1//===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides X86 specific target descriptions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86MCTargetDesc.h"
15#include "X86MCAsmInfo.h"
16#include "InstPrinter/X86ATTInstPrinter.h"
17#include "InstPrinter/X86IntelInstPrinter.h"
18#include "llvm/MC/MachineLocation.h"
19#include "llvm/MC/MCCodeGenInfo.h"
20#include "llvm/MC/MCInstrAnalysis.h"
21#include "llvm/MC/MCInstrInfo.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/MC/MCStreamer.h"
24#include "llvm/MC/MCSubtargetInfo.h"
25#include "llvm/ADT/Triple.h"
26#include "llvm/Support/Host.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/TargetRegistry.h"
29
30#define GET_REGINFO_MC_DESC
31#include "X86GenRegisterInfo.inc"
32
33#define GET_INSTRINFO_MC_DESC
34#include "X86GenInstrInfo.inc"
35
36#define GET_SUBTARGETINFO_MC_DESC
37#include "X86GenSubtargetInfo.inc"
38
39#if _MSC_VER
40#include <intrin.h>
41#endif
42
43using namespace llvm;
44
45
46std::string X86_MC::ParseX86Triple(StringRef TT) {
47  Triple TheTriple(TT);
48  std::string FS;
49  if (TheTriple.getArch() == Triple::x86_64)
50    FS = "+64bit-mode";
51  else
52    FS = "-64bit-mode";
53  return FS;
54}
55
56/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
57/// specified arguments.  If we can't run cpuid on the host, return true.
58bool X86_MC::GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
59                             unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
60#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
61  #if defined(__GNUC__)
62    // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
63    asm ("movq\t%%rbx, %%rsi\n\t"
64         "cpuid\n\t"
65         "xchgq\t%%rbx, %%rsi\n\t"
66         : "=a" (*rEAX),
67           "=S" (*rEBX),
68           "=c" (*rECX),
69           "=d" (*rEDX)
70         :  "a" (value));
71    return false;
72  #elif defined(_MSC_VER)
73    int registers[4];
74    __cpuid(registers, value);
75    *rEAX = registers[0];
76    *rEBX = registers[1];
77    *rECX = registers[2];
78    *rEDX = registers[3];
79    return false;
80  #else
81    return true;
82  #endif
83#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
84  #if defined(__GNUC__)
85    asm ("movl\t%%ebx, %%esi\n\t"
86         "cpuid\n\t"
87         "xchgl\t%%ebx, %%esi\n\t"
88         : "=a" (*rEAX),
89           "=S" (*rEBX),
90           "=c" (*rECX),
91           "=d" (*rEDX)
92         :  "a" (value));
93    return false;
94  #elif defined(_MSC_VER)
95    __asm {
96      mov   eax,value
97      cpuid
98      mov   esi,rEAX
99      mov   dword ptr [esi],eax
100      mov   esi,rEBX
101      mov   dword ptr [esi],ebx
102      mov   esi,rECX
103      mov   dword ptr [esi],ecx
104      mov   esi,rEDX
105      mov   dword ptr [esi],edx
106    }
107    return false;
108  #else
109    return true;
110  #endif
111#else
112  return true;
113#endif
114}
115
116/// GetCpuIDAndInfoEx - Execute the specified cpuid with subleaf and return the
117/// 4 values in the specified arguments.  If we can't run cpuid on the host,
118/// return true.
119bool X86_MC::GetCpuIDAndInfoEx(unsigned value, unsigned subleaf, unsigned *rEAX,
120                               unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
121#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
122  #if defined(__GNUC__)
123    // gcc desn't know cpuid would clobber ebx/rbx. Preseve it manually.
124    asm ("movq\t%%rbx, %%rsi\n\t"
125         "cpuid\n\t"
126         "xchgq\t%%rbx, %%rsi\n\t"
127         : "=a" (*rEAX),
128           "=S" (*rEBX),
129           "=c" (*rECX),
130           "=d" (*rEDX)
131         :  "a" (value),
132            "c" (subleaf));
133    return false;
134  #elif defined(_MSC_VER)
135    // __cpuidex was added in MSVC++ 9.0 SP1
136    #if (_MSC_VER > 1500) || (_MSC_VER == 1500 && _MSC_FULL_VER >= 150030729)
137      int registers[4];
138      __cpuidex(registers, value, subleaf);
139      *rEAX = registers[0];
140      *rEBX = registers[1];
141      *rECX = registers[2];
142      *rEDX = registers[3];
143      return false;
144    #else
145      return true;
146    #endif
147  #else
148    return true;
149  #endif
150#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
151  #if defined(__GNUC__)
152    asm ("movl\t%%ebx, %%esi\n\t"
153         "cpuid\n\t"
154         "xchgl\t%%ebx, %%esi\n\t"
155         : "=a" (*rEAX),
156           "=S" (*rEBX),
157           "=c" (*rECX),
158           "=d" (*rEDX)
159         :  "a" (value),
160            "c" (subleaf));
161    return false;
162  #elif defined(_MSC_VER)
163    __asm {
164      mov   eax,value
165      mov   ecx,subleaf
166      cpuid
167      mov   esi,rEAX
168      mov   dword ptr [esi],eax
169      mov   esi,rEBX
170      mov   dword ptr [esi],ebx
171      mov   esi,rECX
172      mov   dword ptr [esi],ecx
173      mov   esi,rEDX
174      mov   dword ptr [esi],edx
175    }
176    return false;
177  #else
178    return true;
179  #endif
180#else
181  return true;
182#endif
183}
184
185void X86_MC::DetectFamilyModel(unsigned EAX, unsigned &Family,
186                               unsigned &Model) {
187  Family = (EAX >> 8) & 0xf; // Bits 8 - 11
188  Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
189  if (Family == 6 || Family == 0xf) {
190    if (Family == 0xf)
191      // Examine extended family ID if family ID is F.
192      Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
193    // Examine extended model ID if family ID is 6 or F.
194    Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
195  }
196}
197
198unsigned X86_MC::getDwarfRegFlavour(StringRef TT, bool isEH) {
199  Triple TheTriple(TT);
200  if (TheTriple.getArch() == Triple::x86_64)
201    return DWARFFlavour::X86_64;
202
203  if (TheTriple.isOSDarwin())
204    return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
205  if (TheTriple.getOS() == Triple::MinGW32 ||
206      TheTriple.getOS() == Triple::Cygwin)
207    // Unsupported by now, just quick fallback
208    return DWARFFlavour::X86_32_Generic;
209  return DWARFFlavour::X86_32_Generic;
210}
211
212/// getX86RegNum - This function maps LLVM register identifiers to their X86
213/// specific numbering, which is used in various places encoding instructions.
214unsigned X86_MC::getX86RegNum(unsigned RegNo) {
215  switch(RegNo) {
216  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
217  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
218  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
219  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
220  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
221    return N86::ESP;
222  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
223    return N86::EBP;
224  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
225    return N86::ESI;
226  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
227    return N86::EDI;
228
229  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
230    return N86::EAX;
231  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
232    return N86::ECX;
233  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
234    return N86::EDX;
235  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
236    return N86::EBX;
237  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
238    return N86::ESP;
239  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
240    return N86::EBP;
241  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
242    return N86::ESI;
243  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
244    return N86::EDI;
245
246  case X86::ST0: return 0;
247  case X86::ST1: return 1;
248  case X86::ST2: return 2;
249  case X86::ST3: return 3;
250  case X86::ST4: return 4;
251  case X86::ST5: return 5;
252  case X86::ST6: return 6;
253  case X86::ST7: return 7;
254
255  case X86::XMM0: case X86::XMM8:
256  case X86::YMM0: case X86::YMM8: case X86::MM0:
257    return 0;
258  case X86::XMM1: case X86::XMM9:
259  case X86::YMM1: case X86::YMM9: case X86::MM1:
260    return 1;
261  case X86::XMM2: case X86::XMM10:
262  case X86::YMM2: case X86::YMM10: case X86::MM2:
263    return 2;
264  case X86::XMM3: case X86::XMM11:
265  case X86::YMM3: case X86::YMM11: case X86::MM3:
266    return 3;
267  case X86::XMM4: case X86::XMM12:
268  case X86::YMM4: case X86::YMM12: case X86::MM4:
269    return 4;
270  case X86::XMM5: case X86::XMM13:
271  case X86::YMM5: case X86::YMM13: case X86::MM5:
272    return 5;
273  case X86::XMM6: case X86::XMM14:
274  case X86::YMM6: case X86::YMM14: case X86::MM6:
275    return 6;
276  case X86::XMM7: case X86::XMM15:
277  case X86::YMM7: case X86::YMM15: case X86::MM7:
278    return 7;
279
280  case X86::ES: return 0;
281  case X86::CS: return 1;
282  case X86::SS: return 2;
283  case X86::DS: return 3;
284  case X86::FS: return 4;
285  case X86::GS: return 5;
286
287  case X86::CR0: case X86::CR8 : case X86::DR0: return 0;
288  case X86::CR1: case X86::CR9 : case X86::DR1: return 1;
289  case X86::CR2: case X86::CR10: case X86::DR2: return 2;
290  case X86::CR3: case X86::CR11: case X86::DR3: return 3;
291  case X86::CR4: case X86::CR12: case X86::DR4: return 4;
292  case X86::CR5: case X86::CR13: case X86::DR5: return 5;
293  case X86::CR6: case X86::CR14: case X86::DR6: return 6;
294  case X86::CR7: case X86::CR15: case X86::DR7: return 7;
295
296  // Pseudo index registers are equivalent to a "none"
297  // scaled index (See Intel Manual 2A, table 2-3)
298  case X86::EIZ:
299  case X86::RIZ:
300    return 4;
301
302  default:
303    assert((int(RegNo) > 0) && "Unknown physical register!");
304    return 0;
305  }
306}
307
308void X86_MC::InitLLVM2SEHRegisterMapping(MCRegisterInfo *MRI) {
309  // FIXME: TableGen these.
310  for (unsigned Reg = X86::NoRegister+1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
311    int SEH = X86_MC::getX86RegNum(Reg);
312    switch (Reg) {
313    case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
314    case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
315    case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
316    case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
317    case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
318    case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
319    case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
320    case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
321    case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
322    case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
323    case X86::YMM8:  case X86::YMM9:  case X86::YMM10: case X86::YMM11:
324    case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
325      SEH += 8;
326      break;
327    }
328    MRI->mapLLVMRegToSEHReg(Reg, SEH);
329  }
330}
331
332MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(StringRef TT, StringRef CPU,
333                                                  StringRef FS) {
334  std::string ArchFS = X86_MC::ParseX86Triple(TT);
335  if (!FS.empty()) {
336    if (!ArchFS.empty())
337      ArchFS = ArchFS + "," + FS.str();
338    else
339      ArchFS = FS;
340  }
341
342  std::string CPUName = CPU;
343  if (CPUName.empty()) {
344#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
345    || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
346    CPUName = sys::getHostCPUName();
347#else
348    CPUName = "generic";
349#endif
350  }
351
352  MCSubtargetInfo *X = new MCSubtargetInfo();
353  InitX86MCSubtargetInfo(X, TT, CPUName, ArchFS);
354  return X;
355}
356
357static MCInstrInfo *createX86MCInstrInfo() {
358  MCInstrInfo *X = new MCInstrInfo();
359  InitX86MCInstrInfo(X);
360  return X;
361}
362
363static MCRegisterInfo *createX86MCRegisterInfo(StringRef TT) {
364  Triple TheTriple(TT);
365  unsigned RA = (TheTriple.getArch() == Triple::x86_64)
366    ? X86::RIP     // Should have dwarf #16.
367    : X86::EIP;    // Should have dwarf #8.
368
369  MCRegisterInfo *X = new MCRegisterInfo();
370  InitX86MCRegisterInfo(X, RA,
371                        X86_MC::getDwarfRegFlavour(TT, false),
372                        X86_MC::getDwarfRegFlavour(TT, true));
373  X86_MC::InitLLVM2SEHRegisterMapping(X);
374  return X;
375}
376
377static MCAsmInfo *createX86MCAsmInfo(const Target &T, StringRef TT) {
378  Triple TheTriple(TT);
379  bool is64Bit = TheTriple.getArch() == Triple::x86_64;
380
381  MCAsmInfo *MAI;
382  if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) {
383    if (is64Bit)
384      MAI = new X86_64MCAsmInfoDarwin(TheTriple);
385    else
386      MAI = new X86MCAsmInfoDarwin(TheTriple);
387  } else if (TheTriple.getOS() == Triple::Win32) {
388    MAI = new X86MCAsmInfoMicrosoft(TheTriple);
389  } else if (TheTriple.getOS() == Triple::MinGW32 || TheTriple.getOS() == Triple::Cygwin) {
390    MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
391  } else {
392    MAI = new X86ELFMCAsmInfo(TheTriple);
393  }
394
395  // Initialize initial frame state.
396  // Calculate amount of bytes used for return address storing
397  int stackGrowth = is64Bit ? -8 : -4;
398
399  // Initial state of the frame pointer is esp+stackGrowth.
400  MachineLocation Dst(MachineLocation::VirtualFP);
401  MachineLocation Src(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
402  MAI->addInitialFrameState(0, Dst, Src);
403
404  // Add return address to move list
405  MachineLocation CSDst(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
406  MachineLocation CSSrc(is64Bit ? X86::RIP : X86::EIP);
407  MAI->addInitialFrameState(0, CSDst, CSSrc);
408
409  return MAI;
410}
411
412static MCCodeGenInfo *createX86MCCodeGenInfo(StringRef TT, Reloc::Model RM,
413                                             CodeModel::Model CM,
414                                             CodeGenOpt::Level OL) {
415  MCCodeGenInfo *X = new MCCodeGenInfo();
416
417  Triple T(TT);
418  bool is64Bit = T.getArch() == Triple::x86_64;
419
420  if (RM == Reloc::Default) {
421    // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
422    // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
423    // use static relocation model by default.
424    if (T.isOSDarwin()) {
425      if (is64Bit)
426        RM = Reloc::PIC_;
427      else
428        RM = Reloc::DynamicNoPIC;
429    } else if (T.isOSWindows() && is64Bit)
430      RM = Reloc::PIC_;
431    else
432      RM = Reloc::Static;
433  }
434
435  // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
436  // is defined as a model for code which may be used in static or dynamic
437  // executables but not necessarily a shared library. On X86-32 we just
438  // compile in -static mode, in x86-64 we use PIC.
439  if (RM == Reloc::DynamicNoPIC) {
440    if (is64Bit)
441      RM = Reloc::PIC_;
442    else if (!T.isOSDarwin())
443      RM = Reloc::Static;
444  }
445
446  // If we are on Darwin, disallow static relocation model in X86-64 mode, since
447  // the Mach-O file format doesn't support it.
448  if (RM == Reloc::Static && T.isOSDarwin() && is64Bit)
449    RM = Reloc::PIC_;
450
451  // For static codegen, if we're not already set, use Small codegen.
452  if (CM == CodeModel::Default)
453    CM = CodeModel::Small;
454  else if (CM == CodeModel::JITDefault)
455    // 64-bit JIT places everything in the same buffer except external funcs.
456    CM = is64Bit ? CodeModel::Large : CodeModel::Small;
457
458  X->InitMCCodeGenInfo(RM, CM, OL);
459  return X;
460}
461
462static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
463                                    MCContext &Ctx, MCAsmBackend &MAB,
464                                    raw_ostream &_OS,
465                                    MCCodeEmitter *_Emitter,
466                                    bool RelaxAll,
467                                    bool NoExecStack) {
468  Triple TheTriple(TT);
469
470  if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
471    return createMachOStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll);
472
473  if (TheTriple.isOSWindows())
474    return createWinCOFFStreamer(Ctx, MAB, *_Emitter, _OS, RelaxAll);
475
476  return createELFStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll, NoExecStack);
477}
478
479static MCInstPrinter *createX86MCInstPrinter(const Target &T,
480                                             unsigned SyntaxVariant,
481                                             const MCAsmInfo &MAI,
482                                             const MCInstrInfo &MII,
483                                             const MCRegisterInfo &MRI,
484                                             const MCSubtargetInfo &STI) {
485  if (SyntaxVariant == 0)
486    return new X86ATTInstPrinter(MAI, MII, MRI);
487  if (SyntaxVariant == 1)
488    return new X86IntelInstPrinter(MAI, MII, MRI);
489  return 0;
490}
491
492static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
493  return new MCInstrAnalysis(Info);
494}
495
496// Force static initialization.
497extern "C" void LLVMInitializeX86TargetMC() {
498  // Register the MC asm info.
499  RegisterMCAsmInfoFn A(TheX86_32Target, createX86MCAsmInfo);
500  RegisterMCAsmInfoFn B(TheX86_64Target, createX86MCAsmInfo);
501
502  // Register the MC codegen info.
503  RegisterMCCodeGenInfoFn C(TheX86_32Target, createX86MCCodeGenInfo);
504  RegisterMCCodeGenInfoFn D(TheX86_64Target, createX86MCCodeGenInfo);
505
506  // Register the MC instruction info.
507  TargetRegistry::RegisterMCInstrInfo(TheX86_32Target, createX86MCInstrInfo);
508  TargetRegistry::RegisterMCInstrInfo(TheX86_64Target, createX86MCInstrInfo);
509
510  // Register the MC register info.
511  TargetRegistry::RegisterMCRegInfo(TheX86_32Target, createX86MCRegisterInfo);
512  TargetRegistry::RegisterMCRegInfo(TheX86_64Target, createX86MCRegisterInfo);
513
514  // Register the MC subtarget info.
515  TargetRegistry::RegisterMCSubtargetInfo(TheX86_32Target,
516                                          X86_MC::createX86MCSubtargetInfo);
517  TargetRegistry::RegisterMCSubtargetInfo(TheX86_64Target,
518                                          X86_MC::createX86MCSubtargetInfo);
519
520  // Register the MC instruction analyzer.
521  TargetRegistry::RegisterMCInstrAnalysis(TheX86_32Target,
522                                          createX86MCInstrAnalysis);
523  TargetRegistry::RegisterMCInstrAnalysis(TheX86_64Target,
524                                          createX86MCInstrAnalysis);
525
526  // Register the code emitter.
527  TargetRegistry::RegisterMCCodeEmitter(TheX86_32Target,
528                                        createX86MCCodeEmitter);
529  TargetRegistry::RegisterMCCodeEmitter(TheX86_64Target,
530                                        createX86MCCodeEmitter);
531
532  // Register the asm backend.
533  TargetRegistry::RegisterMCAsmBackend(TheX86_32Target,
534                                       createX86_32AsmBackend);
535  TargetRegistry::RegisterMCAsmBackend(TheX86_64Target,
536                                       createX86_64AsmBackend);
537
538  // Register the object streamer.
539  TargetRegistry::RegisterMCObjectStreamer(TheX86_32Target,
540                                           createMCStreamer);
541  TargetRegistry::RegisterMCObjectStreamer(TheX86_64Target,
542                                           createMCStreamer);
543
544  // Register the MCInstPrinter.
545  TargetRegistry::RegisterMCInstPrinter(TheX86_32Target,
546                                        createX86MCInstPrinter);
547  TargetRegistry::RegisterMCInstPrinter(TheX86_64Target,
548                                        createX86MCInstPrinter);
549}
550