1//===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the writing of the LLVM IR as a set of C++ calls to the
11// LLVM IR interface. The input module is assumed to be verified.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CPPTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instruction.h"
21#include "llvm/Instructions.h"
22#include "llvm/Module.h"
23#include "llvm/Pass.h"
24#include "llvm/PassManager.h"
25#include "llvm/MC/MCAsmInfo.h"
26#include "llvm/MC/MCInstrInfo.h"
27#include "llvm/MC/MCSubtargetInfo.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/FormattedStream.h"
32#include "llvm/Support/TargetRegistry.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Config/config.h"
35#include <algorithm>
36#include <cstdio>
37#include <map>
38#include <set>
39using namespace llvm;
40
41static cl::opt<std::string>
42FuncName("cppfname", cl::desc("Specify the name of the generated function"),
43         cl::value_desc("function name"));
44
45enum WhatToGenerate {
46  GenProgram,
47  GenModule,
48  GenContents,
49  GenFunction,
50  GenFunctions,
51  GenInline,
52  GenVariable,
53  GenType
54};
55
56static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
57  cl::desc("Choose what kind of output to generate"),
58  cl::init(GenProgram),
59  cl::values(
60    clEnumValN(GenProgram,  "program",   "Generate a complete program"),
61    clEnumValN(GenModule,   "module",    "Generate a module definition"),
62    clEnumValN(GenContents, "contents",  "Generate contents of a module"),
63    clEnumValN(GenFunction, "function",  "Generate a function definition"),
64    clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
65    clEnumValN(GenInline,   "inline",    "Generate an inline function"),
66    clEnumValN(GenVariable, "variable",  "Generate a variable definition"),
67    clEnumValN(GenType,     "type",      "Generate a type definition"),
68    clEnumValEnd
69  )
70);
71
72static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
73  cl::desc("Specify the name of the thing to generate"),
74  cl::init("!bad!"));
75
76extern "C" void LLVMInitializeCppBackendTarget() {
77  // Register the target.
78  RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
79}
80
81namespace {
82  typedef std::vector<Type*> TypeList;
83  typedef std::map<Type*,std::string> TypeMap;
84  typedef std::map<const Value*,std::string> ValueMap;
85  typedef std::set<std::string> NameSet;
86  typedef std::set<Type*> TypeSet;
87  typedef std::set<const Value*> ValueSet;
88  typedef std::map<const Value*,std::string> ForwardRefMap;
89
90  /// CppWriter - This class is the main chunk of code that converts an LLVM
91  /// module to a C++ translation unit.
92  class CppWriter : public ModulePass {
93    formatted_raw_ostream &Out;
94    const Module *TheModule;
95    uint64_t uniqueNum;
96    TypeMap TypeNames;
97    ValueMap ValueNames;
98    NameSet UsedNames;
99    TypeSet DefinedTypes;
100    ValueSet DefinedValues;
101    ForwardRefMap ForwardRefs;
102    bool is_inline;
103    unsigned indent_level;
104
105  public:
106    static char ID;
107    explicit CppWriter(formatted_raw_ostream &o) :
108      ModulePass(ID), Out(o), uniqueNum(0), is_inline(false), indent_level(0){}
109
110    virtual const char *getPassName() const { return "C++ backend"; }
111
112    bool runOnModule(Module &M);
113
114    void printProgram(const std::string& fname, const std::string& modName );
115    void printModule(const std::string& fname, const std::string& modName );
116    void printContents(const std::string& fname, const std::string& modName );
117    void printFunction(const std::string& fname, const std::string& funcName );
118    void printFunctions();
119    void printInline(const std::string& fname, const std::string& funcName );
120    void printVariable(const std::string& fname, const std::string& varName );
121    void printType(const std::string& fname, const std::string& typeName );
122
123    void error(const std::string& msg);
124
125
126    formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
127    inline void in() { indent_level++; }
128    inline void out() { if (indent_level >0) indent_level--; }
129
130  private:
131    void printLinkageType(GlobalValue::LinkageTypes LT);
132    void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
133    void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM);
134    void printCallingConv(CallingConv::ID cc);
135    void printEscapedString(const std::string& str);
136    void printCFP(const ConstantFP* CFP);
137
138    std::string getCppName(Type* val);
139    inline void printCppName(Type* val);
140
141    std::string getCppName(const Value* val);
142    inline void printCppName(const Value* val);
143
144    void printAttributes(const AttrListPtr &PAL, const std::string &name);
145    void printType(Type* Ty);
146    void printTypes(const Module* M);
147
148    void printConstant(const Constant *CPV);
149    void printConstants(const Module* M);
150
151    void printVariableUses(const GlobalVariable *GV);
152    void printVariableHead(const GlobalVariable *GV);
153    void printVariableBody(const GlobalVariable *GV);
154
155    void printFunctionUses(const Function *F);
156    void printFunctionHead(const Function *F);
157    void printFunctionBody(const Function *F);
158    void printInstruction(const Instruction *I, const std::string& bbname);
159    std::string getOpName(const Value*);
160
161    void printModuleBody();
162  };
163} // end anonymous namespace.
164
165formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
166  Out << '\n';
167  if (delta >= 0 || indent_level >= unsigned(-delta))
168    indent_level += delta;
169  Out.indent(indent_level);
170  return Out;
171}
172
173static inline void sanitize(std::string &str) {
174  for (size_t i = 0; i < str.length(); ++i)
175    if (!isalnum(str[i]) && str[i] != '_')
176      str[i] = '_';
177}
178
179static std::string getTypePrefix(Type *Ty) {
180  switch (Ty->getTypeID()) {
181  case Type::VoidTyID:     return "void_";
182  case Type::IntegerTyID:
183    return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
184  case Type::FloatTyID:    return "float_";
185  case Type::DoubleTyID:   return "double_";
186  case Type::LabelTyID:    return "label_";
187  case Type::FunctionTyID: return "func_";
188  case Type::StructTyID:   return "struct_";
189  case Type::ArrayTyID:    return "array_";
190  case Type::PointerTyID:  return "ptr_";
191  case Type::VectorTyID:   return "packed_";
192  default:                 return "other_";
193  }
194}
195
196void CppWriter::error(const std::string& msg) {
197  report_fatal_error(msg);
198}
199
200static inline std::string ftostr(const APFloat& V) {
201  std::string Buf;
202  if (&V.getSemantics() == &APFloat::IEEEdouble) {
203    raw_string_ostream(Buf) << V.convertToDouble();
204    return Buf;
205  } else if (&V.getSemantics() == &APFloat::IEEEsingle) {
206    raw_string_ostream(Buf) << (double)V.convertToFloat();
207    return Buf;
208  }
209  return "<unknown format in ftostr>"; // error
210}
211
212// printCFP - Print a floating point constant .. very carefully :)
213// This makes sure that conversion to/from floating yields the same binary
214// result so that we don't lose precision.
215void CppWriter::printCFP(const ConstantFP *CFP) {
216  bool ignored;
217  APFloat APF = APFloat(CFP->getValueAPF());  // copy
218  if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
219    APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
220  Out << "ConstantFP::get(mod->getContext(), ";
221  Out << "APFloat(";
222#if HAVE_PRINTF_A
223  char Buffer[100];
224  sprintf(Buffer, "%A", APF.convertToDouble());
225  if ((!strncmp(Buffer, "0x", 2) ||
226       !strncmp(Buffer, "-0x", 3) ||
227       !strncmp(Buffer, "+0x", 3)) &&
228      APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
229    if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
230      Out << "BitsToDouble(" << Buffer << ")";
231    else
232      Out << "BitsToFloat((float)" << Buffer << ")";
233    Out << ")";
234  } else {
235#endif
236    std::string StrVal = ftostr(CFP->getValueAPF());
237
238    while (StrVal[0] == ' ')
239      StrVal.erase(StrVal.begin());
240
241    // Check to make sure that the stringized number is not some string like
242    // "Inf" or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
243    if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
244         ((StrVal[0] == '-' || StrVal[0] == '+') &&
245          (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
246        (CFP->isExactlyValue(atof(StrVal.c_str())))) {
247      if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
248        Out <<  StrVal;
249      else
250        Out << StrVal << "f";
251    } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
252      Out << "BitsToDouble(0x"
253          << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
254          << "ULL) /* " << StrVal << " */";
255    else
256      Out << "BitsToFloat(0x"
257          << utohexstr((uint32_t)CFP->getValueAPF().
258                                      bitcastToAPInt().getZExtValue())
259          << "U) /* " << StrVal << " */";
260    Out << ")";
261#if HAVE_PRINTF_A
262  }
263#endif
264  Out << ")";
265}
266
267void CppWriter::printCallingConv(CallingConv::ID cc){
268  // Print the calling convention.
269  switch (cc) {
270  case CallingConv::C:     Out << "CallingConv::C"; break;
271  case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
272  case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
273  case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
274  default:                 Out << cc; break;
275  }
276}
277
278void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
279  switch (LT) {
280  case GlobalValue::InternalLinkage:
281    Out << "GlobalValue::InternalLinkage"; break;
282  case GlobalValue::PrivateLinkage:
283    Out << "GlobalValue::PrivateLinkage"; break;
284  case GlobalValue::LinkerPrivateLinkage:
285    Out << "GlobalValue::LinkerPrivateLinkage"; break;
286  case GlobalValue::LinkerPrivateWeakLinkage:
287    Out << "GlobalValue::LinkerPrivateWeakLinkage"; break;
288  case GlobalValue::AvailableExternallyLinkage:
289    Out << "GlobalValue::AvailableExternallyLinkage "; break;
290  case GlobalValue::LinkOnceAnyLinkage:
291    Out << "GlobalValue::LinkOnceAnyLinkage "; break;
292  case GlobalValue::LinkOnceODRLinkage:
293    Out << "GlobalValue::LinkOnceODRLinkage "; break;
294  case GlobalValue::LinkOnceODRAutoHideLinkage:
295    Out << "GlobalValue::LinkOnceODRAutoHideLinkage"; break;
296  case GlobalValue::WeakAnyLinkage:
297    Out << "GlobalValue::WeakAnyLinkage"; break;
298  case GlobalValue::WeakODRLinkage:
299    Out << "GlobalValue::WeakODRLinkage"; break;
300  case GlobalValue::AppendingLinkage:
301    Out << "GlobalValue::AppendingLinkage"; break;
302  case GlobalValue::ExternalLinkage:
303    Out << "GlobalValue::ExternalLinkage"; break;
304  case GlobalValue::DLLImportLinkage:
305    Out << "GlobalValue::DLLImportLinkage"; break;
306  case GlobalValue::DLLExportLinkage:
307    Out << "GlobalValue::DLLExportLinkage"; break;
308  case GlobalValue::ExternalWeakLinkage:
309    Out << "GlobalValue::ExternalWeakLinkage"; break;
310  case GlobalValue::CommonLinkage:
311    Out << "GlobalValue::CommonLinkage"; break;
312  }
313}
314
315void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
316  switch (VisType) {
317  case GlobalValue::DefaultVisibility:
318    Out << "GlobalValue::DefaultVisibility";
319    break;
320  case GlobalValue::HiddenVisibility:
321    Out << "GlobalValue::HiddenVisibility";
322    break;
323  case GlobalValue::ProtectedVisibility:
324    Out << "GlobalValue::ProtectedVisibility";
325    break;
326  }
327}
328
329void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) {
330  switch (TLM) {
331    case GlobalVariable::NotThreadLocal:
332      Out << "GlobalVariable::NotThreadLocal";
333      break;
334    case GlobalVariable::GeneralDynamicTLSModel:
335      Out << "GlobalVariable::GeneralDynamicTLSModel";
336      break;
337    case GlobalVariable::LocalDynamicTLSModel:
338      Out << "GlobalVariable::LocalDynamicTLSModel";
339      break;
340    case GlobalVariable::InitialExecTLSModel:
341      Out << "GlobalVariable::InitialExecTLSModel";
342      break;
343    case GlobalVariable::LocalExecTLSModel:
344      Out << "GlobalVariable::LocalExecTLSModel";
345      break;
346  }
347}
348
349// printEscapedString - Print each character of the specified string, escaping
350// it if it is not printable or if it is an escape char.
351void CppWriter::printEscapedString(const std::string &Str) {
352  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
353    unsigned char C = Str[i];
354    if (isprint(C) && C != '"' && C != '\\') {
355      Out << C;
356    } else {
357      Out << "\\x"
358          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
359          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
360    }
361  }
362}
363
364std::string CppWriter::getCppName(Type* Ty) {
365  // First, handle the primitive types .. easy
366  if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
367    switch (Ty->getTypeID()) {
368    case Type::VoidTyID:   return "Type::getVoidTy(mod->getContext())";
369    case Type::IntegerTyID: {
370      unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
371      return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
372    }
373    case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(mod->getContext())";
374    case Type::FloatTyID:    return "Type::getFloatTy(mod->getContext())";
375    case Type::DoubleTyID:   return "Type::getDoubleTy(mod->getContext())";
376    case Type::LabelTyID:    return "Type::getLabelTy(mod->getContext())";
377    case Type::X86_MMXTyID:  return "Type::getX86_MMXTy(mod->getContext())";
378    default:
379      error("Invalid primitive type");
380      break;
381    }
382    // shouldn't be returned, but make it sensible
383    return "Type::getVoidTy(mod->getContext())";
384  }
385
386  // Now, see if we've seen the type before and return that
387  TypeMap::iterator I = TypeNames.find(Ty);
388  if (I != TypeNames.end())
389    return I->second;
390
391  // Okay, let's build a new name for this type. Start with a prefix
392  const char* prefix = 0;
393  switch (Ty->getTypeID()) {
394  case Type::FunctionTyID:    prefix = "FuncTy_"; break;
395  case Type::StructTyID:      prefix = "StructTy_"; break;
396  case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
397  case Type::PointerTyID:     prefix = "PointerTy_"; break;
398  case Type::VectorTyID:      prefix = "VectorTy_"; break;
399  default:                    prefix = "OtherTy_"; break; // prevent breakage
400  }
401
402  // See if the type has a name in the symboltable and build accordingly
403  std::string name;
404  if (StructType *STy = dyn_cast<StructType>(Ty))
405    if (STy->hasName())
406      name = STy->getName();
407
408  if (name.empty())
409    name = utostr(uniqueNum++);
410
411  name = std::string(prefix) + name;
412  sanitize(name);
413
414  // Save the name
415  return TypeNames[Ty] = name;
416}
417
418void CppWriter::printCppName(Type* Ty) {
419  printEscapedString(getCppName(Ty));
420}
421
422std::string CppWriter::getCppName(const Value* val) {
423  std::string name;
424  ValueMap::iterator I = ValueNames.find(val);
425  if (I != ValueNames.end() && I->first == val)
426    return  I->second;
427
428  if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
429    name = std::string("gvar_") +
430      getTypePrefix(GV->getType()->getElementType());
431  } else if (isa<Function>(val)) {
432    name = std::string("func_");
433  } else if (const Constant* C = dyn_cast<Constant>(val)) {
434    name = std::string("const_") + getTypePrefix(C->getType());
435  } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
436    if (is_inline) {
437      unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
438                                      Function::const_arg_iterator(Arg)) + 1;
439      name = std::string("arg_") + utostr(argNum);
440      NameSet::iterator NI = UsedNames.find(name);
441      if (NI != UsedNames.end())
442        name += std::string("_") + utostr(uniqueNum++);
443      UsedNames.insert(name);
444      return ValueNames[val] = name;
445    } else {
446      name = getTypePrefix(val->getType());
447    }
448  } else {
449    name = getTypePrefix(val->getType());
450  }
451  if (val->hasName())
452    name += val->getName();
453  else
454    name += utostr(uniqueNum++);
455  sanitize(name);
456  NameSet::iterator NI = UsedNames.find(name);
457  if (NI != UsedNames.end())
458    name += std::string("_") + utostr(uniqueNum++);
459  UsedNames.insert(name);
460  return ValueNames[val] = name;
461}
462
463void CppWriter::printCppName(const Value* val) {
464  printEscapedString(getCppName(val));
465}
466
467void CppWriter::printAttributes(const AttrListPtr &PAL,
468                                const std::string &name) {
469  Out << "AttrListPtr " << name << "_PAL;";
470  nl(Out);
471  if (!PAL.isEmpty()) {
472    Out << '{'; in(); nl(Out);
473    Out << "SmallVector<AttributeWithIndex, 4> Attrs;"; nl(Out);
474    Out << "AttributeWithIndex PAWI;"; nl(Out);
475    for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
476      unsigned index = PAL.getSlot(i).Index;
477      Attributes attrs = PAL.getSlot(i).Attrs;
478      Out << "PAWI.Index = " << index << "U; PAWI.Attrs = Attribute::None ";
479#define HANDLE_ATTR(X)                 \
480      if (attrs & Attribute::X)      \
481        Out << " | Attribute::" #X;  \
482      attrs &= ~Attribute::X;
483
484      HANDLE_ATTR(SExt);
485      HANDLE_ATTR(ZExt);
486      HANDLE_ATTR(NoReturn);
487      HANDLE_ATTR(InReg);
488      HANDLE_ATTR(StructRet);
489      HANDLE_ATTR(NoUnwind);
490      HANDLE_ATTR(NoAlias);
491      HANDLE_ATTR(ByVal);
492      HANDLE_ATTR(Nest);
493      HANDLE_ATTR(ReadNone);
494      HANDLE_ATTR(ReadOnly);
495      HANDLE_ATTR(NoInline);
496      HANDLE_ATTR(AlwaysInline);
497      HANDLE_ATTR(OptimizeForSize);
498      HANDLE_ATTR(StackProtect);
499      HANDLE_ATTR(StackProtectReq);
500      HANDLE_ATTR(NoCapture);
501      HANDLE_ATTR(NoRedZone);
502      HANDLE_ATTR(NoImplicitFloat);
503      HANDLE_ATTR(Naked);
504      HANDLE_ATTR(InlineHint);
505      HANDLE_ATTR(ReturnsTwice);
506      HANDLE_ATTR(UWTable);
507      HANDLE_ATTR(NonLazyBind);
508#undef HANDLE_ATTR
509      if (attrs & Attribute::StackAlignment)
510        Out << " | Attribute::constructStackAlignmentFromInt("
511            << attrs.getStackAlignment()
512            << ")";
513      attrs &= ~Attribute::StackAlignment;
514      assert(attrs == 0 && "Unhandled attribute!");
515      Out << ";";
516      nl(Out);
517      Out << "Attrs.push_back(PAWI);";
518      nl(Out);
519    }
520    Out << name << "_PAL = AttrListPtr::get(Attrs);";
521    nl(Out);
522    out(); nl(Out);
523    Out << '}'; nl(Out);
524  }
525}
526
527void CppWriter::printType(Type* Ty) {
528  // We don't print definitions for primitive types
529  if (Ty->isPrimitiveType() || Ty->isIntegerTy())
530    return;
531
532  // If we already defined this type, we don't need to define it again.
533  if (DefinedTypes.find(Ty) != DefinedTypes.end())
534    return;
535
536  // Everything below needs the name for the type so get it now.
537  std::string typeName(getCppName(Ty));
538
539  // Print the type definition
540  switch (Ty->getTypeID()) {
541  case Type::FunctionTyID:  {
542    FunctionType* FT = cast<FunctionType>(Ty);
543    Out << "std::vector<Type*>" << typeName << "_args;";
544    nl(Out);
545    FunctionType::param_iterator PI = FT->param_begin();
546    FunctionType::param_iterator PE = FT->param_end();
547    for (; PI != PE; ++PI) {
548      Type* argTy = static_cast<Type*>(*PI);
549      printType(argTy);
550      std::string argName(getCppName(argTy));
551      Out << typeName << "_args.push_back(" << argName;
552      Out << ");";
553      nl(Out);
554    }
555    printType(FT->getReturnType());
556    std::string retTypeName(getCppName(FT->getReturnType()));
557    Out << "FunctionType* " << typeName << " = FunctionType::get(";
558    in(); nl(Out) << "/*Result=*/" << retTypeName;
559    Out << ",";
560    nl(Out) << "/*Params=*/" << typeName << "_args,";
561    nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
562    out();
563    nl(Out);
564    break;
565  }
566  case Type::StructTyID: {
567    StructType* ST = cast<StructType>(Ty);
568    if (!ST->isLiteral()) {
569      Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
570      printEscapedString(ST->getName());
571      Out << "\");";
572      nl(Out);
573      Out << "if (!" << typeName << ") {";
574      nl(Out);
575      Out << typeName << " = ";
576      Out << "StructType::create(mod->getContext(), \"";
577      printEscapedString(ST->getName());
578      Out << "\");";
579      nl(Out);
580      Out << "}";
581      nl(Out);
582      // Indicate that this type is now defined.
583      DefinedTypes.insert(Ty);
584    }
585
586    Out << "std::vector<Type*>" << typeName << "_fields;";
587    nl(Out);
588    StructType::element_iterator EI = ST->element_begin();
589    StructType::element_iterator EE = ST->element_end();
590    for (; EI != EE; ++EI) {
591      Type* fieldTy = static_cast<Type*>(*EI);
592      printType(fieldTy);
593      std::string fieldName(getCppName(fieldTy));
594      Out << typeName << "_fields.push_back(" << fieldName;
595      Out << ");";
596      nl(Out);
597    }
598
599    if (ST->isLiteral()) {
600      Out << "StructType *" << typeName << " = ";
601      Out << "StructType::get(" << "mod->getContext(), ";
602    } else {
603      Out << "if (" << typeName << "->isOpaque()) {";
604      nl(Out);
605      Out << typeName << "->setBody(";
606    }
607
608    Out << typeName << "_fields, /*isPacked=*/"
609        << (ST->isPacked() ? "true" : "false") << ");";
610    nl(Out);
611    if (!ST->isLiteral()) {
612      Out << "}";
613      nl(Out);
614    }
615    break;
616  }
617  case Type::ArrayTyID: {
618    ArrayType* AT = cast<ArrayType>(Ty);
619    Type* ET = AT->getElementType();
620    printType(ET);
621    if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
622      std::string elemName(getCppName(ET));
623      Out << "ArrayType* " << typeName << " = ArrayType::get("
624          << elemName
625          << ", " << utostr(AT->getNumElements()) << ");";
626      nl(Out);
627    }
628    break;
629  }
630  case Type::PointerTyID: {
631    PointerType* PT = cast<PointerType>(Ty);
632    Type* ET = PT->getElementType();
633    printType(ET);
634    if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
635      std::string elemName(getCppName(ET));
636      Out << "PointerType* " << typeName << " = PointerType::get("
637          << elemName
638          << ", " << utostr(PT->getAddressSpace()) << ");";
639      nl(Out);
640    }
641    break;
642  }
643  case Type::VectorTyID: {
644    VectorType* PT = cast<VectorType>(Ty);
645    Type* ET = PT->getElementType();
646    printType(ET);
647    if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
648      std::string elemName(getCppName(ET));
649      Out << "VectorType* " << typeName << " = VectorType::get("
650          << elemName
651          << ", " << utostr(PT->getNumElements()) << ");";
652      nl(Out);
653    }
654    break;
655  }
656  default:
657    error("Invalid TypeID");
658  }
659
660  // Indicate that this type is now defined.
661  DefinedTypes.insert(Ty);
662
663  // Finally, separate the type definition from other with a newline.
664  nl(Out);
665}
666
667void CppWriter::printTypes(const Module* M) {
668  // Add all of the global variables to the value table.
669  for (Module::const_global_iterator I = TheModule->global_begin(),
670         E = TheModule->global_end(); I != E; ++I) {
671    if (I->hasInitializer())
672      printType(I->getInitializer()->getType());
673    printType(I->getType());
674  }
675
676  // Add all the functions to the table
677  for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
678       FI != FE; ++FI) {
679    printType(FI->getReturnType());
680    printType(FI->getFunctionType());
681    // Add all the function arguments
682    for (Function::const_arg_iterator AI = FI->arg_begin(),
683           AE = FI->arg_end(); AI != AE; ++AI) {
684      printType(AI->getType());
685    }
686
687    // Add all of the basic blocks and instructions
688    for (Function::const_iterator BB = FI->begin(),
689           E = FI->end(); BB != E; ++BB) {
690      printType(BB->getType());
691      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
692           ++I) {
693        printType(I->getType());
694        for (unsigned i = 0; i < I->getNumOperands(); ++i)
695          printType(I->getOperand(i)->getType());
696      }
697    }
698  }
699}
700
701
702// printConstant - Print out a constant pool entry...
703void CppWriter::printConstant(const Constant *CV) {
704  // First, if the constant is actually a GlobalValue (variable or function)
705  // or its already in the constant list then we've printed it already and we
706  // can just return.
707  if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
708    return;
709
710  std::string constName(getCppName(CV));
711  std::string typeName(getCppName(CV->getType()));
712
713  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
714    std::string constValue = CI->getValue().toString(10, true);
715    Out << "ConstantInt* " << constName
716        << " = ConstantInt::get(mod->getContext(), APInt("
717        << cast<IntegerType>(CI->getType())->getBitWidth()
718        << ", StringRef(\"" <<  constValue << "\"), 10));";
719  } else if (isa<ConstantAggregateZero>(CV)) {
720    Out << "ConstantAggregateZero* " << constName
721        << " = ConstantAggregateZero::get(" << typeName << ");";
722  } else if (isa<ConstantPointerNull>(CV)) {
723    Out << "ConstantPointerNull* " << constName
724        << " = ConstantPointerNull::get(" << typeName << ");";
725  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
726    Out << "ConstantFP* " << constName << " = ";
727    printCFP(CFP);
728    Out << ";";
729  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
730    Out << "std::vector<Constant*> " << constName << "_elems;";
731    nl(Out);
732    unsigned N = CA->getNumOperands();
733    for (unsigned i = 0; i < N; ++i) {
734      printConstant(CA->getOperand(i)); // recurse to print operands
735      Out << constName << "_elems.push_back("
736          << getCppName(CA->getOperand(i)) << ");";
737      nl(Out);
738    }
739    Out << "Constant* " << constName << " = ConstantArray::get("
740        << typeName << ", " << constName << "_elems);";
741  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
742    Out << "std::vector<Constant*> " << constName << "_fields;";
743    nl(Out);
744    unsigned N = CS->getNumOperands();
745    for (unsigned i = 0; i < N; i++) {
746      printConstant(CS->getOperand(i));
747      Out << constName << "_fields.push_back("
748          << getCppName(CS->getOperand(i)) << ");";
749      nl(Out);
750    }
751    Out << "Constant* " << constName << " = ConstantStruct::get("
752        << typeName << ", " << constName << "_fields);";
753  } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) {
754    Out << "std::vector<Constant*> " << constName << "_elems;";
755    nl(Out);
756    unsigned N = CVec->getNumOperands();
757    for (unsigned i = 0; i < N; ++i) {
758      printConstant(CVec->getOperand(i));
759      Out << constName << "_elems.push_back("
760          << getCppName(CVec->getOperand(i)) << ");";
761      nl(Out);
762    }
763    Out << "Constant* " << constName << " = ConstantVector::get("
764        << typeName << ", " << constName << "_elems);";
765  } else if (isa<UndefValue>(CV)) {
766    Out << "UndefValue* " << constName << " = UndefValue::get("
767        << typeName << ");";
768  } else if (const ConstantDataSequential *CDS =
769               dyn_cast<ConstantDataSequential>(CV)) {
770    if (CDS->isString()) {
771      Out << "Constant *" << constName <<
772      " = ConstantDataArray::getString(mod->getContext(), \"";
773      StringRef Str = CDS->getAsString();
774      bool nullTerminate = false;
775      if (Str.back() == 0) {
776        Str = Str.drop_back();
777        nullTerminate = true;
778      }
779      printEscapedString(Str);
780      // Determine if we want null termination or not.
781      if (nullTerminate)
782        Out << "\", true);";
783      else
784        Out << "\", false);";// No null terminator
785    } else {
786      // TODO: Could generate more efficient code generating CDS calls instead.
787      Out << "std::vector<Constant*> " << constName << "_elems;";
788      nl(Out);
789      for (unsigned i = 0; i != CDS->getNumElements(); ++i) {
790        Constant *Elt = CDS->getElementAsConstant(i);
791        printConstant(Elt);
792        Out << constName << "_elems.push_back(" << getCppName(Elt) << ");";
793        nl(Out);
794      }
795      Out << "Constant* " << constName;
796
797      if (isa<ArrayType>(CDS->getType()))
798        Out << " = ConstantArray::get(";
799      else
800        Out << " = ConstantVector::get(";
801      Out << typeName << ", " << constName << "_elems);";
802    }
803  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
804    if (CE->getOpcode() == Instruction::GetElementPtr) {
805      Out << "std::vector<Constant*> " << constName << "_indices;";
806      nl(Out);
807      printConstant(CE->getOperand(0));
808      for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
809        printConstant(CE->getOperand(i));
810        Out << constName << "_indices.push_back("
811            << getCppName(CE->getOperand(i)) << ");";
812        nl(Out);
813      }
814      Out << "Constant* " << constName
815          << " = ConstantExpr::getGetElementPtr("
816          << getCppName(CE->getOperand(0)) << ", "
817          << constName << "_indices);";
818    } else if (CE->isCast()) {
819      printConstant(CE->getOperand(0));
820      Out << "Constant* " << constName << " = ConstantExpr::getCast(";
821      switch (CE->getOpcode()) {
822      default: llvm_unreachable("Invalid cast opcode");
823      case Instruction::Trunc: Out << "Instruction::Trunc"; break;
824      case Instruction::ZExt:  Out << "Instruction::ZExt"; break;
825      case Instruction::SExt:  Out << "Instruction::SExt"; break;
826      case Instruction::FPTrunc:  Out << "Instruction::FPTrunc"; break;
827      case Instruction::FPExt:  Out << "Instruction::FPExt"; break;
828      case Instruction::FPToUI:  Out << "Instruction::FPToUI"; break;
829      case Instruction::FPToSI:  Out << "Instruction::FPToSI"; break;
830      case Instruction::UIToFP:  Out << "Instruction::UIToFP"; break;
831      case Instruction::SIToFP:  Out << "Instruction::SIToFP"; break;
832      case Instruction::PtrToInt:  Out << "Instruction::PtrToInt"; break;
833      case Instruction::IntToPtr:  Out << "Instruction::IntToPtr"; break;
834      case Instruction::BitCast:  Out << "Instruction::BitCast"; break;
835      }
836      Out << ", " << getCppName(CE->getOperand(0)) << ", "
837          << getCppName(CE->getType()) << ");";
838    } else {
839      unsigned N = CE->getNumOperands();
840      for (unsigned i = 0; i < N; ++i ) {
841        printConstant(CE->getOperand(i));
842      }
843      Out << "Constant* " << constName << " = ConstantExpr::";
844      switch (CE->getOpcode()) {
845      case Instruction::Add:    Out << "getAdd(";  break;
846      case Instruction::FAdd:   Out << "getFAdd(";  break;
847      case Instruction::Sub:    Out << "getSub("; break;
848      case Instruction::FSub:   Out << "getFSub("; break;
849      case Instruction::Mul:    Out << "getMul("; break;
850      case Instruction::FMul:   Out << "getFMul("; break;
851      case Instruction::UDiv:   Out << "getUDiv("; break;
852      case Instruction::SDiv:   Out << "getSDiv("; break;
853      case Instruction::FDiv:   Out << "getFDiv("; break;
854      case Instruction::URem:   Out << "getURem("; break;
855      case Instruction::SRem:   Out << "getSRem("; break;
856      case Instruction::FRem:   Out << "getFRem("; break;
857      case Instruction::And:    Out << "getAnd("; break;
858      case Instruction::Or:     Out << "getOr("; break;
859      case Instruction::Xor:    Out << "getXor("; break;
860      case Instruction::ICmp:
861        Out << "getICmp(ICmpInst::ICMP_";
862        switch (CE->getPredicate()) {
863        case ICmpInst::ICMP_EQ:  Out << "EQ"; break;
864        case ICmpInst::ICMP_NE:  Out << "NE"; break;
865        case ICmpInst::ICMP_SLT: Out << "SLT"; break;
866        case ICmpInst::ICMP_ULT: Out << "ULT"; break;
867        case ICmpInst::ICMP_SGT: Out << "SGT"; break;
868        case ICmpInst::ICMP_UGT: Out << "UGT"; break;
869        case ICmpInst::ICMP_SLE: Out << "SLE"; break;
870        case ICmpInst::ICMP_ULE: Out << "ULE"; break;
871        case ICmpInst::ICMP_SGE: Out << "SGE"; break;
872        case ICmpInst::ICMP_UGE: Out << "UGE"; break;
873        default: error("Invalid ICmp Predicate");
874        }
875        break;
876      case Instruction::FCmp:
877        Out << "getFCmp(FCmpInst::FCMP_";
878        switch (CE->getPredicate()) {
879        case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
880        case FCmpInst::FCMP_ORD:   Out << "ORD"; break;
881        case FCmpInst::FCMP_UNO:   Out << "UNO"; break;
882        case FCmpInst::FCMP_OEQ:   Out << "OEQ"; break;
883        case FCmpInst::FCMP_UEQ:   Out << "UEQ"; break;
884        case FCmpInst::FCMP_ONE:   Out << "ONE"; break;
885        case FCmpInst::FCMP_UNE:   Out << "UNE"; break;
886        case FCmpInst::FCMP_OLT:   Out << "OLT"; break;
887        case FCmpInst::FCMP_ULT:   Out << "ULT"; break;
888        case FCmpInst::FCMP_OGT:   Out << "OGT"; break;
889        case FCmpInst::FCMP_UGT:   Out << "UGT"; break;
890        case FCmpInst::FCMP_OLE:   Out << "OLE"; break;
891        case FCmpInst::FCMP_ULE:   Out << "ULE"; break;
892        case FCmpInst::FCMP_OGE:   Out << "OGE"; break;
893        case FCmpInst::FCMP_UGE:   Out << "UGE"; break;
894        case FCmpInst::FCMP_TRUE:  Out << "TRUE"; break;
895        default: error("Invalid FCmp Predicate");
896        }
897        break;
898      case Instruction::Shl:     Out << "getShl("; break;
899      case Instruction::LShr:    Out << "getLShr("; break;
900      case Instruction::AShr:    Out << "getAShr("; break;
901      case Instruction::Select:  Out << "getSelect("; break;
902      case Instruction::ExtractElement: Out << "getExtractElement("; break;
903      case Instruction::InsertElement:  Out << "getInsertElement("; break;
904      case Instruction::ShuffleVector:  Out << "getShuffleVector("; break;
905      default:
906        error("Invalid constant expression");
907        break;
908      }
909      Out << getCppName(CE->getOperand(0));
910      for (unsigned i = 1; i < CE->getNumOperands(); ++i)
911        Out << ", " << getCppName(CE->getOperand(i));
912      Out << ");";
913    }
914  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
915    Out << "Constant* " << constName << " = ";
916    Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
917  } else {
918    error("Bad Constant");
919    Out << "Constant* " << constName << " = 0; ";
920  }
921  nl(Out);
922}
923
924void CppWriter::printConstants(const Module* M) {
925  // Traverse all the global variables looking for constant initializers
926  for (Module::const_global_iterator I = TheModule->global_begin(),
927         E = TheModule->global_end(); I != E; ++I)
928    if (I->hasInitializer())
929      printConstant(I->getInitializer());
930
931  // Traverse the LLVM functions looking for constants
932  for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
933       FI != FE; ++FI) {
934    // Add all of the basic blocks and instructions
935    for (Function::const_iterator BB = FI->begin(),
936           E = FI->end(); BB != E; ++BB) {
937      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
938           ++I) {
939        for (unsigned i = 0; i < I->getNumOperands(); ++i) {
940          if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
941            printConstant(C);
942          }
943        }
944      }
945    }
946  }
947}
948
949void CppWriter::printVariableUses(const GlobalVariable *GV) {
950  nl(Out) << "// Type Definitions";
951  nl(Out);
952  printType(GV->getType());
953  if (GV->hasInitializer()) {
954    const Constant *Init = GV->getInitializer();
955    printType(Init->getType());
956    if (const Function *F = dyn_cast<Function>(Init)) {
957      nl(Out)<< "/ Function Declarations"; nl(Out);
958      printFunctionHead(F);
959    } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
960      nl(Out) << "// Global Variable Declarations"; nl(Out);
961      printVariableHead(gv);
962
963      nl(Out) << "// Global Variable Definitions"; nl(Out);
964      printVariableBody(gv);
965    } else  {
966      nl(Out) << "// Constant Definitions"; nl(Out);
967      printConstant(Init);
968    }
969  }
970}
971
972void CppWriter::printVariableHead(const GlobalVariable *GV) {
973  nl(Out) << "GlobalVariable* " << getCppName(GV);
974  if (is_inline) {
975    Out << " = mod->getGlobalVariable(mod->getContext(), ";
976    printEscapedString(GV->getName());
977    Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
978    nl(Out) << "if (!" << getCppName(GV) << ") {";
979    in(); nl(Out) << getCppName(GV);
980  }
981  Out << " = new GlobalVariable(/*Module=*/*mod, ";
982  nl(Out) << "/*Type=*/";
983  printCppName(GV->getType()->getElementType());
984  Out << ",";
985  nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
986  Out << ",";
987  nl(Out) << "/*Linkage=*/";
988  printLinkageType(GV->getLinkage());
989  Out << ",";
990  nl(Out) << "/*Initializer=*/0, ";
991  if (GV->hasInitializer()) {
992    Out << "// has initializer, specified below";
993  }
994  nl(Out) << "/*Name=*/\"";
995  printEscapedString(GV->getName());
996  Out << "\");";
997  nl(Out);
998
999  if (GV->hasSection()) {
1000    printCppName(GV);
1001    Out << "->setSection(\"";
1002    printEscapedString(GV->getSection());
1003    Out << "\");";
1004    nl(Out);
1005  }
1006  if (GV->getAlignment()) {
1007    printCppName(GV);
1008    Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
1009    nl(Out);
1010  }
1011  if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
1012    printCppName(GV);
1013    Out << "->setVisibility(";
1014    printVisibilityType(GV->getVisibility());
1015    Out << ");";
1016    nl(Out);
1017  }
1018  if (GV->isThreadLocal()) {
1019    printCppName(GV);
1020    Out << "->setThreadLocalMode(";
1021    printThreadLocalMode(GV->getThreadLocalMode());
1022    Out << ");";
1023    nl(Out);
1024  }
1025  if (is_inline) {
1026    out(); Out << "}"; nl(Out);
1027  }
1028}
1029
1030void CppWriter::printVariableBody(const GlobalVariable *GV) {
1031  if (GV->hasInitializer()) {
1032    printCppName(GV);
1033    Out << "->setInitializer(";
1034    Out << getCppName(GV->getInitializer()) << ");";
1035    nl(Out);
1036  }
1037}
1038
1039std::string CppWriter::getOpName(const Value* V) {
1040  if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1041    return getCppName(V);
1042
1043  // See if its alread in the map of forward references, if so just return the
1044  // name we already set up for it
1045  ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1046  if (I != ForwardRefs.end())
1047    return I->second;
1048
1049  // This is a new forward reference. Generate a unique name for it
1050  std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1051
1052  // Yes, this is a hack. An Argument is the smallest instantiable value that
1053  // we can make as a placeholder for the real value. We'll replace these
1054  // Argument instances later.
1055  Out << "Argument* " << result << " = new Argument("
1056      << getCppName(V->getType()) << ");";
1057  nl(Out);
1058  ForwardRefs[V] = result;
1059  return result;
1060}
1061
1062static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) {
1063  switch (Ordering) {
1064    case NotAtomic: return "NotAtomic";
1065    case Unordered: return "Unordered";
1066    case Monotonic: return "Monotonic";
1067    case Acquire: return "Acquire";
1068    case Release: return "Release";
1069    case AcquireRelease: return "AcquireRelease";
1070    case SequentiallyConsistent: return "SequentiallyConsistent";
1071  }
1072  llvm_unreachable("Unknown ordering");
1073}
1074
1075static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) {
1076  switch (SynchScope) {
1077    case SingleThread: return "SingleThread";
1078    case CrossThread: return "CrossThread";
1079  }
1080  llvm_unreachable("Unknown synch scope");
1081}
1082
1083// printInstruction - This member is called for each Instruction in a function.
1084void CppWriter::printInstruction(const Instruction *I,
1085                                 const std::string& bbname) {
1086  std::string iName(getCppName(I));
1087
1088  // Before we emit this instruction, we need to take care of generating any
1089  // forward references. So, we get the names of all the operands in advance
1090  const unsigned Ops(I->getNumOperands());
1091  std::string* opNames = new std::string[Ops];
1092  for (unsigned i = 0; i < Ops; i++)
1093    opNames[i] = getOpName(I->getOperand(i));
1094
1095  switch (I->getOpcode()) {
1096  default:
1097    error("Invalid instruction");
1098    break;
1099
1100  case Instruction::Ret: {
1101    const ReturnInst* ret =  cast<ReturnInst>(I);
1102    Out << "ReturnInst::Create(mod->getContext(), "
1103        << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1104    break;
1105  }
1106  case Instruction::Br: {
1107    const BranchInst* br = cast<BranchInst>(I);
1108    Out << "BranchInst::Create(" ;
1109    if (br->getNumOperands() == 3) {
1110      Out << opNames[2] << ", "
1111          << opNames[1] << ", "
1112          << opNames[0] << ", ";
1113
1114    } else if (br->getNumOperands() == 1) {
1115      Out << opNames[0] << ", ";
1116    } else {
1117      error("Branch with 2 operands?");
1118    }
1119    Out << bbname << ");";
1120    break;
1121  }
1122  case Instruction::Switch: {
1123    const SwitchInst *SI = cast<SwitchInst>(I);
1124    Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1125        << getOpName(SI->getCondition()) << ", "
1126        << getOpName(SI->getDefaultDest()) << ", "
1127        << SI->getNumCases() << ", " << bbname << ");";
1128    nl(Out);
1129    for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end();
1130         i != e; ++i) {
1131      const IntegersSubset CaseVal = i.getCaseValueEx();
1132      const BasicBlock *BB = i.getCaseSuccessor();
1133      Out << iName << "->addCase("
1134          << getOpName(CaseVal) << ", "
1135          << getOpName(BB) << ");";
1136      nl(Out);
1137    }
1138    break;
1139  }
1140  case Instruction::IndirectBr: {
1141    const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
1142    Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
1143        << opNames[0] << ", " << IBI->getNumDestinations() << ");";
1144    nl(Out);
1145    for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
1146      Out << iName << "->addDestination(" << opNames[i] << ");";
1147      nl(Out);
1148    }
1149    break;
1150  }
1151  case Instruction::Resume: {
1152    Out << "ResumeInst::Create(mod->getContext(), " << opNames[0]
1153        << ", " << bbname << ");";
1154    break;
1155  }
1156  case Instruction::Invoke: {
1157    const InvokeInst* inv = cast<InvokeInst>(I);
1158    Out << "std::vector<Value*> " << iName << "_params;";
1159    nl(Out);
1160    for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
1161      Out << iName << "_params.push_back("
1162          << getOpName(inv->getArgOperand(i)) << ");";
1163      nl(Out);
1164    }
1165    // FIXME: This shouldn't use magic numbers -3, -2, and -1.
1166    Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1167        << getOpName(inv->getCalledFunction()) << ", "
1168        << getOpName(inv->getNormalDest()) << ", "
1169        << getOpName(inv->getUnwindDest()) << ", "
1170        << iName << "_params, \"";
1171    printEscapedString(inv->getName());
1172    Out << "\", " << bbname << ");";
1173    nl(Out) << iName << "->setCallingConv(";
1174    printCallingConv(inv->getCallingConv());
1175    Out << ");";
1176    printAttributes(inv->getAttributes(), iName);
1177    Out << iName << "->setAttributes(" << iName << "_PAL);";
1178    nl(Out);
1179    break;
1180  }
1181  case Instruction::Unreachable: {
1182    Out << "new UnreachableInst("
1183        << "mod->getContext(), "
1184        << bbname << ");";
1185    break;
1186  }
1187  case Instruction::Add:
1188  case Instruction::FAdd:
1189  case Instruction::Sub:
1190  case Instruction::FSub:
1191  case Instruction::Mul:
1192  case Instruction::FMul:
1193  case Instruction::UDiv:
1194  case Instruction::SDiv:
1195  case Instruction::FDiv:
1196  case Instruction::URem:
1197  case Instruction::SRem:
1198  case Instruction::FRem:
1199  case Instruction::And:
1200  case Instruction::Or:
1201  case Instruction::Xor:
1202  case Instruction::Shl:
1203  case Instruction::LShr:
1204  case Instruction::AShr:{
1205    Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1206    switch (I->getOpcode()) {
1207    case Instruction::Add: Out << "Instruction::Add"; break;
1208    case Instruction::FAdd: Out << "Instruction::FAdd"; break;
1209    case Instruction::Sub: Out << "Instruction::Sub"; break;
1210    case Instruction::FSub: Out << "Instruction::FSub"; break;
1211    case Instruction::Mul: Out << "Instruction::Mul"; break;
1212    case Instruction::FMul: Out << "Instruction::FMul"; break;
1213    case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1214    case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1215    case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1216    case Instruction::URem:Out << "Instruction::URem"; break;
1217    case Instruction::SRem:Out << "Instruction::SRem"; break;
1218    case Instruction::FRem:Out << "Instruction::FRem"; break;
1219    case Instruction::And: Out << "Instruction::And"; break;
1220    case Instruction::Or:  Out << "Instruction::Or";  break;
1221    case Instruction::Xor: Out << "Instruction::Xor"; break;
1222    case Instruction::Shl: Out << "Instruction::Shl"; break;
1223    case Instruction::LShr:Out << "Instruction::LShr"; break;
1224    case Instruction::AShr:Out << "Instruction::AShr"; break;
1225    default: Out << "Instruction::BadOpCode"; break;
1226    }
1227    Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1228    printEscapedString(I->getName());
1229    Out << "\", " << bbname << ");";
1230    break;
1231  }
1232  case Instruction::FCmp: {
1233    Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
1234    switch (cast<FCmpInst>(I)->getPredicate()) {
1235    case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1236    case FCmpInst::FCMP_OEQ  : Out << "FCmpInst::FCMP_OEQ"; break;
1237    case FCmpInst::FCMP_OGT  : Out << "FCmpInst::FCMP_OGT"; break;
1238    case FCmpInst::FCMP_OGE  : Out << "FCmpInst::FCMP_OGE"; break;
1239    case FCmpInst::FCMP_OLT  : Out << "FCmpInst::FCMP_OLT"; break;
1240    case FCmpInst::FCMP_OLE  : Out << "FCmpInst::FCMP_OLE"; break;
1241    case FCmpInst::FCMP_ONE  : Out << "FCmpInst::FCMP_ONE"; break;
1242    case FCmpInst::FCMP_ORD  : Out << "FCmpInst::FCMP_ORD"; break;
1243    case FCmpInst::FCMP_UNO  : Out << "FCmpInst::FCMP_UNO"; break;
1244    case FCmpInst::FCMP_UEQ  : Out << "FCmpInst::FCMP_UEQ"; break;
1245    case FCmpInst::FCMP_UGT  : Out << "FCmpInst::FCMP_UGT"; break;
1246    case FCmpInst::FCMP_UGE  : Out << "FCmpInst::FCMP_UGE"; break;
1247    case FCmpInst::FCMP_ULT  : Out << "FCmpInst::FCMP_ULT"; break;
1248    case FCmpInst::FCMP_ULE  : Out << "FCmpInst::FCMP_ULE"; break;
1249    case FCmpInst::FCMP_UNE  : Out << "FCmpInst::FCMP_UNE"; break;
1250    case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1251    default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1252    }
1253    Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1254    printEscapedString(I->getName());
1255    Out << "\");";
1256    break;
1257  }
1258  case Instruction::ICmp: {
1259    Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
1260    switch (cast<ICmpInst>(I)->getPredicate()) {
1261    case ICmpInst::ICMP_EQ:  Out << "ICmpInst::ICMP_EQ";  break;
1262    case ICmpInst::ICMP_NE:  Out << "ICmpInst::ICMP_NE";  break;
1263    case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1264    case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1265    case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1266    case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1267    case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1268    case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1269    case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1270    case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1271    default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1272    }
1273    Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1274    printEscapedString(I->getName());
1275    Out << "\");";
1276    break;
1277  }
1278  case Instruction::Alloca: {
1279    const AllocaInst* allocaI = cast<AllocaInst>(I);
1280    Out << "AllocaInst* " << iName << " = new AllocaInst("
1281        << getCppName(allocaI->getAllocatedType()) << ", ";
1282    if (allocaI->isArrayAllocation())
1283      Out << opNames[0] << ", ";
1284    Out << "\"";
1285    printEscapedString(allocaI->getName());
1286    Out << "\", " << bbname << ");";
1287    if (allocaI->getAlignment())
1288      nl(Out) << iName << "->setAlignment("
1289          << allocaI->getAlignment() << ");";
1290    break;
1291  }
1292  case Instruction::Load: {
1293    const LoadInst* load = cast<LoadInst>(I);
1294    Out << "LoadInst* " << iName << " = new LoadInst("
1295        << opNames[0] << ", \"";
1296    printEscapedString(load->getName());
1297    Out << "\", " << (load->isVolatile() ? "true" : "false" )
1298        << ", " << bbname << ");";
1299    if (load->getAlignment())
1300      nl(Out) << iName << "->setAlignment("
1301              << load->getAlignment() << ");";
1302    if (load->isAtomic()) {
1303      StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
1304      StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope());
1305      nl(Out) << iName << "->setAtomic("
1306              << Ordering << ", " << CrossThread << ");";
1307    }
1308    break;
1309  }
1310  case Instruction::Store: {
1311    const StoreInst* store = cast<StoreInst>(I);
1312    Out << "StoreInst* " << iName << " = new StoreInst("
1313        << opNames[0] << ", "
1314        << opNames[1] << ", "
1315        << (store->isVolatile() ? "true" : "false")
1316        << ", " << bbname << ");";
1317    if (store->getAlignment())
1318      nl(Out) << iName << "->setAlignment("
1319              << store->getAlignment() << ");";
1320    if (store->isAtomic()) {
1321      StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
1322      StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope());
1323      nl(Out) << iName << "->setAtomic("
1324              << Ordering << ", " << CrossThread << ");";
1325    }
1326    break;
1327  }
1328  case Instruction::GetElementPtr: {
1329    const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1330    if (gep->getNumOperands() <= 2) {
1331      Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1332          << opNames[0];
1333      if (gep->getNumOperands() == 2)
1334        Out << ", " << opNames[1];
1335    } else {
1336      Out << "std::vector<Value*> " << iName << "_indices;";
1337      nl(Out);
1338      for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1339        Out << iName << "_indices.push_back("
1340            << opNames[i] << ");";
1341        nl(Out);
1342      }
1343      Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1344          << opNames[0] << ", " << iName << "_indices";
1345    }
1346    Out << ", \"";
1347    printEscapedString(gep->getName());
1348    Out << "\", " << bbname << ");";
1349    break;
1350  }
1351  case Instruction::PHI: {
1352    const PHINode* phi = cast<PHINode>(I);
1353
1354    Out << "PHINode* " << iName << " = PHINode::Create("
1355        << getCppName(phi->getType()) << ", "
1356        << phi->getNumIncomingValues() << ", \"";
1357    printEscapedString(phi->getName());
1358    Out << "\", " << bbname << ");";
1359    nl(Out);
1360    for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
1361      Out << iName << "->addIncoming("
1362          << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
1363          << getOpName(phi->getIncomingBlock(i)) << ");";
1364      nl(Out);
1365    }
1366    break;
1367  }
1368  case Instruction::Trunc:
1369  case Instruction::ZExt:
1370  case Instruction::SExt:
1371  case Instruction::FPTrunc:
1372  case Instruction::FPExt:
1373  case Instruction::FPToUI:
1374  case Instruction::FPToSI:
1375  case Instruction::UIToFP:
1376  case Instruction::SIToFP:
1377  case Instruction::PtrToInt:
1378  case Instruction::IntToPtr:
1379  case Instruction::BitCast: {
1380    const CastInst* cst = cast<CastInst>(I);
1381    Out << "CastInst* " << iName << " = new ";
1382    switch (I->getOpcode()) {
1383    case Instruction::Trunc:    Out << "TruncInst"; break;
1384    case Instruction::ZExt:     Out << "ZExtInst"; break;
1385    case Instruction::SExt:     Out << "SExtInst"; break;
1386    case Instruction::FPTrunc:  Out << "FPTruncInst"; break;
1387    case Instruction::FPExt:    Out << "FPExtInst"; break;
1388    case Instruction::FPToUI:   Out << "FPToUIInst"; break;
1389    case Instruction::FPToSI:   Out << "FPToSIInst"; break;
1390    case Instruction::UIToFP:   Out << "UIToFPInst"; break;
1391    case Instruction::SIToFP:   Out << "SIToFPInst"; break;
1392    case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1393    case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1394    case Instruction::BitCast:  Out << "BitCastInst"; break;
1395    default: llvm_unreachable("Unreachable");
1396    }
1397    Out << "(" << opNames[0] << ", "
1398        << getCppName(cst->getType()) << ", \"";
1399    printEscapedString(cst->getName());
1400    Out << "\", " << bbname << ");";
1401    break;
1402  }
1403  case Instruction::Call: {
1404    const CallInst* call = cast<CallInst>(I);
1405    if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1406      Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1407          << getCppName(ila->getFunctionType()) << ", \""
1408          << ila->getAsmString() << "\", \""
1409          << ila->getConstraintString() << "\","
1410          << (ila->hasSideEffects() ? "true" : "false") << ");";
1411      nl(Out);
1412    }
1413    if (call->getNumArgOperands() > 1) {
1414      Out << "std::vector<Value*> " << iName << "_params;";
1415      nl(Out);
1416      for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
1417        Out << iName << "_params.push_back(" << opNames[i] << ");";
1418        nl(Out);
1419      }
1420      Out << "CallInst* " << iName << " = CallInst::Create("
1421          << opNames[call->getNumArgOperands()] << ", "
1422          << iName << "_params, \"";
1423    } else if (call->getNumArgOperands() == 1) {
1424      Out << "CallInst* " << iName << " = CallInst::Create("
1425          << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
1426    } else {
1427      Out << "CallInst* " << iName << " = CallInst::Create("
1428          << opNames[call->getNumArgOperands()] << ", \"";
1429    }
1430    printEscapedString(call->getName());
1431    Out << "\", " << bbname << ");";
1432    nl(Out) << iName << "->setCallingConv(";
1433    printCallingConv(call->getCallingConv());
1434    Out << ");";
1435    nl(Out) << iName << "->setTailCall("
1436        << (call->isTailCall() ? "true" : "false");
1437    Out << ");";
1438    nl(Out);
1439    printAttributes(call->getAttributes(), iName);
1440    Out << iName << "->setAttributes(" << iName << "_PAL);";
1441    nl(Out);
1442    break;
1443  }
1444  case Instruction::Select: {
1445    const SelectInst* sel = cast<SelectInst>(I);
1446    Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1447    Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1448    printEscapedString(sel->getName());
1449    Out << "\", " << bbname << ");";
1450    break;
1451  }
1452  case Instruction::UserOp1:
1453    /// FALL THROUGH
1454  case Instruction::UserOp2: {
1455    /// FIXME: What should be done here?
1456    break;
1457  }
1458  case Instruction::VAArg: {
1459    const VAArgInst* va = cast<VAArgInst>(I);
1460    Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1461        << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1462    printEscapedString(va->getName());
1463    Out << "\", " << bbname << ");";
1464    break;
1465  }
1466  case Instruction::ExtractElement: {
1467    const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1468    Out << "ExtractElementInst* " << getCppName(eei)
1469        << " = new ExtractElementInst(" << opNames[0]
1470        << ", " << opNames[1] << ", \"";
1471    printEscapedString(eei->getName());
1472    Out << "\", " << bbname << ");";
1473    break;
1474  }
1475  case Instruction::InsertElement: {
1476    const InsertElementInst* iei = cast<InsertElementInst>(I);
1477    Out << "InsertElementInst* " << getCppName(iei)
1478        << " = InsertElementInst::Create(" << opNames[0]
1479        << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1480    printEscapedString(iei->getName());
1481    Out << "\", " << bbname << ");";
1482    break;
1483  }
1484  case Instruction::ShuffleVector: {
1485    const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1486    Out << "ShuffleVectorInst* " << getCppName(svi)
1487        << " = new ShuffleVectorInst(" << opNames[0]
1488        << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1489    printEscapedString(svi->getName());
1490    Out << "\", " << bbname << ");";
1491    break;
1492  }
1493  case Instruction::ExtractValue: {
1494    const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1495    Out << "std::vector<unsigned> " << iName << "_indices;";
1496    nl(Out);
1497    for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1498      Out << iName << "_indices.push_back("
1499          << evi->idx_begin()[i] << ");";
1500      nl(Out);
1501    }
1502    Out << "ExtractValueInst* " << getCppName(evi)
1503        << " = ExtractValueInst::Create(" << opNames[0]
1504        << ", "
1505        << iName << "_indices, \"";
1506    printEscapedString(evi->getName());
1507    Out << "\", " << bbname << ");";
1508    break;
1509  }
1510  case Instruction::InsertValue: {
1511    const InsertValueInst *ivi = cast<InsertValueInst>(I);
1512    Out << "std::vector<unsigned> " << iName << "_indices;";
1513    nl(Out);
1514    for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1515      Out << iName << "_indices.push_back("
1516          << ivi->idx_begin()[i] << ");";
1517      nl(Out);
1518    }
1519    Out << "InsertValueInst* " << getCppName(ivi)
1520        << " = InsertValueInst::Create(" << opNames[0]
1521        << ", " << opNames[1] << ", "
1522        << iName << "_indices, \"";
1523    printEscapedString(ivi->getName());
1524    Out << "\", " << bbname << ");";
1525    break;
1526  }
1527  case Instruction::Fence: {
1528    const FenceInst *fi = cast<FenceInst>(I);
1529    StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
1530    StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope());
1531    Out << "FenceInst* " << iName
1532        << " = new FenceInst(mod->getContext(), "
1533        << Ordering << ", " << CrossThread << ", " << bbname
1534        << ");";
1535    break;
1536  }
1537  case Instruction::AtomicCmpXchg: {
1538    const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
1539    StringRef Ordering = ConvertAtomicOrdering(cxi->getOrdering());
1540    StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
1541    Out << "AtomicCmpXchgInst* " << iName
1542        << " = new AtomicCmpXchgInst("
1543        << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
1544        << Ordering << ", " << CrossThread << ", " << bbname
1545        << ");";
1546    nl(Out) << iName << "->setName(\"";
1547    printEscapedString(cxi->getName());
1548    Out << "\");";
1549    break;
1550  }
1551  case Instruction::AtomicRMW: {
1552    const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
1553    StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
1554    StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
1555    StringRef Operation;
1556    switch (rmwi->getOperation()) {
1557      case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
1558      case AtomicRMWInst::Add:  Operation = "AtomicRMWInst::Add"; break;
1559      case AtomicRMWInst::Sub:  Operation = "AtomicRMWInst::Sub"; break;
1560      case AtomicRMWInst::And:  Operation = "AtomicRMWInst::And"; break;
1561      case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
1562      case AtomicRMWInst::Or:   Operation = "AtomicRMWInst::Or"; break;
1563      case AtomicRMWInst::Xor:  Operation = "AtomicRMWInst::Xor"; break;
1564      case AtomicRMWInst::Max:  Operation = "AtomicRMWInst::Max"; break;
1565      case AtomicRMWInst::Min:  Operation = "AtomicRMWInst::Min"; break;
1566      case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
1567      case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
1568      case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
1569    }
1570    Out << "AtomicRMWInst* " << iName
1571        << " = new AtomicRMWInst("
1572        << Operation << ", "
1573        << opNames[0] << ", " << opNames[1] << ", "
1574        << Ordering << ", " << CrossThread << ", " << bbname
1575        << ");";
1576    nl(Out) << iName << "->setName(\"";
1577    printEscapedString(rmwi->getName());
1578    Out << "\");";
1579    break;
1580  }
1581  }
1582  DefinedValues.insert(I);
1583  nl(Out);
1584  delete [] opNames;
1585}
1586
1587// Print out the types, constants and declarations needed by one function
1588void CppWriter::printFunctionUses(const Function* F) {
1589  nl(Out) << "// Type Definitions"; nl(Out);
1590  if (!is_inline) {
1591    // Print the function's return type
1592    printType(F->getReturnType());
1593
1594    // Print the function's function type
1595    printType(F->getFunctionType());
1596
1597    // Print the types of each of the function's arguments
1598    for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1599         AI != AE; ++AI) {
1600      printType(AI->getType());
1601    }
1602  }
1603
1604  // Print type definitions for every type referenced by an instruction and
1605  // make a note of any global values or constants that are referenced
1606  SmallPtrSet<GlobalValue*,64> gvs;
1607  SmallPtrSet<Constant*,64> consts;
1608  for (Function::const_iterator BB = F->begin(), BE = F->end();
1609       BB != BE; ++BB){
1610    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1611         I != E; ++I) {
1612      // Print the type of the instruction itself
1613      printType(I->getType());
1614
1615      // Print the type of each of the instruction's operands
1616      for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1617        Value* operand = I->getOperand(i);
1618        printType(operand->getType());
1619
1620        // If the operand references a GVal or Constant, make a note of it
1621        if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1622          gvs.insert(GV);
1623          if (GenerationType != GenFunction)
1624            if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1625              if (GVar->hasInitializer())
1626                consts.insert(GVar->getInitializer());
1627        } else if (Constant* C = dyn_cast<Constant>(operand)) {
1628          consts.insert(C);
1629          for (unsigned j = 0; j < C->getNumOperands(); ++j) {
1630            // If the operand references a GVal or Constant, make a note of it
1631            Value* operand = C->getOperand(j);
1632            printType(operand->getType());
1633            if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1634              gvs.insert(GV);
1635              if (GenerationType != GenFunction)
1636                if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1637                  if (GVar->hasInitializer())
1638                    consts.insert(GVar->getInitializer());
1639            }
1640          }
1641        }
1642      }
1643    }
1644  }
1645
1646  // Print the function declarations for any functions encountered
1647  nl(Out) << "// Function Declarations"; nl(Out);
1648  for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1649       I != E; ++I) {
1650    if (Function* Fun = dyn_cast<Function>(*I)) {
1651      if (!is_inline || Fun != F)
1652        printFunctionHead(Fun);
1653    }
1654  }
1655
1656  // Print the global variable declarations for any variables encountered
1657  nl(Out) << "// Global Variable Declarations"; nl(Out);
1658  for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1659       I != E; ++I) {
1660    if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
1661      printVariableHead(F);
1662  }
1663
1664  // Print the constants found
1665  nl(Out) << "// Constant Definitions"; nl(Out);
1666  for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
1667         E = consts.end(); I != E; ++I) {
1668    printConstant(*I);
1669  }
1670
1671  // Process the global variables definitions now that all the constants have
1672  // been emitted. These definitions just couple the gvars with their constant
1673  // initializers.
1674  if (GenerationType != GenFunction) {
1675    nl(Out) << "// Global Variable Definitions"; nl(Out);
1676    for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1677         I != E; ++I) {
1678      if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
1679        printVariableBody(GV);
1680    }
1681  }
1682}
1683
1684void CppWriter::printFunctionHead(const Function* F) {
1685  nl(Out) << "Function* " << getCppName(F);
1686  Out << " = mod->getFunction(\"";
1687  printEscapedString(F->getName());
1688  Out << "\");";
1689  nl(Out) << "if (!" << getCppName(F) << ") {";
1690  nl(Out) << getCppName(F);
1691
1692  Out<< " = Function::Create(";
1693  nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1694  nl(Out) << "/*Linkage=*/";
1695  printLinkageType(F->getLinkage());
1696  Out << ",";
1697  nl(Out) << "/*Name=*/\"";
1698  printEscapedString(F->getName());
1699  Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1700  nl(Out,-1);
1701  printCppName(F);
1702  Out << "->setCallingConv(";
1703  printCallingConv(F->getCallingConv());
1704  Out << ");";
1705  nl(Out);
1706  if (F->hasSection()) {
1707    printCppName(F);
1708    Out << "->setSection(\"" << F->getSection() << "\");";
1709    nl(Out);
1710  }
1711  if (F->getAlignment()) {
1712    printCppName(F);
1713    Out << "->setAlignment(" << F->getAlignment() << ");";
1714    nl(Out);
1715  }
1716  if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1717    printCppName(F);
1718    Out << "->setVisibility(";
1719    printVisibilityType(F->getVisibility());
1720    Out << ");";
1721    nl(Out);
1722  }
1723  if (F->hasGC()) {
1724    printCppName(F);
1725    Out << "->setGC(\"" << F->getGC() << "\");";
1726    nl(Out);
1727  }
1728  Out << "}";
1729  nl(Out);
1730  printAttributes(F->getAttributes(), getCppName(F));
1731  printCppName(F);
1732  Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1733  nl(Out);
1734}
1735
1736void CppWriter::printFunctionBody(const Function *F) {
1737  if (F->isDeclaration())
1738    return; // external functions have no bodies.
1739
1740  // Clear the DefinedValues and ForwardRefs maps because we can't have
1741  // cross-function forward refs
1742  ForwardRefs.clear();
1743  DefinedValues.clear();
1744
1745  // Create all the argument values
1746  if (!is_inline) {
1747    if (!F->arg_empty()) {
1748      Out << "Function::arg_iterator args = " << getCppName(F)
1749          << "->arg_begin();";
1750      nl(Out);
1751    }
1752    for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1753         AI != AE; ++AI) {
1754      Out << "Value* " << getCppName(AI) << " = args++;";
1755      nl(Out);
1756      if (AI->hasName()) {
1757        Out << getCppName(AI) << "->setName(\"";
1758        printEscapedString(AI->getName());
1759        Out << "\");";
1760        nl(Out);
1761      }
1762    }
1763  }
1764
1765  // Create all the basic blocks
1766  nl(Out);
1767  for (Function::const_iterator BI = F->begin(), BE = F->end();
1768       BI != BE; ++BI) {
1769    std::string bbname(getCppName(BI));
1770    Out << "BasicBlock* " << bbname <<
1771           " = BasicBlock::Create(mod->getContext(), \"";
1772    if (BI->hasName())
1773      printEscapedString(BI->getName());
1774    Out << "\"," << getCppName(BI->getParent()) << ",0);";
1775    nl(Out);
1776  }
1777
1778  // Output all of its basic blocks... for the function
1779  for (Function::const_iterator BI = F->begin(), BE = F->end();
1780       BI != BE; ++BI) {
1781    std::string bbname(getCppName(BI));
1782    nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1783    nl(Out);
1784
1785    // Output all of the instructions in the basic block...
1786    for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1787         I != E; ++I) {
1788      printInstruction(I,bbname);
1789    }
1790  }
1791
1792  // Loop over the ForwardRefs and resolve them now that all instructions
1793  // are generated.
1794  if (!ForwardRefs.empty()) {
1795    nl(Out) << "// Resolve Forward References";
1796    nl(Out);
1797  }
1798
1799  while (!ForwardRefs.empty()) {
1800    ForwardRefMap::iterator I = ForwardRefs.begin();
1801    Out << I->second << "->replaceAllUsesWith("
1802        << getCppName(I->first) << "); delete " << I->second << ";";
1803    nl(Out);
1804    ForwardRefs.erase(I);
1805  }
1806}
1807
1808void CppWriter::printInline(const std::string& fname,
1809                            const std::string& func) {
1810  const Function* F = TheModule->getFunction(func);
1811  if (!F) {
1812    error(std::string("Function '") + func + "' not found in input module");
1813    return;
1814  }
1815  if (F->isDeclaration()) {
1816    error(std::string("Function '") + func + "' is external!");
1817    return;
1818  }
1819  nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1820          << getCppName(F);
1821  unsigned arg_count = 1;
1822  for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1823       AI != AE; ++AI) {
1824    Out << ", Value* arg_" << arg_count;
1825  }
1826  Out << ") {";
1827  nl(Out);
1828  is_inline = true;
1829  printFunctionUses(F);
1830  printFunctionBody(F);
1831  is_inline = false;
1832  Out << "return " << getCppName(F->begin()) << ";";
1833  nl(Out) << "}";
1834  nl(Out);
1835}
1836
1837void CppWriter::printModuleBody() {
1838  // Print out all the type definitions
1839  nl(Out) << "// Type Definitions"; nl(Out);
1840  printTypes(TheModule);
1841
1842  // Functions can call each other and global variables can reference them so
1843  // define all the functions first before emitting their function bodies.
1844  nl(Out) << "// Function Declarations"; nl(Out);
1845  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1846       I != E; ++I)
1847    printFunctionHead(I);
1848
1849  // Process the global variables declarations. We can't initialze them until
1850  // after the constants are printed so just print a header for each global
1851  nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1852  for (Module::const_global_iterator I = TheModule->global_begin(),
1853         E = TheModule->global_end(); I != E; ++I) {
1854    printVariableHead(I);
1855  }
1856
1857  // Print out all the constants definitions. Constants don't recurse except
1858  // through GlobalValues. All GlobalValues have been declared at this point
1859  // so we can proceed to generate the constants.
1860  nl(Out) << "// Constant Definitions"; nl(Out);
1861  printConstants(TheModule);
1862
1863  // Process the global variables definitions now that all the constants have
1864  // been emitted. These definitions just couple the gvars with their constant
1865  // initializers.
1866  nl(Out) << "// Global Variable Definitions"; nl(Out);
1867  for (Module::const_global_iterator I = TheModule->global_begin(),
1868         E = TheModule->global_end(); I != E; ++I) {
1869    printVariableBody(I);
1870  }
1871
1872  // Finally, we can safely put out all of the function bodies.
1873  nl(Out) << "// Function Definitions"; nl(Out);
1874  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1875       I != E; ++I) {
1876    if (!I->isDeclaration()) {
1877      nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1878              << ")";
1879      nl(Out) << "{";
1880      nl(Out,1);
1881      printFunctionBody(I);
1882      nl(Out,-1) << "}";
1883      nl(Out);
1884    }
1885  }
1886}
1887
1888void CppWriter::printProgram(const std::string& fname,
1889                             const std::string& mName) {
1890  Out << "#include <llvm/LLVMContext.h>\n";
1891  Out << "#include <llvm/Module.h>\n";
1892  Out << "#include <llvm/DerivedTypes.h>\n";
1893  Out << "#include <llvm/Constants.h>\n";
1894  Out << "#include <llvm/GlobalVariable.h>\n";
1895  Out << "#include <llvm/Function.h>\n";
1896  Out << "#include <llvm/CallingConv.h>\n";
1897  Out << "#include <llvm/BasicBlock.h>\n";
1898  Out << "#include <llvm/Instructions.h>\n";
1899  Out << "#include <llvm/InlineAsm.h>\n";
1900  Out << "#include <llvm/Support/FormattedStream.h>\n";
1901  Out << "#include <llvm/Support/MathExtras.h>\n";
1902  Out << "#include <llvm/Pass.h>\n";
1903  Out << "#include <llvm/PassManager.h>\n";
1904  Out << "#include <llvm/ADT/SmallVector.h>\n";
1905  Out << "#include <llvm/Analysis/Verifier.h>\n";
1906  Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
1907  Out << "#include <algorithm>\n";
1908  Out << "using namespace llvm;\n\n";
1909  Out << "Module* " << fname << "();\n\n";
1910  Out << "int main(int argc, char**argv) {\n";
1911  Out << "  Module* Mod = " << fname << "();\n";
1912  Out << "  verifyModule(*Mod, PrintMessageAction);\n";
1913  Out << "  PassManager PM;\n";
1914  Out << "  PM.add(createPrintModulePass(&outs()));\n";
1915  Out << "  PM.run(*Mod);\n";
1916  Out << "  return 0;\n";
1917  Out << "}\n\n";
1918  printModule(fname,mName);
1919}
1920
1921void CppWriter::printModule(const std::string& fname,
1922                            const std::string& mName) {
1923  nl(Out) << "Module* " << fname << "() {";
1924  nl(Out,1) << "// Module Construction";
1925  nl(Out) << "Module* mod = new Module(\"";
1926  printEscapedString(mName);
1927  Out << "\", getGlobalContext());";
1928  if (!TheModule->getTargetTriple().empty()) {
1929    nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
1930  }
1931  if (!TheModule->getTargetTriple().empty()) {
1932    nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1933            << "\");";
1934  }
1935
1936  if (!TheModule->getModuleInlineAsm().empty()) {
1937    nl(Out) << "mod->setModuleInlineAsm(\"";
1938    printEscapedString(TheModule->getModuleInlineAsm());
1939    Out << "\");";
1940  }
1941  nl(Out);
1942
1943  // Loop over the dependent libraries and emit them.
1944  Module::lib_iterator LI = TheModule->lib_begin();
1945  Module::lib_iterator LE = TheModule->lib_end();
1946  while (LI != LE) {
1947    Out << "mod->addLibrary(\"" << *LI << "\");";
1948    nl(Out);
1949    ++LI;
1950  }
1951  printModuleBody();
1952  nl(Out) << "return mod;";
1953  nl(Out,-1) << "}";
1954  nl(Out);
1955}
1956
1957void CppWriter::printContents(const std::string& fname,
1958                              const std::string& mName) {
1959  Out << "\nModule* " << fname << "(Module *mod) {\n";
1960  Out << "\nmod->setModuleIdentifier(\"";
1961  printEscapedString(mName);
1962  Out << "\");\n";
1963  printModuleBody();
1964  Out << "\nreturn mod;\n";
1965  Out << "\n}\n";
1966}
1967
1968void CppWriter::printFunction(const std::string& fname,
1969                              const std::string& funcName) {
1970  const Function* F = TheModule->getFunction(funcName);
1971  if (!F) {
1972    error(std::string("Function '") + funcName + "' not found in input module");
1973    return;
1974  }
1975  Out << "\nFunction* " << fname << "(Module *mod) {\n";
1976  printFunctionUses(F);
1977  printFunctionHead(F);
1978  printFunctionBody(F);
1979  Out << "return " << getCppName(F) << ";\n";
1980  Out << "}\n";
1981}
1982
1983void CppWriter::printFunctions() {
1984  const Module::FunctionListType &funcs = TheModule->getFunctionList();
1985  Module::const_iterator I  = funcs.begin();
1986  Module::const_iterator IE = funcs.end();
1987
1988  for (; I != IE; ++I) {
1989    const Function &func = *I;
1990    if (!func.isDeclaration()) {
1991      std::string name("define_");
1992      name += func.getName();
1993      printFunction(name, func.getName());
1994    }
1995  }
1996}
1997
1998void CppWriter::printVariable(const std::string& fname,
1999                              const std::string& varName) {
2000  const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
2001
2002  if (!GV) {
2003    error(std::string("Variable '") + varName + "' not found in input module");
2004    return;
2005  }
2006  Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
2007  printVariableUses(GV);
2008  printVariableHead(GV);
2009  printVariableBody(GV);
2010  Out << "return " << getCppName(GV) << ";\n";
2011  Out << "}\n";
2012}
2013
2014void CppWriter::printType(const std::string &fname,
2015                          const std::string &typeName) {
2016  Type* Ty = TheModule->getTypeByName(typeName);
2017  if (!Ty) {
2018    error(std::string("Type '") + typeName + "' not found in input module");
2019    return;
2020  }
2021  Out << "\nType* " << fname << "(Module *mod) {\n";
2022  printType(Ty);
2023  Out << "return " << getCppName(Ty) << ";\n";
2024  Out << "}\n";
2025}
2026
2027bool CppWriter::runOnModule(Module &M) {
2028  TheModule = &M;
2029
2030  // Emit a header
2031  Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
2032
2033  // Get the name of the function we're supposed to generate
2034  std::string fname = FuncName.getValue();
2035
2036  // Get the name of the thing we are to generate
2037  std::string tgtname = NameToGenerate.getValue();
2038  if (GenerationType == GenModule ||
2039      GenerationType == GenContents ||
2040      GenerationType == GenProgram ||
2041      GenerationType == GenFunctions) {
2042    if (tgtname == "!bad!") {
2043      if (M.getModuleIdentifier() == "-")
2044        tgtname = "<stdin>";
2045      else
2046        tgtname = M.getModuleIdentifier();
2047    }
2048  } else if (tgtname == "!bad!")
2049    error("You must use the -for option with -gen-{function,variable,type}");
2050
2051  switch (WhatToGenerate(GenerationType)) {
2052   case GenProgram:
2053    if (fname.empty())
2054      fname = "makeLLVMModule";
2055    printProgram(fname,tgtname);
2056    break;
2057   case GenModule:
2058    if (fname.empty())
2059      fname = "makeLLVMModule";
2060    printModule(fname,tgtname);
2061    break;
2062   case GenContents:
2063    if (fname.empty())
2064      fname = "makeLLVMModuleContents";
2065    printContents(fname,tgtname);
2066    break;
2067   case GenFunction:
2068    if (fname.empty())
2069      fname = "makeLLVMFunction";
2070    printFunction(fname,tgtname);
2071    break;
2072   case GenFunctions:
2073    printFunctions();
2074    break;
2075   case GenInline:
2076    if (fname.empty())
2077      fname = "makeLLVMInline";
2078    printInline(fname,tgtname);
2079    break;
2080   case GenVariable:
2081    if (fname.empty())
2082      fname = "makeLLVMVariable";
2083    printVariable(fname,tgtname);
2084    break;
2085   case GenType:
2086    if (fname.empty())
2087      fname = "makeLLVMType";
2088    printType(fname,tgtname);
2089    break;
2090  }
2091
2092  return false;
2093}
2094
2095char CppWriter::ID = 0;
2096
2097//===----------------------------------------------------------------------===//
2098//                       External Interface declaration
2099//===----------------------------------------------------------------------===//
2100
2101bool CPPTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
2102                                           formatted_raw_ostream &o,
2103                                           CodeGenFileType FileType,
2104                                           bool DisableVerify,
2105                                           AnalysisID StartAfter,
2106                                           AnalysisID StopAfter) {
2107  if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
2108  PM.add(new CppWriter(o));
2109  return false;
2110}
2111