1//===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements dead code elimination and basic block merging, along
11// with a collection of other peephole control flow optimizations.  For example:
12//
13//   * Removes basic blocks with no predecessors.
14//   * Merges a basic block into its predecessor if there is only one and the
15//     predecessor only has one successor.
16//   * Eliminates PHI nodes for basic blocks with a single predecessor.
17//   * Eliminates a basic block that only contains an unconditional branch.
18//   * Changes invoke instructions to nounwind functions to be calls.
19//   * Change things like "if (x) if (y)" into "if (x&y)".
20//   * etc..
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "simplifycfg"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/Utils/Local.h"
27#include "llvm/Constants.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Module.h"
31#include "llvm/Attributes.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Pass.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/Statistic.h"
38using namespace llvm;
39
40STATISTIC(NumSimpl, "Number of blocks simplified");
41
42namespace {
43  struct CFGSimplifyPass : public FunctionPass {
44    static char ID; // Pass identification, replacement for typeid
45    CFGSimplifyPass() : FunctionPass(ID) {
46      initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry());
47    }
48
49    virtual bool runOnFunction(Function &F);
50  };
51}
52
53char CFGSimplifyPass::ID = 0;
54INITIALIZE_PASS(CFGSimplifyPass, "simplifycfg",
55                "Simplify the CFG", false, false)
56
57// Public interface to the CFGSimplification pass
58FunctionPass *llvm::createCFGSimplificationPass() {
59  return new CFGSimplifyPass();
60}
61
62/// changeToUnreachable - Insert an unreachable instruction before the specified
63/// instruction, making it and the rest of the code in the block dead.
64static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
65  BasicBlock *BB = I->getParent();
66  // Loop over all of the successors, removing BB's entry from any PHI
67  // nodes.
68  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
69    (*SI)->removePredecessor(BB);
70
71  // Insert a call to llvm.trap right before this.  This turns the undefined
72  // behavior into a hard fail instead of falling through into random code.
73  if (UseLLVMTrap) {
74    Function *TrapFn =
75      Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
76    CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
77    CallTrap->setDebugLoc(I->getDebugLoc());
78  }
79  new UnreachableInst(I->getContext(), I);
80
81  // All instructions after this are dead.
82  BasicBlock::iterator BBI = I, BBE = BB->end();
83  while (BBI != BBE) {
84    if (!BBI->use_empty())
85      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
86    BB->getInstList().erase(BBI++);
87  }
88}
89
90/// changeToCall - Convert the specified invoke into a normal call.
91static void changeToCall(InvokeInst *II) {
92  SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
93  CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
94  NewCall->takeName(II);
95  NewCall->setCallingConv(II->getCallingConv());
96  NewCall->setAttributes(II->getAttributes());
97  NewCall->setDebugLoc(II->getDebugLoc());
98  II->replaceAllUsesWith(NewCall);
99
100  // Follow the call by a branch to the normal destination.
101  BranchInst::Create(II->getNormalDest(), II);
102
103  // Update PHI nodes in the unwind destination
104  II->getUnwindDest()->removePredecessor(II->getParent());
105  II->eraseFromParent();
106}
107
108static bool markAliveBlocks(BasicBlock *BB,
109                            SmallPtrSet<BasicBlock*, 128> &Reachable) {
110
111  SmallVector<BasicBlock*, 128> Worklist;
112  Worklist.push_back(BB);
113  bool Changed = false;
114  do {
115    BB = Worklist.pop_back_val();
116
117    if (!Reachable.insert(BB))
118      continue;
119
120    // Do a quick scan of the basic block, turning any obviously unreachable
121    // instructions into LLVM unreachable insts.  The instruction combining pass
122    // canonicalizes unreachable insts into stores to null or undef.
123    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
124      if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
125        if (CI->doesNotReturn()) {
126          // If we found a call to a no-return function, insert an unreachable
127          // instruction after it.  Make sure there isn't *already* one there
128          // though.
129          ++BBI;
130          if (!isa<UnreachableInst>(BBI)) {
131            // Don't insert a call to llvm.trap right before the unreachable.
132            changeToUnreachable(BBI, false);
133            Changed = true;
134          }
135          break;
136        }
137      }
138
139      // Store to undef and store to null are undefined and used to signal that
140      // they should be changed to unreachable by passes that can't modify the
141      // CFG.
142      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
143        // Don't touch volatile stores.
144        if (SI->isVolatile()) continue;
145
146        Value *Ptr = SI->getOperand(1);
147
148        if (isa<UndefValue>(Ptr) ||
149            (isa<ConstantPointerNull>(Ptr) &&
150             SI->getPointerAddressSpace() == 0)) {
151          changeToUnreachable(SI, true);
152          Changed = true;
153          break;
154        }
155      }
156    }
157
158    // Turn invokes that call 'nounwind' functions into ordinary calls.
159    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
160      Value *Callee = II->getCalledValue();
161      if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
162        changeToUnreachable(II, true);
163        Changed = true;
164      } else if (II->doesNotThrow()) {
165        if (II->use_empty() && II->onlyReadsMemory()) {
166          // jump to the normal destination branch.
167          BranchInst::Create(II->getNormalDest(), II);
168          II->getUnwindDest()->removePredecessor(II->getParent());
169          II->eraseFromParent();
170        } else
171          changeToCall(II);
172        Changed = true;
173      }
174    }
175
176    Changed |= ConstantFoldTerminator(BB, true);
177    for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
178      Worklist.push_back(*SI);
179  } while (!Worklist.empty());
180  return Changed;
181}
182
183/// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
184/// if they are in a dead cycle.  Return true if a change was made, false
185/// otherwise.
186static bool removeUnreachableBlocksFromFn(Function &F) {
187  SmallPtrSet<BasicBlock*, 128> Reachable;
188  bool Changed = markAliveBlocks(F.begin(), Reachable);
189
190  // If there are unreachable blocks in the CFG...
191  if (Reachable.size() == F.size())
192    return Changed;
193
194  assert(Reachable.size() < F.size());
195  NumSimpl += F.size()-Reachable.size();
196
197  // Loop over all of the basic blocks that are not reachable, dropping all of
198  // their internal references...
199  for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
200    if (Reachable.count(BB))
201      continue;
202
203    for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
204      if (Reachable.count(*SI))
205        (*SI)->removePredecessor(BB);
206    BB->dropAllReferences();
207  }
208
209  for (Function::iterator I = ++F.begin(); I != F.end();)
210    if (!Reachable.count(I))
211      I = F.getBasicBlockList().erase(I);
212    else
213      ++I;
214
215  return true;
216}
217
218/// mergeEmptyReturnBlocks - If we have more than one empty (other than phi
219/// node) return blocks, merge them together to promote recursive block merging.
220static bool mergeEmptyReturnBlocks(Function &F) {
221  bool Changed = false;
222
223  BasicBlock *RetBlock = 0;
224
225  // Scan all the blocks in the function, looking for empty return blocks.
226  for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) {
227    BasicBlock &BB = *BBI++;
228
229    // Only look at return blocks.
230    ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
231    if (Ret == 0) continue;
232
233    // Only look at the block if it is empty or the only other thing in it is a
234    // single PHI node that is the operand to the return.
235    if (Ret != &BB.front()) {
236      // Check for something else in the block.
237      BasicBlock::iterator I = Ret;
238      --I;
239      // Skip over debug info.
240      while (isa<DbgInfoIntrinsic>(I) && I != BB.begin())
241        --I;
242      if (!isa<DbgInfoIntrinsic>(I) &&
243          (!isa<PHINode>(I) || I != BB.begin() ||
244           Ret->getNumOperands() == 0 ||
245           Ret->getOperand(0) != I))
246        continue;
247    }
248
249    // If this is the first returning block, remember it and keep going.
250    if (RetBlock == 0) {
251      RetBlock = &BB;
252      continue;
253    }
254
255    // Otherwise, we found a duplicate return block.  Merge the two.
256    Changed = true;
257
258    // Case when there is no input to the return or when the returned values
259    // agree is trivial.  Note that they can't agree if there are phis in the
260    // blocks.
261    if (Ret->getNumOperands() == 0 ||
262        Ret->getOperand(0) ==
263          cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) {
264      BB.replaceAllUsesWith(RetBlock);
265      BB.eraseFromParent();
266      continue;
267    }
268
269    // If the canonical return block has no PHI node, create one now.
270    PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin());
271    if (RetBlockPHI == 0) {
272      Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0);
273      pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock);
274      RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(),
275                                    std::distance(PB, PE), "merge",
276                                    &RetBlock->front());
277
278      for (pred_iterator PI = PB; PI != PE; ++PI)
279        RetBlockPHI->addIncoming(InVal, *PI);
280      RetBlock->getTerminator()->setOperand(0, RetBlockPHI);
281    }
282
283    // Turn BB into a block that just unconditionally branches to the return
284    // block.  This handles the case when the two return blocks have a common
285    // predecessor but that return different things.
286    RetBlockPHI->addIncoming(Ret->getOperand(0), &BB);
287    BB.getTerminator()->eraseFromParent();
288    BranchInst::Create(RetBlock, &BB);
289  }
290
291  return Changed;
292}
293
294/// iterativelySimplifyCFG - Call SimplifyCFG on all the blocks in the function,
295/// iterating until no more changes are made.
296static bool iterativelySimplifyCFG(Function &F, const TargetData *TD) {
297  bool Changed = false;
298  bool LocalChange = true;
299  while (LocalChange) {
300    LocalChange = false;
301
302    // Loop over all of the basic blocks and remove them if they are unneeded...
303    //
304    for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
305      if (SimplifyCFG(BBIt++, TD)) {
306        LocalChange = true;
307        ++NumSimpl;
308      }
309    }
310    Changed |= LocalChange;
311  }
312  return Changed;
313}
314
315// It is possible that we may require multiple passes over the code to fully
316// simplify the CFG.
317//
318bool CFGSimplifyPass::runOnFunction(Function &F) {
319  const TargetData *TD = getAnalysisIfAvailable<TargetData>();
320  bool EverChanged = removeUnreachableBlocksFromFn(F);
321  EverChanged |= mergeEmptyReturnBlocks(F);
322  EverChanged |= iterativelySimplifyCFG(F, TD);
323
324  // If neither pass changed anything, we're done.
325  if (!EverChanged) return false;
326
327  // iterativelySimplifyCFG can (rarely) make some loops dead.  If this happens,
328  // removeUnreachableBlocksFromFn is needed to nuke them, which means we should
329  // iterate between the two optimizations.  We structure the code like this to
330  // avoid reruning iterativelySimplifyCFG if the second pass of
331  // removeUnreachableBlocksFromFn doesn't do anything.
332  if (!removeUnreachableBlocksFromFn(F))
333    return true;
334
335  do {
336    EverChanged = iterativelySimplifyCFG(F, TD);
337    EverChanged |= removeUnreachableBlocksFromFn(F);
338  } while (EverChanged);
339
340  return true;
341}
342