1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Analysis/ConstantFolding.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/Target/TargetData.h"
20#include "llvm/Target/TargetLibraryInfo.h"
21#include "llvm/Support/ConstantRange.h"
22#include "llvm/Support/GetElementPtrTypeIterator.h"
23#include "llvm/Support/PatternMatch.h"
24using namespace llvm;
25using namespace PatternMatch;
26
27static ConstantInt *getOne(Constant *C) {
28  return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
29}
30
31/// AddOne - Add one to a ConstantInt
32static Constant *AddOne(Constant *C) {
33  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
34}
35/// SubOne - Subtract one from a ConstantInt
36static Constant *SubOne(Constant *C) {
37  return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
38}
39
40static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
41  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
42}
43
44static bool HasAddOverflow(ConstantInt *Result,
45                           ConstantInt *In1, ConstantInt *In2,
46                           bool IsSigned) {
47  if (!IsSigned)
48    return Result->getValue().ult(In1->getValue());
49
50  if (In2->isNegative())
51    return Result->getValue().sgt(In1->getValue());
52  return Result->getValue().slt(In1->getValue());
53}
54
55/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
56/// overflowed for this type.
57static bool AddWithOverflow(Constant *&Result, Constant *In1,
58                            Constant *In2, bool IsSigned = false) {
59  Result = ConstantExpr::getAdd(In1, In2);
60
61  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
62    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
63      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
64      if (HasAddOverflow(ExtractElement(Result, Idx),
65                         ExtractElement(In1, Idx),
66                         ExtractElement(In2, Idx),
67                         IsSigned))
68        return true;
69    }
70    return false;
71  }
72
73  return HasAddOverflow(cast<ConstantInt>(Result),
74                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
75                        IsSigned);
76}
77
78static bool HasSubOverflow(ConstantInt *Result,
79                           ConstantInt *In1, ConstantInt *In2,
80                           bool IsSigned) {
81  if (!IsSigned)
82    return Result->getValue().ugt(In1->getValue());
83
84  if (In2->isNegative())
85    return Result->getValue().slt(In1->getValue());
86
87  return Result->getValue().sgt(In1->getValue());
88}
89
90/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
91/// overflowed for this type.
92static bool SubWithOverflow(Constant *&Result, Constant *In1,
93                            Constant *In2, bool IsSigned = false) {
94  Result = ConstantExpr::getSub(In1, In2);
95
96  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
97    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
98      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
99      if (HasSubOverflow(ExtractElement(Result, Idx),
100                         ExtractElement(In1, Idx),
101                         ExtractElement(In2, Idx),
102                         IsSigned))
103        return true;
104    }
105    return false;
106  }
107
108  return HasSubOverflow(cast<ConstantInt>(Result),
109                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
110                        IsSigned);
111}
112
113/// isSignBitCheck - Given an exploded icmp instruction, return true if the
114/// comparison only checks the sign bit.  If it only checks the sign bit, set
115/// TrueIfSigned if the result of the comparison is true when the input value is
116/// signed.
117static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
118                           bool &TrueIfSigned) {
119  switch (pred) {
120  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
121    TrueIfSigned = true;
122    return RHS->isZero();
123  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
124    TrueIfSigned = true;
125    return RHS->isAllOnesValue();
126  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
127    TrueIfSigned = false;
128    return RHS->isAllOnesValue();
129  case ICmpInst::ICMP_UGT:
130    // True if LHS u> RHS and RHS == high-bit-mask - 1
131    TrueIfSigned = true;
132    return RHS->isMaxValue(true);
133  case ICmpInst::ICMP_UGE:
134    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
135    TrueIfSigned = true;
136    return RHS->getValue().isSignBit();
137  default:
138    return false;
139  }
140}
141
142// isHighOnes - Return true if the constant is of the form 1+0+.
143// This is the same as lowones(~X).
144static bool isHighOnes(const ConstantInt *CI) {
145  return (~CI->getValue() + 1).isPowerOf2();
146}
147
148/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
149/// set of known zero and one bits, compute the maximum and minimum values that
150/// could have the specified known zero and known one bits, returning them in
151/// min/max.
152static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
153                                                   const APInt& KnownOne,
154                                                   APInt& Min, APInt& Max) {
155  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
156         KnownZero.getBitWidth() == Min.getBitWidth() &&
157         KnownZero.getBitWidth() == Max.getBitWidth() &&
158         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
159  APInt UnknownBits = ~(KnownZero|KnownOne);
160
161  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
162  // bit if it is unknown.
163  Min = KnownOne;
164  Max = KnownOne|UnknownBits;
165
166  if (UnknownBits.isNegative()) { // Sign bit is unknown
167    Min.setBit(Min.getBitWidth()-1);
168    Max.clearBit(Max.getBitWidth()-1);
169  }
170}
171
172// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
173// a set of known zero and one bits, compute the maximum and minimum values that
174// could have the specified known zero and known one bits, returning them in
175// min/max.
176static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
177                                                     const APInt &KnownOne,
178                                                     APInt &Min, APInt &Max) {
179  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
180         KnownZero.getBitWidth() == Min.getBitWidth() &&
181         KnownZero.getBitWidth() == Max.getBitWidth() &&
182         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
183  APInt UnknownBits = ~(KnownZero|KnownOne);
184
185  // The minimum value is when the unknown bits are all zeros.
186  Min = KnownOne;
187  // The maximum value is when the unknown bits are all ones.
188  Max = KnownOne|UnknownBits;
189}
190
191
192
193/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
194///   cmp pred (load (gep GV, ...)), cmpcst
195/// where GV is a global variable with a constant initializer.  Try to simplify
196/// this into some simple computation that does not need the load.  For example
197/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
198///
199/// If AndCst is non-null, then the loaded value is masked with that constant
200/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
201Instruction *InstCombiner::
202FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
203                             CmpInst &ICI, ConstantInt *AndCst) {
204  // We need TD information to know the pointer size unless this is inbounds.
205  if (!GEP->isInBounds() && TD == 0) return 0;
206
207  Constant *Init = GV->getInitializer();
208  if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
209    return 0;
210
211  uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
212  if (ArrayElementCount > 1024) return 0;  // Don't blow up on huge arrays.
213
214  // There are many forms of this optimization we can handle, for now, just do
215  // the simple index into a single-dimensional array.
216  //
217  // Require: GEP GV, 0, i {{, constant indices}}
218  if (GEP->getNumOperands() < 3 ||
219      !isa<ConstantInt>(GEP->getOperand(1)) ||
220      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
221      isa<Constant>(GEP->getOperand(2)))
222    return 0;
223
224  // Check that indices after the variable are constants and in-range for the
225  // type they index.  Collect the indices.  This is typically for arrays of
226  // structs.
227  SmallVector<unsigned, 4> LaterIndices;
228
229  Type *EltTy = Init->getType()->getArrayElementType();
230  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
231    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
232    if (Idx == 0) return 0;  // Variable index.
233
234    uint64_t IdxVal = Idx->getZExtValue();
235    if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
236
237    if (StructType *STy = dyn_cast<StructType>(EltTy))
238      EltTy = STy->getElementType(IdxVal);
239    else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
240      if (IdxVal >= ATy->getNumElements()) return 0;
241      EltTy = ATy->getElementType();
242    } else {
243      return 0; // Unknown type.
244    }
245
246    LaterIndices.push_back(IdxVal);
247  }
248
249  enum { Overdefined = -3, Undefined = -2 };
250
251  // Variables for our state machines.
252
253  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
254  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
255  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
256  // undefined, otherwise set to the first true element.  SecondTrueElement is
257  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
258  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
259
260  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
261  // form "i != 47 & i != 87".  Same state transitions as for true elements.
262  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
263
264  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
265  /// define a state machine that triggers for ranges of values that the index
266  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
267  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
268  /// index in the range (inclusive).  We use -2 for undefined here because we
269  /// use relative comparisons and don't want 0-1 to match -1.
270  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
271
272  // MagicBitvector - This is a magic bitvector where we set a bit if the
273  // comparison is true for element 'i'.  If there are 64 elements or less in
274  // the array, this will fully represent all the comparison results.
275  uint64_t MagicBitvector = 0;
276
277
278  // Scan the array and see if one of our patterns matches.
279  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
280  for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
281    Constant *Elt = Init->getAggregateElement(i);
282    if (Elt == 0) return 0;
283
284    // If this is indexing an array of structures, get the structure element.
285    if (!LaterIndices.empty())
286      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
287
288    // If the element is masked, handle it.
289    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
290
291    // Find out if the comparison would be true or false for the i'th element.
292    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
293                                                  CompareRHS, TD, TLI);
294    // If the result is undef for this element, ignore it.
295    if (isa<UndefValue>(C)) {
296      // Extend range state machines to cover this element in case there is an
297      // undef in the middle of the range.
298      if (TrueRangeEnd == (int)i-1)
299        TrueRangeEnd = i;
300      if (FalseRangeEnd == (int)i-1)
301        FalseRangeEnd = i;
302      continue;
303    }
304
305    // If we can't compute the result for any of the elements, we have to give
306    // up evaluating the entire conditional.
307    if (!isa<ConstantInt>(C)) return 0;
308
309    // Otherwise, we know if the comparison is true or false for this element,
310    // update our state machines.
311    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
312
313    // State machine for single/double/range index comparison.
314    if (IsTrueForElt) {
315      // Update the TrueElement state machine.
316      if (FirstTrueElement == Undefined)
317        FirstTrueElement = TrueRangeEnd = i;  // First true element.
318      else {
319        // Update double-compare state machine.
320        if (SecondTrueElement == Undefined)
321          SecondTrueElement = i;
322        else
323          SecondTrueElement = Overdefined;
324
325        // Update range state machine.
326        if (TrueRangeEnd == (int)i-1)
327          TrueRangeEnd = i;
328        else
329          TrueRangeEnd = Overdefined;
330      }
331    } else {
332      // Update the FalseElement state machine.
333      if (FirstFalseElement == Undefined)
334        FirstFalseElement = FalseRangeEnd = i; // First false element.
335      else {
336        // Update double-compare state machine.
337        if (SecondFalseElement == Undefined)
338          SecondFalseElement = i;
339        else
340          SecondFalseElement = Overdefined;
341
342        // Update range state machine.
343        if (FalseRangeEnd == (int)i-1)
344          FalseRangeEnd = i;
345        else
346          FalseRangeEnd = Overdefined;
347      }
348    }
349
350
351    // If this element is in range, update our magic bitvector.
352    if (i < 64 && IsTrueForElt)
353      MagicBitvector |= 1ULL << i;
354
355    // If all of our states become overdefined, bail out early.  Since the
356    // predicate is expensive, only check it every 8 elements.  This is only
357    // really useful for really huge arrays.
358    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
359        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
360        FalseRangeEnd == Overdefined)
361      return 0;
362  }
363
364  // Now that we've scanned the entire array, emit our new comparison(s).  We
365  // order the state machines in complexity of the generated code.
366  Value *Idx = GEP->getOperand(2);
367
368  // If the index is larger than the pointer size of the target, truncate the
369  // index down like the GEP would do implicitly.  We don't have to do this for
370  // an inbounds GEP because the index can't be out of range.
371  if (!GEP->isInBounds() &&
372      Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
373    Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
374
375  // If the comparison is only true for one or two elements, emit direct
376  // comparisons.
377  if (SecondTrueElement != Overdefined) {
378    // None true -> false.
379    if (FirstTrueElement == Undefined)
380      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
381
382    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
383
384    // True for one element -> 'i == 47'.
385    if (SecondTrueElement == Undefined)
386      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
387
388    // True for two elements -> 'i == 47 | i == 72'.
389    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
390    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
391    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
392    return BinaryOperator::CreateOr(C1, C2);
393  }
394
395  // If the comparison is only false for one or two elements, emit direct
396  // comparisons.
397  if (SecondFalseElement != Overdefined) {
398    // None false -> true.
399    if (FirstFalseElement == Undefined)
400      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
401
402    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
403
404    // False for one element -> 'i != 47'.
405    if (SecondFalseElement == Undefined)
406      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
407
408    // False for two elements -> 'i != 47 & i != 72'.
409    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
410    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
411    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
412    return BinaryOperator::CreateAnd(C1, C2);
413  }
414
415  // If the comparison can be replaced with a range comparison for the elements
416  // where it is true, emit the range check.
417  if (TrueRangeEnd != Overdefined) {
418    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
419
420    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
421    if (FirstTrueElement) {
422      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
423      Idx = Builder->CreateAdd(Idx, Offs);
424    }
425
426    Value *End = ConstantInt::get(Idx->getType(),
427                                  TrueRangeEnd-FirstTrueElement+1);
428    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
429  }
430
431  // False range check.
432  if (FalseRangeEnd != Overdefined) {
433    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
434    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
435    if (FirstFalseElement) {
436      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
437      Idx = Builder->CreateAdd(Idx, Offs);
438    }
439
440    Value *End = ConstantInt::get(Idx->getType(),
441                                  FalseRangeEnd-FirstFalseElement);
442    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
443  }
444
445
446  // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
447  // of this load, replace it with computation that does:
448  //   ((magic_cst >> i) & 1) != 0
449  if (ArrayElementCount <= 32 ||
450      (TD && ArrayElementCount <= 64 && TD->isLegalInteger(64))) {
451    Type *Ty;
452    if (ArrayElementCount <= 32)
453      Ty = Type::getInt32Ty(Init->getContext());
454    else
455      Ty = Type::getInt64Ty(Init->getContext());
456    Value *V = Builder->CreateIntCast(Idx, Ty, false);
457    V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
458    V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
459    return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
460  }
461
462  return 0;
463}
464
465
466/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
467/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
468/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
469/// be complex, and scales are involved.  The above expression would also be
470/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
471/// This later form is less amenable to optimization though, and we are allowed
472/// to generate the first by knowing that pointer arithmetic doesn't overflow.
473///
474/// If we can't emit an optimized form for this expression, this returns null.
475///
476static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
477  TargetData &TD = *IC.getTargetData();
478  gep_type_iterator GTI = gep_type_begin(GEP);
479
480  // Check to see if this gep only has a single variable index.  If so, and if
481  // any constant indices are a multiple of its scale, then we can compute this
482  // in terms of the scale of the variable index.  For example, if the GEP
483  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
484  // because the expression will cross zero at the same point.
485  unsigned i, e = GEP->getNumOperands();
486  int64_t Offset = 0;
487  for (i = 1; i != e; ++i, ++GTI) {
488    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
489      // Compute the aggregate offset of constant indices.
490      if (CI->isZero()) continue;
491
492      // Handle a struct index, which adds its field offset to the pointer.
493      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
494        Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
495      } else {
496        uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
497        Offset += Size*CI->getSExtValue();
498      }
499    } else {
500      // Found our variable index.
501      break;
502    }
503  }
504
505  // If there are no variable indices, we must have a constant offset, just
506  // evaluate it the general way.
507  if (i == e) return 0;
508
509  Value *VariableIdx = GEP->getOperand(i);
510  // Determine the scale factor of the variable element.  For example, this is
511  // 4 if the variable index is into an array of i32.
512  uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
513
514  // Verify that there are no other variable indices.  If so, emit the hard way.
515  for (++i, ++GTI; i != e; ++i, ++GTI) {
516    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
517    if (!CI) return 0;
518
519    // Compute the aggregate offset of constant indices.
520    if (CI->isZero()) continue;
521
522    // Handle a struct index, which adds its field offset to the pointer.
523    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
524      Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
525    } else {
526      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
527      Offset += Size*CI->getSExtValue();
528    }
529  }
530
531  // Okay, we know we have a single variable index, which must be a
532  // pointer/array/vector index.  If there is no offset, life is simple, return
533  // the index.
534  unsigned IntPtrWidth = TD.getPointerSizeInBits();
535  if (Offset == 0) {
536    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
537    // we don't need to bother extending: the extension won't affect where the
538    // computation crosses zero.
539    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
540      Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
541      VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
542    }
543    return VariableIdx;
544  }
545
546  // Otherwise, there is an index.  The computation we will do will be modulo
547  // the pointer size, so get it.
548  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
549
550  Offset &= PtrSizeMask;
551  VariableScale &= PtrSizeMask;
552
553  // To do this transformation, any constant index must be a multiple of the
554  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
555  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
556  // multiple of the variable scale.
557  int64_t NewOffs = Offset / (int64_t)VariableScale;
558  if (Offset != NewOffs*(int64_t)VariableScale)
559    return 0;
560
561  // Okay, we can do this evaluation.  Start by converting the index to intptr.
562  Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
563  if (VariableIdx->getType() != IntPtrTy)
564    VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
565                                            true /*Signed*/);
566  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
567  return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
568}
569
570/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
571/// else.  At this point we know that the GEP is on the LHS of the comparison.
572Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
573                                       ICmpInst::Predicate Cond,
574                                       Instruction &I) {
575  // Don't transform signed compares of GEPs into index compares. Even if the
576  // GEP is inbounds, the final add of the base pointer can have signed overflow
577  // and would change the result of the icmp.
578  // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
579  // the maximum signed value for the pointer type.
580  if (ICmpInst::isSigned(Cond))
581    return 0;
582
583  // Look through bitcasts.
584  if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
585    RHS = BCI->getOperand(0);
586
587  Value *PtrBase = GEPLHS->getOperand(0);
588  if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
589    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
590    // This transformation (ignoring the base and scales) is valid because we
591    // know pointers can't overflow since the gep is inbounds.  See if we can
592    // output an optimized form.
593    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
594
595    // If not, synthesize the offset the hard way.
596    if (Offset == 0)
597      Offset = EmitGEPOffset(GEPLHS);
598    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
599                        Constant::getNullValue(Offset->getType()));
600  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
601    // If the base pointers are different, but the indices are the same, just
602    // compare the base pointer.
603    if (PtrBase != GEPRHS->getOperand(0)) {
604      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
605      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
606                        GEPRHS->getOperand(0)->getType();
607      if (IndicesTheSame)
608        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
609          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
610            IndicesTheSame = false;
611            break;
612          }
613
614      // If all indices are the same, just compare the base pointers.
615      if (IndicesTheSame)
616        return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
617                            GEPLHS->getOperand(0), GEPRHS->getOperand(0));
618
619      // If we're comparing GEPs with two base pointers that only differ in type
620      // and both GEPs have only constant indices or just one use, then fold
621      // the compare with the adjusted indices.
622      if (TD && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
623          (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
624          (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
625          PtrBase->stripPointerCasts() ==
626            GEPRHS->getOperand(0)->stripPointerCasts()) {
627        Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
628                                         EmitGEPOffset(GEPLHS),
629                                         EmitGEPOffset(GEPRHS));
630        return ReplaceInstUsesWith(I, Cmp);
631      }
632
633      // Otherwise, the base pointers are different and the indices are
634      // different, bail out.
635      return 0;
636    }
637
638    // If one of the GEPs has all zero indices, recurse.
639    bool AllZeros = true;
640    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
641      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
642          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
643        AllZeros = false;
644        break;
645      }
646    if (AllZeros)
647      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
648                          ICmpInst::getSwappedPredicate(Cond), I);
649
650    // If the other GEP has all zero indices, recurse.
651    AllZeros = true;
652    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
653      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
654          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
655        AllZeros = false;
656        break;
657      }
658    if (AllZeros)
659      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
660
661    bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
662    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
663      // If the GEPs only differ by one index, compare it.
664      unsigned NumDifferences = 0;  // Keep track of # differences.
665      unsigned DiffOperand = 0;     // The operand that differs.
666      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
667        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
668          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
669                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
670            // Irreconcilable differences.
671            NumDifferences = 2;
672            break;
673          } else {
674            if (NumDifferences++) break;
675            DiffOperand = i;
676          }
677        }
678
679      if (NumDifferences == 0)   // SAME GEP?
680        return ReplaceInstUsesWith(I, // No comparison is needed here.
681                               ConstantInt::get(Type::getInt1Ty(I.getContext()),
682                                             ICmpInst::isTrueWhenEqual(Cond)));
683
684      else if (NumDifferences == 1 && GEPsInBounds) {
685        Value *LHSV = GEPLHS->getOperand(DiffOperand);
686        Value *RHSV = GEPRHS->getOperand(DiffOperand);
687        // Make sure we do a signed comparison here.
688        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
689      }
690    }
691
692    // Only lower this if the icmp is the only user of the GEP or if we expect
693    // the result to fold to a constant!
694    if (TD &&
695        GEPsInBounds &&
696        (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
697        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
698      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
699      Value *L = EmitGEPOffset(GEPLHS);
700      Value *R = EmitGEPOffset(GEPRHS);
701      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
702    }
703  }
704  return 0;
705}
706
707/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
708Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
709                                            Value *X, ConstantInt *CI,
710                                            ICmpInst::Predicate Pred,
711                                            Value *TheAdd) {
712  // If we have X+0, exit early (simplifying logic below) and let it get folded
713  // elsewhere.   icmp X+0, X  -> icmp X, X
714  if (CI->isZero()) {
715    bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
716    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
717  }
718
719  // (X+4) == X -> false.
720  if (Pred == ICmpInst::ICMP_EQ)
721    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
722
723  // (X+4) != X -> true.
724  if (Pred == ICmpInst::ICMP_NE)
725    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
726
727  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
728  // so the values can never be equal.  Similarly for all other "or equals"
729  // operators.
730
731  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
732  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
733  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
734  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
735    Value *R =
736      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
737    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
738  }
739
740  // (X+1) >u X        --> X <u (0-1)        --> X != 255
741  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
742  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
743  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
744    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
745
746  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
747  ConstantInt *SMax = ConstantInt::get(X->getContext(),
748                                       APInt::getSignedMaxValue(BitWidth));
749
750  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
751  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
752  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
753  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
754  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
755  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
756  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
757    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
758
759  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
760  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
761  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
762  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
763  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
764  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
765
766  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
767  Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
768  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
769}
770
771/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
772/// and CmpRHS are both known to be integer constants.
773Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
774                                          ConstantInt *DivRHS) {
775  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
776  const APInt &CmpRHSV = CmpRHS->getValue();
777
778  // FIXME: If the operand types don't match the type of the divide
779  // then don't attempt this transform. The code below doesn't have the
780  // logic to deal with a signed divide and an unsigned compare (and
781  // vice versa). This is because (x /s C1) <s C2  produces different
782  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
783  // (x /u C1) <u C2.  Simply casting the operands and result won't
784  // work. :(  The if statement below tests that condition and bails
785  // if it finds it.
786  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
787  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
788    return 0;
789  if (DivRHS->isZero())
790    return 0; // The ProdOV computation fails on divide by zero.
791  if (DivIsSigned && DivRHS->isAllOnesValue())
792    return 0; // The overflow computation also screws up here
793  if (DivRHS->isOne()) {
794    // This eliminates some funny cases with INT_MIN.
795    ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
796    return &ICI;
797  }
798
799  // Compute Prod = CI * DivRHS. We are essentially solving an equation
800  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
801  // C2 (CI). By solving for X we can turn this into a range check
802  // instead of computing a divide.
803  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
804
805  // Determine if the product overflows by seeing if the product is
806  // not equal to the divide. Make sure we do the same kind of divide
807  // as in the LHS instruction that we're folding.
808  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
809                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
810
811  // Get the ICmp opcode
812  ICmpInst::Predicate Pred = ICI.getPredicate();
813
814  /// If the division is known to be exact, then there is no remainder from the
815  /// divide, so the covered range size is unit, otherwise it is the divisor.
816  ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
817
818  // Figure out the interval that is being checked.  For example, a comparison
819  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
820  // Compute this interval based on the constants involved and the signedness of
821  // the compare/divide.  This computes a half-open interval, keeping track of
822  // whether either value in the interval overflows.  After analysis each
823  // overflow variable is set to 0 if it's corresponding bound variable is valid
824  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
825  int LoOverflow = 0, HiOverflow = 0;
826  Constant *LoBound = 0, *HiBound = 0;
827
828  if (!DivIsSigned) {  // udiv
829    // e.g. X/5 op 3  --> [15, 20)
830    LoBound = Prod;
831    HiOverflow = LoOverflow = ProdOV;
832    if (!HiOverflow) {
833      // If this is not an exact divide, then many values in the range collapse
834      // to the same result value.
835      HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
836    }
837
838  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
839    if (CmpRHSV == 0) {       // (X / pos) op 0
840      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
841      LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
842      HiBound = RangeSize;
843    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
844      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
845      HiOverflow = LoOverflow = ProdOV;
846      if (!HiOverflow)
847        HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
848    } else {                       // (X / pos) op neg
849      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
850      HiBound = AddOne(Prod);
851      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
852      if (!LoOverflow) {
853        ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
854        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
855      }
856    }
857  } else if (DivRHS->isNegative()) { // Divisor is < 0.
858    if (DivI->isExact())
859      RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
860    if (CmpRHSV == 0) {       // (X / neg) op 0
861      // e.g. X/-5 op 0  --> [-4, 5)
862      LoBound = AddOne(RangeSize);
863      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
864      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
865        HiOverflow = 1;            // [INTMIN+1, overflow)
866        HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
867      }
868    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
869      // e.g. X/-5 op 3  --> [-19, -14)
870      HiBound = AddOne(Prod);
871      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
872      if (!LoOverflow)
873        LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
874    } else {                       // (X / neg) op neg
875      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
876      LoOverflow = HiOverflow = ProdOV;
877      if (!HiOverflow)
878        HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
879    }
880
881    // Dividing by a negative swaps the condition.  LT <-> GT
882    Pred = ICmpInst::getSwappedPredicate(Pred);
883  }
884
885  Value *X = DivI->getOperand(0);
886  switch (Pred) {
887  default: llvm_unreachable("Unhandled icmp opcode!");
888  case ICmpInst::ICMP_EQ:
889    if (LoOverflow && HiOverflow)
890      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
891    if (HiOverflow)
892      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
893                          ICmpInst::ICMP_UGE, X, LoBound);
894    if (LoOverflow)
895      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
896                          ICmpInst::ICMP_ULT, X, HiBound);
897    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
898                                                    DivIsSigned, true));
899  case ICmpInst::ICMP_NE:
900    if (LoOverflow && HiOverflow)
901      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
902    if (HiOverflow)
903      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
904                          ICmpInst::ICMP_ULT, X, LoBound);
905    if (LoOverflow)
906      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
907                          ICmpInst::ICMP_UGE, X, HiBound);
908    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
909                                                    DivIsSigned, false));
910  case ICmpInst::ICMP_ULT:
911  case ICmpInst::ICMP_SLT:
912    if (LoOverflow == +1)   // Low bound is greater than input range.
913      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
914    if (LoOverflow == -1)   // Low bound is less than input range.
915      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
916    return new ICmpInst(Pred, X, LoBound);
917  case ICmpInst::ICMP_UGT:
918  case ICmpInst::ICMP_SGT:
919    if (HiOverflow == +1)       // High bound greater than input range.
920      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
921    if (HiOverflow == -1)       // High bound less than input range.
922      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
923    if (Pred == ICmpInst::ICMP_UGT)
924      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
925    return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
926  }
927}
928
929/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
930Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
931                                          ConstantInt *ShAmt) {
932  const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
933
934  // Check that the shift amount is in range.  If not, don't perform
935  // undefined shifts.  When the shift is visited it will be
936  // simplified.
937  uint32_t TypeBits = CmpRHSV.getBitWidth();
938  uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
939  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
940    return 0;
941
942  if (!ICI.isEquality()) {
943    // If we have an unsigned comparison and an ashr, we can't simplify this.
944    // Similarly for signed comparisons with lshr.
945    if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
946      return 0;
947
948    // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
949    // by a power of 2.  Since we already have logic to simplify these,
950    // transform to div and then simplify the resultant comparison.
951    if (Shr->getOpcode() == Instruction::AShr &&
952        (!Shr->isExact() || ShAmtVal == TypeBits - 1))
953      return 0;
954
955    // Revisit the shift (to delete it).
956    Worklist.Add(Shr);
957
958    Constant *DivCst =
959      ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
960
961    Value *Tmp =
962      Shr->getOpcode() == Instruction::AShr ?
963      Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
964      Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
965
966    ICI.setOperand(0, Tmp);
967
968    // If the builder folded the binop, just return it.
969    BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
970    if (TheDiv == 0)
971      return &ICI;
972
973    // Otherwise, fold this div/compare.
974    assert(TheDiv->getOpcode() == Instruction::SDiv ||
975           TheDiv->getOpcode() == Instruction::UDiv);
976
977    Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
978    assert(Res && "This div/cst should have folded!");
979    return Res;
980  }
981
982
983  // If we are comparing against bits always shifted out, the
984  // comparison cannot succeed.
985  APInt Comp = CmpRHSV << ShAmtVal;
986  ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
987  if (Shr->getOpcode() == Instruction::LShr)
988    Comp = Comp.lshr(ShAmtVal);
989  else
990    Comp = Comp.ashr(ShAmtVal);
991
992  if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
993    bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
994    Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
995                                     IsICMP_NE);
996    return ReplaceInstUsesWith(ICI, Cst);
997  }
998
999  // Otherwise, check to see if the bits shifted out are known to be zero.
1000  // If so, we can compare against the unshifted value:
1001  //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1002  if (Shr->hasOneUse() && Shr->isExact())
1003    return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1004
1005  if (Shr->hasOneUse()) {
1006    // Otherwise strength reduce the shift into an and.
1007    APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1008    Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
1009
1010    Value *And = Builder->CreateAnd(Shr->getOperand(0),
1011                                    Mask, Shr->getName()+".mask");
1012    return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1013  }
1014  return 0;
1015}
1016
1017
1018/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1019///
1020Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1021                                                          Instruction *LHSI,
1022                                                          ConstantInt *RHS) {
1023  const APInt &RHSV = RHS->getValue();
1024
1025  switch (LHSI->getOpcode()) {
1026  case Instruction::Trunc:
1027    if (ICI.isEquality() && LHSI->hasOneUse()) {
1028      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1029      // of the high bits truncated out of x are known.
1030      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1031             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1032      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1033      ComputeMaskedBits(LHSI->getOperand(0), KnownZero, KnownOne);
1034
1035      // If all the high bits are known, we can do this xform.
1036      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1037        // Pull in the high bits from known-ones set.
1038        APInt NewRHS = RHS->getValue().zext(SrcBits);
1039        NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
1040        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1041                            ConstantInt::get(ICI.getContext(), NewRHS));
1042      }
1043    }
1044    break;
1045
1046  case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
1047    if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1048      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1049      // fold the xor.
1050      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1051          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1052        Value *CompareVal = LHSI->getOperand(0);
1053
1054        // If the sign bit of the XorCST is not set, there is no change to
1055        // the operation, just stop using the Xor.
1056        if (!XorCST->isNegative()) {
1057          ICI.setOperand(0, CompareVal);
1058          Worklist.Add(LHSI);
1059          return &ICI;
1060        }
1061
1062        // Was the old condition true if the operand is positive?
1063        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1064
1065        // If so, the new one isn't.
1066        isTrueIfPositive ^= true;
1067
1068        if (isTrueIfPositive)
1069          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1070                              SubOne(RHS));
1071        else
1072          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1073                              AddOne(RHS));
1074      }
1075
1076      if (LHSI->hasOneUse()) {
1077        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1078        if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
1079          const APInt &SignBit = XorCST->getValue();
1080          ICmpInst::Predicate Pred = ICI.isSigned()
1081                                         ? ICI.getUnsignedPredicate()
1082                                         : ICI.getSignedPredicate();
1083          return new ICmpInst(Pred, LHSI->getOperand(0),
1084                              ConstantInt::get(ICI.getContext(),
1085                                               RHSV ^ SignBit));
1086        }
1087
1088        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1089        if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
1090          const APInt &NotSignBit = XorCST->getValue();
1091          ICmpInst::Predicate Pred = ICI.isSigned()
1092                                         ? ICI.getUnsignedPredicate()
1093                                         : ICI.getSignedPredicate();
1094          Pred = ICI.getSwappedPredicate(Pred);
1095          return new ICmpInst(Pred, LHSI->getOperand(0),
1096                              ConstantInt::get(ICI.getContext(),
1097                                               RHSV ^ NotSignBit));
1098        }
1099      }
1100    }
1101    break;
1102  case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
1103    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1104        LHSI->getOperand(0)->hasOneUse()) {
1105      ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
1106
1107      // If the LHS is an AND of a truncating cast, we can widen the
1108      // and/compare to be the input width without changing the value
1109      // produced, eliminating a cast.
1110      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1111        // We can do this transformation if either the AND constant does not
1112        // have its sign bit set or if it is an equality comparison.
1113        // Extending a relational comparison when we're checking the sign
1114        // bit would not work.
1115        if (ICI.isEquality() ||
1116            (!AndCST->isNegative() && RHSV.isNonNegative())) {
1117          Value *NewAnd =
1118            Builder->CreateAnd(Cast->getOperand(0),
1119                               ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
1120          NewAnd->takeName(LHSI);
1121          return new ICmpInst(ICI.getPredicate(), NewAnd,
1122                              ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
1123        }
1124      }
1125
1126      // If the LHS is an AND of a zext, and we have an equality compare, we can
1127      // shrink the and/compare to the smaller type, eliminating the cast.
1128      if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
1129        IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
1130        // Make sure we don't compare the upper bits, SimplifyDemandedBits
1131        // should fold the icmp to true/false in that case.
1132        if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1133          Value *NewAnd =
1134            Builder->CreateAnd(Cast->getOperand(0),
1135                               ConstantExpr::getTrunc(AndCST, Ty));
1136          NewAnd->takeName(LHSI);
1137          return new ICmpInst(ICI.getPredicate(), NewAnd,
1138                              ConstantExpr::getTrunc(RHS, Ty));
1139        }
1140      }
1141
1142      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1143      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1144      // happens a LOT in code produced by the C front-end, for bitfield
1145      // access.
1146      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1147      if (Shift && !Shift->isShift())
1148        Shift = 0;
1149
1150      ConstantInt *ShAmt;
1151      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
1152      Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
1153      Type *AndTy = AndCST->getType();          // Type of the and.
1154
1155      // We can fold this as long as we can't shift unknown bits
1156      // into the mask.  This can only happen with signed shift
1157      // rights, as they sign-extend.
1158      if (ShAmt) {
1159        bool CanFold = Shift->isLogicalShift();
1160        if (!CanFold) {
1161          // To test for the bad case of the signed shr, see if any
1162          // of the bits shifted in could be tested after the mask.
1163          uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1164          int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
1165
1166          uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
1167          if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
1168               AndCST->getValue()) == 0)
1169            CanFold = true;
1170        }
1171
1172        if (CanFold) {
1173          Constant *NewCst;
1174          if (Shift->getOpcode() == Instruction::Shl)
1175            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1176          else
1177            NewCst = ConstantExpr::getShl(RHS, ShAmt);
1178
1179          // Check to see if we are shifting out any of the bits being
1180          // compared.
1181          if (ConstantExpr::get(Shift->getOpcode(),
1182                                       NewCst, ShAmt) != RHS) {
1183            // If we shifted bits out, the fold is not going to work out.
1184            // As a special case, check to see if this means that the
1185            // result is always true or false now.
1186            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1187              return ReplaceInstUsesWith(ICI,
1188                                       ConstantInt::getFalse(ICI.getContext()));
1189            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1190              return ReplaceInstUsesWith(ICI,
1191                                       ConstantInt::getTrue(ICI.getContext()));
1192          } else {
1193            ICI.setOperand(1, NewCst);
1194            Constant *NewAndCST;
1195            if (Shift->getOpcode() == Instruction::Shl)
1196              NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1197            else
1198              NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1199            LHSI->setOperand(1, NewAndCST);
1200            LHSI->setOperand(0, Shift->getOperand(0));
1201            Worklist.Add(Shift); // Shift is dead.
1202            return &ICI;
1203          }
1204        }
1205      }
1206
1207      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1208      // preferable because it allows the C<<Y expression to be hoisted out
1209      // of a loop if Y is invariant and X is not.
1210      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1211          ICI.isEquality() && !Shift->isArithmeticShift() &&
1212          !isa<Constant>(Shift->getOperand(0))) {
1213        // Compute C << Y.
1214        Value *NS;
1215        if (Shift->getOpcode() == Instruction::LShr) {
1216          NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
1217        } else {
1218          // Insert a logical shift.
1219          NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
1220        }
1221
1222        // Compute X & (C << Y).
1223        Value *NewAnd =
1224          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1225
1226        ICI.setOperand(0, NewAnd);
1227        return &ICI;
1228      }
1229    }
1230
1231    // Try to optimize things like "A[i]&42 == 0" to index computations.
1232    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1233      if (GetElementPtrInst *GEP =
1234          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1235        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1236          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1237              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1238            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1239            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1240              return Res;
1241          }
1242    }
1243    break;
1244
1245  case Instruction::Or: {
1246    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1247      break;
1248    Value *P, *Q;
1249    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1250      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1251      // -> and (icmp eq P, null), (icmp eq Q, null).
1252      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1253                                        Constant::getNullValue(P->getType()));
1254      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1255                                        Constant::getNullValue(Q->getType()));
1256      Instruction *Op;
1257      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1258        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1259      else
1260        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1261      return Op;
1262    }
1263    break;
1264  }
1265
1266  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1267    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1268    if (!ShAmt) break;
1269
1270    uint32_t TypeBits = RHSV.getBitWidth();
1271
1272    // Check that the shift amount is in range.  If not, don't perform
1273    // undefined shifts.  When the shift is visited it will be
1274    // simplified.
1275    if (ShAmt->uge(TypeBits))
1276      break;
1277
1278    if (ICI.isEquality()) {
1279      // If we are comparing against bits always shifted out, the
1280      // comparison cannot succeed.
1281      Constant *Comp =
1282        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1283                                                                 ShAmt);
1284      if (Comp != RHS) {// Comparing against a bit that we know is zero.
1285        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1286        Constant *Cst =
1287          ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
1288        return ReplaceInstUsesWith(ICI, Cst);
1289      }
1290
1291      // If the shift is NUW, then it is just shifting out zeros, no need for an
1292      // AND.
1293      if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1294        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1295                            ConstantExpr::getLShr(RHS, ShAmt));
1296
1297      if (LHSI->hasOneUse()) {
1298        // Otherwise strength reduce the shift into an and.
1299        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1300        Constant *Mask =
1301          ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
1302                                                       TypeBits-ShAmtVal));
1303
1304        Value *And =
1305          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1306        return new ICmpInst(ICI.getPredicate(), And,
1307                            ConstantExpr::getLShr(RHS, ShAmt));
1308      }
1309    }
1310
1311    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1312    bool TrueIfSigned = false;
1313    if (LHSI->hasOneUse() &&
1314        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1315      // (X << 31) <s 0  --> (X&1) != 0
1316      Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1317                                        APInt::getOneBitSet(TypeBits,
1318                                            TypeBits-ShAmt->getZExtValue()-1));
1319      Value *And =
1320        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1321      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1322                          And, Constant::getNullValue(And->getType()));
1323    }
1324    break;
1325  }
1326
1327  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1328  case Instruction::AShr: {
1329    // Handle equality comparisons of shift-by-constant.
1330    BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1331    if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1332      if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
1333        return Res;
1334    }
1335
1336    // Handle exact shr's.
1337    if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1338      if (RHSV.isMinValue())
1339        return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1340    }
1341    break;
1342  }
1343
1344  case Instruction::SDiv:
1345  case Instruction::UDiv:
1346    // Fold: icmp pred ([us]div X, C1), C2 -> range test
1347    // Fold this div into the comparison, producing a range check.
1348    // Determine, based on the divide type, what the range is being
1349    // checked.  If there is an overflow on the low or high side, remember
1350    // it, otherwise compute the range [low, hi) bounding the new value.
1351    // See: InsertRangeTest above for the kinds of replacements possible.
1352    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1353      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1354                                          DivRHS))
1355        return R;
1356    break;
1357
1358  case Instruction::Add:
1359    // Fold: icmp pred (add X, C1), C2
1360    if (!ICI.isEquality()) {
1361      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1362      if (!LHSC) break;
1363      const APInt &LHSV = LHSC->getValue();
1364
1365      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1366                            .subtract(LHSV);
1367
1368      if (ICI.isSigned()) {
1369        if (CR.getLower().isSignBit()) {
1370          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1371                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1372        } else if (CR.getUpper().isSignBit()) {
1373          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1374                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1375        }
1376      } else {
1377        if (CR.getLower().isMinValue()) {
1378          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1379                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1380        } else if (CR.getUpper().isMinValue()) {
1381          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1382                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1383        }
1384      }
1385    }
1386    break;
1387  }
1388
1389  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1390  if (ICI.isEquality()) {
1391    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1392
1393    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1394    // the second operand is a constant, simplify a bit.
1395    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1396      switch (BO->getOpcode()) {
1397      case Instruction::SRem:
1398        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1399        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1400          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1401          if (V.sgt(1) && V.isPowerOf2()) {
1402            Value *NewRem =
1403              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1404                                  BO->getName());
1405            return new ICmpInst(ICI.getPredicate(), NewRem,
1406                                Constant::getNullValue(BO->getType()));
1407          }
1408        }
1409        break;
1410      case Instruction::Add:
1411        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1412        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1413          if (BO->hasOneUse())
1414            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1415                                ConstantExpr::getSub(RHS, BOp1C));
1416        } else if (RHSV == 0) {
1417          // Replace ((add A, B) != 0) with (A != -B) if A or B is
1418          // efficiently invertible, or if the add has just this one use.
1419          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1420
1421          if (Value *NegVal = dyn_castNegVal(BOp1))
1422            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1423          if (Value *NegVal = dyn_castNegVal(BOp0))
1424            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1425          if (BO->hasOneUse()) {
1426            Value *Neg = Builder->CreateNeg(BOp1);
1427            Neg->takeName(BO);
1428            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1429          }
1430        }
1431        break;
1432      case Instruction::Xor:
1433        // For the xor case, we can xor two constants together, eliminating
1434        // the explicit xor.
1435        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1436          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1437                              ConstantExpr::getXor(RHS, BOC));
1438        } else if (RHSV == 0) {
1439          // Replace ((xor A, B) != 0) with (A != B)
1440          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1441                              BO->getOperand(1));
1442        }
1443        break;
1444      case Instruction::Sub:
1445        // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1446        if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1447          if (BO->hasOneUse())
1448            return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1449                                ConstantExpr::getSub(BOp0C, RHS));
1450        } else if (RHSV == 0) {
1451          // Replace ((sub A, B) != 0) with (A != B)
1452          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1453                              BO->getOperand(1));
1454        }
1455        break;
1456      case Instruction::Or:
1457        // If bits are being or'd in that are not present in the constant we
1458        // are comparing against, then the comparison could never succeed!
1459        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1460          Constant *NotCI = ConstantExpr::getNot(RHS);
1461          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1462            return ReplaceInstUsesWith(ICI,
1463                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1464                                       isICMP_NE));
1465        }
1466        break;
1467
1468      case Instruction::And:
1469        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1470          // If bits are being compared against that are and'd out, then the
1471          // comparison can never succeed!
1472          if ((RHSV & ~BOC->getValue()) != 0)
1473            return ReplaceInstUsesWith(ICI,
1474                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1475                                       isICMP_NE));
1476
1477          // If we have ((X & C) == C), turn it into ((X & C) != 0).
1478          if (RHS == BOC && RHSV.isPowerOf2())
1479            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1480                                ICmpInst::ICMP_NE, LHSI,
1481                                Constant::getNullValue(RHS->getType()));
1482
1483          // Don't perform the following transforms if the AND has multiple uses
1484          if (!BO->hasOneUse())
1485            break;
1486
1487          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1488          if (BOC->getValue().isSignBit()) {
1489            Value *X = BO->getOperand(0);
1490            Constant *Zero = Constant::getNullValue(X->getType());
1491            ICmpInst::Predicate pred = isICMP_NE ?
1492              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1493            return new ICmpInst(pred, X, Zero);
1494          }
1495
1496          // ((X & ~7) == 0) --> X < 8
1497          if (RHSV == 0 && isHighOnes(BOC)) {
1498            Value *X = BO->getOperand(0);
1499            Constant *NegX = ConstantExpr::getNeg(BOC);
1500            ICmpInst::Predicate pred = isICMP_NE ?
1501              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1502            return new ICmpInst(pred, X, NegX);
1503          }
1504        }
1505      default: break;
1506      }
1507    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1508      // Handle icmp {eq|ne} <intrinsic>, intcst.
1509      switch (II->getIntrinsicID()) {
1510      case Intrinsic::bswap:
1511        Worklist.Add(II);
1512        ICI.setOperand(0, II->getArgOperand(0));
1513        ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
1514        return &ICI;
1515      case Intrinsic::ctlz:
1516      case Intrinsic::cttz:
1517        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1518        if (RHSV == RHS->getType()->getBitWidth()) {
1519          Worklist.Add(II);
1520          ICI.setOperand(0, II->getArgOperand(0));
1521          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1522          return &ICI;
1523        }
1524        break;
1525      case Intrinsic::ctpop:
1526        // popcount(A) == 0  ->  A == 0 and likewise for !=
1527        if (RHS->isZero()) {
1528          Worklist.Add(II);
1529          ICI.setOperand(0, II->getArgOperand(0));
1530          ICI.setOperand(1, RHS);
1531          return &ICI;
1532        }
1533        break;
1534      default:
1535        break;
1536      }
1537    }
1538  }
1539  return 0;
1540}
1541
1542/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1543/// We only handle extending casts so far.
1544///
1545Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1546  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1547  Value *LHSCIOp        = LHSCI->getOperand(0);
1548  Type *SrcTy     = LHSCIOp->getType();
1549  Type *DestTy    = LHSCI->getType();
1550  Value *RHSCIOp;
1551
1552  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1553  // integer type is the same size as the pointer type.
1554  if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1555      TD->getPointerSizeInBits() ==
1556         cast<IntegerType>(DestTy)->getBitWidth()) {
1557    Value *RHSOp = 0;
1558    if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1559      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1560    } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1561      RHSOp = RHSC->getOperand(0);
1562      // If the pointer types don't match, insert a bitcast.
1563      if (LHSCIOp->getType() != RHSOp->getType())
1564        RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1565    }
1566
1567    if (RHSOp)
1568      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1569  }
1570
1571  // The code below only handles extension cast instructions, so far.
1572  // Enforce this.
1573  if (LHSCI->getOpcode() != Instruction::ZExt &&
1574      LHSCI->getOpcode() != Instruction::SExt)
1575    return 0;
1576
1577  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1578  bool isSignedCmp = ICI.isSigned();
1579
1580  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1581    // Not an extension from the same type?
1582    RHSCIOp = CI->getOperand(0);
1583    if (RHSCIOp->getType() != LHSCIOp->getType())
1584      return 0;
1585
1586    // If the signedness of the two casts doesn't agree (i.e. one is a sext
1587    // and the other is a zext), then we can't handle this.
1588    if (CI->getOpcode() != LHSCI->getOpcode())
1589      return 0;
1590
1591    // Deal with equality cases early.
1592    if (ICI.isEquality())
1593      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1594
1595    // A signed comparison of sign extended values simplifies into a
1596    // signed comparison.
1597    if (isSignedCmp && isSignedExt)
1598      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1599
1600    // The other three cases all fold into an unsigned comparison.
1601    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1602  }
1603
1604  // If we aren't dealing with a constant on the RHS, exit early
1605  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1606  if (!CI)
1607    return 0;
1608
1609  // Compute the constant that would happen if we truncated to SrcTy then
1610  // reextended to DestTy.
1611  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1612  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1613                                                Res1, DestTy);
1614
1615  // If the re-extended constant didn't change...
1616  if (Res2 == CI) {
1617    // Deal with equality cases early.
1618    if (ICI.isEquality())
1619      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1620
1621    // A signed comparison of sign extended values simplifies into a
1622    // signed comparison.
1623    if (isSignedExt && isSignedCmp)
1624      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1625
1626    // The other three cases all fold into an unsigned comparison.
1627    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1628  }
1629
1630  // The re-extended constant changed so the constant cannot be represented
1631  // in the shorter type. Consequently, we cannot emit a simple comparison.
1632  // All the cases that fold to true or false will have already been handled
1633  // by SimplifyICmpInst, so only deal with the tricky case.
1634
1635  if (isSignedCmp || !isSignedExt)
1636    return 0;
1637
1638  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1639  // should have been folded away previously and not enter in here.
1640
1641  // We're performing an unsigned comp with a sign extended value.
1642  // This is true if the input is >= 0. [aka >s -1]
1643  Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1644  Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1645
1646  // Finally, return the value computed.
1647  if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
1648    return ReplaceInstUsesWith(ICI, Result);
1649
1650  assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
1651  return BinaryOperator::CreateNot(Result);
1652}
1653
1654/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1655///   I = icmp ugt (add (add A, B), CI2), CI1
1656/// If this is of the form:
1657///   sum = a + b
1658///   if (sum+128 >u 255)
1659/// Then replace it with llvm.sadd.with.overflow.i8.
1660///
1661static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1662                                          ConstantInt *CI2, ConstantInt *CI1,
1663                                          InstCombiner &IC) {
1664  // The transformation we're trying to do here is to transform this into an
1665  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1666  // with a narrower add, and discard the add-with-constant that is part of the
1667  // range check (if we can't eliminate it, this isn't profitable).
1668
1669  // In order to eliminate the add-with-constant, the compare can be its only
1670  // use.
1671  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1672  if (!AddWithCst->hasOneUse()) return 0;
1673
1674  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1675  if (!CI2->getValue().isPowerOf2()) return 0;
1676  unsigned NewWidth = CI2->getValue().countTrailingZeros();
1677  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
1678
1679  // The width of the new add formed is 1 more than the bias.
1680  ++NewWidth;
1681
1682  // Check to see that CI1 is an all-ones value with NewWidth bits.
1683  if (CI1->getBitWidth() == NewWidth ||
1684      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1685    return 0;
1686
1687  // This is only really a signed overflow check if the inputs have been
1688  // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1689  // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1690  unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1691  if (IC.ComputeNumSignBits(A) < NeededSignBits ||
1692      IC.ComputeNumSignBits(B) < NeededSignBits)
1693    return 0;
1694
1695  // In order to replace the original add with a narrower
1696  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1697  // and truncates that discard the high bits of the add.  Verify that this is
1698  // the case.
1699  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1700  for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1701       UI != E; ++UI) {
1702    if (*UI == AddWithCst) continue;
1703
1704    // Only accept truncates for now.  We would really like a nice recursive
1705    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1706    // chain to see which bits of a value are actually demanded.  If the
1707    // original add had another add which was then immediately truncated, we
1708    // could still do the transformation.
1709    TruncInst *TI = dyn_cast<TruncInst>(*UI);
1710    if (TI == 0 ||
1711        TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1712  }
1713
1714  // If the pattern matches, truncate the inputs to the narrower type and
1715  // use the sadd_with_overflow intrinsic to efficiently compute both the
1716  // result and the overflow bit.
1717  Module *M = I.getParent()->getParent()->getParent();
1718
1719  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1720  Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
1721                                       NewType);
1722
1723  InstCombiner::BuilderTy *Builder = IC.Builder;
1724
1725  // Put the new code above the original add, in case there are any uses of the
1726  // add between the add and the compare.
1727  Builder->SetInsertPoint(OrigAdd);
1728
1729  Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1730  Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1731  CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1732  Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1733  Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1734
1735  // The inner add was the result of the narrow add, zero extended to the
1736  // wider type.  Replace it with the result computed by the intrinsic.
1737  IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
1738
1739  // The original icmp gets replaced with the overflow value.
1740  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1741}
1742
1743static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1744                                     InstCombiner &IC) {
1745  // Don't bother doing this transformation for pointers, don't do it for
1746  // vectors.
1747  if (!isa<IntegerType>(OrigAddV->getType())) return 0;
1748
1749  // If the add is a constant expr, then we don't bother transforming it.
1750  Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1751  if (OrigAdd == 0) return 0;
1752
1753  Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
1754
1755  // Put the new code above the original add, in case there are any uses of the
1756  // add between the add and the compare.
1757  InstCombiner::BuilderTy *Builder = IC.Builder;
1758  Builder->SetInsertPoint(OrigAdd);
1759
1760  Module *M = I.getParent()->getParent()->getParent();
1761  Type *Ty = LHS->getType();
1762  Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1763  CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
1764  Value *Add = Builder->CreateExtractValue(Call, 0);
1765
1766  IC.ReplaceInstUsesWith(*OrigAdd, Add);
1767
1768  // The original icmp gets replaced with the overflow value.
1769  return ExtractValueInst::Create(Call, 1, "uadd.overflow");
1770}
1771
1772// DemandedBitsLHSMask - When performing a comparison against a constant,
1773// it is possible that not all the bits in the LHS are demanded.  This helper
1774// method computes the mask that IS demanded.
1775static APInt DemandedBitsLHSMask(ICmpInst &I,
1776                                 unsigned BitWidth, bool isSignCheck) {
1777  if (isSignCheck)
1778    return APInt::getSignBit(BitWidth);
1779
1780  ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
1781  if (!CI) return APInt::getAllOnesValue(BitWidth);
1782  const APInt &RHS = CI->getValue();
1783
1784  switch (I.getPredicate()) {
1785  // For a UGT comparison, we don't care about any bits that
1786  // correspond to the trailing ones of the comparand.  The value of these
1787  // bits doesn't impact the outcome of the comparison, because any value
1788  // greater than the RHS must differ in a bit higher than these due to carry.
1789  case ICmpInst::ICMP_UGT: {
1790    unsigned trailingOnes = RHS.countTrailingOnes();
1791    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
1792    return ~lowBitsSet;
1793  }
1794
1795  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
1796  // Any value less than the RHS must differ in a higher bit because of carries.
1797  case ICmpInst::ICMP_ULT: {
1798    unsigned trailingZeros = RHS.countTrailingZeros();
1799    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
1800    return ~lowBitsSet;
1801  }
1802
1803  default:
1804    return APInt::getAllOnesValue(BitWidth);
1805  }
1806
1807}
1808
1809Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
1810  bool Changed = false;
1811  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1812
1813  /// Orders the operands of the compare so that they are listed from most
1814  /// complex to least complex.  This puts constants before unary operators,
1815  /// before binary operators.
1816  if (getComplexity(Op0) < getComplexity(Op1)) {
1817    I.swapOperands();
1818    std::swap(Op0, Op1);
1819    Changed = true;
1820  }
1821
1822  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
1823    return ReplaceInstUsesWith(I, V);
1824
1825  // comparing -val or val with non-zero is the same as just comparing val
1826  // ie, abs(val) != 0 -> val != 0
1827  if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
1828  {
1829    Value *Cond, *SelectTrue, *SelectFalse;
1830    if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
1831                            m_Value(SelectFalse)))) {
1832      if (Value *V = dyn_castNegVal(SelectTrue)) {
1833        if (V == SelectFalse)
1834          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
1835      }
1836      else if (Value *V = dyn_castNegVal(SelectFalse)) {
1837        if (V == SelectTrue)
1838          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
1839      }
1840    }
1841  }
1842
1843  Type *Ty = Op0->getType();
1844
1845  // icmp's with boolean values can always be turned into bitwise operations
1846  if (Ty->isIntegerTy(1)) {
1847    switch (I.getPredicate()) {
1848    default: llvm_unreachable("Invalid icmp instruction!");
1849    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
1850      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
1851      return BinaryOperator::CreateNot(Xor);
1852    }
1853    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
1854      return BinaryOperator::CreateXor(Op0, Op1);
1855
1856    case ICmpInst::ICMP_UGT:
1857      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
1858      // FALL THROUGH
1859    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
1860      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1861      return BinaryOperator::CreateAnd(Not, Op1);
1862    }
1863    case ICmpInst::ICMP_SGT:
1864      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
1865      // FALL THROUGH
1866    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
1867      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1868      return BinaryOperator::CreateAnd(Not, Op0);
1869    }
1870    case ICmpInst::ICMP_UGE:
1871      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
1872      // FALL THROUGH
1873    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
1874      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1875      return BinaryOperator::CreateOr(Not, Op1);
1876    }
1877    case ICmpInst::ICMP_SGE:
1878      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
1879      // FALL THROUGH
1880    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
1881      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1882      return BinaryOperator::CreateOr(Not, Op0);
1883    }
1884    }
1885  }
1886
1887  unsigned BitWidth = 0;
1888  if (Ty->isIntOrIntVectorTy())
1889    BitWidth = Ty->getScalarSizeInBits();
1890  else if (TD)  // Pointers require TD info to get their size.
1891    BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
1892
1893  bool isSignBit = false;
1894
1895  // See if we are doing a comparison with a constant.
1896  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1897    Value *A = 0, *B = 0;
1898
1899    // Match the following pattern, which is a common idiom when writing
1900    // overflow-safe integer arithmetic function.  The source performs an
1901    // addition in wider type, and explicitly checks for overflow using
1902    // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
1903    // sadd_with_overflow intrinsic.
1904    //
1905    // TODO: This could probably be generalized to handle other overflow-safe
1906    // operations if we worked out the formulas to compute the appropriate
1907    // magic constants.
1908    //
1909    // sum = a + b
1910    // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1911    {
1912    ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
1913    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
1914        match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1915      if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
1916        return Res;
1917    }
1918
1919    // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
1920    if (I.isEquality() && CI->isZero() &&
1921        match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
1922      // (icmp cond A B) if cond is equality
1923      return new ICmpInst(I.getPredicate(), A, B);
1924    }
1925
1926    // If we have an icmp le or icmp ge instruction, turn it into the
1927    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
1928    // them being folded in the code below.  The SimplifyICmpInst code has
1929    // already handled the edge cases for us, so we just assert on them.
1930    switch (I.getPredicate()) {
1931    default: break;
1932    case ICmpInst::ICMP_ULE:
1933      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
1934      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
1935                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1936    case ICmpInst::ICMP_SLE:
1937      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
1938      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1939                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1940    case ICmpInst::ICMP_UGE:
1941      assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
1942      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
1943                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1944    case ICmpInst::ICMP_SGE:
1945      assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
1946      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1947                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1948    }
1949
1950    // If this comparison is a normal comparison, it demands all
1951    // bits, if it is a sign bit comparison, it only demands the sign bit.
1952    bool UnusedBit;
1953    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
1954  }
1955
1956  // See if we can fold the comparison based on range information we can get
1957  // by checking whether bits are known to be zero or one in the input.
1958  if (BitWidth != 0) {
1959    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
1960    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
1961
1962    if (SimplifyDemandedBits(I.getOperandUse(0),
1963                             DemandedBitsLHSMask(I, BitWidth, isSignBit),
1964                             Op0KnownZero, Op0KnownOne, 0))
1965      return &I;
1966    if (SimplifyDemandedBits(I.getOperandUse(1),
1967                             APInt::getAllOnesValue(BitWidth),
1968                             Op1KnownZero, Op1KnownOne, 0))
1969      return &I;
1970
1971    // Given the known and unknown bits, compute a range that the LHS could be
1972    // in.  Compute the Min, Max and RHS values based on the known bits. For the
1973    // EQ and NE we use unsigned values.
1974    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
1975    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
1976    if (I.isSigned()) {
1977      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1978                                             Op0Min, Op0Max);
1979      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1980                                             Op1Min, Op1Max);
1981    } else {
1982      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1983                                               Op0Min, Op0Max);
1984      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1985                                               Op1Min, Op1Max);
1986    }
1987
1988    // If Min and Max are known to be the same, then SimplifyDemandedBits
1989    // figured out that the LHS is a constant.  Just constant fold this now so
1990    // that code below can assume that Min != Max.
1991    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
1992      return new ICmpInst(I.getPredicate(),
1993                          ConstantInt::get(Op0->getType(), Op0Min), Op1);
1994    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
1995      return new ICmpInst(I.getPredicate(), Op0,
1996                          ConstantInt::get(Op1->getType(), Op1Min));
1997
1998    // Based on the range information we know about the LHS, see if we can
1999    // simplify this comparison.  For example, (x&4) < 8 is always true.
2000    switch (I.getPredicate()) {
2001    default: llvm_unreachable("Unknown icmp opcode!");
2002    case ICmpInst::ICMP_EQ: {
2003      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2004        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2005
2006      // If all bits are known zero except for one, then we know at most one
2007      // bit is set.   If the comparison is against zero, then this is a check
2008      // to see if *that* bit is set.
2009      APInt Op0KnownZeroInverted = ~Op0KnownZero;
2010      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2011        // If the LHS is an AND with the same constant, look through it.
2012        Value *LHS = 0;
2013        ConstantInt *LHSC = 0;
2014        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2015            LHSC->getValue() != Op0KnownZeroInverted)
2016          LHS = Op0;
2017
2018        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2019        // then turn "((1 << x)&8) == 0" into "x != 3".
2020        Value *X = 0;
2021        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2022          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
2023          return new ICmpInst(ICmpInst::ICMP_NE, X,
2024                              ConstantInt::get(X->getType(), CmpVal));
2025        }
2026
2027        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2028        // then turn "((8 >>u x)&1) == 0" into "x != 3".
2029        const APInt *CI;
2030        if (Op0KnownZeroInverted == 1 &&
2031            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2032          return new ICmpInst(ICmpInst::ICMP_NE, X,
2033                              ConstantInt::get(X->getType(),
2034                                               CI->countTrailingZeros()));
2035      }
2036
2037      break;
2038    }
2039    case ICmpInst::ICMP_NE: {
2040      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2041        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2042
2043      // If all bits are known zero except for one, then we know at most one
2044      // bit is set.   If the comparison is against zero, then this is a check
2045      // to see if *that* bit is set.
2046      APInt Op0KnownZeroInverted = ~Op0KnownZero;
2047      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2048        // If the LHS is an AND with the same constant, look through it.
2049        Value *LHS = 0;
2050        ConstantInt *LHSC = 0;
2051        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2052            LHSC->getValue() != Op0KnownZeroInverted)
2053          LHS = Op0;
2054
2055        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2056        // then turn "((1 << x)&8) != 0" into "x == 3".
2057        Value *X = 0;
2058        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2059          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
2060          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2061                              ConstantInt::get(X->getType(), CmpVal));
2062        }
2063
2064        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2065        // then turn "((8 >>u x)&1) != 0" into "x == 3".
2066        const APInt *CI;
2067        if (Op0KnownZeroInverted == 1 &&
2068            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2069          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2070                              ConstantInt::get(X->getType(),
2071                                               CI->countTrailingZeros()));
2072      }
2073
2074      break;
2075    }
2076    case ICmpInst::ICMP_ULT:
2077      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
2078        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2079      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
2080        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2081      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
2082        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2083      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2084        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
2085          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2086                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
2087
2088        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
2089        if (CI->isMinValue(true))
2090          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2091                           Constant::getAllOnesValue(Op0->getType()));
2092      }
2093      break;
2094    case ICmpInst::ICMP_UGT:
2095      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
2096        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2097      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
2098        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2099
2100      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
2101        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2102      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2103        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
2104          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2105                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
2106
2107        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
2108        if (CI->isMaxValue(true))
2109          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2110                              Constant::getNullValue(Op0->getType()));
2111      }
2112      break;
2113    case ICmpInst::ICMP_SLT:
2114      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
2115        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2116      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
2117        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2118      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
2119        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2120      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2121        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
2122          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2123                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
2124      }
2125      break;
2126    case ICmpInst::ICMP_SGT:
2127      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
2128        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2129      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
2130        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2131
2132      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
2133        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2134      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2135        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
2136          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2137                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
2138      }
2139      break;
2140    case ICmpInst::ICMP_SGE:
2141      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2142      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
2143        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2144      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
2145        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2146      break;
2147    case ICmpInst::ICMP_SLE:
2148      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2149      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
2150        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2151      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
2152        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2153      break;
2154    case ICmpInst::ICMP_UGE:
2155      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2156      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
2157        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2158      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
2159        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2160      break;
2161    case ICmpInst::ICMP_ULE:
2162      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2163      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
2164        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2165      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
2166        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2167      break;
2168    }
2169
2170    // Turn a signed comparison into an unsigned one if both operands
2171    // are known to have the same sign.
2172    if (I.isSigned() &&
2173        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2174         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2175      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2176  }
2177
2178  // Test if the ICmpInst instruction is used exclusively by a select as
2179  // part of a minimum or maximum operation. If so, refrain from doing
2180  // any other folding. This helps out other analyses which understand
2181  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2182  // and CodeGen. And in this case, at least one of the comparison
2183  // operands has at least one user besides the compare (the select),
2184  // which would often largely negate the benefit of folding anyway.
2185  if (I.hasOneUse())
2186    if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2187      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2188          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2189        return 0;
2190
2191  // See if we are doing a comparison between a constant and an instruction that
2192  // can be folded into the comparison.
2193  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2194    // Since the RHS is a ConstantInt (CI), if the left hand side is an
2195    // instruction, see if that instruction also has constants so that the
2196    // instruction can be folded into the icmp
2197    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2198      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2199        return Res;
2200  }
2201
2202  // Handle icmp with constant (but not simple integer constant) RHS
2203  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2204    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2205      switch (LHSI->getOpcode()) {
2206      case Instruction::GetElementPtr:
2207          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2208        if (RHSC->isNullValue() &&
2209            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2210          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2211                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
2212        break;
2213      case Instruction::PHI:
2214        // Only fold icmp into the PHI if the phi and icmp are in the same
2215        // block.  If in the same block, we're encouraging jump threading.  If
2216        // not, we are just pessimizing the code by making an i1 phi.
2217        if (LHSI->getParent() == I.getParent())
2218          if (Instruction *NV = FoldOpIntoPhi(I))
2219            return NV;
2220        break;
2221      case Instruction::Select: {
2222        // If either operand of the select is a constant, we can fold the
2223        // comparison into the select arms, which will cause one to be
2224        // constant folded and the select turned into a bitwise or.
2225        Value *Op1 = 0, *Op2 = 0;
2226        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2227          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2228        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2229          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2230
2231        // We only want to perform this transformation if it will not lead to
2232        // additional code. This is true if either both sides of the select
2233        // fold to a constant (in which case the icmp is replaced with a select
2234        // which will usually simplify) or this is the only user of the
2235        // select (in which case we are trading a select+icmp for a simpler
2236        // select+icmp).
2237        if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2238          if (!Op1)
2239            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2240                                      RHSC, I.getName());
2241          if (!Op2)
2242            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2243                                      RHSC, I.getName());
2244          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2245        }
2246        break;
2247      }
2248      case Instruction::IntToPtr:
2249        // icmp pred inttoptr(X), null -> icmp pred X, 0
2250        if (RHSC->isNullValue() && TD &&
2251            TD->getIntPtrType(RHSC->getContext()) ==
2252               LHSI->getOperand(0)->getType())
2253          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2254                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
2255        break;
2256
2257      case Instruction::Load:
2258        // Try to optimize things like "A[i] > 4" to index computations.
2259        if (GetElementPtrInst *GEP =
2260              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2261          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2262            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2263                !cast<LoadInst>(LHSI)->isVolatile())
2264              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2265                return Res;
2266        }
2267        break;
2268      }
2269  }
2270
2271  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2272  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2273    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2274      return NI;
2275  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2276    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2277                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2278      return NI;
2279
2280  // Test to see if the operands of the icmp are casted versions of other
2281  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
2282  // now.
2283  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
2284    if (Op0->getType()->isPointerTy() &&
2285        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2286      // We keep moving the cast from the left operand over to the right
2287      // operand, where it can often be eliminated completely.
2288      Op0 = CI->getOperand(0);
2289
2290      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2291      // so eliminate it as well.
2292      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2293        Op1 = CI2->getOperand(0);
2294
2295      // If Op1 is a constant, we can fold the cast into the constant.
2296      if (Op0->getType() != Op1->getType()) {
2297        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2298          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2299        } else {
2300          // Otherwise, cast the RHS right before the icmp
2301          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2302        }
2303      }
2304      return new ICmpInst(I.getPredicate(), Op0, Op1);
2305    }
2306  }
2307
2308  if (isa<CastInst>(Op0)) {
2309    // Handle the special case of: icmp (cast bool to X), <cst>
2310    // This comes up when you have code like
2311    //   int X = A < B;
2312    //   if (X) ...
2313    // For generality, we handle any zero-extension of any operand comparison
2314    // with a constant or another cast from the same type.
2315    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2316      if (Instruction *R = visitICmpInstWithCastAndCast(I))
2317        return R;
2318  }
2319
2320  // Special logic for binary operators.
2321  BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2322  BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2323  if (BO0 || BO1) {
2324    CmpInst::Predicate Pred = I.getPredicate();
2325    bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2326    if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2327      NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
2328        (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2329        (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2330    if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2331      NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
2332        (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2333        (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2334
2335    // Analyze the case when either Op0 or Op1 is an add instruction.
2336    // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2337    Value *A = 0, *B = 0, *C = 0, *D = 0;
2338    if (BO0 && BO0->getOpcode() == Instruction::Add)
2339      A = BO0->getOperand(0), B = BO0->getOperand(1);
2340    if (BO1 && BO1->getOpcode() == Instruction::Add)
2341      C = BO1->getOperand(0), D = BO1->getOperand(1);
2342
2343    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2344    if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2345      return new ICmpInst(Pred, A == Op1 ? B : A,
2346                          Constant::getNullValue(Op1->getType()));
2347
2348    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2349    if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2350      return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2351                          C == Op0 ? D : C);
2352
2353    // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2354    if (A && C && (A == C || A == D || B == C || B == D) &&
2355        NoOp0WrapProblem && NoOp1WrapProblem &&
2356        // Try not to increase register pressure.
2357        BO0->hasOneUse() && BO1->hasOneUse()) {
2358      // Determine Y and Z in the form icmp (X+Y), (X+Z).
2359      Value *Y = (A == C || A == D) ? B : A;
2360      Value *Z = (C == A || C == B) ? D : C;
2361      return new ICmpInst(Pred, Y, Z);
2362    }
2363
2364    // Analyze the case when either Op0 or Op1 is a sub instruction.
2365    // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2366    A = 0; B = 0; C = 0; D = 0;
2367    if (BO0 && BO0->getOpcode() == Instruction::Sub)
2368      A = BO0->getOperand(0), B = BO0->getOperand(1);
2369    if (BO1 && BO1->getOpcode() == Instruction::Sub)
2370      C = BO1->getOperand(0), D = BO1->getOperand(1);
2371
2372    // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2373    if (A == Op1 && NoOp0WrapProblem)
2374      return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2375
2376    // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2377    if (C == Op0 && NoOp1WrapProblem)
2378      return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2379
2380    // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
2381    if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2382        // Try not to increase register pressure.
2383        BO0->hasOneUse() && BO1->hasOneUse())
2384      return new ICmpInst(Pred, A, C);
2385
2386    // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2387    if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2388        // Try not to increase register pressure.
2389        BO0->hasOneUse() && BO1->hasOneUse())
2390      return new ICmpInst(Pred, D, B);
2391
2392    BinaryOperator *SRem = NULL;
2393    // icmp (srem X, Y), Y
2394    if (BO0 && BO0->getOpcode() == Instruction::SRem &&
2395        Op1 == BO0->getOperand(1))
2396      SRem = BO0;
2397    // icmp Y, (srem X, Y)
2398    else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2399             Op0 == BO1->getOperand(1))
2400      SRem = BO1;
2401    if (SRem) {
2402      // We don't check hasOneUse to avoid increasing register pressure because
2403      // the value we use is the same value this instruction was already using.
2404      switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2405        default: break;
2406        case ICmpInst::ICMP_EQ:
2407          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2408        case ICmpInst::ICMP_NE:
2409          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2410        case ICmpInst::ICMP_SGT:
2411        case ICmpInst::ICMP_SGE:
2412          return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
2413                              Constant::getAllOnesValue(SRem->getType()));
2414        case ICmpInst::ICMP_SLT:
2415        case ICmpInst::ICMP_SLE:
2416          return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
2417                              Constant::getNullValue(SRem->getType()));
2418      }
2419    }
2420
2421    if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
2422        BO0->hasOneUse() && BO1->hasOneUse() &&
2423        BO0->getOperand(1) == BO1->getOperand(1)) {
2424      switch (BO0->getOpcode()) {
2425      default: break;
2426      case Instruction::Add:
2427      case Instruction::Sub:
2428      case Instruction::Xor:
2429        if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
2430          return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2431                              BO1->getOperand(0));
2432        // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2433        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2434          if (CI->getValue().isSignBit()) {
2435            ICmpInst::Predicate Pred = I.isSigned()
2436                                           ? I.getUnsignedPredicate()
2437                                           : I.getSignedPredicate();
2438            return new ICmpInst(Pred, BO0->getOperand(0),
2439                                BO1->getOperand(0));
2440          }
2441
2442          if (CI->isMaxValue(true)) {
2443            ICmpInst::Predicate Pred = I.isSigned()
2444                                           ? I.getUnsignedPredicate()
2445                                           : I.getSignedPredicate();
2446            Pred = I.getSwappedPredicate(Pred);
2447            return new ICmpInst(Pred, BO0->getOperand(0),
2448                                BO1->getOperand(0));
2449          }
2450        }
2451        break;
2452      case Instruction::Mul:
2453        if (!I.isEquality())
2454          break;
2455
2456        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2457          // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2458          // Mask = -1 >> count-trailing-zeros(Cst).
2459          if (!CI->isZero() && !CI->isOne()) {
2460            const APInt &AP = CI->getValue();
2461            ConstantInt *Mask = ConstantInt::get(I.getContext(),
2462                                    APInt::getLowBitsSet(AP.getBitWidth(),
2463                                                         AP.getBitWidth() -
2464                                                    AP.countTrailingZeros()));
2465            Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
2466            Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
2467            return new ICmpInst(I.getPredicate(), And1, And2);
2468          }
2469        }
2470        break;
2471      case Instruction::UDiv:
2472      case Instruction::LShr:
2473        if (I.isSigned())
2474          break;
2475        // fall-through
2476      case Instruction::SDiv:
2477      case Instruction::AShr:
2478        if (!BO0->isExact() || !BO1->isExact())
2479          break;
2480        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2481                            BO1->getOperand(0));
2482      case Instruction::Shl: {
2483        bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
2484        bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
2485        if (!NUW && !NSW)
2486          break;
2487        if (!NSW && I.isSigned())
2488          break;
2489        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2490                            BO1->getOperand(0));
2491      }
2492      }
2493    }
2494  }
2495
2496  { Value *A, *B;
2497    // ~x < ~y --> y < x
2498    // ~x < cst --> ~cst < x
2499    if (match(Op0, m_Not(m_Value(A)))) {
2500      if (match(Op1, m_Not(m_Value(B))))
2501        return new ICmpInst(I.getPredicate(), B, A);
2502      if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2503        return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2504    }
2505
2506    // (a+b) <u a  --> llvm.uadd.with.overflow.
2507    // (a+b) <u b  --> llvm.uadd.with.overflow.
2508    if (I.getPredicate() == ICmpInst::ICMP_ULT &&
2509        match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2510        (Op1 == A || Op1 == B))
2511      if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2512        return R;
2513
2514    // a >u (a+b)  --> llvm.uadd.with.overflow.
2515    // b >u (a+b)  --> llvm.uadd.with.overflow.
2516    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2517        match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2518        (Op0 == A || Op0 == B))
2519      if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2520        return R;
2521  }
2522
2523  if (I.isEquality()) {
2524    Value *A, *B, *C, *D;
2525
2526    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2527      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
2528        Value *OtherVal = A == Op1 ? B : A;
2529        return new ICmpInst(I.getPredicate(), OtherVal,
2530                            Constant::getNullValue(A->getType()));
2531      }
2532
2533      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2534        // A^c1 == C^c2 --> A == C^(c1^c2)
2535        ConstantInt *C1, *C2;
2536        if (match(B, m_ConstantInt(C1)) &&
2537            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2538          Constant *NC = ConstantInt::get(I.getContext(),
2539                                          C1->getValue() ^ C2->getValue());
2540          Value *Xor = Builder->CreateXor(C, NC);
2541          return new ICmpInst(I.getPredicate(), A, Xor);
2542        }
2543
2544        // A^B == A^D -> B == D
2545        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2546        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2547        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2548        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2549      }
2550    }
2551
2552    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2553        (A == Op0 || B == Op0)) {
2554      // A == (A^B)  ->  B == 0
2555      Value *OtherVal = A == Op0 ? B : A;
2556      return new ICmpInst(I.getPredicate(), OtherVal,
2557                          Constant::getNullValue(A->getType()));
2558    }
2559
2560    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2561    if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
2562        match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
2563      Value *X = 0, *Y = 0, *Z = 0;
2564
2565      if (A == C) {
2566        X = B; Y = D; Z = A;
2567      } else if (A == D) {
2568        X = B; Y = C; Z = A;
2569      } else if (B == C) {
2570        X = A; Y = D; Z = B;
2571      } else if (B == D) {
2572        X = A; Y = C; Z = B;
2573      }
2574
2575      if (X) {   // Build (X^Y) & Z
2576        Op1 = Builder->CreateXor(X, Y);
2577        Op1 = Builder->CreateAnd(Op1, Z);
2578        I.setOperand(0, Op1);
2579        I.setOperand(1, Constant::getNullValue(Op1->getType()));
2580        return &I;
2581      }
2582    }
2583
2584    // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
2585    // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
2586    ConstantInt *Cst1;
2587    if ((Op0->hasOneUse() &&
2588         match(Op0, m_ZExt(m_Value(A))) &&
2589         match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
2590        (Op1->hasOneUse() &&
2591         match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
2592         match(Op1, m_ZExt(m_Value(A))))) {
2593      APInt Pow2 = Cst1->getValue() + 1;
2594      if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
2595          Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
2596        return new ICmpInst(I.getPredicate(), A,
2597                            Builder->CreateTrunc(B, A->getType()));
2598    }
2599
2600    // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
2601    // "icmp (and X, mask), cst"
2602    uint64_t ShAmt = 0;
2603    if (Op0->hasOneUse() &&
2604        match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
2605                                           m_ConstantInt(ShAmt))))) &&
2606        match(Op1, m_ConstantInt(Cst1)) &&
2607        // Only do this when A has multiple uses.  This is most important to do
2608        // when it exposes other optimizations.
2609        !A->hasOneUse()) {
2610      unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
2611
2612      if (ShAmt < ASize) {
2613        APInt MaskV =
2614          APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
2615        MaskV <<= ShAmt;
2616
2617        APInt CmpV = Cst1->getValue().zext(ASize);
2618        CmpV <<= ShAmt;
2619
2620        Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
2621        return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
2622      }
2623    }
2624  }
2625
2626  {
2627    Value *X; ConstantInt *Cst;
2628    // icmp X+Cst, X
2629    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2630      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2631
2632    // icmp X, X+Cst
2633    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2634      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2635  }
2636  return Changed ? &I : 0;
2637}
2638
2639
2640
2641
2642
2643
2644/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2645///
2646Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2647                                                Instruction *LHSI,
2648                                                Constant *RHSC) {
2649  if (!isa<ConstantFP>(RHSC)) return 0;
2650  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
2651
2652  // Get the width of the mantissa.  We don't want to hack on conversions that
2653  // might lose information from the integer, e.g. "i64 -> float"
2654  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2655  if (MantissaWidth == -1) return 0;  // Unknown.
2656
2657  // Check to see that the input is converted from an integer type that is small
2658  // enough that preserves all bits.  TODO: check here for "known" sign bits.
2659  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2660  unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
2661
2662  // If this is a uitofp instruction, we need an extra bit to hold the sign.
2663  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2664  if (LHSUnsigned)
2665    ++InputSize;
2666
2667  // If the conversion would lose info, don't hack on this.
2668  if ((int)InputSize > MantissaWidth)
2669    return 0;
2670
2671  // Otherwise, we can potentially simplify the comparison.  We know that it
2672  // will always come through as an integer value and we know the constant is
2673  // not a NAN (it would have been previously simplified).
2674  assert(!RHS.isNaN() && "NaN comparison not already folded!");
2675
2676  ICmpInst::Predicate Pred;
2677  switch (I.getPredicate()) {
2678  default: llvm_unreachable("Unexpected predicate!");
2679  case FCmpInst::FCMP_UEQ:
2680  case FCmpInst::FCMP_OEQ:
2681    Pred = ICmpInst::ICMP_EQ;
2682    break;
2683  case FCmpInst::FCMP_UGT:
2684  case FCmpInst::FCMP_OGT:
2685    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2686    break;
2687  case FCmpInst::FCMP_UGE:
2688  case FCmpInst::FCMP_OGE:
2689    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2690    break;
2691  case FCmpInst::FCMP_ULT:
2692  case FCmpInst::FCMP_OLT:
2693    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2694    break;
2695  case FCmpInst::FCMP_ULE:
2696  case FCmpInst::FCMP_OLE:
2697    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2698    break;
2699  case FCmpInst::FCMP_UNE:
2700  case FCmpInst::FCMP_ONE:
2701    Pred = ICmpInst::ICMP_NE;
2702    break;
2703  case FCmpInst::FCMP_ORD:
2704    return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2705  case FCmpInst::FCMP_UNO:
2706    return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2707  }
2708
2709  IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
2710
2711  // Now we know that the APFloat is a normal number, zero or inf.
2712
2713  // See if the FP constant is too large for the integer.  For example,
2714  // comparing an i8 to 300.0.
2715  unsigned IntWidth = IntTy->getScalarSizeInBits();
2716
2717  if (!LHSUnsigned) {
2718    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
2719    // and large values.
2720    APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
2721    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
2722                          APFloat::rmNearestTiesToEven);
2723    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
2724      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
2725          Pred == ICmpInst::ICMP_SLE)
2726        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2727      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2728    }
2729  } else {
2730    // If the RHS value is > UnsignedMax, fold the comparison. This handles
2731    // +INF and large values.
2732    APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
2733    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
2734                          APFloat::rmNearestTiesToEven);
2735    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
2736      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
2737          Pred == ICmpInst::ICMP_ULE)
2738        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2739      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2740    }
2741  }
2742
2743  if (!LHSUnsigned) {
2744    // See if the RHS value is < SignedMin.
2745    APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2746    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
2747                          APFloat::rmNearestTiesToEven);
2748    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
2749      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
2750          Pred == ICmpInst::ICMP_SGE)
2751        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2752      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2753    }
2754  } else {
2755    // See if the RHS value is < UnsignedMin.
2756    APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2757    SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
2758                          APFloat::rmNearestTiesToEven);
2759    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
2760      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
2761          Pred == ICmpInst::ICMP_UGE)
2762        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2763      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2764    }
2765  }
2766
2767  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2768  // [0, UMAX], but it may still be fractional.  See if it is fractional by
2769  // casting the FP value to the integer value and back, checking for equality.
2770  // Don't do this for zero, because -0.0 is not fractional.
2771  Constant *RHSInt = LHSUnsigned
2772    ? ConstantExpr::getFPToUI(RHSC, IntTy)
2773    : ConstantExpr::getFPToSI(RHSC, IntTy);
2774  if (!RHS.isZero()) {
2775    bool Equal = LHSUnsigned
2776      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
2777      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
2778    if (!Equal) {
2779      // If we had a comparison against a fractional value, we have to adjust
2780      // the compare predicate and sometimes the value.  RHSC is rounded towards
2781      // zero at this point.
2782      switch (Pred) {
2783      default: llvm_unreachable("Unexpected integer comparison!");
2784      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
2785        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2786      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
2787        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2788      case ICmpInst::ICMP_ULE:
2789        // (float)int <= 4.4   --> int <= 4
2790        // (float)int <= -4.4  --> false
2791        if (RHS.isNegative())
2792          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2793        break;
2794      case ICmpInst::ICMP_SLE:
2795        // (float)int <= 4.4   --> int <= 4
2796        // (float)int <= -4.4  --> int < -4
2797        if (RHS.isNegative())
2798          Pred = ICmpInst::ICMP_SLT;
2799        break;
2800      case ICmpInst::ICMP_ULT:
2801        // (float)int < -4.4   --> false
2802        // (float)int < 4.4    --> int <= 4
2803        if (RHS.isNegative())
2804          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2805        Pred = ICmpInst::ICMP_ULE;
2806        break;
2807      case ICmpInst::ICMP_SLT:
2808        // (float)int < -4.4   --> int < -4
2809        // (float)int < 4.4    --> int <= 4
2810        if (!RHS.isNegative())
2811          Pred = ICmpInst::ICMP_SLE;
2812        break;
2813      case ICmpInst::ICMP_UGT:
2814        // (float)int > 4.4    --> int > 4
2815        // (float)int > -4.4   --> true
2816        if (RHS.isNegative())
2817          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2818        break;
2819      case ICmpInst::ICMP_SGT:
2820        // (float)int > 4.4    --> int > 4
2821        // (float)int > -4.4   --> int >= -4
2822        if (RHS.isNegative())
2823          Pred = ICmpInst::ICMP_SGE;
2824        break;
2825      case ICmpInst::ICMP_UGE:
2826        // (float)int >= -4.4   --> true
2827        // (float)int >= 4.4    --> int > 4
2828        if (RHS.isNegative())
2829          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2830        Pred = ICmpInst::ICMP_UGT;
2831        break;
2832      case ICmpInst::ICMP_SGE:
2833        // (float)int >= -4.4   --> int >= -4
2834        // (float)int >= 4.4    --> int > 4
2835        if (!RHS.isNegative())
2836          Pred = ICmpInst::ICMP_SGT;
2837        break;
2838      }
2839    }
2840  }
2841
2842  // Lower this FP comparison into an appropriate integer version of the
2843  // comparison.
2844  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
2845}
2846
2847Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
2848  bool Changed = false;
2849
2850  /// Orders the operands of the compare so that they are listed from most
2851  /// complex to least complex.  This puts constants before unary operators,
2852  /// before binary operators.
2853  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
2854    I.swapOperands();
2855    Changed = true;
2856  }
2857
2858  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2859
2860  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
2861    return ReplaceInstUsesWith(I, V);
2862
2863  // Simplify 'fcmp pred X, X'
2864  if (Op0 == Op1) {
2865    switch (I.getPredicate()) {
2866    default: llvm_unreachable("Unknown predicate!");
2867    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
2868    case FCmpInst::FCMP_ULT:    // True if unordered or less than
2869    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
2870    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
2871      // Canonicalize these to be 'fcmp uno %X, 0.0'.
2872      I.setPredicate(FCmpInst::FCMP_UNO);
2873      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2874      return &I;
2875
2876    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
2877    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
2878    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
2879    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
2880      // Canonicalize these to be 'fcmp ord %X, 0.0'.
2881      I.setPredicate(FCmpInst::FCMP_ORD);
2882      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2883      return &I;
2884    }
2885  }
2886
2887  // Handle fcmp with constant RHS
2888  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2889    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2890      switch (LHSI->getOpcode()) {
2891      case Instruction::FPExt: {
2892        // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
2893        FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
2894        ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
2895        if (!RHSF)
2896          break;
2897
2898        // We can't convert a PPC double double.
2899        if (RHSF->getType()->isPPC_FP128Ty())
2900          break;
2901
2902        const fltSemantics *Sem;
2903        // FIXME: This shouldn't be here.
2904        if (LHSExt->getSrcTy()->isHalfTy())
2905          Sem = &APFloat::IEEEhalf;
2906        else if (LHSExt->getSrcTy()->isFloatTy())
2907          Sem = &APFloat::IEEEsingle;
2908        else if (LHSExt->getSrcTy()->isDoubleTy())
2909          Sem = &APFloat::IEEEdouble;
2910        else if (LHSExt->getSrcTy()->isFP128Ty())
2911          Sem = &APFloat::IEEEquad;
2912        else if (LHSExt->getSrcTy()->isX86_FP80Ty())
2913          Sem = &APFloat::x87DoubleExtended;
2914        else
2915          break;
2916
2917        bool Lossy;
2918        APFloat F = RHSF->getValueAPF();
2919        F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
2920
2921        // Avoid lossy conversions and denormals. Zero is a special case
2922        // that's OK to convert.
2923        APFloat Fabs = F;
2924        Fabs.clearSign();
2925        if (!Lossy &&
2926            ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
2927                 APFloat::cmpLessThan) || Fabs.isZero()))
2928
2929          return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
2930                              ConstantFP::get(RHSC->getContext(), F));
2931        break;
2932      }
2933      case Instruction::PHI:
2934        // Only fold fcmp into the PHI if the phi and fcmp are in the same
2935        // block.  If in the same block, we're encouraging jump threading.  If
2936        // not, we are just pessimizing the code by making an i1 phi.
2937        if (LHSI->getParent() == I.getParent())
2938          if (Instruction *NV = FoldOpIntoPhi(I))
2939            return NV;
2940        break;
2941      case Instruction::SIToFP:
2942      case Instruction::UIToFP:
2943        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
2944          return NV;
2945        break;
2946      case Instruction::Select: {
2947        // If either operand of the select is a constant, we can fold the
2948        // comparison into the select arms, which will cause one to be
2949        // constant folded and the select turned into a bitwise or.
2950        Value *Op1 = 0, *Op2 = 0;
2951        if (LHSI->hasOneUse()) {
2952          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2953            // Fold the known value into the constant operand.
2954            Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2955            // Insert a new FCmp of the other select operand.
2956            Op2 = Builder->CreateFCmp(I.getPredicate(),
2957                                      LHSI->getOperand(2), RHSC, I.getName());
2958          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2959            // Fold the known value into the constant operand.
2960            Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2961            // Insert a new FCmp of the other select operand.
2962            Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
2963                                      RHSC, I.getName());
2964          }
2965        }
2966
2967        if (Op1)
2968          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2969        break;
2970      }
2971      case Instruction::FSub: {
2972        // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
2973        Value *Op;
2974        if (match(LHSI, m_FNeg(m_Value(Op))))
2975          return new FCmpInst(I.getSwappedPredicate(), Op,
2976                              ConstantExpr::getFNeg(RHSC));
2977        break;
2978      }
2979      case Instruction::Load:
2980        if (GetElementPtrInst *GEP =
2981            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2982          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2983            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2984                !cast<LoadInst>(LHSI)->isVolatile())
2985              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2986                return Res;
2987        }
2988        break;
2989      case Instruction::Call: {
2990        CallInst *CI = cast<CallInst>(LHSI);
2991        LibFunc::Func Func;
2992        // Various optimization for fabs compared with zero.
2993        if (RHSC->isNullValue() && CI->getCalledFunction() &&
2994            TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
2995            TLI->has(Func)) {
2996          if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
2997              Func == LibFunc::fabsl) {
2998            switch (I.getPredicate()) {
2999            default: break;
3000            // fabs(x) < 0 --> false
3001            case FCmpInst::FCMP_OLT:
3002              return ReplaceInstUsesWith(I, Builder->getFalse());
3003            // fabs(x) > 0 --> x != 0
3004            case FCmpInst::FCMP_OGT:
3005              return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
3006                                  RHSC);
3007            // fabs(x) <= 0 --> x == 0
3008            case FCmpInst::FCMP_OLE:
3009              return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
3010                                  RHSC);
3011            // fabs(x) >= 0 --> !isnan(x)
3012            case FCmpInst::FCMP_OGE:
3013              return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
3014                                  RHSC);
3015            // fabs(x) == 0 --> x == 0
3016            // fabs(x) != 0 --> x != 0
3017            case FCmpInst::FCMP_OEQ:
3018            case FCmpInst::FCMP_UEQ:
3019            case FCmpInst::FCMP_ONE:
3020            case FCmpInst::FCMP_UNE:
3021              return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
3022                                  RHSC);
3023            }
3024          }
3025        }
3026      }
3027      }
3028  }
3029
3030  // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
3031  Value *X, *Y;
3032  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
3033    return new FCmpInst(I.getSwappedPredicate(), X, Y);
3034
3035  // fcmp (fpext x), (fpext y) -> fcmp x, y
3036  if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
3037    if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
3038      if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
3039        return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3040                            RHSExt->getOperand(0));
3041
3042  return Changed ? &I : 0;
3043}
3044