1//===-- StackColoring.cpp -------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements the stack-coloring optimization that looks for
11// lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
12// which represent the possible lifetime of stack slots. It attempts to
13// merge disjoint stack slots and reduce the used stack space.
14// NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15//
16// TODO: In the future we plan to improve stack coloring in the following ways:
17// 1. Allow merging multiple small slots into a single larger slot at different
18//    offsets.
19// 2. Merge this pass with StackSlotColoring and allow merging of allocas with
20//    spill slots.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "stackcoloring"
25#include "MachineTraceMetrics.h"
26#include "llvm/Function.h"
27#include "llvm/Module.h"
28#include "llvm/ADT/BitVector.h"
29#include "llvm/Analysis/Dominators.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/ADT/DepthFirstIterator.h"
32#include "llvm/ADT/PostOrderIterator.h"
33#include "llvm/ADT/SetVector.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SparseSet.h"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/CodeGen/LiveInterval.h"
38#include "llvm/CodeGen/MachineLoopInfo.h"
39#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
40#include "llvm/CodeGen/MachineDominators.h"
41#include "llvm/CodeGen/MachineBasicBlock.h"
42#include "llvm/CodeGen/MachineFunctionPass.h"
43#include "llvm/CodeGen/MachineLoopInfo.h"
44#include "llvm/CodeGen/MachineModuleInfo.h"
45#include "llvm/CodeGen/MachineRegisterInfo.h"
46#include "llvm/CodeGen/MachineFrameInfo.h"
47#include "llvm/CodeGen/MachineMemOperand.h"
48#include "llvm/CodeGen/Passes.h"
49#include "llvm/CodeGen/SlotIndexes.h"
50#include "llvm/DebugInfo.h"
51#include "llvm/Instructions.h"
52#include "llvm/MC/MCInstrItineraries.h"
53#include "llvm/Target/TargetInstrInfo.h"
54#include "llvm/Target/TargetRegisterInfo.h"
55#include "llvm/Support/CommandLine.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/raw_ostream.h"
58
59using namespace llvm;
60
61static cl::opt<bool>
62DisableColoring("no-stack-coloring",
63        cl::init(false), cl::Hidden,
64        cl::desc("Disable stack coloring"));
65
66/// The user may write code that uses allocas outside of the declared lifetime
67/// zone. This can happen when the user returns a reference to a local
68/// data-structure. We can detect these cases and decide not to optimize the
69/// code. If this flag is enabled, we try to save the user.
70static cl::opt<bool>
71ProtectFromEscapedAllocas("protect-from-escaped-allocas",
72        cl::init(false), cl::Hidden,
73        cl::desc("Do not optimize lifetime zones that are broken"));
74
75STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
76STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
77STATISTIC(StackSlotMerged, "Number of stack slot merged.");
78STATISTIC(EscapedAllocas,
79          "Number of allocas that escaped the lifetime region");
80
81//===----------------------------------------------------------------------===//
82//                           StackColoring Pass
83//===----------------------------------------------------------------------===//
84
85namespace {
86/// StackColoring - A machine pass for merging disjoint stack allocations,
87/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
88class StackColoring : public MachineFunctionPass {
89  MachineFrameInfo *MFI;
90  MachineFunction *MF;
91
92  /// A class representing liveness information for a single basic block.
93  /// Each bit in the BitVector represents the liveness property
94  /// for a different stack slot.
95  struct BlockLifetimeInfo {
96    /// Which slots BEGINs in each basic block.
97    BitVector Begin;
98    /// Which slots ENDs in each basic block.
99    BitVector End;
100    /// Which slots are marked as LIVE_IN, coming into each basic block.
101    BitVector LiveIn;
102    /// Which slots are marked as LIVE_OUT, coming out of each basic block.
103    BitVector LiveOut;
104  };
105
106  /// Maps active slots (per bit) for each basic block.
107  DenseMap<MachineBasicBlock*, BlockLifetimeInfo> BlockLiveness;
108
109  /// Maps serial numbers to basic blocks.
110  DenseMap<MachineBasicBlock*, int> BasicBlocks;
111  /// Maps basic blocks to a serial number.
112  SmallVector<MachineBasicBlock*, 8> BasicBlockNumbering;
113
114  /// Maps liveness intervals for each slot.
115  SmallVector<LiveInterval*, 16> Intervals;
116  /// VNInfo is used for the construction of LiveIntervals.
117  VNInfo::Allocator VNInfoAllocator;
118  /// SlotIndex analysis object.
119  SlotIndexes *Indexes;
120
121  /// The list of lifetime markers found. These markers are to be removed
122  /// once the coloring is done.
123  SmallVector<MachineInstr*, 8> Markers;
124
125  /// SlotSizeSorter - A Sort utility for arranging stack slots according
126  /// to their size.
127  struct SlotSizeSorter {
128    MachineFrameInfo *MFI;
129    SlotSizeSorter(MachineFrameInfo *mfi) : MFI(mfi) { }
130    bool operator()(int LHS, int RHS) {
131      // We use -1 to denote a uninteresting slot. Place these slots at the end.
132      if (LHS == -1) return false;
133      if (RHS == -1) return true;
134      // Sort according to size.
135      return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
136  }
137};
138
139public:
140  static char ID;
141  StackColoring() : MachineFunctionPass(ID) {
142    initializeStackColoringPass(*PassRegistry::getPassRegistry());
143  }
144  void getAnalysisUsage(AnalysisUsage &AU) const;
145  bool runOnMachineFunction(MachineFunction &MF);
146
147private:
148  /// Debug.
149  void dump();
150
151  /// Removes all of the lifetime marker instructions from the function.
152  /// \returns true if any markers were removed.
153  bool removeAllMarkers();
154
155  /// Scan the machine function and find all of the lifetime markers.
156  /// Record the findings in the BEGIN and END vectors.
157  /// \returns the number of markers found.
158  unsigned collectMarkers(unsigned NumSlot);
159
160  /// Perform the dataflow calculation and calculate the lifetime for each of
161  /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
162  /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
163  /// in and out blocks.
164  void calculateLocalLiveness();
165
166  /// Construct the LiveIntervals for the slots.
167  void calculateLiveIntervals(unsigned NumSlots);
168
169  /// Go over the machine function and change instructions which use stack
170  /// slots to use the joint slots.
171  void remapInstructions(DenseMap<int, int> &SlotRemap);
172
173  /// The input program may contain intructions which are not inside lifetime
174  /// markers. This can happen due to a bug in the compiler or due to a bug in
175  /// user code (for example, returning a reference to a local variable).
176  /// This procedure checks all of the instructions in the function and
177  /// invalidates lifetime ranges which do not contain all of the instructions
178  /// which access that frame slot.
179  void removeInvalidSlotRanges();
180
181  /// Map entries which point to other entries to their destination.
182  ///   A->B->C becomes A->C.
183   void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
184};
185} // end anonymous namespace
186
187char StackColoring::ID = 0;
188char &llvm::StackColoringID = StackColoring::ID;
189
190INITIALIZE_PASS_BEGIN(StackColoring,
191                   "stack-coloring", "Merge disjoint stack slots", false, false)
192INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
193INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
194INITIALIZE_PASS_END(StackColoring,
195                   "stack-coloring", "Merge disjoint stack slots", false, false)
196
197void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
198  AU.addRequired<MachineDominatorTree>();
199  AU.addPreserved<MachineDominatorTree>();
200  AU.addRequired<SlotIndexes>();
201  MachineFunctionPass::getAnalysisUsage(AU);
202}
203
204void StackColoring::dump() {
205  for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF);
206       FI != FE; ++FI) {
207    unsigned Num = BasicBlocks[*FI];
208    DEBUG(dbgs()<<"Inspecting block #"<<Num<<" ["<<FI->getName()<<"]\n");
209    Num = 0;
210    DEBUG(dbgs()<<"BEGIN  : {");
211    for (unsigned i=0; i < BlockLiveness[*FI].Begin.size(); ++i)
212      DEBUG(dbgs()<<BlockLiveness[*FI].Begin.test(i)<<" ");
213    DEBUG(dbgs()<<"}\n");
214
215    DEBUG(dbgs()<<"END    : {");
216    for (unsigned i=0; i < BlockLiveness[*FI].End.size(); ++i)
217      DEBUG(dbgs()<<BlockLiveness[*FI].End.test(i)<<" ");
218
219    DEBUG(dbgs()<<"}\n");
220
221    DEBUG(dbgs()<<"LIVE_IN: {");
222    for (unsigned i=0; i < BlockLiveness[*FI].LiveIn.size(); ++i)
223      DEBUG(dbgs()<<BlockLiveness[*FI].LiveIn.test(i)<<" ");
224
225    DEBUG(dbgs()<<"}\n");
226    DEBUG(dbgs()<<"LIVEOUT: {");
227    for (unsigned i=0; i < BlockLiveness[*FI].LiveOut.size(); ++i)
228      DEBUG(dbgs()<<BlockLiveness[*FI].LiveOut.test(i)<<" ");
229    DEBUG(dbgs()<<"}\n");
230  }
231}
232
233unsigned StackColoring::collectMarkers(unsigned NumSlot) {
234  unsigned MarkersFound = 0;
235  // Scan the function to find all lifetime markers.
236  // NOTE: We use the a reverse-post-order iteration to ensure that we obtain a
237  // deterministic numbering, and because we'll need a post-order iteration
238  // later for solving the liveness dataflow problem.
239  for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF);
240       FI != FE; ++FI) {
241
242    // Assign a serial number to this basic block.
243    BasicBlocks[*FI] = BasicBlockNumbering.size();
244    BasicBlockNumbering.push_back(*FI);
245
246    BlockLiveness[*FI].Begin.resize(NumSlot);
247    BlockLiveness[*FI].End.resize(NumSlot);
248
249    for (MachineBasicBlock::iterator BI = (*FI)->begin(), BE = (*FI)->end();
250         BI != BE; ++BI) {
251
252      if (BI->getOpcode() != TargetOpcode::LIFETIME_START &&
253          BI->getOpcode() != TargetOpcode::LIFETIME_END)
254        continue;
255
256      Markers.push_back(BI);
257
258      bool IsStart = BI->getOpcode() == TargetOpcode::LIFETIME_START;
259      MachineOperand &MI = BI->getOperand(0);
260      unsigned Slot = MI.getIndex();
261
262      MarkersFound++;
263
264      const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
265      if (Allocation) {
266        DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<<
267              " with allocation: "<< Allocation->getName()<<"\n");
268      }
269
270      if (IsStart) {
271        BlockLiveness[*FI].Begin.set(Slot);
272      } else {
273        if (BlockLiveness[*FI].Begin.test(Slot)) {
274          // Allocas that start and end within a single block are handled
275          // specially when computing the LiveIntervals to avoid pessimizing
276          // the liveness propagation.
277          BlockLiveness[*FI].Begin.reset(Slot);
278        } else {
279          BlockLiveness[*FI].End.set(Slot);
280        }
281      }
282    }
283  }
284
285  // Update statistics.
286  NumMarkerSeen += MarkersFound;
287  return MarkersFound;
288}
289
290void StackColoring::calculateLocalLiveness() {
291  // Perform a standard reverse dataflow computation to solve for
292  // global liveness.  The BEGIN set here is equivalent to KILL in the standard
293  // formulation, and END is equivalent to GEN.  The result of this computation
294  // is a map from blocks to bitvectors where the bitvectors represent which
295  // allocas are live in/out of that block.
296  SmallPtrSet<MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(),
297                                           BasicBlockNumbering.end());
298  unsigned NumSSMIters = 0;
299  bool changed = true;
300  while (changed) {
301    changed = false;
302    ++NumSSMIters;
303
304    SmallPtrSet<MachineBasicBlock*, 8> NextBBSet;
305
306    for (SmallVector<MachineBasicBlock*, 8>::iterator
307         PI = BasicBlockNumbering.begin(), PE = BasicBlockNumbering.end();
308         PI != PE; ++PI) {
309
310      MachineBasicBlock *BB = *PI;
311      if (!BBSet.count(BB)) continue;
312
313      BitVector LocalLiveIn;
314      BitVector LocalLiveOut;
315
316      // Forward propagation from begins to ends.
317      for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
318           PE = BB->pred_end(); PI != PE; ++PI)
319        LocalLiveIn |= BlockLiveness[*PI].LiveOut;
320      LocalLiveIn |= BlockLiveness[BB].End;
321      LocalLiveIn.reset(BlockLiveness[BB].Begin);
322
323      // Reverse propagation from ends to begins.
324      for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
325           SE = BB->succ_end(); SI != SE; ++SI)
326        LocalLiveOut |= BlockLiveness[*SI].LiveIn;
327      LocalLiveOut |= BlockLiveness[BB].Begin;
328      LocalLiveOut.reset(BlockLiveness[BB].End);
329
330      LocalLiveIn |= LocalLiveOut;
331      LocalLiveOut |= LocalLiveIn;
332
333      // After adopting the live bits, we need to turn-off the bits which
334      // are de-activated in this block.
335      LocalLiveOut.reset(BlockLiveness[BB].End);
336      LocalLiveIn.reset(BlockLiveness[BB].Begin);
337
338      // If we have both BEGIN and END markers in the same basic block then
339      // we know that the BEGIN marker comes after the END, because we already
340      // handle the case where the BEGIN comes before the END when collecting
341      // the markers (and building the BEGIN/END vectore).
342      // Want to enable the LIVE_IN and LIVE_OUT of slots that have both
343      // BEGIN and END because it means that the value lives before and after
344      // this basic block.
345      BitVector LocalEndBegin = BlockLiveness[BB].End;
346      LocalEndBegin &= BlockLiveness[BB].Begin;
347      LocalLiveIn |= LocalEndBegin;
348      LocalLiveOut |= LocalEndBegin;
349
350      if (LocalLiveIn.test(BlockLiveness[BB].LiveIn)) {
351        changed = true;
352        BlockLiveness[BB].LiveIn |= LocalLiveIn;
353
354        for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
355             PE = BB->pred_end(); PI != PE; ++PI)
356          NextBBSet.insert(*PI);
357      }
358
359      if (LocalLiveOut.test(BlockLiveness[BB].LiveOut)) {
360        changed = true;
361        BlockLiveness[BB].LiveOut |= LocalLiveOut;
362
363        for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
364             SE = BB->succ_end(); SI != SE; ++SI)
365          NextBBSet.insert(*SI);
366      }
367    }
368
369    BBSet = NextBBSet;
370  }// while changed.
371}
372
373void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
374  SmallVector<SlotIndex, 16> Starts;
375  SmallVector<SlotIndex, 16> Finishes;
376
377  // For each block, find which slots are active within this block
378  // and update the live intervals.
379  for (MachineFunction::iterator MBB = MF->begin(), MBBe = MF->end();
380       MBB != MBBe; ++MBB) {
381    Starts.clear();
382    Starts.resize(NumSlots);
383    Finishes.clear();
384    Finishes.resize(NumSlots);
385
386    // Create the interval for the basic blocks with lifetime markers in them.
387    for (SmallVector<MachineInstr*, 8>::iterator it = Markers.begin(),
388         e = Markers.end(); it != e; ++it) {
389      MachineInstr *MI = *it;
390      if (MI->getParent() != MBB)
391        continue;
392
393      assert((MI->getOpcode() == TargetOpcode::LIFETIME_START ||
394              MI->getOpcode() == TargetOpcode::LIFETIME_END) &&
395             "Invalid Lifetime marker");
396
397      bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START;
398      MachineOperand &Mo = MI->getOperand(0);
399      int Slot = Mo.getIndex();
400      assert(Slot >= 0 && "Invalid slot");
401
402      SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
403
404      if (IsStart) {
405        if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
406          Starts[Slot] = ThisIndex;
407      } else {
408        if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
409          Finishes[Slot] = ThisIndex;
410      }
411    }
412
413    // Create the interval of the blocks that we previously found to be 'alive'.
414    BitVector Alive = BlockLiveness[MBB].LiveIn;
415    Alive |= BlockLiveness[MBB].LiveOut;
416
417    if (Alive.any()) {
418      for (int pos = Alive.find_first(); pos != -1;
419           pos = Alive.find_next(pos)) {
420        if (!Starts[pos].isValid())
421          Starts[pos] = Indexes->getMBBStartIdx(MBB);
422        if (!Finishes[pos].isValid())
423          Finishes[pos] = Indexes->getMBBEndIdx(MBB);
424      }
425    }
426
427    for (unsigned i = 0; i < NumSlots; ++i) {
428      assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range");
429      if (!Starts[i].isValid())
430        continue;
431
432      assert(Starts[i] && Finishes[i] && "Invalid interval");
433      VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
434      SlotIndex S = Starts[i];
435      SlotIndex F = Finishes[i];
436      if (S < F) {
437        // We have a single consecutive region.
438        Intervals[i]->addRange(LiveRange(S, F, ValNum));
439      } else {
440        // We have two non consecutive regions. This happens when
441        // LIFETIME_START appears after the LIFETIME_END marker.
442        SlotIndex NewStart = Indexes->getMBBStartIdx(MBB);
443        SlotIndex NewFin = Indexes->getMBBEndIdx(MBB);
444        Intervals[i]->addRange(LiveRange(NewStart, F, ValNum));
445        Intervals[i]->addRange(LiveRange(S, NewFin, ValNum));
446      }
447    }
448  }
449}
450
451bool StackColoring::removeAllMarkers() {
452  unsigned Count = 0;
453  for (unsigned i = 0; i < Markers.size(); ++i) {
454    Markers[i]->eraseFromParent();
455    Count++;
456  }
457  Markers.clear();
458
459  DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
460  return Count;
461}
462
463void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
464  unsigned FixedInstr = 0;
465  unsigned FixedMemOp = 0;
466  unsigned FixedDbg = 0;
467  MachineModuleInfo *MMI = &MF->getMMI();
468
469  // Remap debug information that refers to stack slots.
470  MachineModuleInfo::VariableDbgInfoMapTy &VMap = MMI->getVariableDbgInfo();
471  for (MachineModuleInfo::VariableDbgInfoMapTy::iterator VI = VMap.begin(),
472       VE = VMap.end(); VI != VE; ++VI) {
473    const MDNode *Var = VI->first;
474    if (!Var) continue;
475    std::pair<unsigned, DebugLoc> &VP = VI->second;
476    if (SlotRemap.count(VP.first)) {
477      DEBUG(dbgs()<<"Remapping debug info for ["<<Var->getName()<<"].\n");
478      VP.first = SlotRemap[VP.first];
479      FixedDbg++;
480    }
481  }
482
483  // Keep a list of *allocas* which need to be remapped.
484  DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
485  for (DenseMap<int, int>::iterator it = SlotRemap.begin(),
486       e = SlotRemap.end(); it != e; ++it) {
487    const AllocaInst *From = MFI->getObjectAllocation(it->first);
488    const AllocaInst *To = MFI->getObjectAllocation(it->second);
489    assert(To && From && "Invalid allocation object");
490    Allocas[From] = To;
491  }
492
493  // Remap all instructions to the new stack slots.
494  MachineFunction::iterator BB, BBE;
495  MachineBasicBlock::iterator I, IE;
496  for (BB = MF->begin(), BBE = MF->end(); BB != BBE; ++BB)
497    for (I = BB->begin(), IE = BB->end(); I != IE; ++I) {
498
499      // Skip lifetime markers. We'll remove them soon.
500      if (I->getOpcode() == TargetOpcode::LIFETIME_START ||
501          I->getOpcode() == TargetOpcode::LIFETIME_END)
502        continue;
503
504      // Update the MachineMemOperand to use the new alloca.
505      for (MachineInstr::mmo_iterator MM = I->memoperands_begin(),
506           E = I->memoperands_end(); MM != E; ++MM) {
507        MachineMemOperand *MMO = *MM;
508
509        const Value *V = MMO->getValue();
510
511        if (!V)
512          continue;
513
514        // Climb up and find the original alloca.
515        V = GetUnderlyingObject(V);
516        // If we did not find one, or if the one that we found is not in our
517        // map, then move on.
518        if (!V || !isa<AllocaInst>(V)) {
519          // Clear mem operand since we don't know for sure that it doesn't
520          // alias a merged alloca.
521          MMO->setValue(0);
522          continue;
523        }
524        const AllocaInst *AI= cast<AllocaInst>(V);
525        if (!Allocas.count(AI))
526          continue;
527
528        MMO->setValue(Allocas[AI]);
529        FixedMemOp++;
530      }
531
532      // Update all of the machine instruction operands.
533      for (unsigned i = 0 ; i <  I->getNumOperands(); ++i) {
534        MachineOperand &MO = I->getOperand(i);
535
536        if (!MO.isFI())
537          continue;
538        int FromSlot = MO.getIndex();
539
540        // Don't touch arguments.
541        if (FromSlot<0)
542          continue;
543
544        // Only look at mapped slots.
545        if (!SlotRemap.count(FromSlot))
546          continue;
547
548        // In a debug build, check that the instruction that we are modifying is
549        // inside the expected live range. If the instruction is not inside
550        // the calculated range then it means that the alloca usage moved
551        // outside of the lifetime markers, or that the user has a bug.
552        // NOTE: Alloca address calculations which happen outside the lifetime
553        // zone are are okay, despite the fact that we don't have a good way
554        // for validating all of the usages of the calculation.
555#ifndef NDEBUG
556        bool TouchesMemory = I->mayLoad() || I->mayStore();
557        // If we *don't* protect the user from escaped allocas, don't bother
558        // validating the instructions.
559        if (!I->isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
560          SlotIndex Index = Indexes->getInstructionIndex(I);
561          LiveInterval *Interval = Intervals[FromSlot];
562          assert(Interval->find(Index) != Interval->end() &&
563               "Found instruction usage outside of live range.");
564        }
565#endif
566
567        // Fix the machine instructions.
568        int ToSlot = SlotRemap[FromSlot];
569        MO.setIndex(ToSlot);
570        FixedInstr++;
571      }
572    }
573
574  DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
575  DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
576  DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
577}
578
579void StackColoring::removeInvalidSlotRanges() {
580  MachineFunction::iterator BB, BBE;
581  MachineBasicBlock::iterator I, IE;
582  for (BB = MF->begin(), BBE = MF->end(); BB != BBE; ++BB)
583    for (I = BB->begin(), IE = BB->end(); I != IE; ++I) {
584
585      if (I->getOpcode() == TargetOpcode::LIFETIME_START ||
586          I->getOpcode() == TargetOpcode::LIFETIME_END || I->isDebugValue())
587        continue;
588
589      // Some intervals are suspicious! In some cases we find address
590      // calculations outside of the lifetime zone, but not actual memory
591      // read or write. Memory accesses outside of the lifetime zone are a clear
592      // violation, but address calculations are okay. This can happen when
593      // GEPs are hoisted outside of the lifetime zone.
594      // So, in here we only check instructions which can read or write memory.
595      if (!I->mayLoad() && !I->mayStore())
596        continue;
597
598      // Check all of the machine operands.
599      for (unsigned i = 0 ; i <  I->getNumOperands(); ++i) {
600        MachineOperand &MO = I->getOperand(i);
601
602        if (!MO.isFI())
603          continue;
604
605        int Slot = MO.getIndex();
606
607        if (Slot<0)
608          continue;
609
610        if (Intervals[Slot]->empty())
611          continue;
612
613        // Check that the used slot is inside the calculated lifetime range.
614        // If it is not, warn about it and invalidate the range.
615        LiveInterval *Interval = Intervals[Slot];
616        SlotIndex Index = Indexes->getInstructionIndex(I);
617        if (Interval->find(Index) == Interval->end()) {
618          Intervals[Slot]->clear();
619          DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
620          EscapedAllocas++;
621        }
622      }
623    }
624}
625
626void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
627                                   unsigned NumSlots) {
628  // Expunge slot remap map.
629  for (unsigned i=0; i < NumSlots; ++i) {
630    // If we are remapping i
631    if (SlotRemap.count(i)) {
632      int Target = SlotRemap[i];
633      // As long as our target is mapped to something else, follow it.
634      while (SlotRemap.count(Target)) {
635        Target = SlotRemap[Target];
636        SlotRemap[i] = Target;
637      }
638    }
639  }
640}
641
642bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
643  DEBUG(dbgs() << "********** Stack Coloring **********\n"
644               << "********** Function: "
645               << ((const Value*)Func.getFunction())->getName() << '\n');
646  MF = &Func;
647  MFI = MF->getFrameInfo();
648  Indexes = &getAnalysis<SlotIndexes>();
649  BlockLiveness.clear();
650  BasicBlocks.clear();
651  BasicBlockNumbering.clear();
652  Markers.clear();
653  Intervals.clear();
654  VNInfoAllocator.Reset();
655
656  unsigned NumSlots = MFI->getObjectIndexEnd();
657
658  // If there are no stack slots then there are no markers to remove.
659  if (!NumSlots)
660    return false;
661
662  SmallVector<int, 8> SortedSlots;
663
664  SortedSlots.reserve(NumSlots);
665  Intervals.reserve(NumSlots);
666
667  unsigned NumMarkers = collectMarkers(NumSlots);
668
669  unsigned TotalSize = 0;
670  DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
671  DEBUG(dbgs()<<"Slot structure:\n");
672
673  for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
674    DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
675    TotalSize += MFI->getObjectSize(i);
676  }
677
678  DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
679
680  // Don't continue because there are not enough lifetime markers, or the
681  // stack is too small, or we are told not to optimize the slots.
682  if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) {
683    DEBUG(dbgs()<<"Will not try to merge slots.\n");
684    return removeAllMarkers();
685  }
686
687  for (unsigned i=0; i < NumSlots; ++i) {
688    LiveInterval *LI = new LiveInterval(i, 0);
689    Intervals.push_back(LI);
690    LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
691    SortedSlots.push_back(i);
692  }
693
694  // Calculate the liveness of each block.
695  calculateLocalLiveness();
696
697  // Propagate the liveness information.
698  calculateLiveIntervals(NumSlots);
699
700  // Search for allocas which are used outside of the declared lifetime
701  // markers.
702  if (ProtectFromEscapedAllocas)
703    removeInvalidSlotRanges();
704
705  // Maps old slots to new slots.
706  DenseMap<int, int> SlotRemap;
707  unsigned RemovedSlots = 0;
708  unsigned ReducedSize = 0;
709
710  // Do not bother looking at empty intervals.
711  for (unsigned I = 0; I < NumSlots; ++I) {
712    if (Intervals[SortedSlots[I]]->empty())
713      SortedSlots[I] = -1;
714  }
715
716  // This is a simple greedy algorithm for merging allocas. First, sort the
717  // slots, placing the largest slots first. Next, perform an n^2 scan and look
718  // for disjoint slots. When you find disjoint slots, merge the samller one
719  // into the bigger one and update the live interval. Remove the small alloca
720  // and continue.
721
722  // Sort the slots according to their size. Place unused slots at the end.
723  std::sort(SortedSlots.begin(), SortedSlots.end(), SlotSizeSorter(MFI));
724
725  bool Chanded = true;
726  while (Chanded) {
727    Chanded = false;
728    for (unsigned I = 0; I < NumSlots; ++I) {
729      if (SortedSlots[I] == -1)
730        continue;
731
732      for (unsigned J=I+1; J < NumSlots; ++J) {
733        if (SortedSlots[J] == -1)
734          continue;
735
736        int FirstSlot = SortedSlots[I];
737        int SecondSlot = SortedSlots[J];
738        LiveInterval *First = Intervals[FirstSlot];
739        LiveInterval *Second = Intervals[SecondSlot];
740        assert (!First->empty() && !Second->empty() && "Found an empty range");
741
742        // Merge disjoint slots.
743        if (!First->overlaps(*Second)) {
744          Chanded = true;
745          First->MergeRangesInAsValue(*Second, First->getValNumInfo(0));
746          SlotRemap[SecondSlot] = FirstSlot;
747          SortedSlots[J] = -1;
748          DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
749                SecondSlot<<" together.\n");
750          unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
751                                           MFI->getObjectAlignment(SecondSlot));
752
753          assert(MFI->getObjectSize(FirstSlot) >=
754                 MFI->getObjectSize(SecondSlot) &&
755                 "Merging a small object into a larger one");
756
757          RemovedSlots+=1;
758          ReducedSize += MFI->getObjectSize(SecondSlot);
759          MFI->setObjectAlignment(FirstSlot, MaxAlignment);
760          MFI->RemoveStackObject(SecondSlot);
761        }
762      }
763    }
764  }// While changed.
765
766  // Record statistics.
767  StackSpaceSaved += ReducedSize;
768  StackSlotMerged += RemovedSlots;
769  DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
770        ReducedSize<<" bytes\n");
771
772  // Scan the entire function and update all machine operands that use frame
773  // indices to use the remapped frame index.
774  expungeSlotMap(SlotRemap, NumSlots);
775  remapInstructions(SlotRemap);
776
777  // Release the intervals.
778  for (unsigned I = 0; I < NumSlots; ++I) {
779    delete Intervals[I];
780  }
781
782  return removeAllMarkers();
783}
784