1//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a MachineCodeEmitter object that is used by the JIT to
11// write machine code to memory and remember where relocatable values are.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "JIT.h"
17#include "JITDwarfEmitter.h"
18#include "llvm/ADT/OwningPtr.h"
19#include "llvm/Constants.h"
20#include "llvm/DebugInfo.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/CodeGen/JITCodeEmitter.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineCodeInfo.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineJumpTableInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/MachineRelocation.h"
30#include "llvm/ExecutionEngine/GenericValue.h"
31#include "llvm/ExecutionEngine/JITEventListener.h"
32#include "llvm/ExecutionEngine/JITMemoryManager.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetJITInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/ManagedStatic.h"
41#include "llvm/Support/MutexGuard.h"
42#include "llvm/Support/ValueHandle.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Support/Disassembler.h"
45#include "llvm/Support/Memory.h"
46#include "llvm/ADT/DenseMap.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/ADT/ValueMap.h"
51#include <algorithm>
52#ifndef NDEBUG
53#include <iomanip>
54#endif
55using namespace llvm;
56
57STATISTIC(NumBytes, "Number of bytes of machine code compiled");
58STATISTIC(NumRelos, "Number of relocations applied");
59STATISTIC(NumRetries, "Number of retries with more memory");
60
61
62// A declaration may stop being a declaration once it's fully read from bitcode.
63// This function returns true if F is fully read and is still a declaration.
64static bool isNonGhostDeclaration(const Function *F) {
65  return F->isDeclaration() && !F->isMaterializable();
66}
67
68//===----------------------------------------------------------------------===//
69// JIT lazy compilation code.
70//
71namespace {
72  class JITEmitter;
73  class JITResolverState;
74
75  template<typename ValueTy>
76  struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
77    typedef JITResolverState *ExtraData;
78    static void onRAUW(JITResolverState *, Value *Old, Value *New) {
79      llvm_unreachable("The JIT doesn't know how to handle a"
80                       " RAUW on a value it has emitted.");
81    }
82  };
83
84  struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
85    typedef JITResolverState *ExtraData;
86    static void onDelete(JITResolverState *JRS, Function *F);
87  };
88
89  class JITResolverState {
90  public:
91    typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
92      FunctionToLazyStubMapTy;
93    typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
94    typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
95                     CallSiteValueMapConfig> FunctionToCallSitesMapTy;
96    typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
97  private:
98    /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
99    /// particular function so that we can reuse them if necessary.
100    FunctionToLazyStubMapTy FunctionToLazyStubMap;
101
102    /// CallSiteToFunctionMap - Keep track of the function that each lazy call
103    /// site corresponds to, and vice versa.
104    CallSiteToFunctionMapTy CallSiteToFunctionMap;
105    FunctionToCallSitesMapTy FunctionToCallSitesMap;
106
107    /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
108    /// particular GlobalVariable so that we can reuse them if necessary.
109    GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
110
111#ifndef NDEBUG
112    /// Instance of the JIT this ResolverState serves.
113    JIT *TheJIT;
114#endif
115
116  public:
117    JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
118                                 FunctionToCallSitesMap(this) {
119#ifndef NDEBUG
120      TheJIT = jit;
121#endif
122    }
123
124    FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
125      const MutexGuard& locked) {
126      assert(locked.holds(TheJIT->lock));
127      return FunctionToLazyStubMap;
128    }
129
130    GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) {
131      assert(lck.holds(TheJIT->lock));
132      return GlobalToIndirectSymMap;
133    }
134
135    std::pair<void *, Function *> LookupFunctionFromCallSite(
136        const MutexGuard &locked, void *CallSite) const {
137      assert(locked.holds(TheJIT->lock));
138
139      // The address given to us for the stub may not be exactly right, it
140      // might be a little bit after the stub.  As such, use upper_bound to
141      // find it.
142      CallSiteToFunctionMapTy::const_iterator I =
143        CallSiteToFunctionMap.upper_bound(CallSite);
144      assert(I != CallSiteToFunctionMap.begin() &&
145             "This is not a known call site!");
146      --I;
147      return *I;
148    }
149
150    void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
151      assert(locked.holds(TheJIT->lock));
152
153      bool Inserted = CallSiteToFunctionMap.insert(
154          std::make_pair(CallSite, F)).second;
155      (void)Inserted;
156      assert(Inserted && "Pair was already in CallSiteToFunctionMap");
157      FunctionToCallSitesMap[F].insert(CallSite);
158    }
159
160    void EraseAllCallSitesForPrelocked(Function *F);
161
162    // Erases _all_ call sites regardless of their function.  This is used to
163    // unregister the stub addresses from the StubToResolverMap in
164    // ~JITResolver().
165    void EraseAllCallSitesPrelocked();
166  };
167
168  /// JITResolver - Keep track of, and resolve, call sites for functions that
169  /// have not yet been compiled.
170  class JITResolver {
171    typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
172    typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
173    typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
174
175    /// LazyResolverFn - The target lazy resolver function that we actually
176    /// rewrite instructions to use.
177    TargetJITInfo::LazyResolverFn LazyResolverFn;
178
179    JITResolverState state;
180
181    /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
182    /// for external functions.  TODO: Of course, external functions don't need
183    /// a lazy stub.  It's actually here to make it more likely that far calls
184    /// succeed, but no single stub can guarantee that.  I'll remove this in a
185    /// subsequent checkin when I actually fix far calls.
186    std::map<void*, void*> ExternalFnToStubMap;
187
188    /// revGOTMap - map addresses to indexes in the GOT
189    std::map<void*, unsigned> revGOTMap;
190    unsigned nextGOTIndex;
191
192    JITEmitter &JE;
193
194    /// Instance of JIT corresponding to this Resolver.
195    JIT *TheJIT;
196
197  public:
198    explicit JITResolver(JIT &jit, JITEmitter &je)
199      : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
200      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
201    }
202
203    ~JITResolver();
204
205    /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
206    /// lazy-compilation stub if it has already been created.
207    void *getLazyFunctionStubIfAvailable(Function *F);
208
209    /// getLazyFunctionStub - This returns a pointer to a function's
210    /// lazy-compilation stub, creating one on demand as needed.
211    void *getLazyFunctionStub(Function *F);
212
213    /// getExternalFunctionStub - Return a stub for the function at the
214    /// specified address, created lazily on demand.
215    void *getExternalFunctionStub(void *FnAddr);
216
217    /// getGlobalValueIndirectSym - Return an indirect symbol containing the
218    /// specified GV address.
219    void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
220
221    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
222    /// an address.  This function only manages slots, it does not manage the
223    /// contents of the slots or the memory associated with the GOT.
224    unsigned getGOTIndexForAddr(void *addr);
225
226    /// JITCompilerFn - This function is called to resolve a stub to a compiled
227    /// address.  If the LLVM Function corresponding to the stub has not yet
228    /// been compiled, this function compiles it first.
229    static void *JITCompilerFn(void *Stub);
230  };
231
232  class StubToResolverMapTy {
233    /// Map a stub address to a specific instance of a JITResolver so that
234    /// lazily-compiled functions can find the right resolver to use.
235    ///
236    /// Guarded by Lock.
237    std::map<void*, JITResolver*> Map;
238
239    /// Guards Map from concurrent accesses.
240    mutable sys::Mutex Lock;
241
242  public:
243    /// Registers a Stub to be resolved by Resolver.
244    void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
245      MutexGuard guard(Lock);
246      Map.insert(std::make_pair(Stub, Resolver));
247    }
248    /// Unregisters the Stub when it's invalidated.
249    void UnregisterStubResolver(void *Stub) {
250      MutexGuard guard(Lock);
251      Map.erase(Stub);
252    }
253    /// Returns the JITResolver instance that owns the Stub.
254    JITResolver *getResolverFromStub(void *Stub) const {
255      MutexGuard guard(Lock);
256      // The address given to us for the stub may not be exactly right, it might
257      // be a little bit after the stub.  As such, use upper_bound to find it.
258      // This is the same trick as in LookupFunctionFromCallSite from
259      // JITResolverState.
260      std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
261      assert(I != Map.begin() && "This is not a known stub!");
262      --I;
263      return I->second;
264    }
265    /// True if any stubs refer to the given resolver. Only used in an assert().
266    /// O(N)
267    bool ResolverHasStubs(JITResolver* Resolver) const {
268      MutexGuard guard(Lock);
269      for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
270             E = Map.end(); I != E; ++I) {
271        if (I->second == Resolver)
272          return true;
273      }
274      return false;
275    }
276  };
277  /// This needs to be static so that a lazy call stub can access it with no
278  /// context except the address of the stub.
279  ManagedStatic<StubToResolverMapTy> StubToResolverMap;
280
281  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
282  /// used to output functions to memory for execution.
283  class JITEmitter : public JITCodeEmitter {
284    JITMemoryManager *MemMgr;
285
286    // When outputting a function stub in the context of some other function, we
287    // save BufferBegin/BufferEnd/CurBufferPtr here.
288    uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
289
290    // When reattempting to JIT a function after running out of space, we store
291    // the estimated size of the function we're trying to JIT here, so we can
292    // ask the memory manager for at least this much space.  When we
293    // successfully emit the function, we reset this back to zero.
294    uintptr_t SizeEstimate;
295
296    /// Relocations - These are the relocations that the function needs, as
297    /// emitted.
298    std::vector<MachineRelocation> Relocations;
299
300    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
301    /// It is filled in by the StartMachineBasicBlock callback and queried by
302    /// the getMachineBasicBlockAddress callback.
303    std::vector<uintptr_t> MBBLocations;
304
305    /// ConstantPool - The constant pool for the current function.
306    ///
307    MachineConstantPool *ConstantPool;
308
309    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
310    ///
311    void *ConstantPoolBase;
312
313    /// ConstPoolAddresses - Addresses of individual constant pool entries.
314    ///
315    SmallVector<uintptr_t, 8> ConstPoolAddresses;
316
317    /// JumpTable - The jump tables for the current function.
318    ///
319    MachineJumpTableInfo *JumpTable;
320
321    /// JumpTableBase - A pointer to the first entry in the jump table.
322    ///
323    void *JumpTableBase;
324
325    /// Resolver - This contains info about the currently resolved functions.
326    JITResolver Resolver;
327
328    /// DE - The dwarf emitter for the jit.
329    OwningPtr<JITDwarfEmitter> DE;
330
331    /// LabelLocations - This vector is a mapping from Label ID's to their
332    /// address.
333    DenseMap<MCSymbol*, uintptr_t> LabelLocations;
334
335    /// MMI - Machine module info for exception informations
336    MachineModuleInfo* MMI;
337
338    // CurFn - The llvm function being emitted.  Only valid during
339    // finishFunction().
340    const Function *CurFn;
341
342    /// Information about emitted code, which is passed to the
343    /// JITEventListeners.  This is reset in startFunction and used in
344    /// finishFunction.
345    JITEvent_EmittedFunctionDetails EmissionDetails;
346
347    struct EmittedCode {
348      void *FunctionBody;  // Beginning of the function's allocation.
349      void *Code;  // The address the function's code actually starts at.
350      void *ExceptionTable;
351      EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
352    };
353    struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
354      typedef JITEmitter *ExtraData;
355      static void onDelete(JITEmitter *, const Function*);
356      static void onRAUW(JITEmitter *, const Function*, const Function*);
357    };
358    ValueMap<const Function *, EmittedCode,
359             EmittedFunctionConfig> EmittedFunctions;
360
361    DebugLoc PrevDL;
362
363    /// Instance of the JIT
364    JIT *TheJIT;
365
366    bool JITExceptionHandling;
367
368  public:
369    JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
370      : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
371        EmittedFunctions(this), TheJIT(&jit),
372        JITExceptionHandling(TM.Options.JITExceptionHandling) {
373      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
374      if (jit.getJITInfo().needsGOT()) {
375        MemMgr->AllocateGOT();
376        DEBUG(dbgs() << "JIT is managing a GOT\n");
377      }
378
379      if (JITExceptionHandling) {
380        DE.reset(new JITDwarfEmitter(jit));
381      }
382    }
383    ~JITEmitter() {
384      delete MemMgr;
385    }
386
387    /// classof - Methods for support type inquiry through isa, cast, and
388    /// dyn_cast:
389    ///
390    static inline bool classof(const MachineCodeEmitter*) { return true; }
391
392    JITResolver &getJITResolver() { return Resolver; }
393
394    virtual void startFunction(MachineFunction &F);
395    virtual bool finishFunction(MachineFunction &F);
396
397    void emitConstantPool(MachineConstantPool *MCP);
398    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
399    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
400
401    void startGVStub(const GlobalValue* GV,
402                     unsigned StubSize, unsigned Alignment = 1);
403    void startGVStub(void *Buffer, unsigned StubSize);
404    void finishGVStub();
405    virtual void *allocIndirectGV(const GlobalValue *GV,
406                                  const uint8_t *Buffer, size_t Size,
407                                  unsigned Alignment);
408
409    /// allocateSpace - Reserves space in the current block if any, or
410    /// allocate a new one of the given size.
411    virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
412
413    /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
414    /// this method does not allocate memory in the current output buffer,
415    /// because a global may live longer than the current function.
416    virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
417
418    virtual void addRelocation(const MachineRelocation &MR) {
419      Relocations.push_back(MR);
420    }
421
422    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
423      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
424        MBBLocations.resize((MBB->getNumber()+1)*2);
425      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
426      if (MBB->hasAddressTaken())
427        TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
428                                       (void*)getCurrentPCValue());
429      DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
430                   << (void*) getCurrentPCValue() << "]\n");
431    }
432
433    virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
434    virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
435
436    virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{
437      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
438             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
439      return MBBLocations[MBB->getNumber()];
440    }
441
442    /// retryWithMoreMemory - Log a retry and deallocate all memory for the
443    /// given function.  Increase the minimum allocation size so that we get
444    /// more memory next time.
445    void retryWithMoreMemory(MachineFunction &F);
446
447    /// deallocateMemForFunction - Deallocate all memory for the specified
448    /// function body.
449    void deallocateMemForFunction(const Function *F);
450
451    virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
452
453    virtual void emitLabel(MCSymbol *Label) {
454      LabelLocations[Label] = getCurrentPCValue();
455    }
456
457    virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
458      return &LabelLocations;
459    }
460
461    virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
462      assert(LabelLocations.count(Label) && "Label not emitted!");
463      return LabelLocations.find(Label)->second;
464    }
465
466    virtual void setModuleInfo(MachineModuleInfo* Info) {
467      MMI = Info;
468      if (DE.get()) DE->setModuleInfo(Info);
469    }
470
471  private:
472    void *getPointerToGlobal(GlobalValue *GV, void *Reference,
473                             bool MayNeedFarStub);
474    void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
475  };
476}
477
478void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
479  JRS->EraseAllCallSitesForPrelocked(F);
480}
481
482void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
483  FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
484  if (F2C == FunctionToCallSitesMap.end())
485    return;
486  StubToResolverMapTy &S2RMap = *StubToResolverMap;
487  for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
488         E = F2C->second.end(); I != E; ++I) {
489    S2RMap.UnregisterStubResolver(*I);
490    bool Erased = CallSiteToFunctionMap.erase(*I);
491    (void)Erased;
492    assert(Erased && "Missing call site->function mapping");
493  }
494  FunctionToCallSitesMap.erase(F2C);
495}
496
497void JITResolverState::EraseAllCallSitesPrelocked() {
498  StubToResolverMapTy &S2RMap = *StubToResolverMap;
499  for (CallSiteToFunctionMapTy::const_iterator
500         I = CallSiteToFunctionMap.begin(),
501         E = CallSiteToFunctionMap.end(); I != E; ++I) {
502    S2RMap.UnregisterStubResolver(I->first);
503  }
504  CallSiteToFunctionMap.clear();
505  FunctionToCallSitesMap.clear();
506}
507
508JITResolver::~JITResolver() {
509  // No need to lock because we're in the destructor, and state isn't shared.
510  state.EraseAllCallSitesPrelocked();
511  assert(!StubToResolverMap->ResolverHasStubs(this) &&
512         "Resolver destroyed with stubs still alive.");
513}
514
515/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
516/// if it has already been created.
517void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
518  MutexGuard locked(TheJIT->lock);
519
520  // If we already have a stub for this function, recycle it.
521  return state.getFunctionToLazyStubMap(locked).lookup(F);
522}
523
524/// getFunctionStub - This returns a pointer to a function stub, creating
525/// one on demand as needed.
526void *JITResolver::getLazyFunctionStub(Function *F) {
527  MutexGuard locked(TheJIT->lock);
528
529  // If we already have a lazy stub for this function, recycle it.
530  void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
531  if (Stub) return Stub;
532
533  // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
534  // must resolve the symbol now.
535  void *Actual = TheJIT->isCompilingLazily()
536    ? (void *)(intptr_t)LazyResolverFn : (void *)0;
537
538  // If this is an external declaration, attempt to resolve the address now
539  // to place in the stub.
540  if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
541    Actual = TheJIT->getPointerToFunction(F);
542
543    // If we resolved the symbol to a null address (eg. a weak external)
544    // don't emit a stub. Return a null pointer to the application.
545    if (!Actual) return 0;
546  }
547
548  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
549  JE.startGVStub(F, SL.Size, SL.Alignment);
550  // Codegen a new stub, calling the lazy resolver or the actual address of the
551  // external function, if it was resolved.
552  Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
553  JE.finishGVStub();
554
555  if (Actual != (void*)(intptr_t)LazyResolverFn) {
556    // If we are getting the stub for an external function, we really want the
557    // address of the stub in the GlobalAddressMap for the JIT, not the address
558    // of the external function.
559    TheJIT->updateGlobalMapping(F, Stub);
560  }
561
562  DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
563        << F->getName() << "'\n");
564
565  if (TheJIT->isCompilingLazily()) {
566    // Register this JITResolver as the one corresponding to this call site so
567    // JITCompilerFn will be able to find it.
568    StubToResolverMap->RegisterStubResolver(Stub, this);
569
570    // Finally, keep track of the stub-to-Function mapping so that the
571    // JITCompilerFn knows which function to compile!
572    state.AddCallSite(locked, Stub, F);
573  } else if (!Actual) {
574    // If we are JIT'ing non-lazily but need to call a function that does not
575    // exist yet, add it to the JIT's work list so that we can fill in the
576    // stub address later.
577    assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
578           "'Actual' should have been set above.");
579    TheJIT->addPendingFunction(F);
580  }
581
582  return Stub;
583}
584
585/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
586/// GV address.
587void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
588  MutexGuard locked(TheJIT->lock);
589
590  // If we already have a stub for this global variable, recycle it.
591  void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
592  if (IndirectSym) return IndirectSym;
593
594  // Otherwise, codegen a new indirect symbol.
595  IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
596                                                                JE);
597
598  DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
599        << "] for GV '" << GV->getName() << "'\n");
600
601  return IndirectSym;
602}
603
604/// getExternalFunctionStub - Return a stub for the function at the
605/// specified address, created lazily on demand.
606void *JITResolver::getExternalFunctionStub(void *FnAddr) {
607  // If we already have a stub for this function, recycle it.
608  void *&Stub = ExternalFnToStubMap[FnAddr];
609  if (Stub) return Stub;
610
611  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
612  JE.startGVStub(0, SL.Size, SL.Alignment);
613  Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
614  JE.finishGVStub();
615
616  DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
617               << "] for external function at '" << FnAddr << "'\n");
618  return Stub;
619}
620
621unsigned JITResolver::getGOTIndexForAddr(void* addr) {
622  unsigned idx = revGOTMap[addr];
623  if (!idx) {
624    idx = ++nextGOTIndex;
625    revGOTMap[addr] = idx;
626    DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
627                 << addr << "]\n");
628  }
629  return idx;
630}
631
632/// JITCompilerFn - This function is called when a lazy compilation stub has
633/// been entered.  It looks up which function this stub corresponds to, compiles
634/// it if necessary, then returns the resultant function pointer.
635void *JITResolver::JITCompilerFn(void *Stub) {
636  JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
637  assert(JR && "Unable to find the corresponding JITResolver to the call site");
638
639  Function* F = 0;
640  void* ActualPtr = 0;
641
642  {
643    // Only lock for getting the Function. The call getPointerToFunction made
644    // in this function might trigger function materializing, which requires
645    // JIT lock to be unlocked.
646    MutexGuard locked(JR->TheJIT->lock);
647
648    // The address given to us for the stub may not be exactly right, it might
649    // be a little bit after the stub.  As such, use upper_bound to find it.
650    std::pair<void*, Function*> I =
651      JR->state.LookupFunctionFromCallSite(locked, Stub);
652    F = I.second;
653    ActualPtr = I.first;
654  }
655
656  // If we have already code generated the function, just return the address.
657  void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
658
659  if (!Result) {
660    // Otherwise we don't have it, do lazy compilation now.
661
662    // If lazy compilation is disabled, emit a useful error message and abort.
663    if (!JR->TheJIT->isCompilingLazily()) {
664      report_fatal_error("LLVM JIT requested to do lazy compilation of"
665                         " function '"
666                        + F->getName() + "' when lazy compiles are disabled!");
667    }
668
669    DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
670          << "' In stub ptr = " << Stub << " actual ptr = "
671          << ActualPtr << "\n");
672    (void)ActualPtr;
673
674    Result = JR->TheJIT->getPointerToFunction(F);
675  }
676
677  // Reacquire the lock to update the GOT map.
678  MutexGuard locked(JR->TheJIT->lock);
679
680  // We might like to remove the call site from the CallSiteToFunction map, but
681  // we can't do that! Multiple threads could be stuck, waiting to acquire the
682  // lock above. As soon as the 1st function finishes compiling the function,
683  // the next one will be released, and needs to be able to find the function it
684  // needs to call.
685
686  // FIXME: We could rewrite all references to this stub if we knew them.
687
688  // What we will do is set the compiled function address to map to the
689  // same GOT entry as the stub so that later clients may update the GOT
690  // if they see it still using the stub address.
691  // Note: this is done so the Resolver doesn't have to manage GOT memory
692  // Do this without allocating map space if the target isn't using a GOT
693  if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
694    JR->revGOTMap[Result] = JR->revGOTMap[Stub];
695
696  return Result;
697}
698
699//===----------------------------------------------------------------------===//
700// JITEmitter code.
701//
702void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
703                                     bool MayNeedFarStub) {
704  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
705    return TheJIT->getOrEmitGlobalVariable(GV);
706
707  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
708    return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
709
710  // If we have already compiled the function, return a pointer to its body.
711  Function *F = cast<Function>(V);
712
713  void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
714  if (FnStub) {
715    // Return the function stub if it's already created.  We do this first so
716    // that we're returning the same address for the function as any previous
717    // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
718    // close enough to call.
719    return FnStub;
720  }
721
722  // If we know the target can handle arbitrary-distance calls, try to
723  // return a direct pointer.
724  if (!MayNeedFarStub) {
725    // If we have code, go ahead and return that.
726    void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
727    if (ResultPtr) return ResultPtr;
728
729    // If this is an external function pointer, we can force the JIT to
730    // 'compile' it, which really just adds it to the map.
731    if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
732      return TheJIT->getPointerToFunction(F);
733  }
734
735  // Otherwise, we may need a to emit a stub, and, conservatively, we always do
736  // so.  Note that it's possible to return null from getLazyFunctionStub in the
737  // case of a weak extern that fails to resolve.
738  return Resolver.getLazyFunctionStub(F);
739}
740
741void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
742  // Make sure GV is emitted first, and create a stub containing the fully
743  // resolved address.
744  void *GVAddress = getPointerToGlobal(V, Reference, false);
745  void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
746  return StubAddr;
747}
748
749void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
750  if (DL.isUnknown()) return;
751  if (!BeforePrintingInsn) return;
752
753  const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
754
755  if (DL.getScope(Context) != 0 && PrevDL != DL) {
756    JITEvent_EmittedFunctionDetails::LineStart NextLine;
757    NextLine.Address = getCurrentPCValue();
758    NextLine.Loc = DL;
759    EmissionDetails.LineStarts.push_back(NextLine);
760  }
761
762  PrevDL = DL;
763}
764
765static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
766                                           const TargetData *TD) {
767  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
768  if (Constants.empty()) return 0;
769
770  unsigned Size = 0;
771  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
772    MachineConstantPoolEntry CPE = Constants[i];
773    unsigned AlignMask = CPE.getAlignment() - 1;
774    Size = (Size + AlignMask) & ~AlignMask;
775    Type *Ty = CPE.getType();
776    Size += TD->getTypeAllocSize(Ty);
777  }
778  return Size;
779}
780
781void JITEmitter::startFunction(MachineFunction &F) {
782  DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
783        << F.getName() << "\n");
784
785  uintptr_t ActualSize = 0;
786  // Set the memory writable, if it's not already
787  MemMgr->setMemoryWritable();
788
789  if (SizeEstimate > 0) {
790    // SizeEstimate will be non-zero on reallocation attempts.
791    ActualSize = SizeEstimate;
792  }
793
794  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
795                                                         ActualSize);
796  BufferEnd = BufferBegin+ActualSize;
797  EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
798
799  // Ensure the constant pool/jump table info is at least 4-byte aligned.
800  emitAlignment(16);
801
802  emitConstantPool(F.getConstantPool());
803  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
804    initJumpTableInfo(MJTI);
805
806  // About to start emitting the machine code for the function.
807  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
808  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
809  EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
810
811  MBBLocations.clear();
812
813  EmissionDetails.MF = &F;
814  EmissionDetails.LineStarts.clear();
815}
816
817bool JITEmitter::finishFunction(MachineFunction &F) {
818  if (CurBufferPtr == BufferEnd) {
819    // We must call endFunctionBody before retrying, because
820    // deallocateMemForFunction requires it.
821    MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
822    retryWithMoreMemory(F);
823    return true;
824  }
825
826  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
827    emitJumpTableInfo(MJTI);
828
829  // FnStart is the start of the text, not the start of the constant pool and
830  // other per-function data.
831  uint8_t *FnStart =
832    (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
833
834  // FnEnd is the end of the function's machine code.
835  uint8_t *FnEnd = CurBufferPtr;
836
837  if (!Relocations.empty()) {
838    CurFn = F.getFunction();
839    NumRelos += Relocations.size();
840
841    // Resolve the relocations to concrete pointers.
842    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
843      MachineRelocation &MR = Relocations[i];
844      void *ResultPtr = 0;
845      if (!MR.letTargetResolve()) {
846        if (MR.isExternalSymbol()) {
847          ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
848                                                        false);
849          DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
850                       << ResultPtr << "]\n");
851
852          // If the target REALLY wants a stub for this function, emit it now.
853          if (MR.mayNeedFarStub()) {
854            ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
855          }
856        } else if (MR.isGlobalValue()) {
857          ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
858                                         BufferBegin+MR.getMachineCodeOffset(),
859                                         MR.mayNeedFarStub());
860        } else if (MR.isIndirectSymbol()) {
861          ResultPtr = getPointerToGVIndirectSym(
862              MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
863        } else if (MR.isBasicBlock()) {
864          ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
865        } else if (MR.isConstantPoolIndex()) {
866          ResultPtr =
867            (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
868        } else {
869          assert(MR.isJumpTableIndex());
870          ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
871        }
872
873        MR.setResultPointer(ResultPtr);
874      }
875
876      // if we are managing the GOT and the relocation wants an index,
877      // give it one
878      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
879        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
880        MR.setGOTIndex(idx);
881        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
882          DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
883                       << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
884                       << "\n");
885          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
886        }
887      }
888    }
889
890    CurFn = 0;
891    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
892                                  Relocations.size(), MemMgr->getGOTBase());
893  }
894
895  // Update the GOT entry for F to point to the new code.
896  if (MemMgr->isManagingGOT()) {
897    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
898    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
899      DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
900                   << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
901                   << "\n");
902      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
903    }
904  }
905
906  // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
907  // global variables that were referenced in the relocations.
908  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
909
910  if (CurBufferPtr == BufferEnd) {
911    retryWithMoreMemory(F);
912    return true;
913  } else {
914    // Now that we've succeeded in emitting the function, reset the
915    // SizeEstimate back down to zero.
916    SizeEstimate = 0;
917  }
918
919  BufferBegin = CurBufferPtr = 0;
920  NumBytes += FnEnd-FnStart;
921
922  // Invalidate the icache if necessary.
923  sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
924
925  TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
926                                EmissionDetails);
927
928  // Reset the previous debug location.
929  PrevDL = DebugLoc();
930
931  DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
932        << "] Function: " << F.getName()
933        << ": " << (FnEnd-FnStart) << " bytes of text, "
934        << Relocations.size() << " relocations\n");
935
936  Relocations.clear();
937  ConstPoolAddresses.clear();
938
939  // Mark code region readable and executable if it's not so already.
940  MemMgr->setMemoryExecutable();
941
942  DEBUG({
943      if (sys::hasDisassembler()) {
944        dbgs() << "JIT: Disassembled code:\n";
945        dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
946                                         (uintptr_t)FnStart);
947      } else {
948        dbgs() << "JIT: Binary code:\n";
949        uint8_t* q = FnStart;
950        for (int i = 0; q < FnEnd; q += 4, ++i) {
951          if (i == 4)
952            i = 0;
953          if (i == 0)
954            dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
955          bool Done = false;
956          for (int j = 3; j >= 0; --j) {
957            if (q + j >= FnEnd)
958              Done = true;
959            else
960              dbgs() << (unsigned short)q[j];
961          }
962          if (Done)
963            break;
964          dbgs() << ' ';
965          if (i == 3)
966            dbgs() << '\n';
967        }
968        dbgs()<< '\n';
969      }
970    });
971
972  if (JITExceptionHandling) {
973    uintptr_t ActualSize = 0;
974    SavedBufferBegin = BufferBegin;
975    SavedBufferEnd = BufferEnd;
976    SavedCurBufferPtr = CurBufferPtr;
977
978    BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
979                                                             ActualSize);
980    BufferEnd = BufferBegin+ActualSize;
981    EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
982    uint8_t *EhStart;
983    uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
984                                                EhStart);
985    MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
986                              FrameRegister);
987    BufferBegin = SavedBufferBegin;
988    BufferEnd = SavedBufferEnd;
989    CurBufferPtr = SavedCurBufferPtr;
990
991    if (JITExceptionHandling) {
992      TheJIT->RegisterTable(F.getFunction(), FrameRegister);
993    }
994  }
995
996  if (MMI)
997    MMI->EndFunction();
998
999  return false;
1000}
1001
1002void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
1003  DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
1004  Relocations.clear();  // Clear the old relocations or we'll reapply them.
1005  ConstPoolAddresses.clear();
1006  ++NumRetries;
1007  deallocateMemForFunction(F.getFunction());
1008  // Try again with at least twice as much free space.
1009  SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
1010
1011  for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
1012    if (MBB->hasAddressTaken())
1013      TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
1014  }
1015}
1016
1017/// deallocateMemForFunction - Deallocate all memory for the specified
1018/// function body.  Also drop any references the function has to stubs.
1019/// May be called while the Function is being destroyed inside ~Value().
1020void JITEmitter::deallocateMemForFunction(const Function *F) {
1021  ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
1022    Emitted = EmittedFunctions.find(F);
1023  if (Emitted != EmittedFunctions.end()) {
1024    MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
1025    MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
1026    TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
1027
1028    EmittedFunctions.erase(Emitted);
1029  }
1030
1031  if (JITExceptionHandling) {
1032    TheJIT->DeregisterTable(F);
1033  }
1034}
1035
1036
1037void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
1038  if (BufferBegin)
1039    return JITCodeEmitter::allocateSpace(Size, Alignment);
1040
1041  // create a new memory block if there is no active one.
1042  // care must be taken so that BufferBegin is invalidated when a
1043  // block is trimmed
1044  BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1045  BufferEnd = BufferBegin+Size;
1046  return CurBufferPtr;
1047}
1048
1049void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1050  // Delegate this call through the memory manager.
1051  return MemMgr->allocateGlobal(Size, Alignment);
1052}
1053
1054void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1055  if (TheJIT->getJITInfo().hasCustomConstantPool())
1056    return;
1057
1058  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1059  if (Constants.empty()) return;
1060
1061  unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1062  unsigned Align = MCP->getConstantPoolAlignment();
1063  ConstantPoolBase = allocateSpace(Size, Align);
1064  ConstantPool = MCP;
1065
1066  if (ConstantPoolBase == 0) return;  // Buffer overflow.
1067
1068  DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
1069               << "] (size: " << Size << ", alignment: " << Align << ")\n");
1070
1071  // Initialize the memory for all of the constant pool entries.
1072  unsigned Offset = 0;
1073  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1074    MachineConstantPoolEntry CPE = Constants[i];
1075    unsigned AlignMask = CPE.getAlignment() - 1;
1076    Offset = (Offset + AlignMask) & ~AlignMask;
1077
1078    uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1079    ConstPoolAddresses.push_back(CAddr);
1080    if (CPE.isMachineConstantPoolEntry()) {
1081      // FIXME: add support to lower machine constant pool values into bytes!
1082      report_fatal_error("Initialize memory with machine specific constant pool"
1083                        "entry has not been implemented!");
1084    }
1085    TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1086    DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
1087          dbgs().write_hex(CAddr) << "]\n");
1088
1089    Type *Ty = CPE.Val.ConstVal->getType();
1090    Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
1091  }
1092}
1093
1094void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1095  if (TheJIT->getJITInfo().hasCustomJumpTables())
1096    return;
1097  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
1098    return;
1099
1100  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1101  if (JT.empty()) return;
1102
1103  unsigned NumEntries = 0;
1104  for (unsigned i = 0, e = JT.size(); i != e; ++i)
1105    NumEntries += JT[i].MBBs.size();
1106
1107  unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData());
1108
1109  // Just allocate space for all the jump tables now.  We will fix up the actual
1110  // MBB entries in the tables after we emit the code for each block, since then
1111  // we will know the final locations of the MBBs in memory.
1112  JumpTable = MJTI;
1113  JumpTableBase = allocateSpace(NumEntries * EntrySize,
1114                             MJTI->getEntryAlignment(*TheJIT->getTargetData()));
1115}
1116
1117void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1118  if (TheJIT->getJITInfo().hasCustomJumpTables())
1119    return;
1120
1121  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1122  if (JT.empty() || JumpTableBase == 0) return;
1123
1124
1125  switch (MJTI->getEntryKind()) {
1126  case MachineJumpTableInfo::EK_Inline:
1127    return;
1128  case MachineJumpTableInfo::EK_BlockAddress: {
1129    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1130    //     .word LBB123
1131    assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) &&
1132           "Cross JIT'ing?");
1133
1134    // For each jump table, map each target in the jump table to the address of
1135    // an emitted MachineBasicBlock.
1136    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1137
1138    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1139      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1140      // Store the address of the basic block for this jump table slot in the
1141      // memory we allocated for the jump table in 'initJumpTableInfo'
1142      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1143        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1144    }
1145    break;
1146  }
1147
1148  case MachineJumpTableInfo::EK_Custom32:
1149  case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1150  case MachineJumpTableInfo::EK_LabelDifference32: {
1151    assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?");
1152    // For each jump table, place the offset from the beginning of the table
1153    // to the target address.
1154    int *SlotPtr = (int*)JumpTableBase;
1155
1156    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1157      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1158      // Store the offset of the basic block for this jump table slot in the
1159      // memory we allocated for the jump table in 'initJumpTableInfo'
1160      uintptr_t Base = (uintptr_t)SlotPtr;
1161      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1162        uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1163        /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
1164        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1165      }
1166    }
1167    break;
1168  }
1169  case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1170    llvm_unreachable(
1171           "JT Info emission not implemented for GPRel64BlockAddress yet.");
1172  }
1173}
1174
1175void JITEmitter::startGVStub(const GlobalValue* GV,
1176                             unsigned StubSize, unsigned Alignment) {
1177  SavedBufferBegin = BufferBegin;
1178  SavedBufferEnd = BufferEnd;
1179  SavedCurBufferPtr = CurBufferPtr;
1180
1181  BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1182  BufferEnd = BufferBegin+StubSize+1;
1183}
1184
1185void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
1186  SavedBufferBegin = BufferBegin;
1187  SavedBufferEnd = BufferEnd;
1188  SavedCurBufferPtr = CurBufferPtr;
1189
1190  BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1191  BufferEnd = BufferBegin+StubSize+1;
1192}
1193
1194void JITEmitter::finishGVStub() {
1195  assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
1196  NumBytes += getCurrentPCOffset();
1197  BufferBegin = SavedBufferBegin;
1198  BufferEnd = SavedBufferEnd;
1199  CurBufferPtr = SavedCurBufferPtr;
1200}
1201
1202void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
1203                                  const uint8_t *Buffer, size_t Size,
1204                                  unsigned Alignment) {
1205  uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
1206  memcpy(IndGV, Buffer, Size);
1207  return IndGV;
1208}
1209
1210// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1211// in the constant pool that was last emitted with the 'emitConstantPool'
1212// method.
1213//
1214uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1215  assert(ConstantNum < ConstantPool->getConstants().size() &&
1216         "Invalid ConstantPoolIndex!");
1217  return ConstPoolAddresses[ConstantNum];
1218}
1219
1220// getJumpTableEntryAddress - Return the address of the JumpTable with index
1221// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1222//
1223uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1224  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1225  assert(Index < JT.size() && "Invalid jump table index!");
1226
1227  unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData());
1228
1229  unsigned Offset = 0;
1230  for (unsigned i = 0; i < Index; ++i)
1231    Offset += JT[i].MBBs.size();
1232
1233   Offset *= EntrySize;
1234
1235  return (uintptr_t)((char *)JumpTableBase + Offset);
1236}
1237
1238void JITEmitter::EmittedFunctionConfig::onDelete(
1239  JITEmitter *Emitter, const Function *F) {
1240  Emitter->deallocateMemForFunction(F);
1241}
1242void JITEmitter::EmittedFunctionConfig::onRAUW(
1243  JITEmitter *, const Function*, const Function*) {
1244  llvm_unreachable("The JIT doesn't know how to handle a"
1245                   " RAUW on a value it has emitted.");
1246}
1247
1248
1249//===----------------------------------------------------------------------===//
1250//  Public interface to this file
1251//===----------------------------------------------------------------------===//
1252
1253JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
1254                                   TargetMachine &tm) {
1255  return new JITEmitter(jit, JMM, tm);
1256}
1257
1258// getPointerToFunctionOrStub - If the specified function has been
1259// code-gen'd, return a pointer to the function.  If not, compile it, or use
1260// a stub to implement lazy compilation if available.
1261//
1262void *JIT::getPointerToFunctionOrStub(Function *F) {
1263  // If we have already code generated the function, just return the address.
1264  if (void *Addr = getPointerToGlobalIfAvailable(F))
1265    return Addr;
1266
1267  // Get a stub if the target supports it.
1268  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1269  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1270  return JE->getJITResolver().getLazyFunctionStub(F);
1271}
1272
1273void JIT::updateFunctionStub(Function *F) {
1274  // Get the empty stub we generated earlier.
1275  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1276  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1277  void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
1278  void *Addr = getPointerToGlobalIfAvailable(F);
1279  assert(Addr != Stub && "Function must have non-stub address to be updated.");
1280
1281  // Tell the target jit info to rewrite the stub at the specified address,
1282  // rather than creating a new one.
1283  TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
1284  JE->startGVStub(Stub, layout.Size);
1285  getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
1286  JE->finishGVStub();
1287}
1288
1289/// freeMachineCodeForFunction - release machine code memory for given Function.
1290///
1291void JIT::freeMachineCodeForFunction(Function *F) {
1292  // Delete translation for this from the ExecutionEngine, so it will get
1293  // retranslated next time it is used.
1294  updateGlobalMapping(F, 0);
1295
1296  // Free the actual memory for the function body and related stuff.
1297  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1298  cast<JITEmitter>(JCE)->deallocateMemForFunction(F);
1299}
1300