1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Linker.h"
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Instructions.h"
18#include "llvm/Module.h"
19#include "llvm/TypeFinder.h"
20#include "llvm/ADT/DenseSet.h"
21#include "llvm/ADT/Optional.h"
22#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/Path.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Transforms/Utils/Cloning.h"
28#include "llvm/Transforms/Utils/ValueMapper.h"
29#include "llvm-c/Linker.h"
30#include <cctype>
31using namespace llvm;
32
33//===----------------------------------------------------------------------===//
34// TypeMap implementation.
35//===----------------------------------------------------------------------===//
36
37namespace {
38class TypeMapTy : public ValueMapTypeRemapper {
39  /// MappedTypes - This is a mapping from a source type to a destination type
40  /// to use.
41  DenseMap<Type*, Type*> MappedTypes;
42
43  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
44  /// we speculatively add types to MappedTypes, but keep track of them here in
45  /// case we need to roll back.
46  SmallVector<Type*, 16> SpeculativeTypes;
47
48  /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
49  /// source module that are mapped to an opaque struct in the destination
50  /// module.
51  SmallVector<StructType*, 16> SrcDefinitionsToResolve;
52
53  /// DstResolvedOpaqueTypes - This is the set of opaque types in the
54  /// destination modules who are getting a body from the source module.
55  SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
56
57public:
58  /// addTypeMapping - Indicate that the specified type in the destination
59  /// module is conceptually equivalent to the specified type in the source
60  /// module.
61  void addTypeMapping(Type *DstTy, Type *SrcTy);
62
63  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
64  /// module from a type definition in the source module.
65  void linkDefinedTypeBodies();
66
67  /// get - Return the mapped type to use for the specified input type from the
68  /// source module.
69  Type *get(Type *SrcTy);
70
71  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
72
73  /// dump - Dump out the type map for debugging purposes.
74  void dump() const {
75    for (DenseMap<Type*, Type*>::const_iterator
76           I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
77      dbgs() << "TypeMap: ";
78      I->first->dump();
79      dbgs() << " => ";
80      I->second->dump();
81      dbgs() << '\n';
82    }
83  }
84
85private:
86  Type *getImpl(Type *T);
87  /// remapType - Implement the ValueMapTypeRemapper interface.
88  Type *remapType(Type *SrcTy) {
89    return get(SrcTy);
90  }
91
92  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
93};
94}
95
96void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
97  Type *&Entry = MappedTypes[SrcTy];
98  if (Entry) return;
99
100  if (DstTy == SrcTy) {
101    Entry = DstTy;
102    return;
103  }
104
105  // Check to see if these types are recursively isomorphic and establish a
106  // mapping between them if so.
107  if (!areTypesIsomorphic(DstTy, SrcTy)) {
108    // Oops, they aren't isomorphic.  Just discard this request by rolling out
109    // any speculative mappings we've established.
110    for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
111      MappedTypes.erase(SpeculativeTypes[i]);
112  }
113  SpeculativeTypes.clear();
114}
115
116/// areTypesIsomorphic - Recursively walk this pair of types, returning true
117/// if they are isomorphic, false if they are not.
118bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
119  // Two types with differing kinds are clearly not isomorphic.
120  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
121
122  // If we have an entry in the MappedTypes table, then we have our answer.
123  Type *&Entry = MappedTypes[SrcTy];
124  if (Entry)
125    return Entry == DstTy;
126
127  // Two identical types are clearly isomorphic.  Remember this
128  // non-speculatively.
129  if (DstTy == SrcTy) {
130    Entry = DstTy;
131    return true;
132  }
133
134  // Okay, we have two types with identical kinds that we haven't seen before.
135
136  // If this is an opaque struct type, special case it.
137  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
138    // Mapping an opaque type to any struct, just keep the dest struct.
139    if (SSTy->isOpaque()) {
140      Entry = DstTy;
141      SpeculativeTypes.push_back(SrcTy);
142      return true;
143    }
144
145    // Mapping a non-opaque source type to an opaque dest.  If this is the first
146    // type that we're mapping onto this destination type then we succeed.  Keep
147    // the dest, but fill it in later.  This doesn't need to be speculative.  If
148    // this is the second (different) type that we're trying to map onto the
149    // same opaque type then we fail.
150    if (cast<StructType>(DstTy)->isOpaque()) {
151      // We can only map one source type onto the opaque destination type.
152      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
153        return false;
154      SrcDefinitionsToResolve.push_back(SSTy);
155      Entry = DstTy;
156      return true;
157    }
158  }
159
160  // If the number of subtypes disagree between the two types, then we fail.
161  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
162    return false;
163
164  // Fail if any of the extra properties (e.g. array size) of the type disagree.
165  if (isa<IntegerType>(DstTy))
166    return false;  // bitwidth disagrees.
167  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
168    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
169      return false;
170
171  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
172    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
173      return false;
174  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
175    StructType *SSTy = cast<StructType>(SrcTy);
176    if (DSTy->isLiteral() != SSTy->isLiteral() ||
177        DSTy->isPacked() != SSTy->isPacked())
178      return false;
179  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
180    if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
181      return false;
182  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
183    if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
184      return false;
185  }
186
187  // Otherwise, we speculate that these two types will line up and recursively
188  // check the subelements.
189  Entry = DstTy;
190  SpeculativeTypes.push_back(SrcTy);
191
192  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
193    if (!areTypesIsomorphic(DstTy->getContainedType(i),
194                            SrcTy->getContainedType(i)))
195      return false;
196
197  // If everything seems to have lined up, then everything is great.
198  return true;
199}
200
201/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
202/// module from a type definition in the source module.
203void TypeMapTy::linkDefinedTypeBodies() {
204  SmallVector<Type*, 16> Elements;
205  SmallString<16> TmpName;
206
207  // Note that processing entries in this loop (calling 'get') can add new
208  // entries to the SrcDefinitionsToResolve vector.
209  while (!SrcDefinitionsToResolve.empty()) {
210    StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
211    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
212
213    // TypeMap is a many-to-one mapping, if there were multiple types that
214    // provide a body for DstSTy then previous iterations of this loop may have
215    // already handled it.  Just ignore this case.
216    if (!DstSTy->isOpaque()) continue;
217    assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
218
219    // Map the body of the source type over to a new body for the dest type.
220    Elements.resize(SrcSTy->getNumElements());
221    for (unsigned i = 0, e = Elements.size(); i != e; ++i)
222      Elements[i] = getImpl(SrcSTy->getElementType(i));
223
224    DstSTy->setBody(Elements, SrcSTy->isPacked());
225
226    // If DstSTy has no name or has a longer name than STy, then viciously steal
227    // STy's name.
228    if (!SrcSTy->hasName()) continue;
229    StringRef SrcName = SrcSTy->getName();
230
231    if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
232      TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
233      SrcSTy->setName("");
234      DstSTy->setName(TmpName.str());
235      TmpName.clear();
236    }
237  }
238
239  DstResolvedOpaqueTypes.clear();
240}
241
242/// get - Return the mapped type to use for the specified input type from the
243/// source module.
244Type *TypeMapTy::get(Type *Ty) {
245  Type *Result = getImpl(Ty);
246
247  // If this caused a reference to any struct type, resolve it before returning.
248  if (!SrcDefinitionsToResolve.empty())
249    linkDefinedTypeBodies();
250  return Result;
251}
252
253/// getImpl - This is the recursive version of get().
254Type *TypeMapTy::getImpl(Type *Ty) {
255  // If we already have an entry for this type, return it.
256  Type **Entry = &MappedTypes[Ty];
257  if (*Entry) return *Entry;
258
259  // If this is not a named struct type, then just map all of the elements and
260  // then rebuild the type from inside out.
261  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
262    // If there are no element types to map, then the type is itself.  This is
263    // true for the anonymous {} struct, things like 'float', integers, etc.
264    if (Ty->getNumContainedTypes() == 0)
265      return *Entry = Ty;
266
267    // Remap all of the elements, keeping track of whether any of them change.
268    bool AnyChange = false;
269    SmallVector<Type*, 4> ElementTypes;
270    ElementTypes.resize(Ty->getNumContainedTypes());
271    for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
272      ElementTypes[i] = getImpl(Ty->getContainedType(i));
273      AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
274    }
275
276    // If we found our type while recursively processing stuff, just use it.
277    Entry = &MappedTypes[Ty];
278    if (*Entry) return *Entry;
279
280    // If all of the element types mapped directly over, then the type is usable
281    // as-is.
282    if (!AnyChange)
283      return *Entry = Ty;
284
285    // Otherwise, rebuild a modified type.
286    switch (Ty->getTypeID()) {
287    default: llvm_unreachable("unknown derived type to remap");
288    case Type::ArrayTyID:
289      return *Entry = ArrayType::get(ElementTypes[0],
290                                     cast<ArrayType>(Ty)->getNumElements());
291    case Type::VectorTyID:
292      return *Entry = VectorType::get(ElementTypes[0],
293                                      cast<VectorType>(Ty)->getNumElements());
294    case Type::PointerTyID:
295      return *Entry = PointerType::get(ElementTypes[0],
296                                      cast<PointerType>(Ty)->getAddressSpace());
297    case Type::FunctionTyID:
298      return *Entry = FunctionType::get(ElementTypes[0],
299                                        makeArrayRef(ElementTypes).slice(1),
300                                        cast<FunctionType>(Ty)->isVarArg());
301    case Type::StructTyID:
302      // Note that this is only reached for anonymous structs.
303      return *Entry = StructType::get(Ty->getContext(), ElementTypes,
304                                      cast<StructType>(Ty)->isPacked());
305    }
306  }
307
308  // Otherwise, this is an unmapped named struct.  If the struct can be directly
309  // mapped over, just use it as-is.  This happens in a case when the linked-in
310  // module has something like:
311  //   %T = type {%T*, i32}
312  //   @GV = global %T* null
313  // where T does not exist at all in the destination module.
314  //
315  // The other case we watch for is when the type is not in the destination
316  // module, but that it has to be rebuilt because it refers to something that
317  // is already mapped.  For example, if the destination module has:
318  //  %A = type { i32 }
319  // and the source module has something like
320  //  %A' = type { i32 }
321  //  %B = type { %A'* }
322  //  @GV = global %B* null
323  // then we want to create a new type: "%B = type { %A*}" and have it take the
324  // pristine "%B" name from the source module.
325  //
326  // To determine which case this is, we have to recursively walk the type graph
327  // speculating that we'll be able to reuse it unmodified.  Only if this is
328  // safe would we map the entire thing over.  Because this is an optimization,
329  // and is not required for the prettiness of the linked module, we just skip
330  // it and always rebuild a type here.
331  StructType *STy = cast<StructType>(Ty);
332
333  // If the type is opaque, we can just use it directly.
334  if (STy->isOpaque())
335    return *Entry = STy;
336
337  // Otherwise we create a new type and resolve its body later.  This will be
338  // resolved by the top level of get().
339  SrcDefinitionsToResolve.push_back(STy);
340  StructType *DTy = StructType::create(STy->getContext());
341  DstResolvedOpaqueTypes.insert(DTy);
342  return *Entry = DTy;
343}
344
345//===----------------------------------------------------------------------===//
346// ModuleLinker implementation.
347//===----------------------------------------------------------------------===//
348
349namespace {
350  /// ModuleLinker - This is an implementation class for the LinkModules
351  /// function, which is the entrypoint for this file.
352  class ModuleLinker {
353    Module *DstM, *SrcM;
354
355    TypeMapTy TypeMap;
356
357    /// ValueMap - Mapping of values from what they used to be in Src, to what
358    /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
359    /// some overhead due to the use of Value handles which the Linker doesn't
360    /// actually need, but this allows us to reuse the ValueMapper code.
361    ValueToValueMapTy ValueMap;
362
363    struct AppendingVarInfo {
364      GlobalVariable *NewGV;  // New aggregate global in dest module.
365      Constant *DstInit;      // Old initializer from dest module.
366      Constant *SrcInit;      // Old initializer from src module.
367    };
368
369    std::vector<AppendingVarInfo> AppendingVars;
370
371    unsigned Mode; // Mode to treat source module.
372
373    // Set of items not to link in from source.
374    SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
375
376    // Vector of functions to lazily link in.
377    std::vector<Function*> LazilyLinkFunctions;
378
379  public:
380    std::string ErrorMsg;
381
382    ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
383      : DstM(dstM), SrcM(srcM), Mode(mode) { }
384
385    bool run();
386
387  private:
388    /// emitError - Helper method for setting a message and returning an error
389    /// code.
390    bool emitError(const Twine &Message) {
391      ErrorMsg = Message.str();
392      return true;
393    }
394
395    /// getLinkageResult - This analyzes the two global values and determines
396    /// what the result will look like in the destination module.
397    bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
398                          GlobalValue::LinkageTypes &LT,
399                          GlobalValue::VisibilityTypes &Vis,
400                          bool &LinkFromSrc);
401
402    /// getLinkedToGlobal - Given a global in the source module, return the
403    /// global in the destination module that is being linked to, if any.
404    GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
405      // If the source has no name it can't link.  If it has local linkage,
406      // there is no name match-up going on.
407      if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
408        return 0;
409
410      // Otherwise see if we have a match in the destination module's symtab.
411      GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
412      if (DGV == 0) return 0;
413
414      // If we found a global with the same name in the dest module, but it has
415      // internal linkage, we are really not doing any linkage here.
416      if (DGV->hasLocalLinkage())
417        return 0;
418
419      // Otherwise, we do in fact link to the destination global.
420      return DGV;
421    }
422
423    void computeTypeMapping();
424    bool categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
425                                   DenseMap<MDString*, MDNode*> &ErrorNode,
426                                   DenseMap<MDString*, MDNode*> &WarningNode,
427                                   DenseMap<MDString*, MDNode*> &OverrideNode,
428                                   DenseMap<MDString*,
429                                   SmallSetVector<MDNode*, 8> > &RequireNodes,
430                                   SmallSetVector<MDString*, 16> &SeenIDs);
431
432    bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
433    bool linkGlobalProto(GlobalVariable *SrcGV);
434    bool linkFunctionProto(Function *SrcF);
435    bool linkAliasProto(GlobalAlias *SrcA);
436    bool linkModuleFlagsMetadata();
437
438    void linkAppendingVarInit(const AppendingVarInfo &AVI);
439    void linkGlobalInits();
440    void linkFunctionBody(Function *Dst, Function *Src);
441    void linkAliasBodies();
442    void linkNamedMDNodes();
443  };
444}
445
446/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
447/// in the symbol table.  This is good for all clients except for us.  Go
448/// through the trouble to force this back.
449static void forceRenaming(GlobalValue *GV, StringRef Name) {
450  // If the global doesn't force its name or if it already has the right name,
451  // there is nothing for us to do.
452  if (GV->hasLocalLinkage() || GV->getName() == Name)
453    return;
454
455  Module *M = GV->getParent();
456
457  // If there is a conflict, rename the conflict.
458  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
459    GV->takeName(ConflictGV);
460    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
461    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
462  } else {
463    GV->setName(Name);              // Force the name back
464  }
465}
466
467/// copyGVAttributes - copy additional attributes (those not needed to construct
468/// a GlobalValue) from the SrcGV to the DestGV.
469static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
470  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
471  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
472  DestGV->copyAttributesFrom(SrcGV);
473  DestGV->setAlignment(Alignment);
474
475  forceRenaming(DestGV, SrcGV->getName());
476}
477
478static bool isLessConstraining(GlobalValue::VisibilityTypes a,
479                               GlobalValue::VisibilityTypes b) {
480  if (a == GlobalValue::HiddenVisibility)
481    return false;
482  if (b == GlobalValue::HiddenVisibility)
483    return true;
484  if (a == GlobalValue::ProtectedVisibility)
485    return false;
486  if (b == GlobalValue::ProtectedVisibility)
487    return true;
488  return false;
489}
490
491/// getLinkageResult - This analyzes the two global values and determines what
492/// the result will look like in the destination module.  In particular, it
493/// computes the resultant linkage type and visibility, computes whether the
494/// global in the source should be copied over to the destination (replacing
495/// the existing one), and computes whether this linkage is an error or not.
496bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
497                                    GlobalValue::LinkageTypes &LT,
498                                    GlobalValue::VisibilityTypes &Vis,
499                                    bool &LinkFromSrc) {
500  assert(Dest && "Must have two globals being queried");
501  assert(!Src->hasLocalLinkage() &&
502         "If Src has internal linkage, Dest shouldn't be set!");
503
504  bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
505  bool DestIsDeclaration = Dest->isDeclaration();
506
507  if (SrcIsDeclaration) {
508    // If Src is external or if both Src & Dest are external..  Just link the
509    // external globals, we aren't adding anything.
510    if (Src->hasDLLImportLinkage()) {
511      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
512      if (DestIsDeclaration) {
513        LinkFromSrc = true;
514        LT = Src->getLinkage();
515      }
516    } else if (Dest->hasExternalWeakLinkage()) {
517      // If the Dest is weak, use the source linkage.
518      LinkFromSrc = true;
519      LT = Src->getLinkage();
520    } else {
521      LinkFromSrc = false;
522      LT = Dest->getLinkage();
523    }
524  } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
525    // If Dest is external but Src is not:
526    LinkFromSrc = true;
527    LT = Src->getLinkage();
528  } else if (Src->isWeakForLinker()) {
529    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
530    // or DLL* linkage.
531    if (Dest->hasExternalWeakLinkage() ||
532        Dest->hasAvailableExternallyLinkage() ||
533        (Dest->hasLinkOnceLinkage() &&
534         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
535      LinkFromSrc = true;
536      LT = Src->getLinkage();
537    } else {
538      LinkFromSrc = false;
539      LT = Dest->getLinkage();
540    }
541  } else if (Dest->isWeakForLinker()) {
542    // At this point we know that Src has External* or DLL* linkage.
543    if (Src->hasExternalWeakLinkage()) {
544      LinkFromSrc = false;
545      LT = Dest->getLinkage();
546    } else {
547      LinkFromSrc = true;
548      LT = GlobalValue::ExternalLinkage;
549    }
550  } else {
551    assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
552            Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
553           (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
554            Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
555           "Unexpected linkage type!");
556    return emitError("Linking globals named '" + Src->getName() +
557                 "': symbol multiply defined!");
558  }
559
560  // Compute the visibility. We follow the rules in the System V Application
561  // Binary Interface.
562  Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
563    Dest->getVisibility() : Src->getVisibility();
564  return false;
565}
566
567/// computeTypeMapping - Loop over all of the linked values to compute type
568/// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
569/// we have two struct types 'Foo' but one got renamed when the module was
570/// loaded into the same LLVMContext.
571void ModuleLinker::computeTypeMapping() {
572  // Incorporate globals.
573  for (Module::global_iterator I = SrcM->global_begin(),
574       E = SrcM->global_end(); I != E; ++I) {
575    GlobalValue *DGV = getLinkedToGlobal(I);
576    if (DGV == 0) continue;
577
578    if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
579      TypeMap.addTypeMapping(DGV->getType(), I->getType());
580      continue;
581    }
582
583    // Unify the element type of appending arrays.
584    ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
585    ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
586    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
587  }
588
589  // Incorporate functions.
590  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
591    if (GlobalValue *DGV = getLinkedToGlobal(I))
592      TypeMap.addTypeMapping(DGV->getType(), I->getType());
593  }
594
595  // Incorporate types by name, scanning all the types in the source module.
596  // At this point, the destination module may have a type "%foo = { i32 }" for
597  // example.  When the source module got loaded into the same LLVMContext, if
598  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
599  TypeFinder SrcStructTypes;
600  SrcStructTypes.run(*SrcM, true);
601  SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
602                                                 SrcStructTypes.end());
603
604  TypeFinder DstStructTypes;
605  DstStructTypes.run(*DstM, true);
606  SmallPtrSet<StructType*, 32> DstStructTypesSet(DstStructTypes.begin(),
607                                                 DstStructTypes.end());
608
609  for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
610    StructType *ST = SrcStructTypes[i];
611    if (!ST->hasName()) continue;
612
613    // Check to see if there is a dot in the name followed by a digit.
614    size_t DotPos = ST->getName().rfind('.');
615    if (DotPos == 0 || DotPos == StringRef::npos ||
616        ST->getName().back() == '.' || !isdigit(ST->getName()[DotPos+1]))
617      continue;
618
619    // Check to see if the destination module has a struct with the prefix name.
620    if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
621      // Don't use it if this actually came from the source module. They're in
622      // the same LLVMContext after all. Also don't use it unless the type is
623      // actually used in the destination module. This can happen in situations
624      // like this:
625      //
626      //      Module A                         Module B
627      //      --------                         --------
628      //   %Z = type { %A }                %B = type { %C.1 }
629      //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
630      //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
631      //   %C = type { i8* }               %B.3 = type { %C.1 }
632      //
633      // When we link Module B with Module A, the '%B' in Module B is
634      // used. However, that would then use '%C.1'. But when we process '%C.1',
635      // we prefer to take the '%C' version. So we are then left with both
636      // '%C.1' and '%C' being used for the same types. This leads to some
637      // variables using one type and some using the other.
638      if (!SrcStructTypesSet.count(DST) && DstStructTypesSet.count(DST))
639        TypeMap.addTypeMapping(DST, ST);
640  }
641
642  // Don't bother incorporating aliases, they aren't generally typed well.
643
644  // Now that we have discovered all of the type equivalences, get a body for
645  // any 'opaque' types in the dest module that are now resolved.
646  TypeMap.linkDefinedTypeBodies();
647}
648
649/// linkAppendingVarProto - If there were any appending global variables, link
650/// them together now.  Return true on error.
651bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
652                                         GlobalVariable *SrcGV) {
653
654  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
655    return emitError("Linking globals named '" + SrcGV->getName() +
656           "': can only link appending global with another appending global!");
657
658  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
659  ArrayType *SrcTy =
660    cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
661  Type *EltTy = DstTy->getElementType();
662
663  // Check to see that they two arrays agree on type.
664  if (EltTy != SrcTy->getElementType())
665    return emitError("Appending variables with different element types!");
666  if (DstGV->isConstant() != SrcGV->isConstant())
667    return emitError("Appending variables linked with different const'ness!");
668
669  if (DstGV->getAlignment() != SrcGV->getAlignment())
670    return emitError(
671             "Appending variables with different alignment need to be linked!");
672
673  if (DstGV->getVisibility() != SrcGV->getVisibility())
674    return emitError(
675            "Appending variables with different visibility need to be linked!");
676
677  if (DstGV->getSection() != SrcGV->getSection())
678    return emitError(
679          "Appending variables with different section name need to be linked!");
680
681  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
682  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
683
684  // Create the new global variable.
685  GlobalVariable *NG =
686    new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
687                       DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
688                       DstGV->getThreadLocalMode(),
689                       DstGV->getType()->getAddressSpace());
690
691  // Propagate alignment, visibility and section info.
692  copyGVAttributes(NG, DstGV);
693
694  AppendingVarInfo AVI;
695  AVI.NewGV = NG;
696  AVI.DstInit = DstGV->getInitializer();
697  AVI.SrcInit = SrcGV->getInitializer();
698  AppendingVars.push_back(AVI);
699
700  // Replace any uses of the two global variables with uses of the new
701  // global.
702  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
703
704  DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
705  DstGV->eraseFromParent();
706
707  // Track the source variable so we don't try to link it.
708  DoNotLinkFromSource.insert(SrcGV);
709
710  return false;
711}
712
713/// linkGlobalProto - Loop through the global variables in the src module and
714/// merge them into the dest module.
715bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
716  GlobalValue *DGV = getLinkedToGlobal(SGV);
717  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
718
719  if (DGV) {
720    // Concatenation of appending linkage variables is magic and handled later.
721    if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
722      return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
723
724    // Determine whether linkage of these two globals follows the source
725    // module's definition or the destination module's definition.
726    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
727    GlobalValue::VisibilityTypes NV;
728    bool LinkFromSrc = false;
729    if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
730      return true;
731    NewVisibility = NV;
732
733    // If we're not linking from the source, then keep the definition that we
734    // have.
735    if (!LinkFromSrc) {
736      // Special case for const propagation.
737      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
738        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
739          DGVar->setConstant(true);
740
741      // Set calculated linkage and visibility.
742      DGV->setLinkage(NewLinkage);
743      DGV->setVisibility(*NewVisibility);
744
745      // Make sure to remember this mapping.
746      ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
747
748      // Track the source global so that we don't attempt to copy it over when
749      // processing global initializers.
750      DoNotLinkFromSource.insert(SGV);
751
752      return false;
753    }
754  }
755
756  // No linking to be performed or linking from the source: simply create an
757  // identical version of the symbol over in the dest module... the
758  // initializer will be filled in later by LinkGlobalInits.
759  GlobalVariable *NewDGV =
760    new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
761                       SGV->isConstant(), SGV->getLinkage(), /*init*/0,
762                       SGV->getName(), /*insertbefore*/0,
763                       SGV->getThreadLocalMode(),
764                       SGV->getType()->getAddressSpace());
765  // Propagate alignment, visibility and section info.
766  copyGVAttributes(NewDGV, SGV);
767  if (NewVisibility)
768    NewDGV->setVisibility(*NewVisibility);
769
770  if (DGV) {
771    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
772    DGV->eraseFromParent();
773  }
774
775  // Make sure to remember this mapping.
776  ValueMap[SGV] = NewDGV;
777  return false;
778}
779
780/// linkFunctionProto - Link the function in the source module into the
781/// destination module if needed, setting up mapping information.
782bool ModuleLinker::linkFunctionProto(Function *SF) {
783  GlobalValue *DGV = getLinkedToGlobal(SF);
784  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
785
786  if (DGV) {
787    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
788    bool LinkFromSrc = false;
789    GlobalValue::VisibilityTypes NV;
790    if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
791      return true;
792    NewVisibility = NV;
793
794    if (!LinkFromSrc) {
795      // Set calculated linkage
796      DGV->setLinkage(NewLinkage);
797      DGV->setVisibility(*NewVisibility);
798
799      // Make sure to remember this mapping.
800      ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
801
802      // Track the function from the source module so we don't attempt to remap
803      // it.
804      DoNotLinkFromSource.insert(SF);
805
806      return false;
807    }
808  }
809
810  // If there is no linkage to be performed or we are linking from the source,
811  // bring SF over.
812  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
813                                     SF->getLinkage(), SF->getName(), DstM);
814  copyGVAttributes(NewDF, SF);
815  if (NewVisibility)
816    NewDF->setVisibility(*NewVisibility);
817
818  if (DGV) {
819    // Any uses of DF need to change to NewDF, with cast.
820    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
821    DGV->eraseFromParent();
822  } else {
823    // Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link.
824    if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
825        SF->hasAvailableExternallyLinkage()) {
826      DoNotLinkFromSource.insert(SF);
827      LazilyLinkFunctions.push_back(SF);
828    }
829  }
830
831  ValueMap[SF] = NewDF;
832  return false;
833}
834
835/// LinkAliasProto - Set up prototypes for any aliases that come over from the
836/// source module.
837bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
838  GlobalValue *DGV = getLinkedToGlobal(SGA);
839  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
840
841  if (DGV) {
842    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
843    GlobalValue::VisibilityTypes NV;
844    bool LinkFromSrc = false;
845    if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
846      return true;
847    NewVisibility = NV;
848
849    if (!LinkFromSrc) {
850      // Set calculated linkage.
851      DGV->setLinkage(NewLinkage);
852      DGV->setVisibility(*NewVisibility);
853
854      // Make sure to remember this mapping.
855      ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
856
857      // Track the alias from the source module so we don't attempt to remap it.
858      DoNotLinkFromSource.insert(SGA);
859
860      return false;
861    }
862  }
863
864  // If there is no linkage to be performed or we're linking from the source,
865  // bring over SGA.
866  GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
867                                       SGA->getLinkage(), SGA->getName(),
868                                       /*aliasee*/0, DstM);
869  copyGVAttributes(NewDA, SGA);
870  if (NewVisibility)
871    NewDA->setVisibility(*NewVisibility);
872
873  if (DGV) {
874    // Any uses of DGV need to change to NewDA, with cast.
875    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
876    DGV->eraseFromParent();
877  }
878
879  ValueMap[SGA] = NewDA;
880  return false;
881}
882
883static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
884  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
885
886  for (unsigned i = 0; i != NumElements; ++i)
887    Dest.push_back(C->getAggregateElement(i));
888}
889
890void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
891  // Merge the initializer.
892  SmallVector<Constant*, 16> Elements;
893  getArrayElements(AVI.DstInit, Elements);
894
895  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
896  getArrayElements(SrcInit, Elements);
897
898  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
899  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
900}
901
902/// linkGlobalInits - Update the initializers in the Dest module now that all
903/// globals that may be referenced are in Dest.
904void ModuleLinker::linkGlobalInits() {
905  // Loop over all of the globals in the src module, mapping them over as we go
906  for (Module::const_global_iterator I = SrcM->global_begin(),
907       E = SrcM->global_end(); I != E; ++I) {
908
909    // Only process initialized GV's or ones not already in dest.
910    if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
911
912    // Grab destination global variable.
913    GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
914    // Figure out what the initializer looks like in the dest module.
915    DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
916                                 RF_None, &TypeMap));
917  }
918}
919
920/// linkFunctionBody - Copy the source function over into the dest function and
921/// fix up references to values.  At this point we know that Dest is an external
922/// function, and that Src is not.
923void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
924  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
925
926  // Go through and convert function arguments over, remembering the mapping.
927  Function::arg_iterator DI = Dst->arg_begin();
928  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
929       I != E; ++I, ++DI) {
930    DI->setName(I->getName());  // Copy the name over.
931
932    // Add a mapping to our mapping.
933    ValueMap[I] = DI;
934  }
935
936  if (Mode == Linker::DestroySource) {
937    // Splice the body of the source function into the dest function.
938    Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
939
940    // At this point, all of the instructions and values of the function are now
941    // copied over.  The only problem is that they are still referencing values in
942    // the Source function as operands.  Loop through all of the operands of the
943    // functions and patch them up to point to the local versions.
944    for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
945      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
946        RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
947
948  } else {
949    // Clone the body of the function into the dest function.
950    SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
951    CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap);
952  }
953
954  // There is no need to map the arguments anymore.
955  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
956       I != E; ++I)
957    ValueMap.erase(I);
958
959}
960
961/// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
962void ModuleLinker::linkAliasBodies() {
963  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
964       I != E; ++I) {
965    if (DoNotLinkFromSource.count(I))
966      continue;
967    if (Constant *Aliasee = I->getAliasee()) {
968      GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
969      DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
970    }
971  }
972}
973
974/// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
975/// module.
976void ModuleLinker::linkNamedMDNodes() {
977  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
978  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
979       E = SrcM->named_metadata_end(); I != E; ++I) {
980    // Don't link module flags here. Do them separately.
981    if (&*I == SrcModFlags) continue;
982    NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
983    // Add Src elements into Dest node.
984    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
985      DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
986                                   RF_None, &TypeMap));
987  }
988}
989
990/// categorizeModuleFlagNodes - Categorize the module flags according to their
991/// type: Error, Warning, Override, and Require.
992bool ModuleLinker::
993categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
994                          DenseMap<MDString*, MDNode*> &ErrorNode,
995                          DenseMap<MDString*, MDNode*> &WarningNode,
996                          DenseMap<MDString*, MDNode*> &OverrideNode,
997                          DenseMap<MDString*,
998                            SmallSetVector<MDNode*, 8> > &RequireNodes,
999                          SmallSetVector<MDString*, 16> &SeenIDs) {
1000  bool HasErr = false;
1001
1002  for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) {
1003    MDNode *Op = ModFlags->getOperand(I);
1004    assert(Op->getNumOperands() == 3 && "Invalid module flag metadata!");
1005    assert(isa<ConstantInt>(Op->getOperand(0)) &&
1006           "Module flag's first operand must be an integer!");
1007    assert(isa<MDString>(Op->getOperand(1)) &&
1008           "Module flag's second operand must be an MDString!");
1009
1010    ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
1011    MDString *ID = cast<MDString>(Op->getOperand(1));
1012    Value *Val = Op->getOperand(2);
1013    switch (Behavior->getZExtValue()) {
1014    default:
1015      assert(false && "Invalid behavior in module flag metadata!");
1016      break;
1017    case Module::Error: {
1018      MDNode *&ErrNode = ErrorNode[ID];
1019      if (!ErrNode) ErrNode = Op;
1020      if (ErrNode->getOperand(2) != Val)
1021        HasErr = emitError("linking module flags '" + ID->getString() +
1022                           "': IDs have conflicting values");
1023      break;
1024    }
1025    case Module::Warning: {
1026      MDNode *&WarnNode = WarningNode[ID];
1027      if (!WarnNode) WarnNode = Op;
1028      if (WarnNode->getOperand(2) != Val)
1029        errs() << "WARNING: linking module flags '" << ID->getString()
1030               << "': IDs have conflicting values";
1031      break;
1032    }
1033    case Module::Require:  RequireNodes[ID].insert(Op);     break;
1034    case Module::Override: {
1035      MDNode *&OvrNode = OverrideNode[ID];
1036      if (!OvrNode) OvrNode = Op;
1037      if (OvrNode->getOperand(2) != Val)
1038        HasErr = emitError("linking module flags '" + ID->getString() +
1039                           "': IDs have conflicting override values");
1040      break;
1041    }
1042    }
1043
1044    SeenIDs.insert(ID);
1045  }
1046
1047  return HasErr;
1048}
1049
1050/// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
1051/// module.
1052bool ModuleLinker::linkModuleFlagsMetadata() {
1053  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1054  if (!SrcModFlags) return false;
1055
1056  NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1057
1058  // If the destination module doesn't have module flags yet, then just copy
1059  // over the source module's flags.
1060  if (DstModFlags->getNumOperands() == 0) {
1061    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1062      DstModFlags->addOperand(SrcModFlags->getOperand(I));
1063
1064    return false;
1065  }
1066
1067  bool HasErr = false;
1068
1069  // Otherwise, we have to merge them based on their behaviors. First,
1070  // categorize all of the nodes in the modules' module flags. If an error or
1071  // warning occurs, then emit the appropriate message(s).
1072  DenseMap<MDString*, MDNode*> ErrorNode;
1073  DenseMap<MDString*, MDNode*> WarningNode;
1074  DenseMap<MDString*, MDNode*> OverrideNode;
1075  DenseMap<MDString*, SmallSetVector<MDNode*, 8> > RequireNodes;
1076  SmallSetVector<MDString*, 16> SeenIDs;
1077
1078  HasErr |= categorizeModuleFlagNodes(SrcModFlags, ErrorNode, WarningNode,
1079                                      OverrideNode, RequireNodes, SeenIDs);
1080  HasErr |= categorizeModuleFlagNodes(DstModFlags, ErrorNode, WarningNode,
1081                                      OverrideNode, RequireNodes, SeenIDs);
1082
1083  // Check that there isn't both an error and warning node for a flag.
1084  for (SmallSetVector<MDString*, 16>::iterator
1085         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1086    MDString *ID = *I;
1087    if (ErrorNode[ID] && WarningNode[ID])
1088      HasErr = emitError("linking module flags '" + ID->getString() +
1089                         "': IDs have conflicting behaviors");
1090  }
1091
1092  // Early exit if we had an error.
1093  if (HasErr) return true;
1094
1095  // Get the destination's module flags ready for new operands.
1096  DstModFlags->dropAllReferences();
1097
1098  // Add all of the module flags to the destination module.
1099  DenseMap<MDString*, SmallVector<MDNode*, 4> > AddedNodes;
1100  for (SmallSetVector<MDString*, 16>::iterator
1101         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1102    MDString *ID = *I;
1103    if (OverrideNode[ID]) {
1104      DstModFlags->addOperand(OverrideNode[ID]);
1105      AddedNodes[ID].push_back(OverrideNode[ID]);
1106    } else if (ErrorNode[ID]) {
1107      DstModFlags->addOperand(ErrorNode[ID]);
1108      AddedNodes[ID].push_back(ErrorNode[ID]);
1109    } else if (WarningNode[ID]) {
1110      DstModFlags->addOperand(WarningNode[ID]);
1111      AddedNodes[ID].push_back(WarningNode[ID]);
1112    }
1113
1114    for (SmallSetVector<MDNode*, 8>::iterator
1115           II = RequireNodes[ID].begin(), IE = RequireNodes[ID].end();
1116         II != IE; ++II)
1117      DstModFlags->addOperand(*II);
1118  }
1119
1120  // Now check that all of the requirements have been satisfied.
1121  for (SmallSetVector<MDString*, 16>::iterator
1122         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1123    MDString *ID = *I;
1124    SmallSetVector<MDNode*, 8> &Set = RequireNodes[ID];
1125
1126    for (SmallSetVector<MDNode*, 8>::iterator
1127           II = Set.begin(), IE = Set.end(); II != IE; ++II) {
1128      MDNode *Node = *II;
1129      assert(isa<MDNode>(Node->getOperand(2)) &&
1130             "Module flag's third operand must be an MDNode!");
1131      MDNode *Val = cast<MDNode>(Node->getOperand(2));
1132
1133      MDString *ReqID = cast<MDString>(Val->getOperand(0));
1134      Value *ReqVal = Val->getOperand(1);
1135
1136      bool HasValue = false;
1137      for (SmallVectorImpl<MDNode*>::iterator
1138             RI = AddedNodes[ReqID].begin(), RE = AddedNodes[ReqID].end();
1139           RI != RE; ++RI) {
1140        MDNode *ReqNode = *RI;
1141        if (ReqNode->getOperand(2) == ReqVal) {
1142          HasValue = true;
1143          break;
1144        }
1145      }
1146
1147      if (!HasValue)
1148        HasErr = emitError("linking module flags '" + ReqID->getString() +
1149                           "': does not have the required value");
1150    }
1151  }
1152
1153  return HasErr;
1154}
1155
1156bool ModuleLinker::run() {
1157  assert(DstM && "Null destination module");
1158  assert(SrcM && "Null source module");
1159
1160  // Inherit the target data from the source module if the destination module
1161  // doesn't have one already.
1162  if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
1163    DstM->setDataLayout(SrcM->getDataLayout());
1164
1165  // Copy the target triple from the source to dest if the dest's is empty.
1166  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1167    DstM->setTargetTriple(SrcM->getTargetTriple());
1168
1169  if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
1170      SrcM->getDataLayout() != DstM->getDataLayout())
1171    errs() << "WARNING: Linking two modules of different data layouts!\n";
1172  if (!SrcM->getTargetTriple().empty() &&
1173      DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1174    errs() << "WARNING: Linking two modules of different target triples: ";
1175    if (!SrcM->getModuleIdentifier().empty())
1176      errs() << SrcM->getModuleIdentifier() << ": ";
1177    errs() << "'" << SrcM->getTargetTriple() << "' and '"
1178           << DstM->getTargetTriple() << "'\n";
1179  }
1180
1181  // Append the module inline asm string.
1182  if (!SrcM->getModuleInlineAsm().empty()) {
1183    if (DstM->getModuleInlineAsm().empty())
1184      DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1185    else
1186      DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1187                               SrcM->getModuleInlineAsm());
1188  }
1189
1190  // Update the destination module's dependent libraries list with the libraries
1191  // from the source module. There's no opportunity for duplicates here as the
1192  // Module ensures that duplicate insertions are discarded.
1193  for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
1194       SI != SE; ++SI)
1195    DstM->addLibrary(*SI);
1196
1197  // If the source library's module id is in the dependent library list of the
1198  // destination library, remove it since that module is now linked in.
1199  StringRef ModuleId = SrcM->getModuleIdentifier();
1200  if (!ModuleId.empty())
1201    DstM->removeLibrary(sys::path::stem(ModuleId));
1202
1203  // Loop over all of the linked values to compute type mappings.
1204  computeTypeMapping();
1205
1206  // Insert all of the globals in src into the DstM module... without linking
1207  // initializers (which could refer to functions not yet mapped over).
1208  for (Module::global_iterator I = SrcM->global_begin(),
1209       E = SrcM->global_end(); I != E; ++I)
1210    if (linkGlobalProto(I))
1211      return true;
1212
1213  // Link the functions together between the two modules, without doing function
1214  // bodies... this just adds external function prototypes to the DstM
1215  // function...  We do this so that when we begin processing function bodies,
1216  // all of the global values that may be referenced are available in our
1217  // ValueMap.
1218  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1219    if (linkFunctionProto(I))
1220      return true;
1221
1222  // If there were any aliases, link them now.
1223  for (Module::alias_iterator I = SrcM->alias_begin(),
1224       E = SrcM->alias_end(); I != E; ++I)
1225    if (linkAliasProto(I))
1226      return true;
1227
1228  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1229    linkAppendingVarInit(AppendingVars[i]);
1230
1231  // Update the initializers in the DstM module now that all globals that may
1232  // be referenced are in DstM.
1233  linkGlobalInits();
1234
1235  // Link in the function bodies that are defined in the source module into
1236  // DstM.
1237  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1238    // Skip if not linking from source.
1239    if (DoNotLinkFromSource.count(SF)) continue;
1240
1241    // Skip if no body (function is external) or materialize.
1242    if (SF->isDeclaration()) {
1243      if (!SF->isMaterializable())
1244        continue;
1245      if (SF->Materialize(&ErrorMsg))
1246        return true;
1247    }
1248
1249    linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
1250    SF->Dematerialize();
1251  }
1252
1253  // Resolve all uses of aliases with aliasees.
1254  linkAliasBodies();
1255
1256  // Remap all of the named MDNodes in Src into the DstM module. We do this
1257  // after linking GlobalValues so that MDNodes that reference GlobalValues
1258  // are properly remapped.
1259  linkNamedMDNodes();
1260
1261  // Merge the module flags into the DstM module.
1262  if (linkModuleFlagsMetadata())
1263    return true;
1264
1265  // Process vector of lazily linked in functions.
1266  bool LinkedInAnyFunctions;
1267  do {
1268    LinkedInAnyFunctions = false;
1269
1270    for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1271        E = LazilyLinkFunctions.end(); I != E; ++I) {
1272      if (!*I)
1273        continue;
1274
1275      Function *SF = *I;
1276      Function *DF = cast<Function>(ValueMap[SF]);
1277
1278      if (!DF->use_empty()) {
1279
1280        // Materialize if necessary.
1281        if (SF->isDeclaration()) {
1282          if (!SF->isMaterializable())
1283            continue;
1284          if (SF->Materialize(&ErrorMsg))
1285            return true;
1286        }
1287
1288        // Link in function body.
1289        linkFunctionBody(DF, SF);
1290        SF->Dematerialize();
1291
1292        // "Remove" from vector by setting the element to 0.
1293        *I = 0;
1294
1295        // Set flag to indicate we may have more functions to lazily link in
1296        // since we linked in a function.
1297        LinkedInAnyFunctions = true;
1298      }
1299    }
1300  } while (LinkedInAnyFunctions);
1301
1302  // Remove any prototypes of functions that were not actually linked in.
1303  for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1304      E = LazilyLinkFunctions.end(); I != E; ++I) {
1305    if (!*I)
1306      continue;
1307
1308    Function *SF = *I;
1309    Function *DF = cast<Function>(ValueMap[SF]);
1310    if (DF->use_empty())
1311      DF->eraseFromParent();
1312  }
1313
1314  // Now that all of the types from the source are used, resolve any structs
1315  // copied over to the dest that didn't exist there.
1316  TypeMap.linkDefinedTypeBodies();
1317
1318  return false;
1319}
1320
1321//===----------------------------------------------------------------------===//
1322// LinkModules entrypoint.
1323//===----------------------------------------------------------------------===//
1324
1325/// LinkModules - This function links two modules together, with the resulting
1326/// left module modified to be the composite of the two input modules.  If an
1327/// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1328/// the problem.  Upon failure, the Dest module could be in a modified state,
1329/// and shouldn't be relied on to be consistent.
1330bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
1331                         std::string *ErrorMsg) {
1332  ModuleLinker TheLinker(Dest, Src, Mode);
1333  if (TheLinker.run()) {
1334    if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
1335    return true;
1336  }
1337
1338  return false;
1339}
1340
1341//===----------------------------------------------------------------------===//
1342// C API.
1343//===----------------------------------------------------------------------===//
1344
1345LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
1346                         LLVMLinkerMode Mode, char **OutMessages) {
1347  std::string Messages;
1348  LLVMBool Result = Linker::LinkModules(unwrap(Dest), unwrap(Src),
1349                                        Mode, OutMessages? &Messages : 0);
1350  if (OutMessages)
1351    *OutMessages = strdup(Messages.c_str());
1352  return Result;
1353}
1354