1//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of TargetFrameLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86FrameLowering.h"
15#include "X86InstrBuilder.h"
16#include "X86InstrInfo.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/Function.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineModuleInfo.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/MC/MCAsmInfo.h"
27#include "llvm/MC/MCSymbol.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/ADT/SmallSet.h"
32
33using namespace llvm;
34
35// FIXME: completely move here.
36extern cl::opt<bool> ForceStackAlign;
37
38bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
39  return !MF.getFrameInfo()->hasVarSizedObjects();
40}
41
42/// hasFP - Return true if the specified function should have a dedicated frame
43/// pointer register.  This is true if the function has variable sized allocas
44/// or if frame pointer elimination is disabled.
45bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
46  const MachineFrameInfo *MFI = MF.getFrameInfo();
47  const MachineModuleInfo &MMI = MF.getMMI();
48  const TargetRegisterInfo *RegInfo = TM.getRegisterInfo();
49
50  return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
51          RegInfo->needsStackRealignment(MF) ||
52          MFI->hasVarSizedObjects() ||
53          MFI->isFrameAddressTaken() ||
54          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
55          MMI.callsUnwindInit() || MMI.callsEHReturn());
56}
57
58static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) {
59  if (is64Bit) {
60    if (isInt<8>(Imm))
61      return X86::SUB64ri8;
62    return X86::SUB64ri32;
63  } else {
64    if (isInt<8>(Imm))
65      return X86::SUB32ri8;
66    return X86::SUB32ri;
67  }
68}
69
70static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) {
71  if (is64Bit) {
72    if (isInt<8>(Imm))
73      return X86::ADD64ri8;
74    return X86::ADD64ri32;
75  } else {
76    if (isInt<8>(Imm))
77      return X86::ADD32ri8;
78    return X86::ADD32ri;
79  }
80}
81
82static unsigned getLEArOpcode(unsigned is64Bit) {
83  return is64Bit ? X86::LEA64r : X86::LEA32r;
84}
85
86/// findDeadCallerSavedReg - Return a caller-saved register that isn't live
87/// when it reaches the "return" instruction. We can then pop a stack object
88/// to this register without worry about clobbering it.
89static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
90                                       MachineBasicBlock::iterator &MBBI,
91                                       const TargetRegisterInfo &TRI,
92                                       bool Is64Bit) {
93  const MachineFunction *MF = MBB.getParent();
94  const Function *F = MF->getFunction();
95  if (!F || MF->getMMI().callsEHReturn())
96    return 0;
97
98  static const uint16_t CallerSavedRegs32Bit[] = {
99    X86::EAX, X86::EDX, X86::ECX, 0
100  };
101
102  static const uint16_t CallerSavedRegs64Bit[] = {
103    X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI,
104    X86::R8,  X86::R9,  X86::R10, X86::R11, 0
105  };
106
107  unsigned Opc = MBBI->getOpcode();
108  switch (Opc) {
109  default: return 0;
110  case X86::RET:
111  case X86::RETI:
112  case X86::TCRETURNdi:
113  case X86::TCRETURNri:
114  case X86::TCRETURNmi:
115  case X86::TCRETURNdi64:
116  case X86::TCRETURNri64:
117  case X86::TCRETURNmi64:
118  case X86::EH_RETURN:
119  case X86::EH_RETURN64: {
120    SmallSet<uint16_t, 8> Uses;
121    for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
122      MachineOperand &MO = MBBI->getOperand(i);
123      if (!MO.isReg() || MO.isDef())
124        continue;
125      unsigned Reg = MO.getReg();
126      if (!Reg)
127        continue;
128      for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
129        Uses.insert(*AI);
130    }
131
132    const uint16_t *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit;
133    for (; *CS; ++CS)
134      if (!Uses.count(*CS))
135        return *CS;
136  }
137  }
138
139  return 0;
140}
141
142
143/// emitSPUpdate - Emit a series of instructions to increment / decrement the
144/// stack pointer by a constant value.
145static
146void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
147                  unsigned StackPtr, int64_t NumBytes,
148                  bool Is64Bit, bool UseLEA,
149                  const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) {
150  bool isSub = NumBytes < 0;
151  uint64_t Offset = isSub ? -NumBytes : NumBytes;
152  unsigned Opc;
153  if (UseLEA)
154    Opc = getLEArOpcode(Is64Bit);
155  else
156    Opc = isSub
157      ? getSUBriOpcode(Is64Bit, Offset)
158      : getADDriOpcode(Is64Bit, Offset);
159
160  uint64_t Chunk = (1LL << 31) - 1;
161  DebugLoc DL = MBB.findDebugLoc(MBBI);
162
163  while (Offset) {
164    uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
165    if (ThisVal == (Is64Bit ? 8 : 4)) {
166      // Use push / pop instead.
167      unsigned Reg = isSub
168        ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
169        : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
170      if (Reg) {
171        Opc = isSub
172          ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
173          : (Is64Bit ? X86::POP64r  : X86::POP32r);
174        MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
175          .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
176        if (isSub)
177          MI->setFlag(MachineInstr::FrameSetup);
178        Offset -= ThisVal;
179        continue;
180      }
181    }
182
183    MachineInstr *MI = NULL;
184
185    if (UseLEA) {
186      MI =  addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
187                          StackPtr, false, isSub ? -ThisVal : ThisVal);
188    } else {
189      MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
190            .addReg(StackPtr)
191            .addImm(ThisVal);
192      MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
193    }
194
195    if (isSub)
196      MI->setFlag(MachineInstr::FrameSetup);
197
198    Offset -= ThisVal;
199  }
200}
201
202/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
203static
204void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
205                      unsigned StackPtr, uint64_t *NumBytes = NULL) {
206  if (MBBI == MBB.begin()) return;
207
208  MachineBasicBlock::iterator PI = prior(MBBI);
209  unsigned Opc = PI->getOpcode();
210  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
211       Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
212       Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
213      PI->getOperand(0).getReg() == StackPtr) {
214    if (NumBytes)
215      *NumBytes += PI->getOperand(2).getImm();
216    MBB.erase(PI);
217  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
218              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
219             PI->getOperand(0).getReg() == StackPtr) {
220    if (NumBytes)
221      *NumBytes -= PI->getOperand(2).getImm();
222    MBB.erase(PI);
223  }
224}
225
226/// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower iterator.
227static
228void mergeSPUpdatesDown(MachineBasicBlock &MBB,
229                        MachineBasicBlock::iterator &MBBI,
230                        unsigned StackPtr, uint64_t *NumBytes = NULL) {
231  // FIXME:  THIS ISN'T RUN!!!
232  return;
233
234  if (MBBI == MBB.end()) return;
235
236  MachineBasicBlock::iterator NI = llvm::next(MBBI);
237  if (NI == MBB.end()) return;
238
239  unsigned Opc = NI->getOpcode();
240  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
241       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
242      NI->getOperand(0).getReg() == StackPtr) {
243    if (NumBytes)
244      *NumBytes -= NI->getOperand(2).getImm();
245    MBB.erase(NI);
246    MBBI = NI;
247  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
248              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
249             NI->getOperand(0).getReg() == StackPtr) {
250    if (NumBytes)
251      *NumBytes += NI->getOperand(2).getImm();
252    MBB.erase(NI);
253    MBBI = NI;
254  }
255}
256
257/// mergeSPUpdates - Checks the instruction before/after the passed
258/// instruction. If it is an ADD/SUB/LEA instruction it is deleted argument and the
259/// stack adjustment is returned as a positive value for ADD/LEA and a negative for
260/// SUB.
261static int mergeSPUpdates(MachineBasicBlock &MBB,
262                           MachineBasicBlock::iterator &MBBI,
263                           unsigned StackPtr,
264                           bool doMergeWithPrevious) {
265  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
266      (!doMergeWithPrevious && MBBI == MBB.end()))
267    return 0;
268
269  MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
270  MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI);
271  unsigned Opc = PI->getOpcode();
272  int Offset = 0;
273
274  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
275       Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
276       Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
277      PI->getOperand(0).getReg() == StackPtr){
278    Offset += PI->getOperand(2).getImm();
279    MBB.erase(PI);
280    if (!doMergeWithPrevious) MBBI = NI;
281  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
282              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
283             PI->getOperand(0).getReg() == StackPtr) {
284    Offset -= PI->getOperand(2).getImm();
285    MBB.erase(PI);
286    if (!doMergeWithPrevious) MBBI = NI;
287  }
288
289  return Offset;
290}
291
292static bool isEAXLiveIn(MachineFunction &MF) {
293  for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
294       EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
295    unsigned Reg = II->first;
296
297    if (Reg == X86::EAX || Reg == X86::AX ||
298        Reg == X86::AH || Reg == X86::AL)
299      return true;
300  }
301
302  return false;
303}
304
305void X86FrameLowering::emitCalleeSavedFrameMoves(MachineFunction &MF,
306                                                 MCSymbol *Label,
307                                                 unsigned FramePtr) const {
308  MachineFrameInfo *MFI = MF.getFrameInfo();
309  MachineModuleInfo &MMI = MF.getMMI();
310
311  // Add callee saved registers to move list.
312  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
313  if (CSI.empty()) return;
314
315  std::vector<MachineMove> &Moves = MMI.getFrameMoves();
316  const TargetData *TD = TM.getTargetData();
317  bool HasFP = hasFP(MF);
318
319  // Calculate amount of bytes used for return address storing.
320  int stackGrowth = -TD->getPointerSize();
321
322  // FIXME: This is dirty hack. The code itself is pretty mess right now.
323  // It should be rewritten from scratch and generalized sometimes.
324
325  // Determine maximum offset (minimum due to stack growth).
326  int64_t MaxOffset = 0;
327  for (std::vector<CalleeSavedInfo>::const_iterator
328         I = CSI.begin(), E = CSI.end(); I != E; ++I)
329    MaxOffset = std::min(MaxOffset,
330                         MFI->getObjectOffset(I->getFrameIdx()));
331
332  // Calculate offsets.
333  int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
334  for (std::vector<CalleeSavedInfo>::const_iterator
335         I = CSI.begin(), E = CSI.end(); I != E; ++I) {
336    int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
337    unsigned Reg = I->getReg();
338    Offset = MaxOffset - Offset + saveAreaOffset;
339
340    // Don't output a new machine move if we're re-saving the frame
341    // pointer. This happens when the PrologEpilogInserter has inserted an extra
342    // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
343    // generates one when frame pointers are used. If we generate a "machine
344    // move" for this extra "PUSH", the linker will lose track of the fact that
345    // the frame pointer should have the value of the first "PUSH" when it's
346    // trying to unwind.
347    //
348    // FIXME: This looks inelegant. It's possibly correct, but it's covering up
349    //        another bug. I.e., one where we generate a prolog like this:
350    //
351    //          pushl  %ebp
352    //          movl   %esp, %ebp
353    //          pushl  %ebp
354    //          pushl  %esi
355    //           ...
356    //
357    //        The immediate re-push of EBP is unnecessary. At the least, it's an
358    //        optimization bug. EBP can be used as a scratch register in certain
359    //        cases, but probably not when we have a frame pointer.
360    if (HasFP && FramePtr == Reg)
361      continue;
362
363    MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
364    MachineLocation CSSrc(Reg);
365    Moves.push_back(MachineMove(Label, CSDst, CSSrc));
366  }
367}
368
369/// getCompactUnwindRegNum - Get the compact unwind number for a given
370/// register. The number corresponds to the enum lists in
371/// compact_unwind_encoding.h.
372static int getCompactUnwindRegNum(const uint16_t *CURegs, unsigned Reg) {
373  for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
374    if (*CURegs == Reg)
375      return Idx;
376
377  return -1;
378}
379
380// Number of registers that can be saved in a compact unwind encoding.
381#define CU_NUM_SAVED_REGS 6
382
383/// encodeCompactUnwindRegistersWithoutFrame - Create the permutation encoding
384/// used with frameless stacks. It is passed the number of registers to be saved
385/// and an array of the registers saved.
386static uint32_t
387encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
388                                         unsigned RegCount, bool Is64Bit) {
389  // The saved registers are numbered from 1 to 6. In order to encode the order
390  // in which they were saved, we re-number them according to their place in the
391  // register order. The re-numbering is relative to the last re-numbered
392  // register. E.g., if we have registers {6, 2, 4, 5} saved in that order:
393  //
394  //    Orig  Re-Num
395  //    ----  ------
396  //     6       6
397  //     2       2
398  //     4       3
399  //     5       3
400  //
401  static const uint16_t CU32BitRegs[] = {
402    X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
403  };
404  static const uint16_t CU64BitRegs[] = {
405    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
406  };
407  const uint16_t *CURegs = (Is64Bit ? CU64BitRegs : CU32BitRegs);
408
409  for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
410    int CUReg = getCompactUnwindRegNum(CURegs, SavedRegs[i]);
411    if (CUReg == -1) return ~0U;
412    SavedRegs[i] = CUReg;
413  }
414
415  // Reverse the list.
416  std::swap(SavedRegs[0], SavedRegs[5]);
417  std::swap(SavedRegs[1], SavedRegs[4]);
418  std::swap(SavedRegs[2], SavedRegs[3]);
419
420  uint32_t RenumRegs[CU_NUM_SAVED_REGS];
421  for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i) {
422    unsigned Countless = 0;
423    for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
424      if (SavedRegs[j] < SavedRegs[i])
425        ++Countless;
426
427    RenumRegs[i] = SavedRegs[i] - Countless - 1;
428  }
429
430  // Take the renumbered values and encode them into a 10-bit number.
431  uint32_t permutationEncoding = 0;
432  switch (RegCount) {
433  case 6:
434    permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
435                           + 6 * RenumRegs[2] +  2 * RenumRegs[3]
436                           +     RenumRegs[4];
437    break;
438  case 5:
439    permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
440                           + 6 * RenumRegs[3] +  2 * RenumRegs[4]
441                           +     RenumRegs[5];
442    break;
443  case 4:
444    permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
445                           + 3 * RenumRegs[4] +      RenumRegs[5];
446    break;
447  case 3:
448    permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
449                           +     RenumRegs[5];
450    break;
451  case 2:
452    permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
453    break;
454  case 1:
455    permutationEncoding |=       RenumRegs[5];
456    break;
457  }
458
459  assert((permutationEncoding & 0x3FF) == permutationEncoding &&
460         "Invalid compact register encoding!");
461  return permutationEncoding;
462}
463
464/// encodeCompactUnwindRegistersWithFrame - Return the registers encoded for a
465/// compact encoding with a frame pointer.
466static uint32_t
467encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
468                                      bool Is64Bit) {
469  static const uint16_t CU32BitRegs[] = {
470    X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
471  };
472  static const uint16_t CU64BitRegs[] = {
473    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
474  };
475  const uint16_t *CURegs = (Is64Bit ? CU64BitRegs : CU32BitRegs);
476
477  // Encode the registers in the order they were saved, 3-bits per register. The
478  // registers are numbered from 1 to CU_NUM_SAVED_REGS.
479  uint32_t RegEnc = 0;
480  for (int I = CU_NUM_SAVED_REGS - 1, Idx = 0; I != -1; --I) {
481    unsigned Reg = SavedRegs[I];
482    if (Reg == 0) continue;
483
484    int CURegNum = getCompactUnwindRegNum(CURegs, Reg);
485    if (CURegNum == -1) return ~0U;
486
487    // Encode the 3-bit register number in order, skipping over 3-bits for each
488    // register.
489    RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
490  }
491
492  assert((RegEnc & 0x3FFFF) == RegEnc && "Invalid compact register encoding!");
493  return RegEnc;
494}
495
496uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
497  const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
498  unsigned FramePtr = RegInfo->getFrameRegister(MF);
499  unsigned StackPtr = RegInfo->getStackRegister();
500
501  bool Is64Bit = STI.is64Bit();
502  bool HasFP = hasFP(MF);
503
504  unsigned SavedRegs[CU_NUM_SAVED_REGS] = { 0, 0, 0, 0, 0, 0 };
505  unsigned SavedRegIdx = 0;
506
507  unsigned OffsetSize = (Is64Bit ? 8 : 4);
508
509  unsigned PushInstr = (Is64Bit ? X86::PUSH64r : X86::PUSH32r);
510  unsigned PushInstrSize = 1;
511  unsigned MoveInstr = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
512  unsigned MoveInstrSize = (Is64Bit ? 3 : 2);
513  unsigned SubtractInstrIdx = (Is64Bit ? 3 : 2);
514
515  unsigned StackDivide = (Is64Bit ? 8 : 4);
516
517  unsigned InstrOffset = 0;
518  unsigned StackAdjust = 0;
519  unsigned StackSize = 0;
520
521  MachineBasicBlock &MBB = MF.front(); // Prologue is in entry BB.
522  bool ExpectEnd = false;
523  for (MachineBasicBlock::iterator
524         MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ++MBBI) {
525    MachineInstr &MI = *MBBI;
526    unsigned Opc = MI.getOpcode();
527    if (Opc == X86::PROLOG_LABEL) continue;
528    if (!MI.getFlag(MachineInstr::FrameSetup)) break;
529
530    // We don't exect any more prolog instructions.
531    if (ExpectEnd) return 0;
532
533    if (Opc == PushInstr) {
534      // If there are too many saved registers, we cannot use compact encoding.
535      if (SavedRegIdx >= CU_NUM_SAVED_REGS) return 0;
536
537      SavedRegs[SavedRegIdx++] = MI.getOperand(0).getReg();
538      StackAdjust += OffsetSize;
539      InstrOffset += PushInstrSize;
540    } else if (Opc == MoveInstr) {
541      unsigned SrcReg = MI.getOperand(1).getReg();
542      unsigned DstReg = MI.getOperand(0).getReg();
543
544      if (DstReg != FramePtr || SrcReg != StackPtr)
545        return 0;
546
547      StackAdjust = 0;
548      memset(SavedRegs, 0, sizeof(SavedRegs));
549      SavedRegIdx = 0;
550      InstrOffset += MoveInstrSize;
551    } else if (Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
552               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) {
553      if (StackSize)
554        // We already have a stack size.
555        return 0;
556
557      if (!MI.getOperand(0).isReg() ||
558          MI.getOperand(0).getReg() != MI.getOperand(1).getReg() ||
559          MI.getOperand(0).getReg() != StackPtr || !MI.getOperand(2).isImm())
560        // We need this to be a stack adjustment pointer. Something like:
561        //
562        //   %RSP<def> = SUB64ri8 %RSP, 48
563        return 0;
564
565      StackSize = MI.getOperand(2).getImm() / StackDivide;
566      SubtractInstrIdx += InstrOffset;
567      ExpectEnd = true;
568    }
569  }
570
571  // Encode that we are using EBP/RBP as the frame pointer.
572  uint32_t CompactUnwindEncoding = 0;
573  StackAdjust /= StackDivide;
574  if (HasFP) {
575    if ((StackAdjust & 0xFF) != StackAdjust)
576      // Offset was too big for compact encoding.
577      return 0;
578
579    // Get the encoding of the saved registers when we have a frame pointer.
580    uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(SavedRegs, Is64Bit);
581    if (RegEnc == ~0U) return 0;
582
583    CompactUnwindEncoding |= 0x01000000;
584    CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
585    CompactUnwindEncoding |= RegEnc & 0x7FFF;
586  } else {
587    ++StackAdjust;
588    uint32_t TotalStackSize = StackAdjust + StackSize;
589    if ((TotalStackSize & 0xFF) == TotalStackSize) {
590      // Frameless stack with a small stack size.
591      CompactUnwindEncoding |= 0x02000000;
592
593      // Encode the stack size.
594      CompactUnwindEncoding |= (TotalStackSize & 0xFF) << 16;
595    } else {
596      if ((StackAdjust & 0x7) != StackAdjust)
597        // The extra stack adjustments are too big for us to handle.
598        return 0;
599
600      // Frameless stack with an offset too large for us to encode compactly.
601      CompactUnwindEncoding |= 0x03000000;
602
603      // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
604      // instruction.
605      CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
606
607      // Encode any extra stack stack adjustments (done via push instructions).
608      CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
609    }
610
611    // Encode the number of registers saved.
612    CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
613
614    // Get the encoding of the saved registers when we don't have a frame
615    // pointer.
616    uint32_t RegEnc =
617      encodeCompactUnwindRegistersWithoutFrame(SavedRegs, SavedRegIdx,
618                                               Is64Bit);
619    if (RegEnc == ~0U) return 0;
620
621    // Encode the register encoding.
622    CompactUnwindEncoding |= RegEnc & 0x3FF;
623  }
624
625  return CompactUnwindEncoding;
626}
627
628/// emitPrologue - Push callee-saved registers onto the stack, which
629/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
630/// space for local variables. Also emit labels used by the exception handler to
631/// generate the exception handling frames.
632void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
633  MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
634  MachineBasicBlock::iterator MBBI = MBB.begin();
635  MachineFrameInfo *MFI = MF.getFrameInfo();
636  const Function *Fn = MF.getFunction();
637  const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
638  const X86InstrInfo &TII = *TM.getInstrInfo();
639  MachineModuleInfo &MMI = MF.getMMI();
640  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
641  bool needsFrameMoves = MMI.hasDebugInfo() ||
642    Fn->needsUnwindTableEntry();
643  uint64_t MaxAlign  = MFI->getMaxAlignment(); // Desired stack alignment.
644  uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
645  bool HasFP = hasFP(MF);
646  bool Is64Bit = STI.is64Bit();
647  bool IsWin64 = STI.isTargetWin64();
648  bool UseLEA = STI.useLeaForSP();
649  unsigned StackAlign = getStackAlignment();
650  unsigned SlotSize = RegInfo->getSlotSize();
651  unsigned FramePtr = RegInfo->getFrameRegister(MF);
652  unsigned StackPtr = RegInfo->getStackRegister();
653  unsigned BasePtr = RegInfo->getBaseRegister();
654  DebugLoc DL;
655
656  // If we're forcing a stack realignment we can't rely on just the frame
657  // info, we need to know the ABI stack alignment as well in case we
658  // have a call out.  Otherwise just make sure we have some alignment - we'll
659  // go with the minimum SlotSize.
660  if (ForceStackAlign) {
661    if (MFI->hasCalls())
662      MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
663    else if (MaxAlign < SlotSize)
664      MaxAlign = SlotSize;
665  }
666
667  // Add RETADDR move area to callee saved frame size.
668  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
669  if (TailCallReturnAddrDelta < 0)
670    X86FI->setCalleeSavedFrameSize(
671      X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
672
673  // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
674  // function, and use up to 128 bytes of stack space, don't have a frame
675  // pointer, calls, or dynamic alloca then we do not need to adjust the
676  // stack pointer (we fit in the Red Zone).
677  if (Is64Bit && !Fn->getFnAttributes().hasNoRedZoneAttr() &&
678      !RegInfo->needsStackRealignment(MF) &&
679      !MFI->hasVarSizedObjects() &&                     // No dynamic alloca.
680      !MFI->adjustsStack() &&                           // No calls.
681      !IsWin64 &&                                       // Win64 has no Red Zone
682      !MF.getTarget().Options.EnableSegmentedStacks) {  // Regular stack
683    uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
684    if (HasFP) MinSize += SlotSize;
685    StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
686    MFI->setStackSize(StackSize);
687  }
688
689  // Insert stack pointer adjustment for later moving of return addr.  Only
690  // applies to tail call optimized functions where the callee argument stack
691  // size is bigger than the callers.
692  if (TailCallReturnAddrDelta < 0) {
693    MachineInstr *MI =
694      BuildMI(MBB, MBBI, DL,
695              TII.get(getSUBriOpcode(Is64Bit, -TailCallReturnAddrDelta)),
696              StackPtr)
697        .addReg(StackPtr)
698        .addImm(-TailCallReturnAddrDelta)
699        .setMIFlag(MachineInstr::FrameSetup);
700    MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
701  }
702
703  // Mapping for machine moves:
704  //
705  //   DST: VirtualFP AND
706  //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
707  //        ELSE                        => DW_CFA_def_cfa
708  //
709  //   SRC: VirtualFP AND
710  //        DST: Register               => DW_CFA_def_cfa_register
711  //
712  //   ELSE
713  //        OFFSET < 0                  => DW_CFA_offset_extended_sf
714  //        REG < 64                    => DW_CFA_offset + Reg
715  //        ELSE                        => DW_CFA_offset_extended
716
717  std::vector<MachineMove> &Moves = MMI.getFrameMoves();
718  const TargetData *TD = MF.getTarget().getTargetData();
719  uint64_t NumBytes = 0;
720  int stackGrowth = -TD->getPointerSize();
721
722  if (HasFP) {
723    // Calculate required stack adjustment.
724    uint64_t FrameSize = StackSize - SlotSize;
725    if (RegInfo->needsStackRealignment(MF)) {
726      // Callee-saved registers are pushed on stack before the stack
727      // is realigned.
728      FrameSize -= X86FI->getCalleeSavedFrameSize();
729      NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
730    } else {
731      NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
732    }
733
734    // Get the offset of the stack slot for the EBP register, which is
735    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
736    // Update the frame offset adjustment.
737    MFI->setOffsetAdjustment(-NumBytes);
738
739    // Save EBP/RBP into the appropriate stack slot.
740    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
741      .addReg(FramePtr, RegState::Kill)
742      .setMIFlag(MachineInstr::FrameSetup);
743
744    if (needsFrameMoves) {
745      // Mark the place where EBP/RBP was saved.
746      MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
747      BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
748        .addSym(FrameLabel);
749
750      // Define the current CFA rule to use the provided offset.
751      if (StackSize) {
752        MachineLocation SPDst(MachineLocation::VirtualFP);
753        MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth);
754        Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
755      } else {
756        MachineLocation SPDst(StackPtr);
757        MachineLocation SPSrc(StackPtr, stackGrowth);
758        Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
759      }
760
761      // Change the rule for the FramePtr to be an "offset" rule.
762      MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth);
763      MachineLocation FPSrc(FramePtr);
764      Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
765    }
766
767    // Update EBP with the new base value.
768    BuildMI(MBB, MBBI, DL,
769            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
770        .addReg(StackPtr)
771        .setMIFlag(MachineInstr::FrameSetup);
772
773    if (needsFrameMoves) {
774      // Mark effective beginning of when frame pointer becomes valid.
775      MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
776      BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
777        .addSym(FrameLabel);
778
779      // Define the current CFA to use the EBP/RBP register.
780      MachineLocation FPDst(FramePtr);
781      MachineLocation FPSrc(MachineLocation::VirtualFP);
782      Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
783    }
784
785    // Mark the FramePtr as live-in in every block except the entry.
786    for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end();
787         I != E; ++I)
788      I->addLiveIn(FramePtr);
789  } else {
790    NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
791  }
792
793  // Skip the callee-saved push instructions.
794  bool PushedRegs = false;
795  int StackOffset = 2 * stackGrowth;
796
797  while (MBBI != MBB.end() &&
798         (MBBI->getOpcode() == X86::PUSH32r ||
799          MBBI->getOpcode() == X86::PUSH64r)) {
800    PushedRegs = true;
801    MBBI->setFlag(MachineInstr::FrameSetup);
802    ++MBBI;
803
804    if (!HasFP && needsFrameMoves) {
805      // Mark callee-saved push instruction.
806      MCSymbol *Label = MMI.getContext().CreateTempSymbol();
807      BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label);
808
809      // Define the current CFA rule to use the provided offset.
810      unsigned Ptr = StackSize ? MachineLocation::VirtualFP : StackPtr;
811      MachineLocation SPDst(Ptr);
812      MachineLocation SPSrc(Ptr, StackOffset);
813      Moves.push_back(MachineMove(Label, SPDst, SPSrc));
814      StackOffset += stackGrowth;
815    }
816  }
817
818  // Realign stack after we pushed callee-saved registers (so that we'll be
819  // able to calculate their offsets from the frame pointer).
820
821  // NOTE: We push the registers before realigning the stack, so
822  // vector callee-saved (xmm) registers may be saved w/o proper
823  // alignment in this way. However, currently these regs are saved in
824  // stack slots (see X86FrameLowering::spillCalleeSavedRegisters()), so
825  // this shouldn't be a problem.
826  if (RegInfo->needsStackRealignment(MF)) {
827    assert(HasFP && "There should be a frame pointer if stack is realigned.");
828    MachineInstr *MI =
829      BuildMI(MBB, MBBI, DL,
830              TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr)
831      .addReg(StackPtr)
832      .addImm(-MaxAlign)
833      .setMIFlag(MachineInstr::FrameSetup);
834
835    // The EFLAGS implicit def is dead.
836    MI->getOperand(3).setIsDead();
837  }
838
839  DL = MBB.findDebugLoc(MBBI);
840
841  // If there is an SUB32ri of ESP immediately before this instruction, merge
842  // the two. This can be the case when tail call elimination is enabled and
843  // the callee has more arguments then the caller.
844  NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
845
846  // If there is an ADD32ri or SUB32ri of ESP immediately after this
847  // instruction, merge the two instructions.
848  mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
849
850  // Adjust stack pointer: ESP -= numbytes.
851
852  // Windows and cygwin/mingw require a prologue helper routine when allocating
853  // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
854  // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
855  // stack and adjust the stack pointer in one go.  The 64-bit version of
856  // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
857  // responsible for adjusting the stack pointer.  Touching the stack at 4K
858  // increments is necessary to ensure that the guard pages used by the OS
859  // virtual memory manager are allocated in correct sequence.
860  if (NumBytes >= 4096 && STI.isTargetCOFF() && !STI.isTargetEnvMacho()) {
861    const char *StackProbeSymbol;
862    bool isSPUpdateNeeded = false;
863
864    if (Is64Bit) {
865      if (STI.isTargetCygMing())
866        StackProbeSymbol = "___chkstk";
867      else {
868        StackProbeSymbol = "__chkstk";
869        isSPUpdateNeeded = true;
870      }
871    } else if (STI.isTargetCygMing())
872      StackProbeSymbol = "_alloca";
873    else
874      StackProbeSymbol = "_chkstk";
875
876    // Check whether EAX is livein for this function.
877    bool isEAXAlive = isEAXLiveIn(MF);
878
879    if (isEAXAlive) {
880      // Sanity check that EAX is not livein for this function.
881      // It should not be, so throw an assert.
882      assert(!Is64Bit && "EAX is livein in x64 case!");
883
884      // Save EAX
885      BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
886        .addReg(X86::EAX, RegState::Kill)
887        .setMIFlag(MachineInstr::FrameSetup);
888    }
889
890    if (Is64Bit) {
891      // Handle the 64-bit Windows ABI case where we need to call __chkstk.
892      // Function prologue is responsible for adjusting the stack pointer.
893      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
894        .addImm(NumBytes)
895        .setMIFlag(MachineInstr::FrameSetup);
896    } else {
897      // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
898      // We'll also use 4 already allocated bytes for EAX.
899      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
900        .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
901        .setMIFlag(MachineInstr::FrameSetup);
902    }
903
904    BuildMI(MBB, MBBI, DL,
905            TII.get(Is64Bit ? X86::W64ALLOCA : X86::CALLpcrel32))
906      .addExternalSymbol(StackProbeSymbol)
907      .addReg(StackPtr,    RegState::Define | RegState::Implicit)
908      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
909      .setMIFlag(MachineInstr::FrameSetup);
910
911    // MSVC x64's __chkstk needs to adjust %rsp.
912    // FIXME: %rax preserves the offset and should be available.
913    if (isSPUpdateNeeded)
914      emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit,
915                   UseLEA, TII, *RegInfo);
916
917    if (isEAXAlive) {
918        // Restore EAX
919        MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
920                                                X86::EAX),
921                                        StackPtr, false, NumBytes - 4);
922        MI->setFlag(MachineInstr::FrameSetup);
923        MBB.insert(MBBI, MI);
924    }
925  } else if (NumBytes)
926    emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit,
927                 UseLEA, TII, *RegInfo);
928
929  // If we need a base pointer, set it up here. It's whatever the value
930  // of the stack pointer is at this point. Any variable size objects
931  // will be allocated after this, so we can still use the base pointer
932  // to reference locals.
933  if (RegInfo->hasBasePointer(MF)) {
934    // Update the frame pointer with the current stack pointer.
935    unsigned Opc = Is64Bit ? X86::MOV64rr : X86::MOV32rr;
936    BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
937      .addReg(StackPtr)
938      .setMIFlag(MachineInstr::FrameSetup);
939  }
940
941  if (( (!HasFP && NumBytes) || PushedRegs) && needsFrameMoves) {
942    // Mark end of stack pointer adjustment.
943    MCSymbol *Label = MMI.getContext().CreateTempSymbol();
944    BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
945      .addSym(Label);
946
947    if (!HasFP && NumBytes) {
948      // Define the current CFA rule to use the provided offset.
949      if (StackSize) {
950        MachineLocation SPDst(MachineLocation::VirtualFP);
951        MachineLocation SPSrc(MachineLocation::VirtualFP,
952                              -StackSize + stackGrowth);
953        Moves.push_back(MachineMove(Label, SPDst, SPSrc));
954      } else {
955        MachineLocation SPDst(StackPtr);
956        MachineLocation SPSrc(StackPtr, stackGrowth);
957        Moves.push_back(MachineMove(Label, SPDst, SPSrc));
958      }
959    }
960
961    // Emit DWARF info specifying the offsets of the callee-saved registers.
962    if (PushedRegs)
963      emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr);
964  }
965
966  // Darwin 10.7 and greater has support for compact unwind encoding.
967  if (STI.getTargetTriple().isMacOSX() &&
968      !STI.getTargetTriple().isMacOSXVersionLT(10, 7))
969    MMI.setCompactUnwindEncoding(getCompactUnwindEncoding(MF));
970}
971
972void X86FrameLowering::emitEpilogue(MachineFunction &MF,
973                                    MachineBasicBlock &MBB) const {
974  const MachineFrameInfo *MFI = MF.getFrameInfo();
975  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
976  const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
977  const X86InstrInfo &TII = *TM.getInstrInfo();
978  MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
979  assert(MBBI != MBB.end() && "Returning block has no instructions");
980  unsigned RetOpcode = MBBI->getOpcode();
981  DebugLoc DL = MBBI->getDebugLoc();
982  bool Is64Bit = STI.is64Bit();
983  bool UseLEA = STI.useLeaForSP();
984  unsigned StackAlign = getStackAlignment();
985  unsigned SlotSize = RegInfo->getSlotSize();
986  unsigned FramePtr = RegInfo->getFrameRegister(MF);
987  unsigned StackPtr = RegInfo->getStackRegister();
988
989  switch (RetOpcode) {
990  default:
991    llvm_unreachable("Can only insert epilog into returning blocks");
992  case X86::RET:
993  case X86::RETI:
994  case X86::TCRETURNdi:
995  case X86::TCRETURNri:
996  case X86::TCRETURNmi:
997  case X86::TCRETURNdi64:
998  case X86::TCRETURNri64:
999  case X86::TCRETURNmi64:
1000  case X86::EH_RETURN:
1001  case X86::EH_RETURN64:
1002    break;  // These are ok
1003  }
1004
1005  // Get the number of bytes to allocate from the FrameInfo.
1006  uint64_t StackSize = MFI->getStackSize();
1007  uint64_t MaxAlign  = MFI->getMaxAlignment();
1008  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1009  uint64_t NumBytes = 0;
1010
1011  // If we're forcing a stack realignment we can't rely on just the frame
1012  // info, we need to know the ABI stack alignment as well in case we
1013  // have a call out.  Otherwise just make sure we have some alignment - we'll
1014  // go with the minimum.
1015  if (ForceStackAlign) {
1016    if (MFI->hasCalls())
1017      MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
1018    else
1019      MaxAlign = MaxAlign ? MaxAlign : 4;
1020  }
1021
1022  if (hasFP(MF)) {
1023    // Calculate required stack adjustment.
1024    uint64_t FrameSize = StackSize - SlotSize;
1025    if (RegInfo->needsStackRealignment(MF)) {
1026      // Callee-saved registers were pushed on stack before the stack
1027      // was realigned.
1028      FrameSize -= CSSize;
1029      NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
1030    } else {
1031      NumBytes = FrameSize - CSSize;
1032    }
1033
1034    // Pop EBP.
1035    BuildMI(MBB, MBBI, DL,
1036            TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
1037  } else {
1038    NumBytes = StackSize - CSSize;
1039  }
1040
1041  // Skip the callee-saved pop instructions.
1042  while (MBBI != MBB.begin()) {
1043    MachineBasicBlock::iterator PI = prior(MBBI);
1044    unsigned Opc = PI->getOpcode();
1045
1046    if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE &&
1047        !PI->isTerminator())
1048      break;
1049
1050    --MBBI;
1051  }
1052  MachineBasicBlock::iterator FirstCSPop = MBBI;
1053
1054  DL = MBBI->getDebugLoc();
1055
1056  // If there is an ADD32ri or SUB32ri of ESP immediately before this
1057  // instruction, merge the two instructions.
1058  if (NumBytes || MFI->hasVarSizedObjects())
1059    mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
1060
1061  // If dynamic alloca is used, then reset esp to point to the last callee-saved
1062  // slot before popping them off! Same applies for the case, when stack was
1063  // realigned.
1064  if (RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) {
1065    if (RegInfo->needsStackRealignment(MF))
1066      MBBI = FirstCSPop;
1067    if (CSSize != 0) {
1068      unsigned Opc = getLEArOpcode(Is64Bit);
1069      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1070                   FramePtr, false, -CSSize);
1071    } else {
1072      unsigned Opc = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
1073      BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1074        .addReg(FramePtr);
1075    }
1076  } else if (NumBytes) {
1077    // Adjust stack pointer back: ESP += numbytes.
1078    emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, UseLEA, TII, *RegInfo);
1079  }
1080
1081  // We're returning from function via eh_return.
1082  if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
1083    MBBI = MBB.getLastNonDebugInstr();
1084    MachineOperand &DestAddr  = MBBI->getOperand(0);
1085    assert(DestAddr.isReg() && "Offset should be in register!");
1086    BuildMI(MBB, MBBI, DL,
1087            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1088            StackPtr).addReg(DestAddr.getReg());
1089  } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
1090             RetOpcode == X86::TCRETURNmi ||
1091             RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 ||
1092             RetOpcode == X86::TCRETURNmi64) {
1093    bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64;
1094    // Tail call return: adjust the stack pointer and jump to callee.
1095    MBBI = MBB.getLastNonDebugInstr();
1096    MachineOperand &JumpTarget = MBBI->getOperand(0);
1097    MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
1098    assert(StackAdjust.isImm() && "Expecting immediate value.");
1099
1100    // Adjust stack pointer.
1101    int StackAdj = StackAdjust.getImm();
1102    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
1103    int Offset = 0;
1104    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
1105
1106    // Incoporate the retaddr area.
1107    Offset = StackAdj-MaxTCDelta;
1108    assert(Offset >= 0 && "Offset should never be negative");
1109
1110    if (Offset) {
1111      // Check for possible merge with preceding ADD instruction.
1112      Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1113      emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, UseLEA, TII, *RegInfo);
1114    }
1115
1116    // Jump to label or value in register.
1117    if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) {
1118      MachineInstrBuilder MIB =
1119        BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi)
1120                                       ? X86::TAILJMPd : X86::TAILJMPd64));
1121      if (JumpTarget.isGlobal())
1122        MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
1123                             JumpTarget.getTargetFlags());
1124      else {
1125        assert(JumpTarget.isSymbol());
1126        MIB.addExternalSymbol(JumpTarget.getSymbolName(),
1127                              JumpTarget.getTargetFlags());
1128      }
1129    } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) {
1130      MachineInstrBuilder MIB =
1131        BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi)
1132                                       ? X86::TAILJMPm : X86::TAILJMPm64));
1133      for (unsigned i = 0; i != 5; ++i)
1134        MIB.addOperand(MBBI->getOperand(i));
1135    } else if (RetOpcode == X86::TCRETURNri64) {
1136      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)).
1137        addReg(JumpTarget.getReg(), RegState::Kill);
1138    } else {
1139      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)).
1140        addReg(JumpTarget.getReg(), RegState::Kill);
1141    }
1142
1143    MachineInstr *NewMI = prior(MBBI);
1144    NewMI->copyImplicitOps(MBBI);
1145
1146    // Delete the pseudo instruction TCRETURN.
1147    MBB.erase(MBBI);
1148  } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
1149             (X86FI->getTCReturnAddrDelta() < 0)) {
1150    // Add the return addr area delta back since we are not tail calling.
1151    int delta = -1*X86FI->getTCReturnAddrDelta();
1152    MBBI = MBB.getLastNonDebugInstr();
1153
1154    // Check for possible merge with preceding ADD instruction.
1155    delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1156    emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, UseLEA, TII, *RegInfo);
1157  }
1158}
1159
1160int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const {
1161  const X86RegisterInfo *RegInfo =
1162    static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
1163  const MachineFrameInfo *MFI = MF.getFrameInfo();
1164  int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1165  uint64_t StackSize = MFI->getStackSize();
1166
1167  if (RegInfo->hasBasePointer(MF)) {
1168    assert (hasFP(MF) && "VLAs and dynamic stack realign, but no FP?!");
1169    if (FI < 0) {
1170      // Skip the saved EBP.
1171      return Offset + RegInfo->getSlotSize();
1172    } else {
1173      assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1174      return Offset + StackSize;
1175    }
1176  } else if (RegInfo->needsStackRealignment(MF)) {
1177    if (FI < 0) {
1178      // Skip the saved EBP.
1179      return Offset + RegInfo->getSlotSize();
1180    } else {
1181      assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1182      return Offset + StackSize;
1183    }
1184    // FIXME: Support tail calls
1185  } else {
1186    if (!hasFP(MF))
1187      return Offset + StackSize;
1188
1189    // Skip the saved EBP.
1190    Offset += RegInfo->getSlotSize();
1191
1192    // Skip the RETADDR move area
1193    const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1194    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1195    if (TailCallReturnAddrDelta < 0)
1196      Offset -= TailCallReturnAddrDelta;
1197  }
1198
1199  return Offset;
1200}
1201
1202int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1203                                             unsigned &FrameReg) const {
1204  const X86RegisterInfo *RegInfo =
1205      static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
1206  // We can't calculate offset from frame pointer if the stack is realigned,
1207  // so enforce usage of stack/base pointer.  The base pointer is used when we
1208  // have dynamic allocas in addition to dynamic realignment.
1209  if (RegInfo->hasBasePointer(MF))
1210    FrameReg = RegInfo->getBaseRegister();
1211  else if (RegInfo->needsStackRealignment(MF))
1212    FrameReg = RegInfo->getStackRegister();
1213  else
1214    FrameReg = RegInfo->getFrameRegister(MF);
1215  return getFrameIndexOffset(MF, FI);
1216}
1217
1218bool X86FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1219                                             MachineBasicBlock::iterator MI,
1220                                        const std::vector<CalleeSavedInfo> &CSI,
1221                                          const TargetRegisterInfo *TRI) const {
1222  if (CSI.empty())
1223    return false;
1224
1225  DebugLoc DL = MBB.findDebugLoc(MI);
1226
1227  MachineFunction &MF = *MBB.getParent();
1228
1229  unsigned SlotSize = STI.is64Bit() ? 8 : 4;
1230  unsigned FPReg = TRI->getFrameRegister(MF);
1231  unsigned CalleeFrameSize = 0;
1232
1233  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
1234  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1235
1236  // Push GPRs. It increases frame size.
1237  unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
1238  for (unsigned i = CSI.size(); i != 0; --i) {
1239    unsigned Reg = CSI[i-1].getReg();
1240    if (!X86::GR64RegClass.contains(Reg) &&
1241        !X86::GR32RegClass.contains(Reg))
1242      continue;
1243    // Add the callee-saved register as live-in. It's killed at the spill.
1244    MBB.addLiveIn(Reg);
1245    if (Reg == FPReg)
1246      // X86RegisterInfo::emitPrologue will handle spilling of frame register.
1247      continue;
1248    CalleeFrameSize += SlotSize;
1249    BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
1250      .setMIFlag(MachineInstr::FrameSetup);
1251  }
1252
1253  X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
1254
1255  // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
1256  // It can be done by spilling XMMs to stack frame.
1257  // Note that only Win64 ABI might spill XMMs.
1258  for (unsigned i = CSI.size(); i != 0; --i) {
1259    unsigned Reg = CSI[i-1].getReg();
1260    if (X86::GR64RegClass.contains(Reg) ||
1261        X86::GR32RegClass.contains(Reg))
1262      continue;
1263    // Add the callee-saved register as live-in. It's killed at the spill.
1264    MBB.addLiveIn(Reg);
1265    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1266    TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
1267                            RC, TRI);
1268  }
1269
1270  return true;
1271}
1272
1273bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1274                                               MachineBasicBlock::iterator MI,
1275                                        const std::vector<CalleeSavedInfo> &CSI,
1276                                          const TargetRegisterInfo *TRI) const {
1277  if (CSI.empty())
1278    return false;
1279
1280  DebugLoc DL = MBB.findDebugLoc(MI);
1281
1282  MachineFunction &MF = *MBB.getParent();
1283  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
1284
1285  // Reload XMMs from stack frame.
1286  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1287    unsigned Reg = CSI[i].getReg();
1288    if (X86::GR64RegClass.contains(Reg) ||
1289        X86::GR32RegClass.contains(Reg))
1290      continue;
1291    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1292    TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
1293                             RC, TRI);
1294  }
1295
1296  // POP GPRs.
1297  unsigned FPReg = TRI->getFrameRegister(MF);
1298  unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
1299  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1300    unsigned Reg = CSI[i].getReg();
1301    if (!X86::GR64RegClass.contains(Reg) &&
1302        !X86::GR32RegClass.contains(Reg))
1303      continue;
1304    if (Reg == FPReg)
1305      // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
1306      continue;
1307    BuildMI(MBB, MI, DL, TII.get(Opc), Reg);
1308  }
1309  return true;
1310}
1311
1312void
1313X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
1314                                                   RegScavenger *RS) const {
1315  MachineFrameInfo *MFI = MF.getFrameInfo();
1316  const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
1317  unsigned SlotSize = RegInfo->getSlotSize();
1318
1319  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1320  int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1321
1322  if (TailCallReturnAddrDelta < 0) {
1323    // create RETURNADDR area
1324    //   arg
1325    //   arg
1326    //   RETADDR
1327    //   { ...
1328    //     RETADDR area
1329    //     ...
1330    //   }
1331    //   [EBP]
1332    MFI->CreateFixedObject(-TailCallReturnAddrDelta,
1333                           (-1U*SlotSize)+TailCallReturnAddrDelta, true);
1334  }
1335
1336  if (hasFP(MF)) {
1337    assert((TailCallReturnAddrDelta <= 0) &&
1338           "The Delta should always be zero or negative");
1339    const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
1340
1341    // Create a frame entry for the EBP register that must be saved.
1342    int FrameIdx = MFI->CreateFixedObject(SlotSize,
1343                                          -(int)SlotSize +
1344                                          TFI.getOffsetOfLocalArea() +
1345                                          TailCallReturnAddrDelta,
1346                                          true);
1347    assert(FrameIdx == MFI->getObjectIndexBegin() &&
1348           "Slot for EBP register must be last in order to be found!");
1349    (void)FrameIdx;
1350  }
1351
1352  // Spill the BasePtr if it's used.
1353  if (RegInfo->hasBasePointer(MF))
1354    MF.getRegInfo().setPhysRegUsed(RegInfo->getBaseRegister());
1355}
1356
1357static bool
1358HasNestArgument(const MachineFunction *MF) {
1359  const Function *F = MF->getFunction();
1360  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1361       I != E; I++) {
1362    if (I->hasNestAttr())
1363      return true;
1364  }
1365  return false;
1366}
1367
1368
1369/// GetScratchRegister - Get a register for performing work in the segmented
1370/// stack prologue. Depending on platform and the properties of the function
1371/// either one or two registers will be needed. Set primary to true for
1372/// the first register, false for the second.
1373static unsigned
1374GetScratchRegister(bool Is64Bit, const MachineFunction &MF, bool Primary) {
1375  if (Is64Bit)
1376    return Primary ? X86::R11 : X86::R12;
1377
1378  CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
1379  bool IsNested = HasNestArgument(&MF);
1380
1381  if (CallingConvention == CallingConv::X86_FastCall ||
1382      CallingConvention == CallingConv::Fast) {
1383    if (IsNested)
1384      report_fatal_error("Segmented stacks does not support fastcall with "
1385                         "nested function.");
1386    return Primary ? X86::EAX : X86::ECX;
1387  }
1388  if (IsNested)
1389    return Primary ? X86::EDX : X86::EAX;
1390  return Primary ? X86::ECX : X86::EAX;
1391}
1392
1393// The stack limit in the TCB is set to this many bytes above the actual stack
1394// limit.
1395static const uint64_t kSplitStackAvailable = 256;
1396
1397void
1398X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
1399  MachineBasicBlock &prologueMBB = MF.front();
1400  MachineFrameInfo *MFI = MF.getFrameInfo();
1401  const X86InstrInfo &TII = *TM.getInstrInfo();
1402  uint64_t StackSize;
1403  bool Is64Bit = STI.is64Bit();
1404  unsigned TlsReg, TlsOffset;
1405  DebugLoc DL;
1406  const X86Subtarget *ST = &MF.getTarget().getSubtarget<X86Subtarget>();
1407
1408  unsigned ScratchReg = GetScratchRegister(Is64Bit, MF, true);
1409  assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
1410         "Scratch register is live-in");
1411
1412  if (MF.getFunction()->isVarArg())
1413    report_fatal_error("Segmented stacks do not support vararg functions.");
1414  if (!ST->isTargetLinux() && !ST->isTargetDarwin() &&
1415      !ST->isTargetWin32() && !ST->isTargetFreeBSD())
1416    report_fatal_error("Segmented stacks not supported on this platform.");
1417
1418  MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
1419  MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
1420  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1421  bool IsNested = false;
1422
1423  // We need to know if the function has a nest argument only in 64 bit mode.
1424  if (Is64Bit)
1425    IsNested = HasNestArgument(&MF);
1426
1427  // The MOV R10, RAX needs to be in a different block, since the RET we emit in
1428  // allocMBB needs to be last (terminating) instruction.
1429
1430  for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(),
1431         e = prologueMBB.livein_end(); i != e; i++) {
1432    allocMBB->addLiveIn(*i);
1433    checkMBB->addLiveIn(*i);
1434  }
1435
1436  if (IsNested)
1437    allocMBB->addLiveIn(X86::R10);
1438
1439  MF.push_front(allocMBB);
1440  MF.push_front(checkMBB);
1441
1442  // Eventually StackSize will be calculated by a link-time pass; which will
1443  // also decide whether checking code needs to be injected into this particular
1444  // prologue.
1445  StackSize = MFI->getStackSize();
1446
1447  // When the frame size is less than 256 we just compare the stack
1448  // boundary directly to the value of the stack pointer, per gcc.
1449  bool CompareStackPointer = StackSize < kSplitStackAvailable;
1450
1451  // Read the limit off the current stacklet off the stack_guard location.
1452  if (Is64Bit) {
1453    if (ST->isTargetLinux()) {
1454      TlsReg = X86::FS;
1455      TlsOffset = 0x70;
1456    } else if (ST->isTargetDarwin()) {
1457      TlsReg = X86::GS;
1458      TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
1459    } else if (ST->isTargetFreeBSD()) {
1460      TlsReg = X86::FS;
1461      TlsOffset = 0x18;
1462    } else {
1463      report_fatal_error("Segmented stacks not supported on this platform.");
1464    }
1465
1466    if (CompareStackPointer)
1467      ScratchReg = X86::RSP;
1468    else
1469      BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP)
1470        .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
1471
1472    BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg)
1473      .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
1474  } else {
1475    if (ST->isTargetLinux()) {
1476      TlsReg = X86::GS;
1477      TlsOffset = 0x30;
1478    } else if (ST->isTargetDarwin()) {
1479      TlsReg = X86::GS;
1480      TlsOffset = 0x48 + 90*4;
1481    } else if (ST->isTargetWin32()) {
1482      TlsReg = X86::FS;
1483      TlsOffset = 0x14; // pvArbitrary, reserved for application use
1484    } else if (ST->isTargetFreeBSD()) {
1485      report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
1486    } else {
1487      report_fatal_error("Segmented stacks not supported on this platform.");
1488    }
1489
1490    if (CompareStackPointer)
1491      ScratchReg = X86::ESP;
1492    else
1493      BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
1494        .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
1495
1496    if (ST->isTargetLinux() || ST->isTargetWin32()) {
1497      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
1498        .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
1499    } else if (ST->isTargetDarwin()) {
1500
1501      // TlsOffset doesn't fit into a mod r/m byte so we need an extra register
1502      unsigned ScratchReg2;
1503      bool SaveScratch2;
1504      if (CompareStackPointer) {
1505        // The primary scratch register is available for holding the TLS offset
1506        ScratchReg2 = GetScratchRegister(Is64Bit, MF, true);
1507        SaveScratch2 = false;
1508      } else {
1509        // Need to use a second register to hold the TLS offset
1510        ScratchReg2 = GetScratchRegister(Is64Bit, MF, false);
1511
1512        // Unfortunately, with fastcc the second scratch register may hold an arg
1513        SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
1514      }
1515
1516      // If Scratch2 is live-in then it needs to be saved
1517      assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
1518             "Scratch register is live-in and not saved");
1519
1520      if (SaveScratch2)
1521        BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
1522          .addReg(ScratchReg2, RegState::Kill);
1523
1524      BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
1525        .addImm(TlsOffset);
1526      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
1527        .addReg(ScratchReg)
1528        .addReg(ScratchReg2).addImm(1).addReg(0)
1529        .addImm(0)
1530        .addReg(TlsReg);
1531
1532      if (SaveScratch2)
1533        BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
1534    }
1535  }
1536
1537  // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
1538  // It jumps to normal execution of the function body.
1539  BuildMI(checkMBB, DL, TII.get(X86::JA_4)).addMBB(&prologueMBB);
1540
1541  // On 32 bit we first push the arguments size and then the frame size. On 64
1542  // bit, we pass the stack frame size in r10 and the argument size in r11.
1543  if (Is64Bit) {
1544    // Functions with nested arguments use R10, so it needs to be saved across
1545    // the call to _morestack
1546
1547    if (IsNested)
1548      BuildMI(allocMBB, DL, TII.get(X86::MOV64rr), X86::RAX).addReg(X86::R10);
1549
1550    BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R10)
1551      .addImm(StackSize);
1552    BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R11)
1553      .addImm(X86FI->getArgumentStackSize());
1554    MF.getRegInfo().setPhysRegUsed(X86::R10);
1555    MF.getRegInfo().setPhysRegUsed(X86::R11);
1556  } else {
1557    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
1558      .addImm(X86FI->getArgumentStackSize());
1559    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
1560      .addImm(StackSize);
1561  }
1562
1563  // __morestack is in libgcc
1564  if (Is64Bit)
1565    BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
1566      .addExternalSymbol("__morestack");
1567  else
1568    BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
1569      .addExternalSymbol("__morestack");
1570
1571  if (IsNested)
1572    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
1573  else
1574    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
1575
1576  allocMBB->addSuccessor(&prologueMBB);
1577
1578  checkMBB->addSuccessor(allocMBB);
1579  checkMBB->addSuccessor(&prologueMBB);
1580
1581#ifdef XDEBUG
1582  MF.verify();
1583#endif
1584}
1585