1/*
2** refclock_datum - clock driver for the Datum Programmable Time Server
3**
4** Important note: This driver assumes that you have termios. If you have
5** a system that does not have termios, you will have to modify this driver.
6**
7** Sorry, I have only tested this driver on SUN and HP platforms.
8*/
9
10#ifdef HAVE_CONFIG_H
11# include <config.h>
12#endif
13
14#if defined(REFCLOCK) && defined(CLOCK_DATUM)
15
16/*
17** Include Files
18*/
19
20#include "ntpd.h"
21#include "ntp_io.h"
22#include "ntp_refclock.h"
23#include "ntp_unixtime.h"
24#include "ntp_stdlib.h"
25
26#include <stdio.h>
27#include <ctype.h>
28
29#if defined(HAVE_BSD_TTYS)
30#include <sgtty.h>
31#endif /* HAVE_BSD_TTYS */
32
33#if defined(HAVE_SYSV_TTYS)
34#include <termio.h>
35#endif /* HAVE_SYSV_TTYS */
36
37#if defined(HAVE_TERMIOS)
38#include <termios.h>
39#endif
40#if defined(STREAM)
41#include <stropts.h>
42#if defined(WWVBCLK)
43#include <sys/clkdefs.h>
44#endif /* WWVBCLK */
45#endif /* STREAM */
46
47#include "ntp_stdlib.h"
48
49/*
50** This driver supports the Datum Programmable Time System (PTS) clock.
51** The clock works in very straight forward manner. When it receives a
52** time code request (e.g., the ascii string "//k/mn"), it responds with
53** a seven byte BCD time code. This clock only responds with a
54** time code after it first receives the "//k/mn" message. It does not
55** periodically send time codes back at some rate once it is started.
56** the returned time code can be broken down into the following fields.
57**
58**            _______________________________
59** Bit Index | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
60**            ===============================
61** byte 0:   | -   -   -   - |      H D      |
62**            ===============================
63** byte 1:   |      T D      |      U D      |
64**            ===============================
65** byte 2:   | -   - |  T H  |      U H      |
66**            ===============================
67** byte 3:   | - |    T M    |      U M      |
68**            ===============================
69** byte 4:   | - |    T S    |      U S      |
70**            ===============================
71** byte 5:   |      t S      |      h S      |
72**            ===============================
73** byte 6:   |      m S      | -   -   -   - |
74**            ===============================
75**
76** In the table above:
77**
78**	"-" means don't care
79**	"H D", "T D", and "U D" means Hundreds, Tens, and Units of Days
80**	"T H", and "UH" means Tens and Units of Hours
81**	"T M", and "U M" means Tens and Units of Minutes
82**	"T S", and "U S" means Tens and Units of Seconds
83**	"t S", "h S", and "m S" means tenths, hundredths, and thousandths
84**				of seconds
85**
86** The Datum PTS communicates throught the RS232 port on your machine.
87** Right now, it assumes that you have termios. This driver has been tested
88** on SUN and HP workstations. The Datum PTS supports various IRIG and
89** NASA input codes. This driver assumes that the name of the device is
90** /dev/datum. You will need to make a soft link to your RS232 device or
91** create a new driver to use this refclock.
92*/
93
94/*
95** Datum PTS defines
96*/
97
98/*
99** Note that if GMT is defined, then the Datum PTS must use Greenwich
100** time. Otherwise, this driver allows the Datum PTS to use the current
101** wall clock for its time. It determines the time zone offset by minimizing
102** the error after trying several time zone offsets. If the Datum PTS
103** time is Greenwich time and GMT is not defined, everything should still
104** work since the time zone will be found to be 0. What this really means
105** is that your system time (at least to start with) must be within the
106** correct time by less than +- 30 minutes. The default is for GMT to not
107** defined. If you really want to force GMT without the funny +- 30 minute
108** stuff then you must define (uncomment) GMT below.
109*/
110
111/*
112#define GMT
113#define DEBUG_DATUM_PTC
114#define LOG_TIME_ERRORS
115*/
116
117
118#define	PRECISION	(-10)		/* precision assumed 1/1024 ms */
119#define	REFID "DATM"			/* reference id */
120#define DATUM_DISPERSION 0		/* fixed dispersion = 0 ms */
121#define DATUM_MAX_ERROR 0.100		/* limits on sigma squared */
122#define DATUM_DEV	"/dev/datum"	/* device name */
123
124#define DATUM_MAX_ERROR2 (DATUM_MAX_ERROR*DATUM_MAX_ERROR)
125
126/*
127** The Datum PTS structure
128*/
129
130/*
131** I don't use a fixed array of MAXUNITS like everyone else just because
132** I don't like to program that way. Sorry if this bothers anyone. I assume
133** that you can use any id for your unit and I will search for it in a
134** dynamic array of units until I find it. I was worried that users might
135** enter a bad id in their configuration file (larger than MAXUNITS) and
136** besides, it is just cleaner not to have to assume that you have a fixed
137** number of anything in a program.
138*/
139
140struct datum_pts_unit {
141	struct peer *peer;		/* peer used by ntp */
142	struct refclockio io;		/* io structure used by ntp */
143	int PTS_fd;			/* file descriptor for PTS */
144	u_int unit;			/* id for unit */
145	u_long timestarted;		/* time started */
146	l_fp lastrec;			/* time tag for the receive time (system) */
147	l_fp lastref;			/* reference time (Datum time) */
148	u_long yearstart;		/* the year that this clock started */
149	int coderecv;			/* number of time codes received */
150	int day;			/* day */
151	int hour;			/* hour */
152	int minute;			/* minutes */
153	int second;			/* seconds */
154	int msec;			/* miliseconds */
155	int usec;			/* miliseconds */
156	u_char leap;			/* funny leap character code */
157	char retbuf[8];		/* returned time from the datum pts */
158	char nbytes;			/* number of bytes received from datum pts */
159	double sigma2;		/* average squared error (roughly) */
160	int tzoff;			/* time zone offest from GMT */
161};
162
163/*
164** PTS static constant variables for internal use
165*/
166
167static char TIME_REQUEST[6];	/* request message sent to datum for time */
168static int nunits;		/* number of active units */
169static struct datum_pts_unit
170**datum_pts_unit;	/* dynamic array of datum PTS structures */
171
172/*
173** Callback function prototypes that ntpd needs to know about.
174*/
175
176static	int	datum_pts_start		(int, struct peer *);
177static	void	datum_pts_shutdown	(int, struct peer *);
178static	void	datum_pts_poll		(int, struct peer *);
179static	void	datum_pts_control	(int, struct refclockstat *,
180					   struct refclockstat *, struct peer *);
181static	void	datum_pts_init		(void);
182static	void	datum_pts_buginfo	(int, struct refclockbug *, struct peer *);
183
184/*
185** This is the call back function structure that ntpd actually uses for
186** this refclock.
187*/
188
189struct	refclock refclock_datum = {
190	datum_pts_start,		/* start up a new Datum refclock */
191	datum_pts_shutdown,		/* shutdown a Datum refclock */
192	datum_pts_poll,		/* sends out the time request */
193	datum_pts_control,		/* not used */
194	datum_pts_init,		/* initialization (called first) */
195	datum_pts_buginfo,		/* not used */
196	NOFLAGS			/* we are not setting any special flags */
197};
198
199/*
200** The datum_pts_receive callback function is handled differently from the
201** rest. It is passed to the ntpd io data structure. Basically, every
202** 64 seconds, the datum_pts_poll() routine is called. It sends out the time
203** request message to the Datum Programmable Time System. Then, ntpd
204** waits on a select() call to receive data back. The datum_pts_receive()
205** function is called as data comes back. We expect a seven byte time
206** code to be returned but the datum_pts_receive() function may only get
207** a few bytes passed to it at a time. In other words, this routine may
208** get called by the io stuff in ntpd a few times before we get all seven
209** bytes. Once the last byte is received, we process it and then pass the
210** new time measurement to ntpd for updating the system time. For now,
211** there is no 3 state filtering done on the time measurements. The
212** jitter may be a little high but at least for its current use, it is not
213** a problem. We have tried to keep things as simple as possible. This
214** clock should not jitter more than 1 or 2 mseconds at the most once
215** things settle down. It is important to get the right drift calibrated
216** in the ntpd.drift file as well as getting the right tick set up right
217** using tickadj for SUNs. Tickadj is not used for the HP but you need to
218** remember to bring up the adjtime daemon because HP does not support
219** the adjtime() call.
220*/
221
222static	void	datum_pts_receive	(struct recvbuf *);
223
224/*......................................................................*/
225/*	datum_pts_start - start up the datum PTS. This means open the	*/
226/*	RS232 device and set up the data structure for my unit.		*/
227/*......................................................................*/
228
229static int
230datum_pts_start(
231	int unit,
232	struct peer *peer
233	)
234{
235	struct datum_pts_unit **temp_datum_pts_unit;
236	struct datum_pts_unit *datum_pts;
237	int fd;
238#ifdef HAVE_TERMIOS
239	struct termios arg;
240#endif
241
242#ifdef DEBUG_DATUM_PTC
243	if (debug)
244	    printf("Starting Datum PTS unit %d\n", unit);
245#endif
246
247	/*
248	** Open the Datum PTS device
249	*/
250	fd = open(DATUM_DEV, O_RDWR);
251
252	if (fd < 0) {
253		msyslog(LOG_ERR, "Datum_PTS: open(\"%s\", O_RDWR) failed: %m", DATUM_DEV);
254		return 0;
255	}
256
257	/*
258	** Create the memory for the new unit
259	*/
260
261	temp_datum_pts_unit = (struct datum_pts_unit **)
262		emalloc((nunits+1)*sizeof(struct datum_pts_unit *));
263	if (nunits > 0) memcpy(temp_datum_pts_unit, datum_pts_unit,
264			       nunits*sizeof(struct datum_pts_unit *));
265	free(datum_pts_unit);
266	datum_pts_unit = temp_datum_pts_unit;
267	datum_pts_unit[nunits] = (struct datum_pts_unit *)
268		emalloc(sizeof(struct datum_pts_unit));
269	datum_pts = datum_pts_unit[nunits];
270
271	datum_pts->unit = unit;	/* set my unit id */
272	datum_pts->yearstart = 0;	/* initialize the yearstart to 0 */
273	datum_pts->sigma2 = 0.0;	/* initialize the sigma2 to 0 */
274
275	datum_pts->PTS_fd = fd;
276
277	fcntl(datum_pts->PTS_fd, F_SETFL, 0); /* clear the descriptor flags */
278
279#ifdef DEBUG_DATUM_PTC
280	if (debug)
281	    printf("Opening RS232 port with file descriptor %d\n",
282		   datum_pts->PTS_fd);
283#endif
284
285	/*
286	** Set up the RS232 terminal device information. Note that we assume that
287	** we have termios. This code has only been tested on SUNs and HPs. If your
288	** machine does not have termios this driver cannot be initialized. You can change this
289	** if you want by editing this source. Please give the changes back to the
290	** ntp folks so that it can become part of their regular distribution.
291	*/
292
293#ifdef HAVE_TERMIOS
294
295	memset(&arg, 0, sizeof(arg));
296
297	arg.c_iflag = IGNBRK;
298	arg.c_oflag = 0;
299	arg.c_cflag = B9600 | CS8 | CREAD | PARENB | CLOCAL;
300	arg.c_lflag = 0;
301	arg.c_cc[VMIN] = 0;		/* start timeout timer right away (not used) */
302	arg.c_cc[VTIME] = 30;		/* 3 second timout on reads (not used) */
303
304	tcsetattr(datum_pts->PTS_fd, TCSANOW, &arg);
305
306#else
307
308	msyslog(LOG_ERR, "Datum_PTS: Termios not supported in this driver");
309	(void)close(datum_pts->PTS_fd);
310
311	peer->precision = PRECISION;
312	pp->clockdesc = DESCRIPTION;
313	memcpy((char *)&pp->refid, REFID, 4);
314
315	return 0;
316
317#endif
318
319	/*
320	** Initialize the ntpd IO structure
321	*/
322
323	datum_pts->peer = peer;
324	datum_pts->io.clock_recv = datum_pts_receive;
325	datum_pts->io.srcclock = (caddr_t)datum_pts;
326	datum_pts->io.datalen = 0;
327	datum_pts->io.fd = datum_pts->PTS_fd;
328
329	if (!io_addclock(&(datum_pts->io))) {
330
331#ifdef DEBUG_DATUM_PTC
332		if (debug)
333		    printf("Problem adding clock\n");
334#endif
335
336		msyslog(LOG_ERR, "Datum_PTS: Problem adding clock");
337		(void)close(datum_pts->PTS_fd);
338
339		return 0;
340	}
341
342	/*
343	** Now add one to the number of units and return a successful code
344	*/
345
346	nunits++;
347	return 1;
348
349}
350
351
352/*......................................................................*/
353/*	datum_pts_shutdown - this routine shuts doen the device and	*/
354/*	removes the memory for the unit.				*/
355/*......................................................................*/
356
357static void
358datum_pts_shutdown(
359	int unit,
360	struct peer *peer
361	)
362{
363	int i,j;
364	struct datum_pts_unit **temp_datum_pts_unit;
365
366#ifdef DEBUG_DATUM_PTC
367	if (debug)
368	    printf("Shutdown Datum PTS\n");
369#endif
370
371	msyslog(LOG_ERR, "Datum_PTS: Shutdown Datum PTS");
372
373	/*
374	** First we have to find the right unit (i.e., the one with the same id).
375	** We do this by looping through the dynamic array of units intil we find
376	** it. Note, that I don't simply use an array with a maximimum number of
377	** Datum PTS units. Everything is completely dynamic.
378	*/
379
380	for (i=0; i<nunits; i++) {
381		if (datum_pts_unit[i]->unit == unit) {
382
383			/*
384			** We found the unit so close the file descriptor and free up the memory used
385			** by the structure.
386			*/
387
388			io_closeclock(&datum_pts_unit[i]->io);
389			close(datum_pts_unit[i]->PTS_fd);
390			free(datum_pts_unit[i]);
391
392			/*
393			** Now clean up the datum_pts_unit dynamic array so that there are no holes.
394			** This may mean moving pointers around, etc., to keep things compact.
395			*/
396
397			if (nunits > 1) {
398
399				temp_datum_pts_unit = (struct datum_pts_unit **)
400					emalloc((nunits-1)*sizeof(struct datum_pts_unit *));
401				if (i!= 0) memcpy(temp_datum_pts_unit, datum_pts_unit,
402						  i*sizeof(struct datum_pts_unit *));
403
404				for (j=i+1; j<nunits; j++) {
405					temp_datum_pts_unit[j-1] = datum_pts_unit[j];
406				}
407
408				free(datum_pts_unit);
409				datum_pts_unit = temp_datum_pts_unit;
410
411			}else{
412
413				free(datum_pts_unit);
414				datum_pts_unit = NULL;
415
416			}
417
418			return;
419
420		}
421	}
422
423#ifdef DEBUG_DATUM_PTC
424	if (debug)
425	    printf("Error, could not shut down unit %d\n",unit);
426#endif
427
428	msyslog(LOG_ERR, "Datum_PTS: Could not shut down Datum PTS unit %d",unit);
429
430}
431
432/*......................................................................*/
433/*	datum_pts_poll - this routine sends out the time request to the */
434/*	Datum PTS device. The time will be passed back in the 		*/
435/*	datum_pts_receive() routine.					*/
436/*......................................................................*/
437
438static void
439datum_pts_poll(
440	int unit,
441	struct peer *peer
442	)
443{
444	int i;
445	int unit_index;
446	int error_code;
447	struct datum_pts_unit *datum_pts;
448
449#ifdef DEBUG_DATUM_PTC
450	if (debug)
451	    printf("Poll Datum PTS\n");
452#endif
453
454	/*
455	** Find the right unit and send out a time request once it is found.
456	*/
457
458	unit_index = -1;
459	for (i=0; i<nunits; i++) {
460		if (datum_pts_unit[i]->unit == unit) {
461			unit_index = i;
462			datum_pts = datum_pts_unit[i];
463			error_code = write(datum_pts->PTS_fd, TIME_REQUEST, 6);
464			if (error_code != 6) perror("TIME_REQUEST");
465			datum_pts->nbytes = 0;
466			break;
467		}
468	}
469
470	/*
471	** Print out an error message if we could not find the right unit.
472	*/
473
474	if (unit_index == -1) {
475
476#ifdef DEBUG_DATUM_PTC
477		if (debug)
478		    printf("Error, could not poll unit %d\n",unit);
479#endif
480
481		msyslog(LOG_ERR, "Datum_PTS: Could not poll unit %d",unit);
482		return;
483
484	}
485
486}
487
488
489/*......................................................................*/
490/*	datum_pts_control - not used					*/
491/*......................................................................*/
492
493static void
494datum_pts_control(
495	int unit,
496	struct refclockstat *in,
497	struct refclockstat *out,
498	struct peer *peer
499	)
500{
501
502#ifdef DEBUG_DATUM_PTC
503	if (debug)
504	    printf("Control Datum PTS\n");
505#endif
506
507}
508
509
510/*......................................................................*/
511/*	datum_pts_init - initializes things for all possible Datum	*/
512/*	time code generators that might be used. In practice, this is	*/
513/*	only called once at the beginning before anything else is	*/
514/*	called.								*/
515/*......................................................................*/
516
517static void
518datum_pts_init(void)
519{
520
521	/*									*/
522	/*...... open up the log file if we are debugging ......................*/
523	/*									*/
524
525	/*
526	** Open up the log file if we are debugging. For now, send data out to the
527	** screen (stdout).
528	*/
529
530#ifdef DEBUG_DATUM_PTC
531	if (debug)
532	    printf("Init Datum PTS\n");
533#endif
534
535	/*
536	** Initialize the time request command string. This is the only message
537	** that we ever have to send to the Datum PTS (although others are defined).
538	*/
539
540	memcpy(TIME_REQUEST, "//k/mn",6);
541
542	/*
543	** Initialize the number of units to 0 and set the dynamic array of units to
544	** NULL since there are no units defined yet.
545	*/
546
547	datum_pts_unit = NULL;
548	nunits = 0;
549
550}
551
552
553/*......................................................................*/
554/*	datum_pts_buginfo - not used					*/
555/*......................................................................*/
556
557static void
558datum_pts_buginfo(
559	int unit,
560	register struct refclockbug *bug,
561	register struct peer *peer
562	)
563{
564
565#ifdef DEBUG_DATUM_PTC
566	if (debug)
567	    printf("Buginfo Datum PTS\n");
568#endif
569
570}
571
572
573/*......................................................................*/
574/*	datum_pts_receive - receive the time buffer that was read in	*/
575/*	by the ntpd io handling routines. When 7 bytes have been	*/
576/*	received (it may take several tries before all 7 bytes are	*/
577/*	received), then the time code must be unpacked and sent to	*/
578/*	the ntpd clock_receive() routine which causes the systems	*/
579/*	clock to be updated (several layers down).			*/
580/*......................................................................*/
581
582static void
583datum_pts_receive(
584	struct recvbuf *rbufp
585	)
586{
587	int i;
588	l_fp tstmp;
589	struct datum_pts_unit *datum_pts;
590	char *dpt;
591	int dpend;
592	int tzoff;
593	int timerr;
594	double ftimerr, abserr;
595#ifdef DEBUG_DATUM_PTC
596	double dispersion;
597#endif
598	int goodtime;
599      /*double doffset;*/
600
601	/*
602	** Get the time code (maybe partial) message out of the rbufp buffer.
603	*/
604
605	datum_pts = (struct datum_pts_unit *)rbufp->recv_srcclock;
606	dpt = (char *)&rbufp->recv_space;
607	dpend = rbufp->recv_length;
608
609#ifdef DEBUG_DATUM_PTC
610	if (debug)
611	    printf("Receive Datum PTS: %d bytes\n", dpend);
612#endif
613
614	/*									*/
615	/*...... save the ntp system time when the first byte is received ......*/
616	/*									*/
617
618	/*
619	** Save the ntp system time when the first byte is received. Note that
620	** because it may take several calls to this routine before all seven
621	** bytes of our return message are finally received by the io handlers in
622	** ntpd, we really do want to use the time tag when the first byte is
623	** received to reduce the jitter.
624	*/
625
626	if (datum_pts->nbytes == 0) {
627		datum_pts->lastrec = rbufp->recv_time;
628	}
629
630	/*
631	** Increment our count to the number of bytes received so far. Return if we
632	** haven't gotten all seven bytes yet.
633	*/
634
635	for (i=0; i<dpend; i++) {
636		datum_pts->retbuf[datum_pts->nbytes+i] = dpt[i];
637	}
638
639	datum_pts->nbytes += dpend;
640
641	if (datum_pts->nbytes != 7) {
642		return;
643	}
644
645	/*
646	** Convert the seven bytes received in our time buffer to day, hour, minute,
647	** second, and msecond values. The usec value is not used for anything
648	** currently. It is just the fractional part of the time stored in units
649	** of microseconds.
650	*/
651
652	datum_pts->day =	100*(datum_pts->retbuf[0] & 0x0f) +
653		10*((datum_pts->retbuf[1] & 0xf0)>>4) +
654		(datum_pts->retbuf[1] & 0x0f);
655
656	datum_pts->hour =	10*((datum_pts->retbuf[2] & 0x30)>>4) +
657		(datum_pts->retbuf[2] & 0x0f);
658
659	datum_pts->minute =	10*((datum_pts->retbuf[3] & 0x70)>>4) +
660		(datum_pts->retbuf[3] & 0x0f);
661
662	datum_pts->second =	10*((datum_pts->retbuf[4] & 0x70)>>4) +
663		(datum_pts->retbuf[4] & 0x0f);
664
665	datum_pts->msec =	100*((datum_pts->retbuf[5] & 0xf0) >> 4) +
666		10*(datum_pts->retbuf[5] & 0x0f) +
667		((datum_pts->retbuf[6] & 0xf0)>>4);
668
669	datum_pts->usec =	1000*datum_pts->msec;
670
671#ifdef DEBUG_DATUM_PTC
672	if (debug)
673	    printf("day %d, hour %d, minute %d, second %d, msec %d\n",
674		   datum_pts->day,
675		   datum_pts->hour,
676		   datum_pts->minute,
677		   datum_pts->second,
678		   datum_pts->msec);
679#endif
680
681	/*
682	** Get the GMT time zone offset. Note that GMT should be zero if the Datum
683	** reference time is using GMT as its time base. Otherwise we have to
684	** determine the offset if the Datum PTS is using time of day as its time
685	** base.
686	*/
687
688	goodtime = 0;		/* We are not sure about the time and offset yet */
689
690#ifdef GMT
691
692	/*
693	** This is the case where the Datum PTS is using GMT so there is no time
694	** zone offset.
695	*/
696
697	tzoff = 0;		/* set time zone offset to 0 */
698
699#else
700
701	/*
702	** This is the case where the Datum PTS is using regular time of day for its
703	** time so we must compute the time zone offset. The way we do it is kind of
704	** funny but it works. We loop through different time zones (0 to 24) and
705	** pick the one that gives the smallest error (+- one half hour). The time
706	** zone offset is stored in the datum_pts structure for future use. Normally,
707	** the clocktime() routine is only called once (unless the time zone offset
708	** changes due to daylight savings) since the goodtime flag is set when a
709	** good time is found (with a good offset). Note that even if the Datum
710	** PTS is using GMT, this mechanism will still work since it should come up
711	** with a value for tzoff = 0 (assuming that your system clock is within
712	** a half hour of the Datum time (even with time zone differences).
713	*/
714
715	for (tzoff=0; tzoff<24; tzoff++) {
716		if (clocktime( datum_pts->day,
717			       datum_pts->hour,
718			       datum_pts->minute,
719			       datum_pts->second,
720			       (tzoff + datum_pts->tzoff) % 24,
721			       datum_pts->lastrec.l_ui,
722			       &datum_pts->yearstart,
723			       &datum_pts->lastref.l_ui) ) {
724
725			datum_pts->lastref.l_uf = 0;
726			error = datum_pts->lastref.l_ui - datum_pts->lastrec.l_ui;
727
728#ifdef DEBUG_DATUM_PTC
729			printf("Time Zone (clocktime method) = %d, error = %d\n", tzoff, error);
730#endif
731
732			if ((error < 1799) && (error > -1799)) {
733				tzoff = (tzoff + datum_pts->tzoff) % 24;
734				datum_pts->tzoff = tzoff;
735				goodtime = 1;
736
737#ifdef DEBUG_DATUM_PTC
738				printf("Time Zone found (clocktime method) = %d\n",tzoff);
739#endif
740
741				break;
742			}
743
744		}
745	}
746
747#endif
748
749	/*
750	** Make sure that we have a good time from the Datum PTS. Clocktime() also
751	** sets yearstart and lastref.l_ui. We will have to set astref.l_uf (i.e.,
752	** the fraction of a second) stuff later.
753	*/
754
755	if (!goodtime) {
756
757		if (!clocktime( datum_pts->day,
758				datum_pts->hour,
759				datum_pts->minute,
760				datum_pts->second,
761				tzoff,
762				datum_pts->lastrec.l_ui,
763				&datum_pts->yearstart,
764				&datum_pts->lastref.l_ui) ) {
765
766#ifdef DEBUG_DATUM_PTC
767			if (debug)
768			{
769				printf("Error: bad clocktime\n");
770				printf("GMT %d, lastrec %d, yearstart %d, lastref %d\n",
771				       tzoff,
772				       datum_pts->lastrec.l_ui,
773				       datum_pts->yearstart,
774				       datum_pts->lastref.l_ui);
775			}
776#endif
777
778			msyslog(LOG_ERR, "Datum_PTS: Bad clocktime");
779
780			return;
781
782		}else{
783
784#ifdef DEBUG_DATUM_PTC
785			if (debug)
786			    printf("Good clocktime\n");
787#endif
788
789		}
790
791	}
792
793	/*
794	** We have datum_pts->lastref.l_ui set (which is the integer part of the
795	** time. Now set the microseconds field.
796	*/
797
798	TVUTOTSF(datum_pts->usec, datum_pts->lastref.l_uf);
799
800	/*
801	** Compute the time correction as the difference between the reference
802	** time (i.e., the Datum time) minus the receive time (system time).
803	*/
804
805	tstmp = datum_pts->lastref;		/* tstmp is the datum ntp time */
806	L_SUB(&tstmp, &datum_pts->lastrec);	/* tstmp is now the correction */
807	datum_pts->coderecv++;		/* increment a counter */
808
809#ifdef DEBUG_DATUM_PTC
810	dispersion = DATUM_DISPERSION;	/* set the dispersion to 0 */
811	ftimerr = dispersion;
812	ftimerr /= (1024.0 * 64.0);
813	if (debug)
814	    printf("dispersion = %d, %f\n", dispersion, ftimerr);
815#endif
816
817	/*
818	** Pass the new time to ntpd through the refclock_receive function. Note
819	** that we are not trying to make any corrections due to the time it takes
820	** for the Datum PTS to send the message back. I am (erroneously) assuming
821	** that the time for the Datum PTS to send the time back to us is negligable.
822	** I suspect that this time delay may be as much as 15 ms or so (but probably
823	** less). For our needs at JPL, this kind of error is ok so it is not
824	** necessary to use fudge factors in the ntp.conf file. Maybe later we will.
825	*/
826      /*LFPTOD(&tstmp, doffset);*/
827	datum_pts->lastref = datum_pts->lastrec;
828	refclock_receive(datum_pts->peer);
829
830	/*
831	** Compute sigma squared (not used currently). Maybe later, this could be
832	** used for the dispersion estimate. The problem is that ntpd does not link
833	** in the math library so sqrt() is not available. Anyway, this is useful
834	** for debugging. Maybe later I will just use absolute values for the time
835	** error to come up with my dispersion estimate. Anyway, for now my dispersion
836	** is set to 0.
837	*/
838
839	timerr = tstmp.l_ui<<20;
840	timerr |= (tstmp.l_uf>>12) & 0x000fffff;
841	ftimerr = timerr;
842	ftimerr /= 1024*1024;
843	abserr = ftimerr;
844	if (ftimerr < 0.0) abserr = -ftimerr;
845
846	if (datum_pts->sigma2 == 0.0) {
847		if (abserr < DATUM_MAX_ERROR) {
848			datum_pts->sigma2 = abserr*abserr;
849		}else{
850			datum_pts->sigma2 = DATUM_MAX_ERROR2;
851		}
852	}else{
853		if (abserr < DATUM_MAX_ERROR) {
854			datum_pts->sigma2 = 0.95*datum_pts->sigma2 + 0.05*abserr*abserr;
855		}else{
856			datum_pts->sigma2 = 0.95*datum_pts->sigma2 + 0.05*DATUM_MAX_ERROR2;
857		}
858	}
859
860#ifdef DEBUG_DATUM_PTC
861	if (debug)
862	    printf("Time error = %f seconds\n", ftimerr);
863#endif
864
865#if defined(DEBUG_DATUM_PTC) || defined(LOG_TIME_ERRORS)
866	if (debug)
867	    printf("PTS: day %d, hour %d, minute %d, second %d, msec %d, Time Error %f\n",
868		   datum_pts->day,
869		   datum_pts->hour,
870		   datum_pts->minute,
871		   datum_pts->second,
872		   datum_pts->msec,
873		   ftimerr);
874#endif
875
876}
877#else
878int refclock_datum_bs;
879#endif /* REFCLOCK */
880