template, *probe, *first, *next;
15285	dtrace_provider_t *prov;
15286        struct modctl *ctl = NULL;
15287	struct modctl *syncctl = NULL;
15288	struct modctl *nextsyncctl = NULL;
15289	int syncmode = 0;
15290
15291        lck_mtx_lock(&dtrace_provider_lock);
15292	lck_mtx_lock(&mod_lock);
15293	lck_mtx_lock(&dtrace_lock);
15294
15295	if (kmod == NULL) {
15296	    syncmode = 1;
15297	}
15298	else {
15299	    ctl = dtrace_modctl_lookup(kmod);
15300	    if (ctl == NULL)
15301	    {
15302		lck_mtx_unlock(&dtrace_lock);
15303		lck_mtx_unlock(&mod_lock);
15304		lck_mtx_unlock(&dtrace_provider_lock);
15305		return (-1);
15306	    }
15307	    ctl->mod_loaded = 0;
15308	    ctl->mod_address = 0;
15309	    ctl->mod_size = 0;
15310	}
15311
15312	if (dtrace_bymod == NULL) {
15313		/*
15314		 * The DTrace module is loaded (obviously) but not attached;
15315		 * we don't have any work to do.
15316		 */
15317	         if (ctl != NULL)
15318			 (void)dtrace_modctl_remove(ctl);
15319		 lck_mtx_unlock(&dtrace_lock);
15320		 lck_mtx_unlock(&mod_lock);
15321		 lck_mtx_unlock(&dtrace_provider_lock);
15322		 return(0);
15323	}
15324
15325	/* Syncmode set means we target and traverse entire modctl list. */
15326        if (syncmode)
15327	    nextsyncctl = dtrace_modctl_list;
15328
15329syncloop:
15330	if (syncmode)
15331	{
15332	    /* find a stale modctl struct */
15333	    for (syncctl = nextsyncctl; syncctl != NULL; syncctl=syncctl->mod_next) {
15334		if (syncctl->mod_address == 0)
15335		    break;
15336	    }
15337	    if (syncctl==NULL)
15338	    {
15339		/* We have no more work to do */
15340		lck_mtx_unlock(&dtrace_lock);
15341		lck_mtx_unlock(&mod_lock);
15342		lck_mtx_unlock(&dtrace_provider_lock);
15343		return(0);
15344	    }
15345	    else {
15346		/* keep track of next syncctl in case this one is removed */
15347		nextsyncctl = syncctl->mod_next;
15348		ctl = syncctl;
15349	    }
15350	}
15351
15352	template.dtpr_mod = ctl->mod_modname;
15353
15354	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15355	    probe != NULL; probe = probe->dtpr_nextmod) {
15356	        if (probe->dtpr_ecb != NULL) {
15357			/*
15358			 * This shouldn't _actually_ be possible -- we're
15359			 * unloading a module that has an enabled probe in it.
15360			 * (It's normally up to the provider to make sure that
15361			 * this can't happen.)  However, because dtps_enable()
15362			 * doesn't have a failure mode, there can be an
15363			 * enable/unload race.  Upshot:  we don't want to
15364			 * assert, but we're not going to disable the
15365			 * probe, either.
15366			 */
15367
15368
15369		        if (syncmode) {
15370			    /* We're syncing, let's look at next in list */
15371			    goto syncloop;
15372			}
15373
15374			lck_mtx_unlock(&dtrace_lock);
15375			lck_mtx_unlock(&mod_lock);
15376			lck_mtx_unlock(&dtrace_provider_lock);
15377
15378			if (dtrace_err_verbose) {
15379				cmn_err(CE_WARN, "unloaded module '%s' had "
15380				    "enabled probes", ctl->mod_modname);
15381			}
15382			return(-1);
15383		}
15384	}
15385
15386	probe = first;
15387
15388	for (first = NULL; probe != NULL; probe = next) {
15389		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15390
15391		dtrace_probes[probe->dtpr_id - 1] = NULL;
15392		probe->dtpr_provider->dtpv_probe_count--;
15393
15394		next = probe->dtpr_nextmod;
15395		dtrace_hash_remove(dtrace_bymod, probe);
15396		dtrace_hash_remove(dtrace_byfunc, probe);
15397		dtrace_hash_remove(dtrace_byname, probe);
15398
15399		if (first == NULL) {
15400			first = probe;
15401			probe->dtpr_nextmod = NULL;
15402		} else {
15403			probe->dtpr_nextmod = first;
15404			first = probe;
15405		}
15406	}
15407
15408	/*
15409	 * We've removed all of the module's probes from the hash chains and
15410	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15411	 * everyone has cleared out from any probe array processing.
15412	 */
15413	dtrace_sync();
15414
15415	for (probe = first; probe != NULL; probe = first) {
15416		first = probe->dtpr_nextmod;
15417		prov = probe->dtpr_provider;
15418		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15419		    probe->dtpr_arg);
15420		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15421		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15422		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15423		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15424
15425		zfree(dtrace_probe_t_zone, probe);
15426	}
15427
15428	dtrace_modctl_remove(ctl);
15429
15430	if (syncmode)
15431	    goto syncloop;
15432
15433	lck_mtx_unlock(&dtrace_lock);
15434	lck_mtx_unlock(&mod_lock);
15435	lck_mtx_unlock(&dtrace_provider_lock);
15436
15437	return(0);
15438}
15439
15440void
15441dtrace_suspend(void)
15442{
15443	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15444}
15445
15446void
15447dtrace_resume(void)
15448{
15449	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15450}
15451
15452static int
15453dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15454{
15455	lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
15456	lck_mtx_lock(&dtrace_lock);
15457
15458	switch (what) {
15459	case CPU_CONFIG: {
15460		dtrace_state_t *state;
15461		dtrace_optval_t *opt, rs, c;
15462
15463		/*
15464		 * For now, we only allocate a new buffer for anonymous state.
15465		 */
15466		if ((state = dtrace_anon.dta_state) == NULL)
15467			break;
15468
15469		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15470			break;
15471
15472		opt = state->dts_options;
15473		c = opt[DTRACEOPT_CPU];
15474
15475		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15476			break;
15477
15478		/*
15479		 * Regardless of what the actual policy is, we're going to
15480		 * temporarily set our resize policy to be manual.  We're
15481		 * also going to temporarily set our CPU option to denote
15482		 * the newly configured CPU.
15483		 */
15484		rs = opt[DTRACEOPT_BUFRESIZE];
15485		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15486		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15487
15488		(void) dtrace_state_buffers(state);
15489
15490		opt[DTRACEOPT_BUFRESIZE] = rs;
15491		opt[DTRACEOPT_CPU] = c;
15492
15493		break;
15494	}
15495
15496	case CPU_UNCONFIG:
15497		/*
15498		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15499		 * buffer will be freed when the consumer exits.)
15500		 */
15501		break;
15502
15503	default:
15504		break;
15505	}
15506
15507	lck_mtx_unlock(&dtrace_lock);
15508	return (0);
15509}
15510
15511static void
15512dtrace_cpu_setup_initial(processorid_t cpu)
15513{
15514	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15515}
15516
15517static void
15518dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15519{
15520	if (dtrace_toxranges >= dtrace_toxranges_max) {
15521		int osize, nsize;
15522		dtrace_toxrange_t *range;
15523
15524		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15525
15526		if (osize == 0) {
15527			ASSERT(dtrace_toxrange == NULL);
15528			ASSERT(dtrace_toxranges_max == 0);
15529			dtrace_toxranges_max = 1;
15530		} else {
15531			dtrace_toxranges_max <<= 1;
15532		}
15533
15534		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15535		range = kmem_zalloc(nsize, KM_SLEEP);
15536
15537		if (dtrace_toxrange != NULL) {
15538			ASSERT(osize != 0);
15539			bcopy(dtrace_toxrange, range, osize);
15540			kmem_free(dtrace_toxrange, osize);
15541		}
15542
15543		dtrace_toxrange = range;
15544	}
15545
15546	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15547	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15548
15549	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15550	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15551	dtrace_toxranges++;
15552}
15553
15554/*
15555 * DTrace Driver Cookbook Functions
15556 */
15557/*ARGSUSED*/
15558static int
15559dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15560{
15561#pragma unused(cmd) /* __APPLE__ */
15562	dtrace_provider_id_t id;
15563	dtrace_state_t *state = NULL;
15564	dtrace_enabling_t *enab;
15565
15566	lck_mtx_lock(&cpu_lock);
15567	lck_mtx_lock(&dtrace_provider_lock);
15568	lck_mtx_lock(&dtrace_lock);
15569
15570	if (ddi_soft_state_init(&dtrace_softstate,
15571	    sizeof (dtrace_state_t), 0) != 0) {
15572		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15573		lck_mtx_unlock(&dtrace_lock);
15574		lck_mtx_unlock(&dtrace_provider_lock);
15575		lck_mtx_unlock(&cpu_lock);
15576		return (DDI_FAILURE);
15577	}
15578
15579	/* Darwin uses BSD cloning device driver to automagically obtain minor device number. */
15580
15581	ddi_report_dev(devi);
15582	dtrace_devi = devi;
15583
15584	dtrace_modload = dtrace_module_loaded;
15585	dtrace_modunload = dtrace_module_unloaded;
15586	dtrace_cpu_init = dtrace_cpu_setup_initial;
15587	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15588	dtrace_helpers_fork = dtrace_helpers_duplicate;
15589	dtrace_cpustart_init = dtrace_suspend;
15590	dtrace_cpustart_fini = dtrace_resume;
15591	dtrace_debugger_init = dtrace_suspend;
15592	dtrace_debugger_fini = dtrace_resume;
15593
15594	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15595
15596	lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
15597
15598	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15599	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15600	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15601	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15602	    VM_SLEEP | VMC_IDENTIFIER);
15603	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15604	    1, INT_MAX, 0);
15605
15606	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15607	    sizeof (dtrace_dstate_percpu_t) * (int)NCPU, DTRACE_STATE_ALIGN,
15608	    NULL, NULL, NULL, NULL, NULL, 0);
15609
15610	lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
15611	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15612	    offsetof(dtrace_probe_t, dtpr_nextmod),
15613	    offsetof(dtrace_probe_t, dtpr_prevmod));
15614
15615	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15616	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15617	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15618
15619	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15620	    offsetof(dtrace_probe_t, dtpr_nextname),
15621	    offsetof(dtrace_probe_t, dtpr_prevname));
15622
15623	if (dtrace_retain_max < 1) {
15624		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15625		    "setting to 1", dtrace_retain_max);
15626		dtrace_retain_max = 1;
15627	}
15628
15629	/*
15630	 * Now discover our toxic ranges.
15631	 */
15632	dtrace_toxic_ranges(dtrace_toxrange_add);
15633
15634	/*
15635	 * Before we register ourselves as a provider to our own framework,
15636	 * we would like to assert that dtrace_provider is NULL -- but that's
15637	 * not true if we were loaded as a dependency of a DTrace provider.
15638	 * Once we've registered, we can assert that dtrace_provider is our
15639	 * pseudo provider.
15640	 */
15641	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15642	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15643
15644	ASSERT(dtrace_provider != NULL);
15645	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15646
15647#if defined (__x86_64__)
15648	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15649	    dtrace_provider, NULL, NULL, "BEGIN", 1, NULL);
15650	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15651	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15652	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15653	    dtrace_provider, NULL, NULL, "ERROR", 3, NULL);
15654#else
15655#error Unknown Architecture
15656#endif
15657
15658	dtrace_anon_property();
15659	lck_mtx_unlock(&cpu_lock);
15660
15661	/*
15662	 * If DTrace helper tracing is enabled, we need to allocate the
15663	 * trace buffer and initialize the values.
15664	 */
15665	if (dtrace_helptrace_enabled) {
15666		ASSERT(dtrace_helptrace_buffer == NULL);
15667		dtrace_helptrace_buffer =
15668		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15669		dtrace_helptrace_next = 0;
15670	}
15671
15672	/*
15673	 * If there are already providers, we must ask them to provide their
15674	 * probes, and then match any anonymous enabling against them.  Note
15675	 * that there should be no other retained enablings at this time:
15676	 * the only retained enablings at this time should be the anonymous
15677	 * enabling.
15678	 */
15679	if (dtrace_anon.dta_enabling != NULL) {
15680		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15681
15682		/*
15683		 * APPLE NOTE: if handling anonymous dof, switch symbol modes.
15684		 */
15685		if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE) {
15686			dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_KERNEL;
15687		}
15688
15689		dtrace_enabling_provide(NULL);
15690		state = dtrace_anon.dta_state;
15691
15692		/*
15693		 * We couldn't hold cpu_lock across the above call to
15694		 * dtrace_enabling_provide(), but we must hold it to actually
15695		 * enable the probes.  We have to drop all of our locks, pick
15696		 * up cpu_lock, and regain our locks before matching the
15697		 * retained anonymous enabling.
15698		 */
15699		lck_mtx_unlock(&dtrace_lock);
15700		lck_mtx_unlock(&dtrace_provider_lock);
15701
15702		lck_mtx_lock(&cpu_lock);
15703		lck_mtx_lock(&dtrace_provider_lock);
15704		lck_mtx_lock(&dtrace_lock);
15705
15706		if ((enab = dtrace_anon.dta_enabling) != NULL)
15707			(void) dtrace_enabling_match(enab, NULL);
15708
15709		lck_mtx_unlock(&cpu_lock);
15710	}
15711
15712	lck_mtx_unlock(&dtrace_lock);
15713	lck_mtx_unlock(&dtrace_provider_lock);
15714
15715	if (state != NULL) {
15716		/*
15717		 * If we created any anonymous state, set it going now.
15718		 */
15719		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15720	}
15721
15722	return (DDI_SUCCESS);
15723}
15724
15725/*ARGSUSED*/
15726static int
15727dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15728{
15729#pragma unused(flag, otyp)
15730	dtrace_state_t *state;
15731	uint32_t priv;
15732	uid_t uid;
15733	zoneid_t zoneid;
15734	int rv;
15735
15736	/* APPLE: Darwin puts Helper on its own major device. */
15737
15738	/*
15739	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15740	 * caller lacks sufficient permission to do anything with DTrace.
15741	 */
15742	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15743	if (priv == DTRACE_PRIV_NONE)
15744		return (EACCES);
15745
15746	/*
15747	 * APPLE NOTE: We delay the initialization of fasttrap as late as possible.
15748	 * It certainly can't be later than now!
15749	 */
15750	fasttrap_init();
15751
15752	/*
15753	 * Ask all providers to provide all their probes.
15754	 */
15755	lck_mtx_lock(&dtrace_provider_lock);
15756	dtrace_probe_provide(NULL, NULL);
15757	lck_mtx_unlock(&dtrace_provider_lock);
15758
15759	lck_mtx_lock(&cpu_lock);
15760	lck_mtx_lock(&dtrace_lock);
15761	dtrace_opens++;
15762	dtrace_membar_producer();
15763
15764	/*
15765	 * If the kernel debugger is active (that is, if the kernel debugger
15766	 * modified text in some way), we won't allow the open.
15767	 */
15768	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15769		dtrace_opens--;
15770		lck_mtx_unlock(&dtrace_lock);
15771		lck_mtx_unlock(&cpu_lock);
15772		return (EBUSY);
15773	}
15774
15775	rv = dtrace_state_create(devp, cred_p, &state);
15776	lck_mtx_unlock(&cpu_lock);
15777
15778	if (rv != 0 || state == NULL) {
15779		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15780			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15781		lck_mtx_unlock(&dtrace_lock);
15782		/* propagate EAGAIN or ERESTART */
15783		return (rv);
15784	}
15785
15786	lck_mtx_unlock(&dtrace_lock);
15787
15788	lck_rw_lock_exclusive(&dtrace_dof_mode_lock);
15789
15790	/*
15791	 * If we are currently lazy, transition states.
15792	 *
15793	 * Unlike dtrace_close, we do not need to check the
15794	 * value of dtrace_opens, as any positive value (and
15795	 * we count as 1) means we transition states.
15796	 */
15797	if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON) {
15798		dtrace_dof_mode = DTRACE_DOF_MODE_LAZY_OFF;
15799
15800		/*
15801		 * Iterate all existing processes and load lazy dofs.
15802		 */
15803		proc_iterate(PROC_ALLPROCLIST | PROC_NOWAITTRANS,
15804			     dtrace_lazy_dofs_proc_iterate_doit,
15805			     NULL,
15806			     dtrace_lazy_dofs_proc_iterate_filter,
15807			     NULL);
15808	}
15809
15810	lck_rw_unlock_exclusive(&dtrace_dof_mode_lock);
15811
15812	/*
15813	 * Update kernel symbol state.
15814	 *
15815	 * We must own the provider and dtrace locks.
15816	 *
15817	 * NOTE! It may appear there is a race by setting this value so late
15818	 * after dtrace_probe_provide. However, any kext loaded after the
15819	 * call to probe provide and before we set LAZY_OFF will be marked as
15820	 * eligible for symbols from userspace. The same dtrace that is currently
15821	 * calling dtrace_open() (this call!) will get a list of kexts needing
15822	 * symbols and fill them in, thus closing the race window.
15823	 *
15824	 * We want to set this value only after it certain it will succeed, as
15825	 * this significantly reduces the complexity of error exits.
15826	 */
15827	lck_mtx_lock(&dtrace_lock);
15828	if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE) {
15829		dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_KERNEL;
15830	}
15831	lck_mtx_unlock(&dtrace_lock);
15832
15833	return (0);
15834}
15835
15836/*ARGSUSED*/
15837static int
15838dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15839{
15840#pragma unused(flag, otyp, cred_p) /* __APPLE__ */
15841	minor_t minor = getminor(dev);
15842	dtrace_state_t *state;
15843
15844	/* APPLE NOTE: Darwin puts Helper on its own major device. */
15845
15846	state = ddi_get_soft_state(dtrace_softstate, minor);
15847
15848	lck_mtx_lock(&cpu_lock);
15849	lck_mtx_lock(&dtrace_lock);
15850
15851	if (state->dts_anon) {
15852		/*
15853		 * There is anonymous state. Destroy that first.
15854		 */
15855		ASSERT(dtrace_anon.dta_state == NULL);
15856		dtrace_state_destroy(state->dts_anon);
15857	}
15858
15859	dtrace_state_destroy(state);
15860	ASSERT(dtrace_opens > 0);
15861
15862	/*
15863	 * Only relinquish control of the kernel debugger interface when there
15864	 * are no consumers and no anonymous enablings.
15865	 */
15866	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15867		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15868
15869	lck_mtx_unlock(&dtrace_lock);
15870	lck_mtx_unlock(&cpu_lock);
15871
15872	/*
15873	 * Lock ordering requires the dof mode lock be taken before
15874	 * the dtrace_lock.
15875	 */
15876	lck_rw_lock_exclusive(&dtrace_dof_mode_lock);
15877	lck_mtx_lock(&dtrace_lock);
15878
15879	if (dtrace_opens == 0) {
15880		/*
15881		 * If we are currently lazy-off, and this is the last close, transition to
15882		 * lazy state.
15883		 */
15884		if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_OFF) {
15885			dtrace_dof_mode = DTRACE_DOF_MODE_LAZY_ON;
15886		}
15887
15888		/*
15889		 * If we are the last dtrace client, switch back to lazy (from userspace) symbols
15890		 */
15891		if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_KERNEL) {
15892			dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE;
15893		}
15894	}
15895
15896	lck_mtx_unlock(&dtrace_lock);
15897	lck_rw_unlock_exclusive(&dtrace_dof_mode_lock);
15898
15899	/*
15900	 * Kext probes may be retained past the end of the kext's lifespan. The
15901	 * probes are kept until the last reference to them has been removed.
15902	 * Since closing an active dtrace context is likely to drop that last reference,
15903	 * lets take a shot at cleaning out the orphaned probes now.
15904	 */
15905	dtrace_module_unloaded(NULL);
15906
15907	return (0);
15908}
15909
15910/*ARGSUSED*/
15911static int
15912dtrace_ioctl_helper(u_long cmd, caddr_t arg, int *rv)
15913{
15914#pragma unused(rv)
15915	/*
15916	 * Safe to check this outside the dof mode lock
15917	 */
15918	if (dtrace_dof_mode == DTRACE_DOF_MODE_NEVER)
15919		return KERN_SUCCESS;
15920
15921	switch (cmd) {
15922	case DTRACEHIOC_ADDDOF:
15923	                {
15924			dof_helper_t *dhp = NULL;
15925			size_t dof_ioctl_data_size;
15926			dof_ioctl_data_t* multi_dof;
15927			unsigned int i;
15928			int rval = 0;
15929			user_addr_t user_address = *(user_addr_t*)arg;
15930			uint64_t dof_count;
15931			int multi_dof_claimed = 0;
15932			proc_t* p = current_proc();
15933
15934			/*
15935			 * Read the number of DOF sections being passed in.
15936			 */
15937			if (copyin(user_address + offsetof(dof_ioctl_data_t, dofiod_count),
15938				   &dof_count,
15939				   sizeof(dof_count))) {
15940				dtrace_dof_error(NULL, "failed to copyin dofiod_count");
15941				return (EFAULT);
15942			}
15943
15944			/*
15945			 * Range check the count.
15946			 */
15947			if (dof_count == 0 || dof_count > 1024) {
15948				dtrace_dof_error(NULL, "dofiod_count is not valid");
15949				return (EINVAL);
15950			}
15951
15952			/*
15953			 * Allocate a correctly sized structure and copyin the data.
15954			 */
15955			dof_ioctl_data_size = DOF_IOCTL_DATA_T_SIZE(dof_count);
15956			if ((multi_dof = kmem_alloc(dof_ioctl_data_size, KM_SLEEP)) == NULL)
15957				return (ENOMEM);
15958
15959			/* NOTE! We can no longer exit this method via return */
15960			if (copyin(user_address, multi_dof, dof_ioctl_data_size) != 0) {
15961				dtrace_dof_error(NULL, "failed copyin of dof_ioctl_data_t");
15962				rval = EFAULT;
15963				goto cleanup;
15964			}
15965
15966			/*
15967			 * Check that the count didn't change between the first copyin and the second.
15968			 */
15969			if (multi_dof->dofiod_count != dof_count) {
15970				rval = EINVAL;
15971				goto cleanup;
15972			}
15973
15974			/*
15975			 * Try to process lazily first.
15976			 */
15977			rval = dtrace_lazy_dofs_add(p, multi_dof, &multi_dof_claimed);
15978
15979			/*
15980			 * If rval is EACCES, we must be non-lazy.
15981			 */
15982			if (rval == EACCES) {
15983				rval = 0;
15984				/*
15985				 * Process each dof_helper_t
15986				 */
15987				i = 0;
15988				do {
15989					dhp = &multi_dof->dofiod_helpers[i];
15990
15991					dof_hdr_t *dof = dtrace_dof_copyin(dhp->dofhp_dof, &rval);
15992
15993					if (dof != NULL) {
15994						lck_mtx_lock(&dtrace_lock);
15995
15996						/*
15997						 * dtrace_helper_slurp() takes responsibility for the dof --
15998						 * it may free it now or it may save it and free it later.
15999						 */
16000						if ((dhp->dofhp_dof = (uint64_t)dtrace_helper_slurp(p, dof, dhp)) == -1ULL) {
16001							rval = EINVAL;
16002						}
16003
16004						lck_mtx_unlock(&dtrace_lock);
16005					}
16006				} while (++i < multi_dof->dofiod_count && rval == 0);
16007			}
16008
16009			/*
16010			 * We need to copyout the multi_dof struct, because it contains
16011			 * the generation (unique id) values needed to call DTRACEHIOC_REMOVE
16012			 *
16013			 * This could certainly be better optimized.
16014			 */
16015			if (copyout(multi_dof, user_address, dof_ioctl_data_size) != 0) {
16016				dtrace_dof_error(NULL, "failed copyout of dof_ioctl_data_t");
16017				/* Don't overwrite pre-existing error code */
16018				if (rval == 0) rval = EFAULT;
16019			}
16020
16021		cleanup:
16022			/*
16023			 * If we had to allocate struct memory, free it.
16024			 */
16025			if (multi_dof != NULL && !multi_dof_claimed) {
16026				kmem_free(multi_dof, dof_ioctl_data_size);
16027			}
16028
16029			return rval;
16030		}
16031
16032		case DTRACEHIOC_REMOVE: {
16033			int generation = *(int*)arg;
16034			proc_t* p = current_proc();
16035
16036			/*
16037			 * Try lazy first.
16038			 */
16039			int rval = dtrace_lazy_dofs_remove(p, generation);
16040
16041			/*
16042			 * EACCES means non-lazy
16043			 */
16044			if (rval == EACCES) {
16045				lck_mtx_lock(&dtrace_lock);
16046				rval = dtrace_helper_destroygen(p, generation);
16047				lck_mtx_unlock(&dtrace_lock);
16048			}
16049
16050			return (rval);
16051		}
16052
16053		default:
16054			break;
16055	}
16056
16057	return ENOTTY;
16058}
16059
16060/*ARGSUSED*/
16061static int
16062dtrace_ioctl(dev_t dev, u_long cmd, user_addr_t arg, int md, cred_t *cr, int *rv)
16063{
16064#pragma unused(md)
16065	minor_t minor = getminor(dev);
16066	dtrace_state_t *state;
16067	int rval;
16068
16069	/* Darwin puts Helper on its own major device. */
16070
16071	state = ddi_get_soft_state(dtrace_softstate, minor);
16072
16073	if (state->dts_anon) {
16074	   ASSERT(dtrace_anon.dta_state == NULL);
16075	   state = state->dts_anon;
16076	}
16077
16078	switch (cmd) {
16079	case DTRACEIOC_PROVIDER: {
16080		dtrace_providerdesc_t pvd;
16081		dtrace_provider_t *pvp;
16082
16083		if (copyin(arg, &pvd, sizeof (pvd)) != 0)
16084			return (EFAULT);
16085
16086		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
16087		lck_mtx_lock(&dtrace_provider_lock);
16088
16089		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
16090			if (strncmp(pvp->dtpv_name, pvd.dtvd_name, DTRACE_PROVNAMELEN) == 0)
16091				break;
16092		}
16093
16094		lck_mtx_unlock(&dtrace_provider_lock);
16095
16096		if (pvp == NULL)
16097			return (ESRCH);
16098
16099		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
16100		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
16101		if (copyout(&pvd, arg, sizeof (pvd)) != 0)
16102			return (EFAULT);
16103
16104		return (0);
16105	}
16106
16107	case DTRACEIOC_EPROBE: {
16108		dtrace_eprobedesc_t epdesc;
16109		dtrace_ecb_t *ecb;
16110		dtrace_action_t *act;
16111		void *buf;
16112		size_t size;
16113		uintptr_t dest;
16114		int nrecs;
16115
16116		if (copyin(arg, &epdesc, sizeof (epdesc)) != 0)
16117			return (EFAULT);
16118
16119		lck_mtx_lock(&dtrace_lock);
16120
16121		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
16122			lck_mtx_unlock(&dtrace_lock);
16123			return (EINVAL);
16124		}
16125
16126		if (ecb->dte_probe == NULL) {
16127			lck_mtx_unlock(&dtrace_lock);
16128			return (EINVAL);
16129		}
16130
16131		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16132		epdesc.dtepd_uarg = ecb->dte_uarg;
16133		epdesc.dtepd_size = ecb->dte_size;
16134
16135		nrecs = epdesc.dtepd_nrecs;
16136		epdesc.dtepd_nrecs = 0;
16137		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16138			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16139				continue;
16140
16141			epdesc.dtepd_nrecs++;
16142		}
16143
16144		/*
16145		 * Now that we have the size, we need to allocate a temporary
16146		 * buffer in which to store the complete description.  We need
16147		 * the temporary buffer to be able to drop dtrace_lock()
16148		 * across the copyout(), below.
16149		 */
16150		size = sizeof (dtrace_eprobedesc_t) +
16151			(epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16152
16153		buf = kmem_alloc(size, KM_SLEEP);
16154		dest = (uintptr_t)buf;
16155
16156		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16157		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16158
16159		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16160			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16161				continue;
16162
16163			if (nrecs-- == 0)
16164				break;
16165
16166			bcopy(&act->dta_rec, (void *)dest,
16167			sizeof (dtrace_recdesc_t));
16168			dest += sizeof (dtrace_recdesc_t);
16169		}
16170
16171		lck_mtx_unlock(&dtrace_lock);
16172
16173		if (copyout(buf, arg, dest - (uintptr_t)buf) != 0) {
16174			kmem_free(buf, size);
16175			return (EFAULT);
16176		}
16177
16178		kmem_free(buf, size);
16179		return (0);
16180	}
16181
16182	case DTRACEIOC_AGGDESC: {
16183		dtrace_aggdesc_t aggdesc;
16184		dtrace_action_t *act;
16185		dtrace_aggregation_t *agg;
16186		int nrecs;
16187		uint32_t offs;
16188		dtrace_recdesc_t *lrec;
16189		void *buf;
16190		size_t size;
16191		uintptr_t dest;
16192
16193		if (copyin(arg, &aggdesc, sizeof (aggdesc)) != 0)
16194			return (EFAULT);
16195
16196		lck_mtx_lock(&dtrace_lock);
16197
16198		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16199			lck_mtx_unlock(&dtrace_lock);
16200			return (EINVAL);
16201		}
16202
16203		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16204
16205		nrecs = aggdesc.dtagd_nrecs;
16206		aggdesc.dtagd_nrecs = 0;
16207
16208		offs = agg->dtag_base;
16209		lrec = &agg->dtag_action.dta_rec;
16210		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16211
16212		for (act = agg->dtag_first; ; act = act->dta_next) {
16213			ASSERT(act->dta_intuple ||
16214			DTRACEACT_ISAGG(act->dta_kind));
16215
16216			/*
16217			 * If this action has a record size of zero, it
16218			 * denotes an argument to the aggregating action.
16219			 * Because the presence of this record doesn't (or
16220			 * shouldn't) affect the way the data is interpreted,
16221			 * we don't copy it out to save user-level the
16222			 * confusion of dealing with a zero-length record.
16223			 */
16224			if (act->dta_rec.dtrd_size == 0) {
16225				ASSERT(agg->dtag_hasarg);
16226				continue;
16227			}
16228
16229			aggdesc.dtagd_nrecs++;
16230
16231			if (act == &agg->dtag_action)
16232				break;
16233		}
16234
16235		/*
16236		 * Now that we have the size, we need to allocate a temporary
16237		 * buffer in which to store the complete description.  We need
16238		 * the temporary buffer to be able to drop dtrace_lock()
16239		 * across the copyout(), below.
16240		 */
16241		size = sizeof (dtrace_aggdesc_t) +
16242			(aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16243
16244		buf = kmem_alloc(size, KM_SLEEP);
16245		dest = (uintptr_t)buf;
16246
16247		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16248		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16249
16250		for (act = agg->dtag_first; ; act = act->dta_next) {
16251			dtrace_recdesc_t rec = act->dta_rec;
16252
16253			/*
16254			 * See the comment in the above loop for why we pass
16255			 * over zero-length records.
16256			 */
16257			if (rec.dtrd_size == 0) {
16258				ASSERT(agg->dtag_hasarg);
16259				continue;
16260			}
16261
16262			if (nrecs-- == 0)
16263				break;
16264
16265			rec.dtrd_offset -= offs;
16266			bcopy(&rec, (void *)dest, sizeof (rec));
16267			dest += sizeof (dtrace_recdesc_t);
16268
16269			if (act == &agg->dtag_action)
16270				break;
16271		}
16272
16273		lck_mtx_unlock(&dtrace_lock);
16274
16275		if (copyout(buf, arg, dest - (uintptr_t)buf) != 0) {
16276			kmem_free(buf, size);
16277			return (EFAULT);
16278		}
16279
16280		kmem_free(buf, size);
16281		return (0);
16282	}
16283
16284	case DTRACEIOC_ENABLE: {
16285		dof_hdr_t *dof;
16286		dtrace_enabling_t *enab = NULL;
16287		dtrace_vstate_t *vstate;
16288		int err = 0;
16289
16290		*rv = 0;
16291
16292		/*
16293		 * If a NULL argument has been passed, we take this as our
16294		 * cue to reevaluate our enablings.
16295		 */
16296		if (arg == 0) {
16297			dtrace_enabling_matchall();
16298
16299			return (0);
16300		}
16301
16302		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16303			return (rval);
16304
16305		lck_mtx_lock(&cpu_lock);
16306		lck_mtx_lock(&dtrace_lock);
16307		vstate = &state->dts_vstate;
16308
16309		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16310			lck_mtx_unlock(&dtrace_lock);
16311			lck_mtx_unlock(&cpu_lock);
16312			dtrace_dof_destroy(dof);
16313			return (EBUSY);
16314		}
16315
16316		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16317			lck_mtx_unlock(&dtrace_lock);
16318			lck_mtx_unlock(&cpu_lock);
16319			dtrace_dof_destroy(dof);
16320			return (EINVAL);
16321		}
16322
16323		if ((rval = dtrace_dof_options(dof, state)) != 0) {
16324			dtrace_enabling_destroy(enab);
16325			lck_mtx_unlock(&dtrace_lock);
16326			lck_mtx_unlock(&cpu_lock);
16327			dtrace_dof_destroy(dof);
16328			return (rval);
16329		}
16330
16331		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16332			err = dtrace_enabling_retain(enab);
16333		} else {
16334			dtrace_enabling_destroy(enab);
16335		}
16336
16337		lck_mtx_unlock(&dtrace_lock);
16338		lck_mtx_unlock(&cpu_lock);
16339		dtrace_dof_destroy(dof);
16340
16341		return (err);
16342	}
16343
16344	case DTRACEIOC_REPLICATE: {
16345		dtrace_repldesc_t desc;
16346		dtrace_probedesc_t *match = &desc.dtrpd_match;
16347		dtrace_probedesc_t *create = &desc.dtrpd_create;
16348		int err;
16349
16350		if (copyin(arg, &desc, sizeof (desc)) != 0)
16351			return (EFAULT);
16352
16353		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16354		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16355		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16356		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16357
16358		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16359		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16360		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16361		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16362
16363		lck_mtx_lock(&dtrace_lock);
16364		err = dtrace_enabling_replicate(state, match, create);
16365		lck_mtx_unlock(&dtrace_lock);
16366
16367		return (err);
16368	}
16369
16370	case DTRACEIOC_PROBEMATCH:
16371	case DTRACEIOC_PROBES: {
16372		dtrace_probe_t *probe = NULL;
16373		dtrace_probedesc_t desc;
16374		dtrace_probekey_t pkey;
16375		dtrace_id_t i;
16376		int m = 0;
16377		uint32_t priv;
16378		uid_t uid;
16379		zoneid_t zoneid;
16380
16381		if (copyin(arg, &desc, sizeof (desc)) != 0)
16382			return (EFAULT);
16383
16384		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16385		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16386		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16387		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16388
16389		/*
16390		 * Before we attempt to match this probe, we want to give
16391		 * all providers the opportunity to provide it.
16392		 */
16393		if (desc.dtpd_id == DTRACE_IDNONE) {
16394			lck_mtx_lock(&dtrace_provider_lock);
16395			dtrace_probe_provide(&desc, NULL);
16396			lck_mtx_unlock(&dtrace_provider_lock);
16397			desc.dtpd_id++;
16398		}
16399
16400		if (cmd == DTRACEIOC_PROBEMATCH)  {
16401			dtrace_probekey(&desc, &pkey);
16402			pkey.dtpk_id = DTRACE_IDNONE;
16403		}
16404
16405		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16406
16407		lck_mtx_lock(&dtrace_lock);
16408
16409		if (cmd == DTRACEIOC_PROBEMATCH) {
16410                        /* Quiet compiler warning */
16411			for (i = desc.dtpd_id; i <= (dtrace_id_t)dtrace_nprobes; i++) {
16412				if ((probe = dtrace_probes[i - 1]) != NULL &&
16413					(m = dtrace_match_probe(probe, &pkey,
16414					priv, uid, zoneid)) != 0)
16415					break;
16416			}
16417
16418			if (m < 0) {
16419				lck_mtx_unlock(&dtrace_lock);
16420				return (EINVAL);
16421			}
16422
16423		} else {
16424                        /* Quiet compiler warning */
16425			for (i = desc.dtpd_id; i <= (dtrace_id_t)dtrace_nprobes; i++) {
16426				if ((probe = dtrace_probes[i - 1]) != NULL &&
16427					dtrace_match_priv(probe, priv, uid, zoneid))
16428					break;
16429			}
16430		}
16431
16432		if (probe == NULL) {
16433			lck_mtx_unlock(&dtrace_lock);
16434			return (ESRCH);
16435		}
16436
16437		dtrace_probe_description(probe, &desc);
16438		lck_mtx_unlock(&dtrace_lock);
16439
16440		if (copyout(&desc, arg, sizeof (desc)) != 0)
16441			return (EFAULT);
16442
16443		return (0);
16444	}
16445
16446	case DTRACEIOC_PROBEARG: {
16447		dtrace_argdesc_t desc;
16448		dtrace_probe_t *probe;
16449		dtrace_provider_t *prov;
16450
16451		if (copyin(arg, &desc, sizeof (desc)) != 0)
16452			return (EFAULT);
16453
16454		if (desc.dtargd_id == DTRACE_IDNONE)
16455			return (EINVAL);
16456
16457		if (desc.dtargd_ndx == DTRACE_ARGNONE)
16458			return (EINVAL);
16459
16460		lck_mtx_lock(&dtrace_provider_lock);
16461		lck_mtx_lock(&mod_lock);
16462		lck_mtx_lock(&dtrace_lock);
16463
16464                /* Quiet compiler warning */
16465		if (desc.dtargd_id > (dtrace_id_t)dtrace_nprobes) {
16466			lck_mtx_unlock(&dtrace_lock);
16467			lck_mtx_unlock(&mod_lock);
16468			lck_mtx_unlock(&dtrace_provider_lock);
16469			return (EINVAL);
16470		}
16471
16472		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16473			lck_mtx_unlock(&dtrace_lock);
16474			lck_mtx_unlock(&mod_lock);
16475			lck_mtx_unlock(&dtrace_provider_lock);
16476			return (EINVAL);
16477		}
16478
16479		lck_mtx_unlock(&dtrace_lock);
16480
16481		prov = probe->dtpr_provider;
16482
16483		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16484		/*
16485		 * There isn't any typed information for this probe.
16486		 * Set the argument number to DTRACE_ARGNONE.
16487		 */
16488			desc.dtargd_ndx = DTRACE_ARGNONE;
16489		} else {
16490			desc.dtargd_native[0] = '\0';
16491			desc.dtargd_xlate[0] = '\0';
16492			desc.dtargd_mapping = desc.dtargd_ndx;
16493
16494			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16495			probe->dtpr_id, probe->dtpr_arg, &desc);
16496		}
16497
16498		lck_mtx_unlock(&mod_lock);
16499		lck_mtx_unlock(&dtrace_provider_lock);
16500
16501		if (copyout(&desc, arg, sizeof (desc)) != 0)
16502			return (EFAULT);
16503
16504		return (0);
16505	}
16506
16507	case DTRACEIOC_GO: {
16508		processorid_t cpuid;
16509		rval = dtrace_state_go(state, &cpuid);
16510
16511		if (rval != 0)
16512			return (rval);
16513
16514		if (copyout(&cpuid, arg, sizeof (cpuid)) != 0)
16515			return (EFAULT);
16516
16517		return (0);
16518	}
16519
16520	case DTRACEIOC_STOP: {
16521		processorid_t cpuid;
16522
16523		lck_mtx_lock(&dtrace_lock);
16524		rval = dtrace_state_stop(state, &cpuid);
16525		lck_mtx_unlock(&dtrace_lock);
16526
16527		if (rval != 0)
16528			return (rval);
16529
16530		if (copyout(&cpuid, arg, sizeof (cpuid)) != 0)
16531			return (EFAULT);
16532
16533		return (0);
16534	}
16535
16536	case DTRACEIOC_DOFGET: {
16537		dof_hdr_t hdr, *dof;
16538		uint64_t len;
16539
16540		if (copyin(arg, &hdr, sizeof (hdr)) != 0)
16541			return (EFAULT);
16542
16543		lck_mtx_lock(&dtrace_lock);
16544		dof = dtrace_dof_create(state);
16545		lck_mtx_unlock(&dtrace_lock);
16546
16547		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16548		rval = copyout(dof, arg, len);
16549		dtrace_dof_destroy(dof);
16550
16551		return (rval == 0 ? 0 : EFAULT);
16552	}
16553
16554	case DTRACEIOC_AGGSNAP:
16555	case DTRACEIOC_BUFSNAP: {
16556		dtrace_bufdesc_t desc;
16557		caddr_t cached;
16558		dtrace_buffer_t *buf;
16559
16560		if (copyin(arg, &desc, sizeof (desc)) != 0)
16561			return (EFAULT);
16562
16563		if ((int)desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16564			return (EINVAL);
16565
16566		lck_mtx_lock(&dtrace_lock);
16567
16568		if (cmd == DTRACEIOC_BUFSNAP) {
16569			buf = &state->dts_buffer[desc.dtbd_cpu];
16570		} else {
16571			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16572		}
16573
16574		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16575			size_t sz = buf->dtb_offset;
16576
16577			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16578				lck_mtx_unlock(&dtrace_lock);
16579				return (EBUSY);
16580			}
16581
16582			/*
16583			 * If this buffer has already been consumed, we're
16584			 * going to indicate that there's nothing left here
16585			 * to consume.
16586			 */
16587			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16588				lck_mtx_unlock(&dtrace_lock);
16589
16590				desc.dtbd_size = 0;
16591				desc.dtbd_drops = 0;
16592				desc.dtbd_errors = 0;
16593				desc.dtbd_oldest = 0;
16594				sz = sizeof (desc);
16595
16596				if (copyout(&desc, arg, sz) != 0)
16597					return (EFAULT);
16598
16599				return (0);
16600			}
16601
16602			/*
16603			 * If this is a ring buffer that has wrapped, we want
16604			 * to copy the whole thing out.
16605			 */
16606			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16607				dtrace_buffer_polish(buf);
16608				sz = buf->dtb_size;
16609			}
16610
16611			if (copyout(buf->dtb_tomax, (user_addr_t)desc.dtbd_data, sz) != 0) {
16612				lck_mtx_unlock(&dtrace_lock);
16613				return (EFAULT);
16614			}
16615
16616			desc.dtbd_size = sz;
16617			desc.dtbd_drops = buf->dtb_drops;
16618			desc.dtbd_errors = buf->dtb_errors;
16619			desc.dtbd_oldest = buf->dtb_xamot_offset;
16620
16621			lck_mtx_unlock(&dtrace_lock);
16622
16623			if (copyout(&desc, arg, sizeof (desc)) != 0)
16624				return (EFAULT);
16625
16626			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16627
16628			return (0);
16629		}
16630
16631		if (buf->dtb_tomax == NULL) {
16632			ASSERT(buf->dtb_xamot == NULL);
16633			lck_mtx_unlock(&dtrace_lock);
16634			return (ENOENT);
16635		}
16636
16637		cached = buf->dtb_tomax;
16638		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16639
16640		dtrace_xcall(desc.dtbd_cpu,
16641			(dtrace_xcall_t)dtrace_buffer_switch, buf);
16642
16643		state->dts_errors += buf->dtb_xamot_errors;
16644
16645		/*
16646		* If the buffers did not actually switch, then the cross call
16647		* did not take place -- presumably because the given CPU is
16648		* not in the ready set.  If this is the case, we'll return
16649		* ENOENT.
16650		*/
16651		if (buf->dtb_tomax == cached) {
16652			ASSERT(buf->dtb_xamot != cached);
16653			lck_mtx_unlock(&dtrace_lock);
16654			return (ENOENT);
16655		}
16656
16657		ASSERT(cached == buf->dtb_xamot);
16658
16659		/*
16660		* We have our snapshot; now copy it out.
16661		*/
16662		if (copyout(buf->dtb_xamot, (user_addr_t)desc.dtbd_data,
16663					buf->dtb_xamot_offset) != 0) {
16664			lck_mtx_unlock(&dtrace_lock);
16665			return (EFAULT);
16666		}
16667
16668		desc.dtbd_size = buf->dtb_xamot_offset;
16669		desc.dtbd_drops = buf->dtb_xamot_drops;
16670		desc.dtbd_errors = buf->dtb_xamot_errors;
16671		desc.dtbd_oldest = 0;
16672
16673		lck_mtx_unlock(&dtrace_lock);
16674
16675		/*
16676		 * Finally, copy out the buffer description.
16677		 */
16678		if (copyout(&desc, arg, sizeof (desc)) != 0)
16679			return (EFAULT);
16680
16681		return (0);
16682	}
16683
16684	case DTRACEIOC_CONF: {
16685		dtrace_conf_t conf;
16686
16687		bzero(&conf, sizeof (conf));
16688		conf.dtc_difversion = DIF_VERSION;
16689		conf.dtc_difintregs = DIF_DIR_NREGS;
16690		conf.dtc_diftupregs = DIF_DTR_NREGS;
16691		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16692
16693		if (copyout(&conf, arg, sizeof (conf)) != 0)
16694			return (EFAULT);
16695
16696		return (0);
16697	}
16698
16699	case DTRACEIOC_STATUS: {
16700		dtrace_status_t stat;
16701		dtrace_dstate_t *dstate;
16702		int i, j;
16703		uint64_t nerrs;
16704
16705		/*
16706		* See the comment in dtrace_state_deadman() for the reason
16707		* for setting dts_laststatus to INT64_MAX before setting
16708		* it to the correct value.
16709		*/
16710		state->dts_laststatus = INT64_MAX;
16711		dtrace_membar_producer();
16712		state->dts_laststatus = dtrace_gethrtime();
16713
16714		bzero(&stat, sizeof (stat));
16715
16716		lck_mtx_lock(&dtrace_lock);
16717
16718		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16719			lck_mtx_unlock(&dtrace_lock);
16720			return (ENOENT);
16721		}
16722
16723		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16724			stat.dtst_exiting = 1;
16725
16726		nerrs = state->dts_errors;
16727		dstate = &state->dts_vstate.dtvs_dynvars;
16728
16729		for (i = 0; i < (int)NCPU; i++) {
16730			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16731
16732			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16733			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16734			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16735
16736			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16737				stat.dtst_filled++;
16738
16739			nerrs += state->dts_buffer[i].dtb_errors;
16740
16741			for (j = 0; j < state->dts_nspeculations; j++) {
16742				dtrace_speculation_t *spec;
16743				dtrace_buffer_t *buf;
16744
16745				spec = &state->dts_speculations[j];
16746				buf = &spec->dtsp_buffer[i];
16747				stat.dtst_specdrops += buf->dtb_xamot_drops;
16748			}
16749		}
16750
16751		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16752		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16753		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16754		stat.dtst_dblerrors = state->dts_dblerrors;
16755		stat.dtst_killed =
16756			(state->dts_activity == DTRACE_ACTIVITY_KILLED);
16757		stat.dtst_errors = nerrs;
16758
16759		lck_mtx_unlock(&dtrace_lock);
16760
16761		if (copyout(&stat, arg, sizeof (stat)) != 0)
16762			return (EFAULT);
16763
16764		return (0);
16765	}
16766
16767	case DTRACEIOC_FORMAT: {
16768		dtrace_fmtdesc_t fmt;
16769		char *str;
16770		int len;
16771
16772		if (copyin(arg, &fmt, sizeof (fmt)) != 0)
16773			return (EFAULT);
16774
16775		lck_mtx_lock(&dtrace_lock);
16776
16777		if (fmt.dtfd_format == 0 ||
16778			fmt.dtfd_format > state->dts_nformats) {
16779			lck_mtx_unlock(&dtrace_lock);
16780			return (EINVAL);
16781		}
16782
16783		/*
16784		 * Format strings are allocated contiguously and they are
16785		 * never freed; if a format index is less than the number
16786		 * of formats, we can assert that the format map is non-NULL
16787		 * and that the format for the specified index is non-NULL.
16788		 */
16789		ASSERT(state->dts_formats != NULL);
16790		str = state->dts_formats[fmt.dtfd_format - 1];
16791		ASSERT(str != NULL);
16792
16793		len = strlen(str) + 1;
16794
16795		if (len > fmt.dtfd_length) {
16796			fmt.dtfd_length = len;
16797
16798			if (copyout(&fmt, arg, sizeof (fmt)) != 0) {
16799				lck_mtx_unlock(&dtrace_lock);
16800				return (EINVAL);
16801			}
16802		} else {
16803			if (copyout(str, (user_addr_t)fmt.dtfd_string, len) != 0) {
16804				lck_mtx_unlock(&dtrace_lock);
16805				return (EINVAL);
16806			}
16807		}
16808
16809		lck_mtx_unlock(&dtrace_lock);
16810		return (0);
16811	}
16812
16813	case DTRACEIOC_MODUUIDSLIST: {
16814		size_t module_uuids_list_size;
16815		dtrace_module_uuids_list_t* uuids_list;
16816		uint64_t dtmul_count;
16817
16818		/*
16819		 * Security restrictions make this operation illegal, if this is enabled DTrace
16820		 * must refuse to provide any fbt probes.
16821		 */
16822		if (dtrace_is_restricted()) {
16823			cmn_err(CE_WARN, "security restrictions disallow DTRACEIOC_MODUUIDSLIST");
16824			return (EPERM);
16825		}
16826
16827		/*
16828		 * Fail if the kernel symbol mode makes this operation illegal.
16829		 * Both NEVER & ALWAYS_FROM_KERNEL are permanent states, it is legal to check
16830		 * for them without holding the dtrace_lock.
16831		 */
16832		if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_NEVER ||
16833		    dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL) {
16834			cmn_err(CE_WARN, "dtrace_kernel_symbol_mode of %u disallows DTRACEIOC_MODUUIDSLIST", dtrace_kernel_symbol_mode);
16835			return (EPERM);
16836		}
16837
16838		/*
16839		 * Read the number of symbolsdesc structs being passed in.
16840		 */
16841		if (copyin(arg + offsetof(dtrace_module_uuids_list_t, dtmul_count),
16842			   &dtmul_count,
16843			   sizeof(dtmul_count))) {
16844			cmn_err(CE_WARN, "failed to copyin dtmul_count");
16845			return (EFAULT);
16846		}
16847
16848		/*
16849		 * Range check the count. More than 2k kexts is probably an error.
16850		 */
16851		if (dtmul_count > 2048) {
16852			cmn_err(CE_WARN, "dtmul_count is not valid");
16853			return (EINVAL);
16854		}
16855
16856		/*
16857		 * For all queries, we return EINVAL when the user specified
16858		 * count does not match the actual number of modules we find
16859		 * available.
16860		 *
16861		 * If the user specified count is zero, then this serves as a
16862		 * simple query to count the available modules in need of symbols.
16863		 */
16864
16865		rval = 0;
16866
16867		if (dtmul_count == 0)
16868		{
16869			lck_mtx_lock(&mod_lock);
16870			struct modctl* ctl = dtrace_modctl_list;
16871			while (ctl) {
16872				/* Update the private probes bit */
16873				if (dtrace_provide_private_probes)
16874					ctl->mod_flags |= MODCTL_FBT_PROVIDE_PRIVATE_PROBES;
16875
16876				ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl));
16877				if (!MOD_SYMBOLS_DONE(ctl)) {
16878					dtmul_count++;
16879					rval = EINVAL;
16880				}
16881				ctl = ctl->mod_next;
16882			}
16883			lck_mtx_unlock(&mod_lock);
16884
16885			if (copyout(&dtmul_count, arg, sizeof (dtmul_count)) != 0)
16886				return (EFAULT);
16887			else
16888				return (rval);
16889		}
16890
16891		/*
16892		 * If we reach this point, then we have a request for full list data.
16893		 * Allocate a correctly sized structure and copyin the data.
16894		 */
16895		module_uuids_list_size = DTRACE_MODULE_UUIDS_LIST_SIZE(dtmul_count);
16896		if ((uuids_list = kmem_alloc(module_uuids_list_size, KM_SLEEP)) == NULL)
16897			return (ENOMEM);
16898
16899		/* NOTE! We can no longer exit this method via return */
16900		if (copyin(arg, uuids_list, module_uuids_list_size) != 0) {
16901			cmn_err(CE_WARN, "failed copyin of dtrace_module_uuids_list_t");
16902			rval = EFAULT;
16903			goto moduuidslist_cleanup;
16904		}
16905
16906		/*
16907		 * Check that the count didn't change between the first copyin and the second.
16908		 */
16909		if (uuids_list->dtmul_count != dtmul_count) {
16910			rval = EINVAL;
16911			goto moduuidslist_cleanup;
16912		}
16913
16914		/*
16915		 * Build the list of UUID's that need symbols
16916		 */
16917		lck_mtx_lock(&mod_lock);
16918
16919		dtmul_count = 0;
16920
16921		struct modctl* ctl = dtrace_modctl_list;
16922		while (ctl) {
16923			/* Update the private probes bit */
16924			if (dtrace_provide_private_probes)
16925				ctl->mod_flags |= MODCTL_FBT_PROVIDE_PRIVATE_PROBES;
16926
16927			/*
16928			 * We assume that userspace symbols will be "better" than kernel level symbols,
16929			 * as userspace can search for dSYM(s) and symbol'd binaries. Even if kernel syms
16930			 * are available, add user syms if the module might use them.
16931			 */
16932			ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl));
16933			if (!MOD_SYMBOLS_DONE(ctl)) {
16934				UUID* uuid = &uuids_list->dtmul_uuid[dtmul_count];
16935				if (dtmul_count++ < uuids_list->dtmul_count) {
16936					memcpy(uuid, ctl->mod_uuid, sizeof(UUID));
16937				}
16938			}
16939			ctl = ctl->mod_next;
16940		}
16941
16942		lck_mtx_unlock(&mod_lock);
16943
16944		if (uuids_list->dtmul_count < dtmul_count)
16945			rval = EINVAL;
16946
16947		uuids_list->dtmul_count = dtmul_count;
16948
16949		/*
16950		 * Copyout the symbols list (or at least the count!)
16951		 */
16952		if (copyout(uuids_list, arg, module_uuids_list_size) != 0) {
16953			cmn_err(CE_WARN, "failed copyout of dtrace_symbolsdesc_list_t");
16954			rval = EFAULT;
16955		}
16956
16957	moduuidslist_cleanup:
16958		/*
16959		 * If we had to allocate struct memory, free it.
16960		 */
16961		if (uuids_list != NULL) {
16962			kmem_free(uuids_list, module_uuids_list_size);
16963		}
16964
16965		return rval;
16966	}
16967
16968	case DTRACEIOC_PROVMODSYMS: {
16969		size_t module_symbols_size;
16970		dtrace_module_symbols_t* module_symbols;
16971		uint64_t dtmodsyms_count;
16972
16973		/*
16974		 * Security restrictions make this operation illegal, if this is enabled DTrace
16975		 * must refuse to provide any fbt probes.
16976		 */
16977		if (dtrace_is_restricted()) {
16978			cmn_err(CE_WARN, "security restrictions disallow DTRACEIOC_MODUUIDSLIST");
16979			return (EPERM);
16980		}
16981
16982		/*
16983		 * Fail if the kernel symbol mode makes this operation illegal.
16984		 * Both NEVER & ALWAYS_FROM_KERNEL are permanent states, it is legal to check
16985		 * for them without holding the dtrace_lock.
16986		 */
16987		if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_NEVER ||
16988		    dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL) {
16989			cmn_err(CE_WARN, "dtrace_kernel_symbol_mode of %u disallows DTRACEIOC_PROVMODSYMS", dtrace_kernel_symbol_mode);
16990			return (EPERM);
16991		}
16992
16993		/*
16994		 * Read the number of module symbols structs being passed in.
16995		 */
16996		if (copyin(arg + offsetof(dtrace_module_symbols_t, dtmodsyms_count),
16997			   &dtmodsyms_count,
16998			   sizeof(dtmodsyms_count))) {
16999			cmn_err(CE_WARN, "failed to copyin dtmodsyms_count");
17000			return (EFAULT);
17001		}
17002
17003		/*
17004		 * Range check the count. How much data can we pass around?
17005		 * FIX ME!
17006		 */
17007		if (dtmodsyms_count == 0 || (dtmodsyms_count > 100 * 1024)) {
17008			cmn_err(CE_WARN, "dtmodsyms_count is not valid");
17009			return (EINVAL);
17010		}
17011
17012		/*
17013		 * Allocate a correctly sized structure and copyin the data.
17014		 */
17015		module_symbols_size = DTRACE_MODULE_SYMBOLS_SIZE(dtmodsyms_count);
17016		if ((module_symbols = kmem_alloc(module_symbols_size, KM_SLEEP)) == NULL)
17017			return (ENOMEM);
17018
17019		rval = 0;
17020
17021		/* NOTE! We can no longer exit this method via return */
17022		if (copyin(arg, module_symbols, module_symbols_size) != 0) {
17023			cmn_err(CE_WARN, "failed copyin of dtrace_module_symbols_t, symbol count %llu", module_symbols->dtmodsyms_count);
17024			rval = EFAULT;
17025			goto module_symbols_cleanup;
17026		}
17027
17028		/*
17029		 * Check that the count didn't change between the first copyin and the second.
17030		 */
17031		if (module_symbols->dtmodsyms_count != dtmodsyms_count) {
17032			rval = EINVAL;
17033			goto module_symbols_cleanup;
17034		}
17035
17036		/*
17037		 * Find the modctl to add symbols to.
17038		 */
17039		lck_mtx_lock(&dtrace_provider_lock);
17040		lck_mtx_lock(&mod_lock);
17041
17042		struct modctl* ctl = dtrace_modctl_list;
17043		while (ctl) {
17044			/* Update the private probes bit */
17045			if (dtrace_provide_private_probes)
17046				ctl->mod_flags |= MODCTL_FBT_PROVIDE_PRIVATE_PROBES;
17047
17048			ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl));
17049			if (MOD_HAS_UUID(ctl) && !MOD_SYMBOLS_DONE(ctl)) {
17050				if (memcmp(module_symbols->dtmodsyms_uuid, ctl->mod_uuid, sizeof(UUID)) == 0) {
17051					/* BINGO! */
17052					ctl->mod_user_symbols = module_symbols;
17053					break;
17054				}
17055			}
17056			ctl = ctl->mod_next;
17057		}
17058
17059		if (ctl) {
17060			dtrace_provider_t *prv;
17061
17062			/*
17063			 * We're going to call each providers per-module provide operation
17064			 * specifying only this module.
17065			 */
17066			for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
17067				prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
17068
17069			/*
17070			 * We gave every provider a chance to provide with the user syms, go ahead and clear them
17071			 */
17072			ctl->mod_user_symbols = NULL; /* MUST reset this to clear HAS_USERSPACE_SYMBOLS */
17073		}
17074
17075		lck_mtx_unlock(&mod_lock);
17076		lck_mtx_unlock(&dtrace_provider_lock);
17077
17078	module_symbols_cleanup:
17079		/*
17080		 * If we had to allocate struct memory, free it.
17081		 */
17082		if (module_symbols != NULL) {
17083			kmem_free(module_symbols, module_symbols_size);
17084		}
17085
17086		return rval;
17087	}
17088
17089	case DTRACEIOC_PROCWAITFOR: {
17090		dtrace_procdesc_t pdesc = {
17091			.p_comm = {0},
17092			.p_pid  = -1
17093		};
17094
17095		if ((rval = copyin(arg, &pdesc, sizeof(pdesc))) != 0)
17096			goto proc_waitfor_error;
17097
17098		if ((rval = dtrace_proc_waitfor(&pdesc)) != 0)
17099			goto proc_waitfor_error;
17100
17101		if ((rval = copyout(&pdesc, arg, sizeof(pdesc))) != 0)
17102			goto proc_waitfor_error;
17103
17104		return 0;
17105
17106	proc_waitfor_error:
17107		/* The process was suspended, revert this since the client will not do it. */
17108		if (pdesc.p_pid != -1) {
17109			proc_t *proc = proc_find(pdesc.p_pid);
17110			if (proc != PROC_NULL) {
17111				task_pidresume(proc->task);
17112				proc_rele(proc);
17113			}
17114		}
17115
17116		return rval;
17117	}
17118
17119	default:
17120		break;
17121	}
17122
17123	return (ENOTTY);
17124}
17125
17126/*
17127 * APPLE NOTE:  dtrace_detach not implemented
17128 */
17129#if !defined(__APPLE__)
17130/*ARGSUSED*/
17131static int
17132dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
17133{
17134	dtrace_state_t *state;
17135
17136	switch (cmd) {
17137	case DDI_DETACH:
17138		break;
17139
17140	case DDI_SUSPEND:
17141		return (DDI_SUCCESS);
17142
17143	default:
17144		return (DDI_FAILURE);
17145	}
17146
17147	lck_mtx_lock(&cpu_lock);
17148	lck_mtx_lock(&dtrace_provider_lock);
17149	lck_mtx_lock(&dtrace_lock);
17150
17151	ASSERT(dtrace_opens == 0);
17152
17153	if (dtrace_helpers > 0) {
17154		lck_mtx_unlock(&dtrace_lock);
17155		lck_mtx_unlock(&dtrace_provider_lock);
17156		lck_mtx_unlock(&cpu_lock);
17157		return (DDI_FAILURE);
17158	}
17159
17160	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
17161		lck_mtx_unlock(&dtrace_lock);
17162		lck_mtx_unlock(&dtrace_provider_lock);
17163		lck_mtx_unlock(&cpu_lock);
17164		return (DDI_FAILURE);
17165	}
17166
17167	dtrace_provider = NULL;
17168
17169	if ((state = dtrace_anon_grab()) != NULL) {
17170		/*
17171		 * If there were ECBs on this state, the provider should
17172		 * have not been allowed to detach; assert that there is
17173		 * none.
17174		 */
17175		ASSERT(state->dts_necbs == 0);
17176		dtrace_state_destroy(state);
17177
17178		/*
17179		 * If we're being detached with anonymous state, we need to
17180		 * indicate to the kernel debugger that DTrace is now inactive.
17181		 */
17182		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17183	}
17184
17185	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
17186	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17187	dtrace_cpu_init = NULL;
17188	dtrace_helpers_cleanup = NULL;
17189	dtrace_helpers_fork = NULL;
17190	dtrace_cpustart_init = NULL;
17191	dtrace_cpustart_fini = NULL;
17192	dtrace_debugger_init = NULL;
17193	dtrace_debugger_fini = NULL;
17194	dtrace_kreloc_init = NULL;
17195	dtrace_kreloc_fini = NULL;
17196	dtrace_modload = NULL;
17197	dtrace_modunload = NULL;
17198
17199	lck_mtx_unlock(&cpu_lock);
17200
17201	if (dtrace_helptrace_enabled) {
17202		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
17203		dtrace_helptrace_buffer = NULL;
17204	}
17205
17206	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
17207	dtrace_probes = NULL;
17208	dtrace_nprobes = 0;
17209
17210	dtrace_hash_destroy(dtrace_bymod);
17211	dtrace_hash_destroy(dtrace_byfunc);
17212	dtrace_hash_destroy(dtrace_byname);
17213	dtrace_bymod = NULL;
17214	dtrace_byfunc = NULL;
17215	dtrace_byname = NULL;
17216
17217	kmem_cache_destroy(dtrace_state_cache);
17218	vmem_destroy(dtrace_minor);
17219	vmem_destroy(dtrace_arena);
17220
17221	if (dtrace_toxrange != NULL) {
17222		kmem_free(dtrace_toxrange,
17223		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
17224		dtrace_toxrange = NULL;
17225		dtrace_toxranges = 0;
17226		dtrace_toxranges_max = 0;
17227	}
17228
17229	ddi_remove_minor_node(dtrace_devi, NULL);
17230	dtrace_devi = NULL;
17231
17232	ddi_soft_state_fini(&dtrace_softstate);
17233
17234	ASSERT(dtrace_vtime_references == 0);
17235	ASSERT(dtrace_opens == 0);
17236	ASSERT(dtrace_retained == NULL);
17237
17238	lck_mtx_unlock(&dtrace_lock);
17239	lck_mtx_unlock(&dtrace_provider_lock);
17240
17241	/*
17242	 * We don't destroy the task queue until after we have dropped our
17243	 * locks (taskq_destroy() may block on running tasks).  To prevent
17244	 * attempting to do work after we have effectively detached but before
17245	 * the task queue has been destroyed, all tasks dispatched via the
17246	 * task queue must check that DTrace is still attached before
17247	 * performing any operation.
17248	 */
17249	taskq_destroy(dtrace_taskq);
17250	dtrace_taskq = NULL;
17251
17252	return (DDI_SUCCESS);
17253}
17254#endif  /* __APPLE__ */
17255
17256d_open_t _dtrace_open, helper_open;
17257d_close_t _dtrace_close, helper_close;
17258d_ioctl_t _dtrace_ioctl, helper_ioctl;
17259
17260int
17261_dtrace_open(dev_t dev, int flags, int devtype, struct proc *p)
17262{
17263#pragma unused(p)
17264	dev_t locdev = dev;
17265
17266	return  dtrace_open( &locdev, flags, devtype, CRED());
17267}
17268
17269int
17270helper_open(dev_t dev, int flags, int devtype, struct proc *p)
17271{
17272#pragma unused(dev,flags,devtype,p)
17273	return 0;
17274}
17275
17276int
17277_dtrace_close(dev_t dev, int flags, int devtype, struct proc *p)
17278{
17279#pragma unused(p)
17280	return dtrace_close( dev, flags, devtype, CRED());
17281}
17282
17283int
17284helper_close(dev_t dev, int flags, int devtype, struct proc *p)
17285{
17286#pragma unused(dev,flags,devtype,p)
17287	return 0;
17288}
17289
17290int
17291_dtrace_ioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p)
17292{
17293#pragma unused(p)
17294	int err, rv = 0;
17295    user_addr_t uaddrp;
17296
17297    if (proc_is64bit(p))
17298		uaddrp = *(user_addr_t *)data;
17299	else
17300		uaddrp = (user_addr_t) *(uint32_t *)data;
17301
17302	err = dtrace_ioctl(dev, cmd, uaddrp, fflag, CRED(), &rv);
17303
17304	/* Darwin's BSD ioctls only return -1 or zero. Overload errno to mimic Solaris. 20 bits suffice. */
17305	if (err != 0) {
17306		ASSERT( (err & 0xfffff000) == 0 );
17307		return (err & 0xfff); /* ioctl will return -1 and will set errno to an error code < 4096 */
17308	} else if (rv != 0) {
17309		ASSERT( (rv & 0xfff00000) == 0 );
17310		return (((rv & 0xfffff) << 12)); /* ioctl will return -1 and will set errno to a value >= 4096 */
17311	} else
17312		return 0;
17313}
17314
17315int
17316helper_ioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p)
17317{
17318#pragma unused(dev,fflag,p)
17319	int err, rv = 0;
17320
17321	err = dtrace_ioctl_helper(cmd, data, &rv);
17322	/* Darwin's BSD ioctls only return -1 or zero. Overload errno to mimic Solaris. 20 bits suffice. */
17323	if (err != 0) {
17324		ASSERT( (err & 0xfffff000) == 0 );
17325		return (err & 0xfff); /* ioctl will return -1 and will set errno to an error code < 4096 */
17326	} else if (rv != 0) {
17327		ASSERT( (rv & 0xfff00000) == 0 );
17328		return (((rv & 0xfffff) << 12)); /* ioctl will return -1 and will set errno to a value >= 4096 */
17329	} else
17330		return 0;
17331}
17332
17333#define HELPER_MAJOR  -24 /* let the kernel pick the device number */
17334
17335/*
17336 * A struct describing which functions will get invoked for certain
17337 * actions.
17338 */
17339static struct cdevsw helper_cdevsw =
17340{
17341	helper_open,		/* open */
17342	helper_close,		/* close */
17343	eno_rdwrt,			/* read */
17344	eno_rdwrt,			/* write */
17345	helper_ioctl,		/* ioctl */
17346	(stop_fcn_t *)nulldev, /* stop */
17347	(reset_fcn_t *)nulldev, /* reset */
17348	NULL,				/* tty's */
17349	eno_select,			/* select */
17350	eno_mmap,			/* mmap */
17351	eno_strat,			/* strategy */
17352	eno_getc,			/* getc */
17353	eno_putc,			/* putc */
17354	0					/* type */
17355};
17356
17357static int helper_majdevno = 0;
17358
17359static int gDTraceInited = 0;
17360
17361void
17362helper_init( void )
17363{
17364	/*
17365	 * Once the "helper" is initialized, it can take ioctl calls that use locks
17366	 * and zones initialized in dtrace_init. Make certain dtrace_init was called
17367	 * before us.
17368	 */
17369
17370	if (!gDTraceInited) {
17371		panic("helper_init before dtrace_init\n");
17372	}
17373
17374	if (0 >= helper_majdevno)
17375	{
17376		helper_majdevno = cdevsw_add(HELPER_MAJOR, &helper_cdevsw);
17377
17378		if (helper_majdevno < 0) {
17379			printf("helper_init: failed to allocate a major number!\n");
17380			return;
17381		}
17382
17383		if (NULL == devfs_make_node( makedev(helper_majdevno, 0), DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666,
17384					DTRACEMNR_HELPER, 0 )) {
17385			printf("dtrace_init: failed to devfs_make_node for helper!\n");
17386			return;
17387		}
17388	} else
17389		panic("helper_init: called twice!\n");
17390}
17391
17392#undef HELPER_MAJOR
17393
17394/*
17395 * Called with DEVFS_LOCK held, so vmem_alloc's underlying blist structures are protected.
17396 */
17397static int
17398dtrace_clone_func(dev_t dev, int action)
17399{
17400#pragma unused(dev)
17401
17402	if (action == DEVFS_CLONE_ALLOC) {
17403		if (NULL == dtrace_minor) /* Arena not created yet!?! */
17404			return 0;
17405		else {
17406			/*
17407			 * Propose a minor number, namely the next number that vmem_alloc() will return.
17408			 * Immediately put it back in play by calling vmem_free(). FIXME.
17409			 */
17410			int ret = (int)(uintptr_t)vmem_alloc(dtrace_minor, 1, VM_BESTFIT | VM_SLEEP);
17411
17412			vmem_free(dtrace_minor, (void *)(uintptr_t)ret, 1);
17413
17414			return ret;
17415		}
17416	}
17417	else if (action == DEVFS_CLONE_FREE) {
17418		return 0;
17419	}
17420	else return -1;
17421}
17422
17423#define DTRACE_MAJOR  -24 /* let the kernel pick the device number */
17424
17425static struct cdevsw dtrace_cdevsw =
17426{
17427	_dtrace_open,		/* open */
17428	_dtrace_close,		/* close */
17429	eno_rdwrt,			/* read */
17430	eno_rdwrt,			/* write */
17431	_dtrace_ioctl,		/* ioctl */
17432	(stop_fcn_t *)nulldev, /* stop */
17433	(reset_fcn_t *)nulldev, /* reset */
17434	NULL,				/* tty's */
17435	eno_select,			/* select */
17436	eno_mmap,			/* mmap */
17437	eno_strat,			/* strategy */
17438	eno_getc,			/* getc */
17439	eno_putc,			/* putc */
17440	0					/* type */
17441};
17442
17443lck_attr_t* dtrace_lck_attr;
17444lck_grp_attr_t* dtrace_lck_grp_attr;
17445lck_grp_t* dtrace_lck_grp;
17446
17447static int gMajDevNo;
17448
17449void
17450dtrace_init( void )
17451{
17452	if (0 == gDTraceInited) {
17453		int i, ncpu;
17454		size_t size = sizeof(dtrace_buffer_memory_maxsize);
17455
17456		/*
17457		 * DTrace allocates buffers based on the maximum number
17458		 * of enabled cpus. This call avoids any race when finding
17459		 * that count.
17460		 */
17461		ASSERT(dtrace_max_cpus == 0);
17462		ncpu = dtrace_max_cpus = ml_get_max_cpus();
17463
17464		/*
17465		 * Retrieve the size of the physical memory in order to define
17466		 * the state buffer memory maximal size.  If we cannot retrieve
17467		 * this value, we'll consider that we have 1Gb of memory per CPU, that's
17468		 * still better than raising a kernel panic.
17469		 */
17470		if (0 != kernel_sysctlbyname("hw.memsize", &dtrace_buffer_memory_maxsize,
17471		                             &size, NULL, 0))
17472		{
17473			dtrace_buffer_memory_maxsize = ncpu * 1024 * 1024 * 1024;
17474			printf("dtrace_init: failed to retrieve the hw.memsize, defaulted to %lld bytes\n",
17475			       dtrace_buffer_memory_maxsize);
17476		}
17477
17478		/*
17479		 * Finally, divide by three to prevent DTrace from eating too
17480		 * much memory.
17481		 */
17482		dtrace_buffer_memory_maxsize /= 3;
17483		ASSERT(dtrace_buffer_memory_maxsize > 0);
17484
17485		gMajDevNo = cdevsw_add(DTRACE_MAJOR, &dtrace_cdevsw);
17486
17487		if (gMajDevNo < 0) {
17488			printf("dtrace_init: failed to allocate a major number!\n");
17489			gDTraceInited = 0;
17490			return;
17491		}
17492
17493		if (NULL == devfs_make_node_clone( makedev(gMajDevNo, 0), DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666,
17494					dtrace_clone_func, DTRACEMNR_DTRACE, 0 )) {
17495			printf("dtrace_init: failed to devfs_make_node_clone for dtrace!\n");
17496			gDTraceInited = 0;
17497			return;
17498		}
17499
17500#if defined(DTRACE_MEMORY_ZONES)
17501		/*
17502		 * Initialize the dtrace kalloc-emulation zones.
17503		 */
17504		dtrace_alloc_init();
17505#endif /* DTRACE_MEMORY_ZONES */
17506
17507		/*
17508		 * Allocate the dtrace_probe_t zone
17509		 */
17510		dtrace_probe_t_zone = zinit(sizeof(dtrace_probe_t),
17511					    1024 * sizeof(dtrace_probe_t),
17512					    sizeof(dtrace_probe_t),
17513					    "dtrace.dtrace_probe_t");
17514
17515		/*
17516		 * Create the dtrace lock group and attrs.
17517		 */
17518		dtrace_lck_attr = lck_attr_alloc_init();
17519		dtrace_lck_grp_attr= lck_grp_attr_alloc_init();
17520		dtrace_lck_grp = lck_grp_alloc_init("dtrace",  dtrace_lck_grp_attr);
17521
17522		/*
17523		 * We have to initialize all locks explicitly
17524		 */
17525		lck_mtx_init(&dtrace_lock, dtrace_lck_grp, dtrace_lck_attr);
17526		lck_mtx_init(&dtrace_provider_lock, dtrace_lck_grp, dtrace_lck_attr);
17527		lck_mtx_init(&dtrace_meta_lock, dtrace_lck_grp, dtrace_lck_attr);
17528		lck_mtx_init(&dtrace_procwaitfor_lock, dtrace_lck_grp, dtrace_lck_attr);
17529#if DEBUG
17530		lck_mtx_init(&dtrace_errlock, dtrace_lck_grp, dtrace_lck_attr);
17531#endif
17532		lck_rw_init(&dtrace_dof_mode_lock, dtrace_lck_grp, dtrace_lck_attr);
17533
17534		/*
17535		 * The cpu_core structure consists of per-CPU state available in any context.
17536		 * On some architectures, this may mean that the page(s) containing the
17537		 * NCPU-sized array of cpu_core structures must be locked in the TLB -- it
17538		 * is up to the platform to assure that this is performed properly.  Note that
17539		 * the structure is sized to avoid false sharing.
17540		 */
17541		lck_mtx_init(&cpu_lock, dtrace_lck_grp, dtrace_lck_attr);
17542		lck_mtx_init(&cyc_lock, dtrace_lck_grp, dtrace_lck_attr);
17543		lck_mtx_init(&mod_lock, dtrace_lck_grp, dtrace_lck_attr);
17544
17545		/*
17546		 * Initialize the CPU offline/online hooks.
17547		 */
17548		dtrace_install_cpu_hooks();
17549
17550		dtrace_modctl_list = NULL;
17551
17552		cpu_core = (cpu_core_t *)kmem_zalloc( ncpu * sizeof(cpu_core_t), KM_SLEEP );
17553		for (i = 0; i < ncpu; ++i) {
17554			lck_mtx_init(&cpu_core[i].cpuc_pid_lock, dtrace_lck_grp, dtrace_lck_attr);
17555		}
17556
17557		cpu_list = (dtrace_cpu_t *)kmem_zalloc( ncpu * sizeof(dtrace_cpu_t), KM_SLEEP );
17558		for (i = 0; i < ncpu; ++i) {
17559			cpu_list[i].cpu_id = (processorid_t)i;
17560			cpu_list[i].cpu_next = &(cpu_list[(i+1) % ncpu]);
17561			LIST_INIT(&cpu_list[i].cpu_cyc_list);
17562			lck_rw_init(&cpu_list[i].cpu_ft_lock, dtrace_lck_grp, dtrace_lck_attr);
17563		}
17564
17565		lck_mtx_lock(&cpu_lock);
17566		for (i = 0; i < ncpu; ++i)
17567			/* FIXME: track CPU configuration a la CHUD Processor Pref Pane. */
17568			dtrace_cpu_setup_initial( (processorid_t)i ); /* In lieu of register_cpu_setup_func() callback */
17569		lck_mtx_unlock(&cpu_lock);
17570
17571		(void)dtrace_abs_to_nano(0LL); /* Force once only call to clock_timebase_info (which can take a lock) */
17572
17573		dtrace_isa_init();
17574
17575		/*
17576		 * See dtrace_impl.h for a description of dof modes.
17577		 * The default is lazy dof.
17578		 *
17579		 * FIXME: Warn if state is LAZY_OFF? It won't break anything, but
17580		 * makes no sense...
17581		 */
17582		if (!PE_parse_boot_argn("dtrace_dof_mode", &dtrace_dof_mode, sizeof (dtrace_dof_mode))) {
17583			dtrace_dof_mode = DTRACE_DOF_MODE_LAZY_ON;
17584		}
17585
17586		/*
17587		 * Sanity check of dof mode value.
17588		 */
17589		switch (dtrace_dof_mode) {
17590			case DTRACE_DOF_MODE_NEVER:
17591			case DTRACE_DOF_MODE_LAZY_ON:
17592				/* valid modes, but nothing else we need to do */
17593				break;
17594
17595			case DTRACE_DOF_MODE_LAZY_OFF:
17596			case DTRACE_DOF_MODE_NON_LAZY:
17597				/* Cannot wait for a dtrace_open to init fasttrap */
17598				fasttrap_init();
17599				break;
17600
17601			default:
17602				/* Invalid, clamp to non lazy */
17603				dtrace_dof_mode = DTRACE_DOF_MODE_NON_LAZY;
17604				fasttrap_init();
17605				break;
17606		}
17607
17608		/*
17609		 * See dtrace_impl.h for a description of kernel symbol modes.
17610		 * The default is to wait for symbols from userspace (lazy symbols).
17611		 */
17612		if (!PE_parse_boot_argn("dtrace_kernel_symbol_mode", &dtrace_kernel_symbol_mode, sizeof (dtrace_kernel_symbol_mode))) {
17613			dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE;
17614		}
17615
17616		gDTraceInited = 1;
17617
17618	} else
17619		panic("dtrace_init: called twice!\n");
17620}
17621
17622void
17623dtrace_postinit(void)
17624{
17625	/*
17626	 * Called from bsd_init after all provider's *_init() routines have been
17627	 * run. That way, anonymous DOF enabled under dtrace_attach() is safe
17628	 * to go.
17629	 */
17630	dtrace_attach( (dev_info_t *)(uintptr_t)makedev(gMajDevNo, 0), 0 ); /* Punning a dev_t to a dev_info_t* */
17631
17632	/*
17633	 * Add the mach_kernel to the module list for lazy processing
17634	 */
17635	struct kmod_info fake_kernel_kmod;
17636	memset(&fake_kernel_kmod, 0, sizeof(fake_kernel_kmod));
17637
17638	strlcpy(fake_kernel_kmod.name, "mach_kernel", sizeof(fake_kernel_kmod.name));
17639	fake_kernel_kmod.id = 1;
17640	fake_kernel_kmod.address = g_kernel_kmod_info.address;
17641	fake_kernel_kmod.size = g_kernel_kmod_info.size;
17642
17643	if (dtrace_module_loaded(&fake_kernel_kmod, 0) != 0) {
17644		printf("dtrace_postinit: Could not register mach_kernel modctl\n");
17645	}
17646
17647	(void)OSKextRegisterKextsWithDTrace();
17648}
17649#undef DTRACE_MAJOR
17650
17651/*
17652 * Routines used to register interest in cpu's being added to or removed
17653 * from the system.
17654 */
17655void
17656register_cpu_setup_func(cpu_setup_func_t *ignore1, void *ignore2)
17657{
17658#pragma unused(ignore1,ignore2)
17659}
17660
17661void
17662unregister_cpu_setup_func(cpu_setup_func_t *ignore1, void *ignore2)
17663{
17664#pragma unused(ignore1,ignore2)
17665}
17666