1//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11// inserting a dummy basic block.  This pass may be "required" by passes that
12// cannot deal with critical edges.  For this usage, the structure type is
13// forward declared.  This pass obviously invalidates the CFG, but can update
14// dominator trees.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "break-crit-edges"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Analysis/Dominators.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/Analysis/ProfileInfo.h"
24#include "llvm/Function.h"
25#include "llvm/Instructions.h"
26#include "llvm/Type.h"
27#include "llvm/Support/CFG.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31using namespace llvm;
32
33STATISTIC(NumBroken, "Number of blocks inserted");
34
35namespace {
36  struct BreakCriticalEdges : public FunctionPass {
37    static char ID; // Pass identification, replacement for typeid
38    BreakCriticalEdges() : FunctionPass(ID) {
39      initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
40    }
41
42    virtual bool runOnFunction(Function &F);
43
44    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
45      AU.addPreserved<DominatorTree>();
46      AU.addPreserved<LoopInfo>();
47      AU.addPreserved<ProfileInfo>();
48
49      // No loop canonicalization guarantees are broken by this pass.
50      AU.addPreservedID(LoopSimplifyID);
51    }
52  };
53}
54
55char BreakCriticalEdges::ID = 0;
56INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
57                "Break critical edges in CFG", false, false)
58
59// Publicly exposed interface to pass...
60char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
61FunctionPass *llvm::createBreakCriticalEdgesPass() {
62  return new BreakCriticalEdges();
63}
64
65// runOnFunction - Loop over all of the edges in the CFG, breaking critical
66// edges as they are found.
67//
68bool BreakCriticalEdges::runOnFunction(Function &F) {
69  bool Changed = false;
70  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
71    TerminatorInst *TI = I->getTerminator();
72    if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
73      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
74        if (SplitCriticalEdge(TI, i, this)) {
75          ++NumBroken;
76          Changed = true;
77        }
78  }
79
80  return Changed;
81}
82
83//===----------------------------------------------------------------------===//
84//    Implementation of the external critical edge manipulation functions
85//===----------------------------------------------------------------------===//
86
87// isCriticalEdge - Return true if the specified edge is a critical edge.
88// Critical edges are edges from a block with multiple successors to a block
89// with multiple predecessors.
90//
91bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
92                          bool AllowIdenticalEdges) {
93  assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
94  if (TI->getNumSuccessors() == 1) return false;
95
96  const BasicBlock *Dest = TI->getSuccessor(SuccNum);
97  const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
98
99  // If there is more than one predecessor, this is a critical edge...
100  assert(I != E && "No preds, but we have an edge to the block?");
101  const BasicBlock *FirstPred = *I;
102  ++I;        // Skip one edge due to the incoming arc from TI.
103  if (!AllowIdenticalEdges)
104    return I != E;
105
106  // If AllowIdenticalEdges is true, then we allow this edge to be considered
107  // non-critical iff all preds come from TI's block.
108  while (I != E) {
109    const BasicBlock *P = *I;
110    if (P != FirstPred)
111      return true;
112    // Note: leave this as is until no one ever compiles with either gcc 4.0.1
113    // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
114    E = pred_end(P);
115    ++I;
116  }
117  return false;
118}
119
120/// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
121/// may require new PHIs in the new exit block. This function inserts the
122/// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
123/// is the new loop exit block, and DestBB is the old loop exit, now the
124/// successor of SplitBB.
125static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
126                                       BasicBlock *SplitBB,
127                                       BasicBlock *DestBB) {
128  // SplitBB shouldn't have anything non-trivial in it yet.
129  assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
130          SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
131
132  // For each PHI in the destination block.
133  for (BasicBlock::iterator I = DestBB->begin();
134       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
135    unsigned Idx = PN->getBasicBlockIndex(SplitBB);
136    Value *V = PN->getIncomingValue(Idx);
137
138    // If the input is a PHI which already satisfies LCSSA, don't create
139    // a new one.
140    if (const PHINode *VP = dyn_cast<PHINode>(V))
141      if (VP->getParent() == SplitBB)
142        continue;
143
144    // Otherwise a new PHI is needed. Create one and populate it.
145    PHINode *NewPN =
146      PHINode::Create(PN->getType(), Preds.size(), "split",
147                      SplitBB->isLandingPad() ?
148                      SplitBB->begin() : SplitBB->getTerminator());
149    for (unsigned i = 0, e = Preds.size(); i != e; ++i)
150      NewPN->addIncoming(V, Preds[i]);
151
152    // Update the original PHI.
153    PN->setIncomingValue(Idx, NewPN);
154  }
155}
156
157/// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
158/// split the critical edge.  This will update DominatorTree information if it
159/// is available, thus calling this pass will not invalidate either of them.
160/// This returns the new block if the edge was split, null otherwise.
161///
162/// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
163/// specified successor will be merged into the same critical edge block.
164/// This is most commonly interesting with switch instructions, which may
165/// have many edges to any one destination.  This ensures that all edges to that
166/// dest go to one block instead of each going to a different block, but isn't
167/// the standard definition of a "critical edge".
168///
169/// It is invalid to call this function on a critical edge that starts at an
170/// IndirectBrInst.  Splitting these edges will almost always create an invalid
171/// program because the address of the new block won't be the one that is jumped
172/// to.
173///
174BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
175                                    Pass *P, bool MergeIdenticalEdges,
176                                    bool DontDeleteUselessPhis,
177                                    bool SplitLandingPads) {
178  if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
179
180  assert(!isa<IndirectBrInst>(TI) &&
181         "Cannot split critical edge from IndirectBrInst");
182
183  BasicBlock *TIBB = TI->getParent();
184  BasicBlock *DestBB = TI->getSuccessor(SuccNum);
185
186  // Splitting the critical edge to a landing pad block is non-trivial. Don't do
187  // it in this generic function.
188  if (DestBB->isLandingPad()) return 0;
189
190  // Create a new basic block, linking it into the CFG.
191  BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
192                      TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
193  // Create our unconditional branch.
194  BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
195  NewBI->setDebugLoc(TI->getDebugLoc());
196
197  // Branch to the new block, breaking the edge.
198  TI->setSuccessor(SuccNum, NewBB);
199
200  // Insert the block into the function... right after the block TI lives in.
201  Function &F = *TIBB->getParent();
202  Function::iterator FBBI = TIBB;
203  F.getBasicBlockList().insert(++FBBI, NewBB);
204
205  // If there are any PHI nodes in DestBB, we need to update them so that they
206  // merge incoming values from NewBB instead of from TIBB.
207  {
208    unsigned BBIdx = 0;
209    for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
210      // We no longer enter through TIBB, now we come in through NewBB.
211      // Revector exactly one entry in the PHI node that used to come from
212      // TIBB to come from NewBB.
213      PHINode *PN = cast<PHINode>(I);
214
215      // Reuse the previous value of BBIdx if it lines up.  In cases where we
216      // have multiple phi nodes with *lots* of predecessors, this is a speed
217      // win because we don't have to scan the PHI looking for TIBB.  This
218      // happens because the BB list of PHI nodes are usually in the same
219      // order.
220      if (PN->getIncomingBlock(BBIdx) != TIBB)
221        BBIdx = PN->getBasicBlockIndex(TIBB);
222      PN->setIncomingBlock(BBIdx, NewBB);
223    }
224  }
225
226  // If there are any other edges from TIBB to DestBB, update those to go
227  // through the split block, making those edges non-critical as well (and
228  // reducing the number of phi entries in the DestBB if relevant).
229  if (MergeIdenticalEdges) {
230    for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
231      if (TI->getSuccessor(i) != DestBB) continue;
232
233      // Remove an entry for TIBB from DestBB phi nodes.
234      DestBB->removePredecessor(TIBB, DontDeleteUselessPhis);
235
236      // We found another edge to DestBB, go to NewBB instead.
237      TI->setSuccessor(i, NewBB);
238    }
239  }
240
241
242
243  // If we don't have a pass object, we can't update anything...
244  if (P == 0) return NewBB;
245
246  DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
247  LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
248  ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
249
250  // If we have nothing to update, just return.
251  if (DT == 0 && LI == 0 && PI == 0)
252    return NewBB;
253
254  // Now update analysis information.  Since the only predecessor of NewBB is
255  // the TIBB, TIBB clearly dominates NewBB.  TIBB usually doesn't dominate
256  // anything, as there are other successors of DestBB.  However, if all other
257  // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
258  // loop header) then NewBB dominates DestBB.
259  SmallVector<BasicBlock*, 8> OtherPreds;
260
261  // If there is a PHI in the block, loop over predecessors with it, which is
262  // faster than iterating pred_begin/end.
263  if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
264    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
265      if (PN->getIncomingBlock(i) != NewBB)
266        OtherPreds.push_back(PN->getIncomingBlock(i));
267  } else {
268    for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
269         I != E; ++I) {
270      BasicBlock *P = *I;
271      if (P != NewBB)
272        OtherPreds.push_back(P);
273    }
274  }
275
276  bool NewBBDominatesDestBB = true;
277
278  // Should we update DominatorTree information?
279  if (DT) {
280    DomTreeNode *TINode = DT->getNode(TIBB);
281
282    // The new block is not the immediate dominator for any other nodes, but
283    // TINode is the immediate dominator for the new node.
284    //
285    if (TINode) {       // Don't break unreachable code!
286      DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
287      DomTreeNode *DestBBNode = 0;
288
289      // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
290      if (!OtherPreds.empty()) {
291        DestBBNode = DT->getNode(DestBB);
292        while (!OtherPreds.empty() && NewBBDominatesDestBB) {
293          if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
294            NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
295          OtherPreds.pop_back();
296        }
297        OtherPreds.clear();
298      }
299
300      // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
301      // doesn't dominate anything.
302      if (NewBBDominatesDestBB) {
303        if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
304        DT->changeImmediateDominator(DestBBNode, NewBBNode);
305      }
306    }
307  }
308
309  // Update LoopInfo if it is around.
310  if (LI) {
311    if (Loop *TIL = LI->getLoopFor(TIBB)) {
312      // If one or the other blocks were not in a loop, the new block is not
313      // either, and thus LI doesn't need to be updated.
314      if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
315        if (TIL == DestLoop) {
316          // Both in the same loop, the NewBB joins loop.
317          DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
318        } else if (TIL->contains(DestLoop)) {
319          // Edge from an outer loop to an inner loop.  Add to the outer loop.
320          TIL->addBasicBlockToLoop(NewBB, LI->getBase());
321        } else if (DestLoop->contains(TIL)) {
322          // Edge from an inner loop to an outer loop.  Add to the outer loop.
323          DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
324        } else {
325          // Edge from two loops with no containment relation.  Because these
326          // are natural loops, we know that the destination block must be the
327          // header of its loop (adding a branch into a loop elsewhere would
328          // create an irreducible loop).
329          assert(DestLoop->getHeader() == DestBB &&
330                 "Should not create irreducible loops!");
331          if (Loop *P = DestLoop->getParentLoop())
332            P->addBasicBlockToLoop(NewBB, LI->getBase());
333        }
334      }
335      // If TIBB is in a loop and DestBB is outside of that loop, split the
336      // other exit blocks of the loop that also have predecessors outside
337      // the loop, to maintain a LoopSimplify guarantee.
338      if (!TIL->contains(DestBB) &&
339          P->mustPreserveAnalysisID(LoopSimplifyID)) {
340        assert(!TIL->contains(NewBB) &&
341               "Split point for loop exit is contained in loop!");
342
343        // Update LCSSA form in the newly created exit block.
344        if (P->mustPreserveAnalysisID(LCSSAID))
345          createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
346
347        // For each unique exit block...
348        // FIXME: This code is functionally equivalent to the corresponding
349        // loop in LoopSimplify.
350        SmallVector<BasicBlock *, 4> ExitBlocks;
351        TIL->getExitBlocks(ExitBlocks);
352        for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
353          // Collect all the preds that are inside the loop, and note
354          // whether there are any preds outside the loop.
355          SmallVector<BasicBlock *, 4> Preds;
356          bool HasPredOutsideOfLoop = false;
357          BasicBlock *Exit = ExitBlocks[i];
358          for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
359               I != E; ++I) {
360            BasicBlock *P = *I;
361            if (TIL->contains(P)) {
362              if (isa<IndirectBrInst>(P->getTerminator())) {
363                Preds.clear();
364                break;
365              }
366              Preds.push_back(P);
367            } else {
368              HasPredOutsideOfLoop = true;
369            }
370          }
371          // If there are any preds not in the loop, we'll need to split
372          // the edges. The Preds.empty() check is needed because a block
373          // may appear multiple times in the list. We can't use
374          // getUniqueExitBlocks above because that depends on LoopSimplify
375          // form, which we're in the process of restoring!
376          if (!Preds.empty() && HasPredOutsideOfLoop) {
377            if (!Exit->isLandingPad()) {
378              BasicBlock *NewExitBB =
379                SplitBlockPredecessors(Exit, Preds, "split", P);
380              if (P->mustPreserveAnalysisID(LCSSAID))
381                createPHIsForSplitLoopExit(Preds, NewExitBB, Exit);
382            } else if (SplitLandingPads) {
383              SmallVector<BasicBlock*, 8> NewBBs;
384              SplitLandingPadPredecessors(Exit, Preds,
385                                          ".split1", ".split2",
386                                          P, NewBBs);
387              if (P->mustPreserveAnalysisID(LCSSAID))
388                createPHIsForSplitLoopExit(Preds, NewBBs[0], Exit);
389            }
390          }
391        }
392      }
393      // LCSSA form was updated above for the case where LoopSimplify is
394      // available, which means that all predecessors of loop exit blocks
395      // are within the loop. Without LoopSimplify form, it would be
396      // necessary to insert a new phi.
397      assert((!P->mustPreserveAnalysisID(LCSSAID) ||
398              P->mustPreserveAnalysisID(LoopSimplifyID)) &&
399             "SplitCriticalEdge doesn't know how to update LCCSA form "
400             "without LoopSimplify!");
401    }
402  }
403
404  // Update ProfileInfo if it is around.
405  if (PI)
406    PI->splitEdge(TIBB, DestBB, NewBB, MergeIdenticalEdges);
407
408  return NewBB;
409}
410