1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "llvm/Operator.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineMemOperand.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/CodeGen/RegisterPressure.h"
25#include "llvm/CodeGen/ScheduleDAGILP.h"
26#include "llvm/CodeGen/ScheduleDAGInstrs.h"
27#include "llvm/MC/MCInstrItineraries.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetSubtargetInfo.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/Format.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/SmallPtrSet.h"
38using namespace llvm;
39
40static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
41    cl::ZeroOrMore, cl::init(false),
42    cl::desc("Enable use of AA during MI GAD construction"));
43
44ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
45                                     const MachineLoopInfo &mli,
46                                     const MachineDominatorTree &mdt,
47                                     bool IsPostRAFlag,
48                                     LiveIntervals *lis)
49  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
50    IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) {
51  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
52  DbgValues.clear();
53  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
54         "Virtual registers must be removed prior to PostRA scheduling");
55
56  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
57  SchedModel.init(*ST.getSchedModel(), &ST, TII);
58}
59
60/// getUnderlyingObjectFromInt - This is the function that does the work of
61/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
62static const Value *getUnderlyingObjectFromInt(const Value *V) {
63  do {
64    if (const Operator *U = dyn_cast<Operator>(V)) {
65      // If we find a ptrtoint, we can transfer control back to the
66      // regular getUnderlyingObjectFromInt.
67      if (U->getOpcode() == Instruction::PtrToInt)
68        return U->getOperand(0);
69      // If we find an add of a constant or a multiplied value, it's
70      // likely that the other operand will lead us to the base
71      // object. We don't have to worry about the case where the
72      // object address is somehow being computed by the multiply,
73      // because our callers only care when the result is an
74      // identifibale object.
75      if (U->getOpcode() != Instruction::Add ||
76          (!isa<ConstantInt>(U->getOperand(1)) &&
77           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
78        return V;
79      V = U->getOperand(0);
80    } else {
81      return V;
82    }
83    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
84  } while (1);
85}
86
87/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
88/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
89static const Value *getUnderlyingObject(const Value *V) {
90  // First just call Value::getUnderlyingObject to let it do what it does.
91  do {
92    V = GetUnderlyingObject(V);
93    // If it found an inttoptr, use special code to continue climing.
94    if (Operator::getOpcode(V) != Instruction::IntToPtr)
95      break;
96    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
97    // If that succeeded in finding a pointer, continue the search.
98    if (!O->getType()->isPointerTy())
99      break;
100    V = O;
101  } while (1);
102  return V;
103}
104
105/// getUnderlyingObjectForInstr - If this machine instr has memory reference
106/// information and it can be tracked to a normal reference to a known
107/// object, return the Value for that object. Otherwise return null.
108static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
109                                                const MachineFrameInfo *MFI,
110                                                bool &MayAlias) {
111  MayAlias = true;
112  if (!MI->hasOneMemOperand() ||
113      !(*MI->memoperands_begin())->getValue() ||
114      (*MI->memoperands_begin())->isVolatile())
115    return 0;
116
117  const Value *V = (*MI->memoperands_begin())->getValue();
118  if (!V)
119    return 0;
120
121  V = getUnderlyingObject(V);
122  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
123    // For now, ignore PseudoSourceValues which may alias LLVM IR values
124    // because the code that uses this function has no way to cope with
125    // such aliases.
126    if (PSV->isAliased(MFI))
127      return 0;
128
129    MayAlias = PSV->mayAlias(MFI);
130    return V;
131  }
132
133  if (isIdentifiedObject(V))
134    return V;
135
136  return 0;
137}
138
139void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
140  BB = bb;
141}
142
143void ScheduleDAGInstrs::finishBlock() {
144  // Subclasses should no longer refer to the old block.
145  BB = 0;
146}
147
148/// Initialize the map with the number of registers.
149void Reg2SUnitsMap::setRegLimit(unsigned Limit) {
150  PhysRegSet.setUniverse(Limit);
151  SUnits.resize(Limit);
152}
153
154/// Clear the map without deallocating storage.
155void Reg2SUnitsMap::clear() {
156  for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
157    SUnits[*I].clear();
158  }
159  PhysRegSet.clear();
160}
161
162/// Initialize the DAG and common scheduler state for the current scheduling
163/// region. This does not actually create the DAG, only clears it. The
164/// scheduling driver may call BuildSchedGraph multiple times per scheduling
165/// region.
166void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
167                                    MachineBasicBlock::iterator begin,
168                                    MachineBasicBlock::iterator end,
169                                    unsigned endcount) {
170  assert(bb == BB && "startBlock should set BB");
171  RegionBegin = begin;
172  RegionEnd = end;
173  EndIndex = endcount;
174  MISUnitMap.clear();
175
176  ScheduleDAG::clearDAG();
177}
178
179/// Close the current scheduling region. Don't clear any state in case the
180/// driver wants to refer to the previous scheduling region.
181void ScheduleDAGInstrs::exitRegion() {
182  // Nothing to do.
183}
184
185/// addSchedBarrierDeps - Add dependencies from instructions in the current
186/// list of instructions being scheduled to scheduling barrier by adding
187/// the exit SU to the register defs and use list. This is because we want to
188/// make sure instructions which define registers that are either used by
189/// the terminator or are live-out are properly scheduled. This is
190/// especially important when the definition latency of the return value(s)
191/// are too high to be hidden by the branch or when the liveout registers
192/// used by instructions in the fallthrough block.
193void ScheduleDAGInstrs::addSchedBarrierDeps() {
194  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
195  ExitSU.setInstr(ExitMI);
196  bool AllDepKnown = ExitMI &&
197    (ExitMI->isCall() || ExitMI->isBarrier());
198  if (ExitMI && AllDepKnown) {
199    // If it's a call or a barrier, add dependencies on the defs and uses of
200    // instruction.
201    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
202      const MachineOperand &MO = ExitMI->getOperand(i);
203      if (!MO.isReg() || MO.isDef()) continue;
204      unsigned Reg = MO.getReg();
205      if (Reg == 0) continue;
206
207      if (TRI->isPhysicalRegister(Reg))
208        Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
209      else {
210        assert(!IsPostRA && "Virtual register encountered after regalloc.");
211        addVRegUseDeps(&ExitSU, i);
212      }
213    }
214  } else {
215    // For others, e.g. fallthrough, conditional branch, assume the exit
216    // uses all the registers that are livein to the successor blocks.
217    assert(Uses.empty() && "Uses in set before adding deps?");
218    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
219           SE = BB->succ_end(); SI != SE; ++SI)
220      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
221             E = (*SI)->livein_end(); I != E; ++I) {
222        unsigned Reg = *I;
223        if (!Uses.contains(Reg))
224          Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
225      }
226  }
227}
228
229/// MO is an operand of SU's instruction that defines a physical register. Add
230/// data dependencies from SU to any uses of the physical register.
231void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
232  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
233  assert(MO.isDef() && "expect physreg def");
234
235  // Ask the target if address-backscheduling is desirable, and if so how much.
236  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
237
238  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
239       Alias.isValid(); ++Alias) {
240    if (!Uses.contains(*Alias))
241      continue;
242    std::vector<PhysRegSUOper> &UseList = Uses[*Alias];
243    for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
244      SUnit *UseSU = UseList[i].SU;
245      if (UseSU == SU)
246        continue;
247
248      SDep dep(SU, SDep::Data, 1, *Alias);
249
250      // Adjust the dependence latency using operand def/use information,
251      // then allow the target to perform its own adjustments.
252      int UseOp = UseList[i].OpIdx;
253      MachineInstr *RegUse = UseOp < 0 ? 0 : UseSU->getInstr();
254      dep.setLatency(
255        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
256                                         RegUse, UseOp, /*FindMin=*/false));
257      dep.setMinLatency(
258        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
259                                         RegUse, UseOp, /*FindMin=*/true));
260
261      ST.adjustSchedDependency(SU, UseSU, dep);
262      UseSU->addPred(dep);
263    }
264  }
265}
266
267/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
268/// this SUnit to following instructions in the same scheduling region that
269/// depend the physical register referenced at OperIdx.
270void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
271  const MachineInstr *MI = SU->getInstr();
272  const MachineOperand &MO = MI->getOperand(OperIdx);
273
274  // Optionally add output and anti dependencies. For anti
275  // dependencies we use a latency of 0 because for a multi-issue
276  // target we want to allow the defining instruction to issue
277  // in the same cycle as the using instruction.
278  // TODO: Using a latency of 1 here for output dependencies assumes
279  //       there's no cost for reusing registers.
280  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
281  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
282       Alias.isValid(); ++Alias) {
283    if (!Defs.contains(*Alias))
284      continue;
285    std::vector<PhysRegSUOper> &DefList = Defs[*Alias];
286    for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
287      SUnit *DefSU = DefList[i].SU;
288      if (DefSU == &ExitSU)
289        continue;
290      if (DefSU != SU &&
291          (Kind != SDep::Output || !MO.isDead() ||
292           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
293        if (Kind == SDep::Anti)
294          DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
295        else {
296          unsigned AOLat =
297            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr());
298          DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
299        }
300      }
301    }
302  }
303
304  if (!MO.isDef()) {
305    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
306    // retrieve the existing SUnits list for this register's uses.
307    // Push this SUnit on the use list.
308    Uses[MO.getReg()].push_back(PhysRegSUOper(SU, OperIdx));
309  }
310  else {
311    addPhysRegDataDeps(SU, OperIdx);
312
313    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
314    // retrieve the existing SUnits list for this register's defs.
315    std::vector<PhysRegSUOper> &DefList = Defs[MO.getReg()];
316
317    // clear this register's use list
318    if (Uses.contains(MO.getReg()))
319      Uses[MO.getReg()].clear();
320
321    if (!MO.isDead())
322      DefList.clear();
323
324    // Calls will not be reordered because of chain dependencies (see
325    // below). Since call operands are dead, calls may continue to be added
326    // to the DefList making dependence checking quadratic in the size of
327    // the block. Instead, we leave only one call at the back of the
328    // DefList.
329    if (SU->isCall) {
330      while (!DefList.empty() && DefList.back().SU->isCall)
331        DefList.pop_back();
332    }
333    // Defs are pushed in the order they are visited and never reordered.
334    DefList.push_back(PhysRegSUOper(SU, OperIdx));
335  }
336}
337
338/// addVRegDefDeps - Add register output and data dependencies from this SUnit
339/// to instructions that occur later in the same scheduling region if they read
340/// from or write to the virtual register defined at OperIdx.
341///
342/// TODO: Hoist loop induction variable increments. This has to be
343/// reevaluated. Generally, IV scheduling should be done before coalescing.
344void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
345  const MachineInstr *MI = SU->getInstr();
346  unsigned Reg = MI->getOperand(OperIdx).getReg();
347
348  // Singly defined vregs do not have output/anti dependencies.
349  // The current operand is a def, so we have at least one.
350  // Check here if there are any others...
351  if (MRI.hasOneDef(Reg))
352    return;
353
354  // Add output dependence to the next nearest def of this vreg.
355  //
356  // Unless this definition is dead, the output dependence should be
357  // transitively redundant with antidependencies from this definition's
358  // uses. We're conservative for now until we have a way to guarantee the uses
359  // are not eliminated sometime during scheduling. The output dependence edge
360  // is also useful if output latency exceeds def-use latency.
361  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
362  if (DefI == VRegDefs.end())
363    VRegDefs.insert(VReg2SUnit(Reg, SU));
364  else {
365    SUnit *DefSU = DefI->SU;
366    if (DefSU != SU && DefSU != &ExitSU) {
367      unsigned OutLatency =
368        SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr());
369      DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
370    }
371    DefI->SU = SU;
372  }
373}
374
375/// addVRegUseDeps - Add a register data dependency if the instruction that
376/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
377/// register antidependency from this SUnit to instructions that occur later in
378/// the same scheduling region if they write the virtual register.
379///
380/// TODO: Handle ExitSU "uses" properly.
381void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
382  MachineInstr *MI = SU->getInstr();
383  unsigned Reg = MI->getOperand(OperIdx).getReg();
384
385  // Lookup this operand's reaching definition.
386  assert(LIS && "vreg dependencies requires LiveIntervals");
387  LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
388  VNInfo *VNI = LRQ.valueIn();
389
390  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
391  assert(VNI && "No value to read by operand");
392  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
393  // Phis and other noninstructions (after coalescing) have a NULL Def.
394  if (Def) {
395    SUnit *DefSU = getSUnit(Def);
396    if (DefSU) {
397      // The reaching Def lives within this scheduling region.
398      // Create a data dependence.
399      SDep dep(DefSU, SDep::Data, 1, Reg);
400      // Adjust the dependence latency using operand def/use information, then
401      // allow the target to perform its own adjustments.
402      int DefOp = Def->findRegisterDefOperandIdx(Reg);
403      dep.setLatency(
404        SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, false));
405      dep.setMinLatency(
406        SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, true));
407
408      const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
409      ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
410      SU->addPred(dep);
411    }
412  }
413
414  // Add antidependence to the following def of the vreg it uses.
415  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
416  if (DefI != VRegDefs.end() && DefI->SU != SU)
417    DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg));
418}
419
420/// Return true if MI is an instruction we are unable to reason about
421/// (like a call or something with unmodeled side effects).
422static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
423  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
424      (MI->hasOrderedMemoryRef() &&
425       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
426    return true;
427  return false;
428}
429
430// This MI might have either incomplete info, or known to be unsafe
431// to deal with (i.e. volatile object).
432static inline bool isUnsafeMemoryObject(MachineInstr *MI,
433                                        const MachineFrameInfo *MFI) {
434  if (!MI || MI->memoperands_empty())
435    return true;
436  // We purposefully do no check for hasOneMemOperand() here
437  // in hope to trigger an assert downstream in order to
438  // finish implementation.
439  if ((*MI->memoperands_begin())->isVolatile() ||
440       MI->hasUnmodeledSideEffects())
441    return true;
442
443  const Value *V = (*MI->memoperands_begin())->getValue();
444  if (!V)
445    return true;
446
447  V = getUnderlyingObject(V);
448  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
449    // Similarly to getUnderlyingObjectForInstr:
450    // For now, ignore PseudoSourceValues which may alias LLVM IR values
451    // because the code that uses this function has no way to cope with
452    // such aliases.
453    if (PSV->isAliased(MFI))
454      return true;
455  }
456  // Does this pointer refer to a distinct and identifiable object?
457  if (!isIdentifiedObject(V))
458    return true;
459
460  return false;
461}
462
463/// This returns true if the two MIs need a chain edge betwee them.
464/// If these are not even memory operations, we still may need
465/// chain deps between them. The question really is - could
466/// these two MIs be reordered during scheduling from memory dependency
467/// point of view.
468static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
469                             MachineInstr *MIa,
470                             MachineInstr *MIb) {
471  // Cover a trivial case - no edge is need to itself.
472  if (MIa == MIb)
473    return false;
474
475  if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
476    return true;
477
478  // If we are dealing with two "normal" loads, we do not need an edge
479  // between them - they could be reordered.
480  if (!MIa->mayStore() && !MIb->mayStore())
481    return false;
482
483  // To this point analysis is generic. From here on we do need AA.
484  if (!AA)
485    return true;
486
487  MachineMemOperand *MMOa = *MIa->memoperands_begin();
488  MachineMemOperand *MMOb = *MIb->memoperands_begin();
489
490  // FIXME: Need to handle multiple memory operands to support all targets.
491  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
492    llvm_unreachable("Multiple memory operands.");
493
494  // The following interface to AA is fashioned after DAGCombiner::isAlias
495  // and operates with MachineMemOperand offset with some important
496  // assumptions:
497  //   - LLVM fundamentally assumes flat address spaces.
498  //   - MachineOperand offset can *only* result from legalization and
499  //     cannot affect queries other than the trivial case of overlap
500  //     checking.
501  //   - These offsets never wrap and never step outside
502  //     of allocated objects.
503  //   - There should never be any negative offsets here.
504  //
505  // FIXME: Modify API to hide this math from "user"
506  // FIXME: Even before we go to AA we can reason locally about some
507  // memory objects. It can save compile time, and possibly catch some
508  // corner cases not currently covered.
509
510  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
511  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
512
513  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
514  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
515  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
516
517  AliasAnalysis::AliasResult AAResult = AA->alias(
518  AliasAnalysis::Location(MMOa->getValue(), Overlapa,
519                          MMOa->getTBAAInfo()),
520  AliasAnalysis::Location(MMOb->getValue(), Overlapb,
521                          MMOb->getTBAAInfo()));
522
523  return (AAResult != AliasAnalysis::NoAlias);
524}
525
526/// This recursive function iterates over chain deps of SUb looking for
527/// "latest" node that needs a chain edge to SUa.
528static unsigned
529iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
530                 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
531                 SmallPtrSet<const SUnit*, 16> &Visited) {
532  if (!SUa || !SUb || SUb == ExitSU)
533    return *Depth;
534
535  // Remember visited nodes.
536  if (!Visited.insert(SUb))
537      return *Depth;
538  // If there is _some_ dependency already in place, do not
539  // descend any further.
540  // TODO: Need to make sure that if that dependency got eliminated or ignored
541  // for any reason in the future, we would not violate DAG topology.
542  // Currently it does not happen, but makes an implicit assumption about
543  // future implementation.
544  //
545  // Independently, if we encounter node that is some sort of global
546  // object (like a call) we already have full set of dependencies to it
547  // and we can stop descending.
548  if (SUa->isSucc(SUb) ||
549      isGlobalMemoryObject(AA, SUb->getInstr()))
550    return *Depth;
551
552  // If we do need an edge, or we have exceeded depth budget,
553  // add that edge to the predecessors chain of SUb,
554  // and stop descending.
555  if (*Depth > 200 ||
556      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
557    SUb->addPred(SDep(SUa, SDep::Order, /*Latency=*/0, /*Reg=*/0,
558                      /*isNormalMemory=*/true));
559    return *Depth;
560  }
561  // Track current depth.
562  (*Depth)++;
563  // Iterate over chain dependencies only.
564  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
565       I != E; ++I)
566    if (I->isCtrl())
567      iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
568  return *Depth;
569}
570
571/// This function assumes that "downward" from SU there exist
572/// tail/leaf of already constructed DAG. It iterates downward and
573/// checks whether SU can be aliasing any node dominated
574/// by it.
575static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
576                            SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
577                            unsigned LatencyToLoad) {
578  if (!SU)
579    return;
580
581  SmallPtrSet<const SUnit*, 16> Visited;
582  unsigned Depth = 0;
583
584  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
585       I != IE; ++I) {
586    if (SU == *I)
587      continue;
588    if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
589      unsigned Latency = ((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0;
590      (*I)->addPred(SDep(SU, SDep::Order, Latency, /*Reg=*/0,
591                         /*isNormalMemory=*/true));
592    }
593    // Now go through all the chain successors and iterate from them.
594    // Keep track of visited nodes.
595    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
596         JE = (*I)->Succs.end(); J != JE; ++J)
597      if (J->isCtrl())
598        iterateChainSucc (AA, MFI, SU, J->getSUnit(),
599                          ExitSU, &Depth, Visited);
600  }
601}
602
603/// Check whether two objects need a chain edge, if so, add it
604/// otherwise remember the rejected SU.
605static inline
606void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
607                         SUnit *SUa, SUnit *SUb,
608                         std::set<SUnit *> &RejectList,
609                         unsigned TrueMemOrderLatency = 0,
610                         bool isNormalMemory = false) {
611  // If this is a false dependency,
612  // do not add the edge, but rememeber the rejected node.
613  if (!EnableAASchedMI ||
614      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr()))
615    SUb->addPred(SDep(SUa, SDep::Order, TrueMemOrderLatency, /*Reg=*/0,
616                      isNormalMemory));
617  else {
618    // Duplicate entries should be ignored.
619    RejectList.insert(SUb);
620    DEBUG(dbgs() << "\tReject chain dep between SU("
621          << SUa->NodeNum << ") and SU("
622          << SUb->NodeNum << ")\n");
623  }
624}
625
626/// Create an SUnit for each real instruction, numbered in top-down toplological
627/// order. The instruction order A < B, implies that no edge exists from B to A.
628///
629/// Map each real instruction to its SUnit.
630///
631/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
632/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
633/// instead of pointers.
634///
635/// MachineScheduler relies on initSUnits numbering the nodes by their order in
636/// the original instruction list.
637void ScheduleDAGInstrs::initSUnits() {
638  // We'll be allocating one SUnit for each real instruction in the region,
639  // which is contained within a basic block.
640  SUnits.reserve(BB->size());
641
642  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
643    MachineInstr *MI = I;
644    if (MI->isDebugValue())
645      continue;
646
647    SUnit *SU = newSUnit(MI);
648    MISUnitMap[MI] = SU;
649
650    SU->isCall = MI->isCall();
651    SU->isCommutable = MI->isCommutable();
652
653    // Assign the Latency field of SU using target-provided information.
654    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
655  }
656}
657
658/// If RegPressure is non null, compute register pressure as a side effect. The
659/// DAG builder is an efficient place to do it because it already visits
660/// operands.
661void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
662                                        RegPressureTracker *RPTracker) {
663  // Create an SUnit for each real instruction.
664  initSUnits();
665
666  // We build scheduling units by walking a block's instruction list from bottom
667  // to top.
668
669  // Remember where a generic side-effecting instruction is as we procede.
670  SUnit *BarrierChain = 0, *AliasChain = 0;
671
672  // Memory references to specific known memory locations are tracked
673  // so that they can be given more precise dependencies. We track
674  // separately the known memory locations that may alias and those
675  // that are known not to alias
676  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
677  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
678  std::set<SUnit*> RejectMemNodes;
679
680  // Remove any stale debug info; sometimes BuildSchedGraph is called again
681  // without emitting the info from the previous call.
682  DbgValues.clear();
683  FirstDbgValue = NULL;
684
685  assert(Defs.empty() && Uses.empty() &&
686         "Only BuildGraph should update Defs/Uses");
687  Defs.setRegLimit(TRI->getNumRegs());
688  Uses.setRegLimit(TRI->getNumRegs());
689
690  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
691  // FIXME: Allow SparseSet to reserve space for the creation of virtual
692  // registers during scheduling. Don't artificially inflate the Universe
693  // because we want to assert that vregs are not created during DAG building.
694  VRegDefs.setUniverse(MRI.getNumVirtRegs());
695
696  // Model data dependencies between instructions being scheduled and the
697  // ExitSU.
698  addSchedBarrierDeps();
699
700  // Walk the list of instructions, from bottom moving up.
701  MachineInstr *PrevMI = NULL;
702  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
703       MII != MIE; --MII) {
704    MachineInstr *MI = prior(MII);
705    if (MI && PrevMI) {
706      DbgValues.push_back(std::make_pair(PrevMI, MI));
707      PrevMI = NULL;
708    }
709
710    if (MI->isDebugValue()) {
711      PrevMI = MI;
712      continue;
713    }
714    if (RPTracker) {
715      RPTracker->recede();
716      assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
717    }
718
719    assert((!MI->isTerminator() || CanHandleTerminators) && !MI->isLabel() &&
720           "Cannot schedule terminators or labels!");
721
722    SUnit *SU = MISUnitMap[MI];
723    assert(SU && "No SUnit mapped to this MI");
724
725    // Add register-based dependencies (data, anti, and output).
726    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
727      const MachineOperand &MO = MI->getOperand(j);
728      if (!MO.isReg()) continue;
729      unsigned Reg = MO.getReg();
730      if (Reg == 0) continue;
731
732      if (TRI->isPhysicalRegister(Reg))
733        addPhysRegDeps(SU, j);
734      else {
735        assert(!IsPostRA && "Virtual register encountered!");
736        if (MO.isDef())
737          addVRegDefDeps(SU, j);
738        else if (MO.readsReg()) // ignore undef operands
739          addVRegUseDeps(SU, j);
740      }
741    }
742
743    // Add chain dependencies.
744    // Chain dependencies used to enforce memory order should have
745    // latency of 0 (except for true dependency of Store followed by
746    // aliased Load... we estimate that with a single cycle of latency
747    // assuming the hardware will bypass)
748    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
749    // after stack slots are lowered to actual addresses.
750    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
751    // produce more precise dependence information.
752    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
753    if (isGlobalMemoryObject(AA, MI)) {
754      // Be conservative with these and add dependencies on all memory
755      // references, even those that are known to not alias.
756      for (std::map<const Value *, SUnit *>::iterator I =
757             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
758        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
759      }
760      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
761             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
762        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
763          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
764      }
765      // Add SU to the barrier chain.
766      if (BarrierChain)
767        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
768      BarrierChain = SU;
769      // This is a barrier event that acts as a pivotal node in the DAG,
770      // so it is safe to clear list of exposed nodes.
771      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
772                      TrueMemOrderLatency);
773      RejectMemNodes.clear();
774      NonAliasMemDefs.clear();
775      NonAliasMemUses.clear();
776
777      // fall-through
778    new_alias_chain:
779      // Chain all possibly aliasing memory references though SU.
780      if (AliasChain) {
781        unsigned ChainLatency = 0;
782        if (AliasChain->getInstr()->mayLoad())
783          ChainLatency = TrueMemOrderLatency;
784        addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes,
785                           ChainLatency);
786      }
787      AliasChain = SU;
788      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
789        addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
790                           TrueMemOrderLatency);
791      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
792           E = AliasMemDefs.end(); I != E; ++I)
793        addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
794      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
795           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
796        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
797          addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
798                             TrueMemOrderLatency);
799      }
800      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
801                      TrueMemOrderLatency);
802      PendingLoads.clear();
803      AliasMemDefs.clear();
804      AliasMemUses.clear();
805    } else if (MI->mayStore()) {
806      bool MayAlias = true;
807      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
808        // A store to a specific PseudoSourceValue. Add precise dependencies.
809        // Record the def in MemDefs, first adding a dep if there is
810        // an existing def.
811        std::map<const Value *, SUnit *>::iterator I =
812          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
813        std::map<const Value *, SUnit *>::iterator IE =
814          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
815        if (I != IE) {
816          addChainDependency(AA, MFI, SU, I->second, RejectMemNodes,
817                             0, true);
818          I->second = SU;
819        } else {
820          if (MayAlias)
821            AliasMemDefs[V] = SU;
822          else
823            NonAliasMemDefs[V] = SU;
824        }
825        // Handle the uses in MemUses, if there are any.
826        std::map<const Value *, std::vector<SUnit *> >::iterator J =
827          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
828        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
829          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
830        if (J != JE) {
831          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
832            addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
833                               TrueMemOrderLatency, true);
834          J->second.clear();
835        }
836        if (MayAlias) {
837          // Add dependencies from all the PendingLoads, i.e. loads
838          // with no underlying object.
839          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
840            addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
841                               TrueMemOrderLatency);
842          // Add dependence on alias chain, if needed.
843          if (AliasChain)
844            addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
845          // But we also should check dependent instructions for the
846          // SU in question.
847          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
848                          TrueMemOrderLatency);
849        }
850        // Add dependence on barrier chain, if needed.
851        // There is no point to check aliasing on barrier event. Even if
852        // SU and barrier _could_ be reordered, they should not. In addition,
853        // we have lost all RejectMemNodes below barrier.
854        if (BarrierChain)
855          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
856      } else {
857        // Treat all other stores conservatively.
858        goto new_alias_chain;
859      }
860
861      if (!ExitSU.isPred(SU))
862        // Push store's up a bit to avoid them getting in between cmp
863        // and branches.
864        ExitSU.addPred(SDep(SU, SDep::Order, 0,
865                            /*Reg=*/0, /*isNormalMemory=*/false,
866                            /*isMustAlias=*/false,
867                            /*isArtificial=*/true));
868    } else if (MI->mayLoad()) {
869      bool MayAlias = true;
870      if (MI->isInvariantLoad(AA)) {
871        // Invariant load, no chain dependencies needed!
872      } else {
873        if (const Value *V =
874            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
875          // A load from a specific PseudoSourceValue. Add precise dependencies.
876          std::map<const Value *, SUnit *>::iterator I =
877            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
878          std::map<const Value *, SUnit *>::iterator IE =
879            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
880          if (I != IE)
881            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
882          if (MayAlias)
883            AliasMemUses[V].push_back(SU);
884          else
885            NonAliasMemUses[V].push_back(SU);
886        } else {
887          // A load with no underlying object. Depend on all
888          // potentially aliasing stores.
889          for (std::map<const Value *, SUnit *>::iterator I =
890                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
891            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
892
893          PendingLoads.push_back(SU);
894          MayAlias = true;
895        }
896        if (MayAlias)
897          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
898        // Add dependencies on alias and barrier chains, if needed.
899        if (MayAlias && AliasChain)
900          addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
901        if (BarrierChain)
902          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
903      }
904    }
905  }
906  if (PrevMI)
907    FirstDbgValue = PrevMI;
908
909  Defs.clear();
910  Uses.clear();
911  VRegDefs.clear();
912  PendingLoads.clear();
913}
914
915void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
916#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
917  SU->getInstr()->dump();
918#endif
919}
920
921std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
922  std::string s;
923  raw_string_ostream oss(s);
924  if (SU == &EntrySU)
925    oss << "<entry>";
926  else if (SU == &ExitSU)
927    oss << "<exit>";
928  else
929    SU->getInstr()->print(oss);
930  return oss.str();
931}
932
933/// Return the basic block label. It is not necessarilly unique because a block
934/// contains multiple scheduling regions. But it is fine for visualization.
935std::string ScheduleDAGInstrs::getDAGName() const {
936  return "dag." + BB->getFullName();
937}
938
939namespace {
940/// \brief Manage the stack used by a reverse depth-first search over the DAG.
941class SchedDAGReverseDFS {
942  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
943public:
944  bool isComplete() const { return DFSStack.empty(); }
945
946  void follow(const SUnit *SU) {
947    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
948  }
949  void advance() { ++DFSStack.back().second; }
950
951  void backtrack() { DFSStack.pop_back(); }
952
953  const SUnit *getCurr() const { return DFSStack.back().first; }
954
955  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
956
957  SUnit::const_pred_iterator getPredEnd() const {
958    return getCurr()->Preds.end();
959  }
960};
961} // anonymous
962
963void ScheduleDAGILP::resize(unsigned NumSUnits) {
964  ILPValues.resize(NumSUnits);
965}
966
967ILPValue ScheduleDAGILP::getILP(const SUnit *SU) {
968  return ILPValues[SU->NodeNum];
969}
970
971// A leaf node has an ILP of 1/1.
972static ILPValue initILP(const SUnit *SU) {
973  unsigned Cnt = SU->getInstr()->isTransient() ? 0 : 1;
974  return ILPValue(Cnt, 1 + SU->getDepth());
975}
976
977/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
978/// search from this root.
979void ScheduleDAGILP::computeILP(const SUnit *Root) {
980  if (!IsBottomUp)
981    llvm_unreachable("Top-down ILP metric is unimplemnted");
982
983  SchedDAGReverseDFS DFS;
984  // Mark a node visited by validating it.
985  ILPValues[Root->NodeNum] = initILP(Root);
986  DFS.follow(Root);
987  for (;;) {
988    // Traverse the leftmost path as far as possible.
989    while (DFS.getPred() != DFS.getPredEnd()) {
990      const SUnit *PredSU = DFS.getPred()->getSUnit();
991      DFS.advance();
992      // If the pred is already valid, skip it.
993      if (ILPValues[PredSU->NodeNum].isValid())
994        continue;
995      ILPValues[PredSU->NodeNum] = initILP(PredSU);
996      DFS.follow(PredSU);
997    }
998    // Visit the top of the stack in postorder and backtrack.
999    unsigned PredCount = ILPValues[DFS.getCurr()->NodeNum].InstrCount;
1000    DFS.backtrack();
1001    if (DFS.isComplete())
1002      break;
1003    // Add the recently finished predecessor's bottom-up descendent count.
1004    ILPValues[DFS.getCurr()->NodeNum].InstrCount += PredCount;
1005  }
1006}
1007
1008#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1009void ILPValue::print(raw_ostream &OS) const {
1010  if (!isValid())
1011    OS << "BADILP";
1012  OS << InstrCount << " / " << Cycles << " = "
1013     << format("%g", ((double)InstrCount / Cycles));
1014}
1015
1016void ILPValue::dump() const {
1017  dbgs() << *this << '\n';
1018}
1019
1020namespace llvm {
1021
1022raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1023  Val.print(OS);
1024  return OS;
1025}
1026
1027} // namespace llvm
1028#endif // !NDEBUG || LLVM_ENABLE_DUMP
1029