1//===-- llvm/InstrTypes.h - Important Instruction subclasses ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines various meta classes of instructions that exist in the VM
11// representation.  Specific concrete subclasses of these may be found in the
12// i*.h files...
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_INSTRUCTION_TYPES_H
17#define LLVM_INSTRUCTION_TYPES_H
18
19#include "llvm/Instruction.h"
20#include "llvm/OperandTraits.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/ADT/Twine.h"
23
24namespace llvm {
25
26class LLVMContext;
27
28//===----------------------------------------------------------------------===//
29//                            TerminatorInst Class
30//===----------------------------------------------------------------------===//
31
32/// TerminatorInst - Subclasses of this class are all able to terminate a basic
33/// block.  Thus, these are all the flow control type of operations.
34///
35class TerminatorInst : public Instruction {
36protected:
37  TerminatorInst(Type *Ty, Instruction::TermOps iType,
38                 Use *Ops, unsigned NumOps,
39                 Instruction *InsertBefore = 0)
40    : Instruction(Ty, iType, Ops, NumOps, InsertBefore) {}
41
42  TerminatorInst(Type *Ty, Instruction::TermOps iType,
43                 Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd)
44    : Instruction(Ty, iType, Ops, NumOps, InsertAtEnd) {}
45
46  // Out of line virtual method, so the vtable, etc has a home.
47  ~TerminatorInst();
48
49  /// Virtual methods - Terminators should overload these and provide inline
50  /// overrides of non-V methods.
51  virtual BasicBlock *getSuccessorV(unsigned idx) const = 0;
52  virtual unsigned getNumSuccessorsV() const = 0;
53  virtual void setSuccessorV(unsigned idx, BasicBlock *B) = 0;
54  virtual TerminatorInst *clone_impl() const = 0;
55public:
56
57  /// getNumSuccessors - Return the number of successors that this terminator
58  /// has.
59  unsigned getNumSuccessors() const {
60    return getNumSuccessorsV();
61  }
62
63  /// getSuccessor - Return the specified successor.
64  ///
65  BasicBlock *getSuccessor(unsigned idx) const {
66    return getSuccessorV(idx);
67  }
68
69  /// setSuccessor - Update the specified successor to point at the provided
70  /// block.
71  void setSuccessor(unsigned idx, BasicBlock *B) {
72    setSuccessorV(idx, B);
73  }
74
75  // Methods for support type inquiry through isa, cast, and dyn_cast:
76  static inline bool classof(const TerminatorInst *) { return true; }
77  static inline bool classof(const Instruction *I) {
78    return I->isTerminator();
79  }
80  static inline bool classof(const Value *V) {
81    return isa<Instruction>(V) && classof(cast<Instruction>(V));
82  }
83};
84
85
86//===----------------------------------------------------------------------===//
87//                          UnaryInstruction Class
88//===----------------------------------------------------------------------===//
89
90class UnaryInstruction : public Instruction {
91  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
92
93protected:
94  UnaryInstruction(Type *Ty, unsigned iType, Value *V,
95                   Instruction *IB = 0)
96    : Instruction(Ty, iType, &Op<0>(), 1, IB) {
97    Op<0>() = V;
98  }
99  UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
100    : Instruction(Ty, iType, &Op<0>(), 1, IAE) {
101    Op<0>() = V;
102  }
103public:
104  // allocate space for exactly one operand
105  void *operator new(size_t s) {
106    return User::operator new(s, 1);
107  }
108
109  // Out of line virtual method, so the vtable, etc has a home.
110  ~UnaryInstruction();
111
112  /// Transparently provide more efficient getOperand methods.
113  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
114
115  // Methods for support type inquiry through isa, cast, and dyn_cast:
116  static inline bool classof(const UnaryInstruction *) { return true; }
117  static inline bool classof(const Instruction *I) {
118    return I->getOpcode() == Instruction::Alloca ||
119           I->getOpcode() == Instruction::Load ||
120           I->getOpcode() == Instruction::VAArg ||
121           I->getOpcode() == Instruction::ExtractValue ||
122           (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
123  }
124  static inline bool classof(const Value *V) {
125    return isa<Instruction>(V) && classof(cast<Instruction>(V));
126  }
127};
128
129template <>
130struct OperandTraits<UnaryInstruction> :
131  public FixedNumOperandTraits<UnaryInstruction, 1> {
132};
133
134DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)
135
136//===----------------------------------------------------------------------===//
137//                           BinaryOperator Class
138//===----------------------------------------------------------------------===//
139
140class BinaryOperator : public Instruction {
141  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
142protected:
143  void init(BinaryOps iType);
144  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
145                 const Twine &Name, Instruction *InsertBefore);
146  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
147                 const Twine &Name, BasicBlock *InsertAtEnd);
148  virtual BinaryOperator *clone_impl() const LLVM_OVERRIDE;
149public:
150  // allocate space for exactly two operands
151  void *operator new(size_t s) {
152    return User::operator new(s, 2);
153  }
154
155  /// Transparently provide more efficient getOperand methods.
156  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
157
158  /// Create() - Construct a binary instruction, given the opcode and the two
159  /// operands.  Optionally (if InstBefore is specified) insert the instruction
160  /// into a BasicBlock right before the specified instruction.  The specified
161  /// Instruction is allowed to be a dereferenced end iterator.
162  ///
163  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
164                                const Twine &Name = Twine(),
165                                Instruction *InsertBefore = 0);
166
167  /// Create() - Construct a binary instruction, given the opcode and the two
168  /// operands.  Also automatically insert this instruction to the end of the
169  /// BasicBlock specified.
170  ///
171  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
172                                const Twine &Name, BasicBlock *InsertAtEnd);
173
174  /// Create* - These methods just forward to Create, and are useful when you
175  /// statically know what type of instruction you're going to create.  These
176  /// helpers just save some typing.
177#define HANDLE_BINARY_INST(N, OPC, CLASS) \
178  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
179                                     const Twine &Name = "") {\
180    return Create(Instruction::OPC, V1, V2, Name);\
181  }
182#include "llvm/Instruction.def"
183#define HANDLE_BINARY_INST(N, OPC, CLASS) \
184  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
185                                     const Twine &Name, BasicBlock *BB) {\
186    return Create(Instruction::OPC, V1, V2, Name, BB);\
187  }
188#include "llvm/Instruction.def"
189#define HANDLE_BINARY_INST(N, OPC, CLASS) \
190  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
191                                     const Twine &Name, Instruction *I) {\
192    return Create(Instruction::OPC, V1, V2, Name, I);\
193  }
194#include "llvm/Instruction.def"
195
196  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
197                                   const Twine &Name = "") {
198    BinaryOperator *BO = Create(Opc, V1, V2, Name);
199    BO->setHasNoSignedWrap(true);
200    return BO;
201  }
202  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
203                                   const Twine &Name, BasicBlock *BB) {
204    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
205    BO->setHasNoSignedWrap(true);
206    return BO;
207  }
208  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
209                                   const Twine &Name, Instruction *I) {
210    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
211    BO->setHasNoSignedWrap(true);
212    return BO;
213  }
214
215  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
216                                   const Twine &Name = "") {
217    BinaryOperator *BO = Create(Opc, V1, V2, Name);
218    BO->setHasNoUnsignedWrap(true);
219    return BO;
220  }
221  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
222                                   const Twine &Name, BasicBlock *BB) {
223    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
224    BO->setHasNoUnsignedWrap(true);
225    return BO;
226  }
227  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
228                                   const Twine &Name, Instruction *I) {
229    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
230    BO->setHasNoUnsignedWrap(true);
231    return BO;
232  }
233
234  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
235                                     const Twine &Name = "") {
236    BinaryOperator *BO = Create(Opc, V1, V2, Name);
237    BO->setIsExact(true);
238    return BO;
239  }
240  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
241                                     const Twine &Name, BasicBlock *BB) {
242    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
243    BO->setIsExact(true);
244    return BO;
245  }
246  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
247                                     const Twine &Name, Instruction *I) {
248    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
249    BO->setIsExact(true);
250    return BO;
251  }
252
253#define DEFINE_HELPERS(OPC, NUWNSWEXACT)                                     \
254  static BinaryOperator *Create ## NUWNSWEXACT ## OPC                        \
255           (Value *V1, Value *V2, const Twine &Name = "") {                  \
256    return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name);            \
257  }                                                                          \
258  static BinaryOperator *Create ## NUWNSWEXACT ## OPC                        \
259           (Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) {       \
260    return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB);        \
261  }                                                                          \
262  static BinaryOperator *Create ## NUWNSWEXACT ## OPC                        \
263           (Value *V1, Value *V2, const Twine &Name, Instruction *I) {       \
264    return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I);         \
265  }
266
267  DEFINE_HELPERS(Add, NSW)  // CreateNSWAdd
268  DEFINE_HELPERS(Add, NUW)  // CreateNUWAdd
269  DEFINE_HELPERS(Sub, NSW)  // CreateNSWSub
270  DEFINE_HELPERS(Sub, NUW)  // CreateNUWSub
271  DEFINE_HELPERS(Mul, NSW)  // CreateNSWMul
272  DEFINE_HELPERS(Mul, NUW)  // CreateNUWMul
273  DEFINE_HELPERS(Shl, NSW)  // CreateNSWShl
274  DEFINE_HELPERS(Shl, NUW)  // CreateNUWShl
275
276  DEFINE_HELPERS(SDiv, Exact)  // CreateExactSDiv
277  DEFINE_HELPERS(UDiv, Exact)  // CreateExactUDiv
278  DEFINE_HELPERS(AShr, Exact)  // CreateExactAShr
279  DEFINE_HELPERS(LShr, Exact)  // CreateExactLShr
280
281#undef DEFINE_HELPERS
282
283  /// Helper functions to construct and inspect unary operations (NEG and NOT)
284  /// via binary operators SUB and XOR:
285  ///
286  /// CreateNeg, CreateNot - Create the NEG and NOT
287  ///     instructions out of SUB and XOR instructions.
288  ///
289  static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
290                                   Instruction *InsertBefore = 0);
291  static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
292                                   BasicBlock *InsertAtEnd);
293  static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
294                                      Instruction *InsertBefore = 0);
295  static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
296                                      BasicBlock *InsertAtEnd);
297  static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
298                                      Instruction *InsertBefore = 0);
299  static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
300                                      BasicBlock *InsertAtEnd);
301  static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name = "",
302                                    Instruction *InsertBefore = 0);
303  static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name,
304                                    BasicBlock *InsertAtEnd);
305  static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
306                                   Instruction *InsertBefore = 0);
307  static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
308                                   BasicBlock *InsertAtEnd);
309
310  /// isNeg, isFNeg, isNot - Check if the given Value is a
311  /// NEG, FNeg, or NOT instruction.
312  ///
313  static bool isNeg(const Value *V);
314  static bool isFNeg(const Value *V);
315  static bool isNot(const Value *V);
316
317  /// getNegArgument, getNotArgument - Helper functions to extract the
318  ///     unary argument of a NEG, FNEG or NOT operation implemented via
319  ///     Sub, FSub, or Xor.
320  ///
321  static const Value *getNegArgument(const Value *BinOp);
322  static       Value *getNegArgument(      Value *BinOp);
323  static const Value *getFNegArgument(const Value *BinOp);
324  static       Value *getFNegArgument(      Value *BinOp);
325  static const Value *getNotArgument(const Value *BinOp);
326  static       Value *getNotArgument(      Value *BinOp);
327
328  BinaryOps getOpcode() const {
329    return static_cast<BinaryOps>(Instruction::getOpcode());
330  }
331
332  /// swapOperands - Exchange the two operands to this instruction.
333  /// This instruction is safe to use on any binary instruction and
334  /// does not modify the semantics of the instruction.  If the instruction
335  /// cannot be reversed (ie, it's a Div), then return true.
336  ///
337  bool swapOperands();
338
339  /// setHasNoUnsignedWrap - Set or clear the nsw flag on this instruction,
340  /// which must be an operator which supports this flag. See LangRef.html
341  /// for the meaning of this flag.
342  void setHasNoUnsignedWrap(bool b = true);
343
344  /// setHasNoSignedWrap - Set or clear the nsw flag on this instruction,
345  /// which must be an operator which supports this flag. See LangRef.html
346  /// for the meaning of this flag.
347  void setHasNoSignedWrap(bool b = true);
348
349  /// setIsExact - Set or clear the exact flag on this instruction,
350  /// which must be an operator which supports this flag. See LangRef.html
351  /// for the meaning of this flag.
352  void setIsExact(bool b = true);
353
354  /// hasNoUnsignedWrap - Determine whether the no unsigned wrap flag is set.
355  bool hasNoUnsignedWrap() const;
356
357  /// hasNoSignedWrap - Determine whether the no signed wrap flag is set.
358  bool hasNoSignedWrap() const;
359
360  /// isExact - Determine whether the exact flag is set.
361  bool isExact() const;
362
363  // Methods for support type inquiry through isa, cast, and dyn_cast:
364  static inline bool classof(const BinaryOperator *) { return true; }
365  static inline bool classof(const Instruction *I) {
366    return I->isBinaryOp();
367  }
368  static inline bool classof(const Value *V) {
369    return isa<Instruction>(V) && classof(cast<Instruction>(V));
370  }
371};
372
373template <>
374struct OperandTraits<BinaryOperator> :
375  public FixedNumOperandTraits<BinaryOperator, 2> {
376};
377
378DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)
379
380//===----------------------------------------------------------------------===//
381//                               CastInst Class
382//===----------------------------------------------------------------------===//
383
384/// CastInst - This is the base class for all instructions that perform data
385/// casts. It is simply provided so that instruction category testing
386/// can be performed with code like:
387///
388/// if (isa<CastInst>(Instr)) { ... }
389/// @brief Base class of casting instructions.
390class CastInst : public UnaryInstruction {
391  virtual void anchor() LLVM_OVERRIDE;
392protected:
393  /// @brief Constructor with insert-before-instruction semantics for subclasses
394  CastInst(Type *Ty, unsigned iType, Value *S,
395           const Twine &NameStr = "", Instruction *InsertBefore = 0)
396    : UnaryInstruction(Ty, iType, S, InsertBefore) {
397    setName(NameStr);
398  }
399  /// @brief Constructor with insert-at-end-of-block semantics for subclasses
400  CastInst(Type *Ty, unsigned iType, Value *S,
401           const Twine &NameStr, BasicBlock *InsertAtEnd)
402    : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
403    setName(NameStr);
404  }
405public:
406  /// Provides a way to construct any of the CastInst subclasses using an
407  /// opcode instead of the subclass's constructor. The opcode must be in the
408  /// CastOps category (Instruction::isCast(opcode) returns true). This
409  /// constructor has insert-before-instruction semantics to automatically
410  /// insert the new CastInst before InsertBefore (if it is non-null).
411  /// @brief Construct any of the CastInst subclasses
412  static CastInst *Create(
413    Instruction::CastOps,    ///< The opcode of the cast instruction
414    Value *S,                ///< The value to be casted (operand 0)
415    Type *Ty,          ///< The type to which cast should be made
416    const Twine &Name = "", ///< Name for the instruction
417    Instruction *InsertBefore = 0 ///< Place to insert the instruction
418  );
419  /// Provides a way to construct any of the CastInst subclasses using an
420  /// opcode instead of the subclass's constructor. The opcode must be in the
421  /// CastOps category. This constructor has insert-at-end-of-block semantics
422  /// to automatically insert the new CastInst at the end of InsertAtEnd (if
423  /// its non-null).
424  /// @brief Construct any of the CastInst subclasses
425  static CastInst *Create(
426    Instruction::CastOps,    ///< The opcode for the cast instruction
427    Value *S,                ///< The value to be casted (operand 0)
428    Type *Ty,          ///< The type to which operand is casted
429    const Twine &Name, ///< The name for the instruction
430    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
431  );
432
433  /// @brief Create a ZExt or BitCast cast instruction
434  static CastInst *CreateZExtOrBitCast(
435    Value *S,                ///< The value to be casted (operand 0)
436    Type *Ty,          ///< The type to which cast should be made
437    const Twine &Name = "", ///< Name for the instruction
438    Instruction *InsertBefore = 0 ///< Place to insert the instruction
439  );
440
441  /// @brief Create a ZExt or BitCast cast instruction
442  static CastInst *CreateZExtOrBitCast(
443    Value *S,                ///< The value to be casted (operand 0)
444    Type *Ty,          ///< The type to which operand is casted
445    const Twine &Name, ///< The name for the instruction
446    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
447  );
448
449  /// @brief Create a SExt or BitCast cast instruction
450  static CastInst *CreateSExtOrBitCast(
451    Value *S,                ///< The value to be casted (operand 0)
452    Type *Ty,          ///< The type to which cast should be made
453    const Twine &Name = "", ///< Name for the instruction
454    Instruction *InsertBefore = 0 ///< Place to insert the instruction
455  );
456
457  /// @brief Create a SExt or BitCast cast instruction
458  static CastInst *CreateSExtOrBitCast(
459    Value *S,                ///< The value to be casted (operand 0)
460    Type *Ty,          ///< The type to which operand is casted
461    const Twine &Name, ///< The name for the instruction
462    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
463  );
464
465  /// @brief Create a BitCast or a PtrToInt cast instruction
466  static CastInst *CreatePointerCast(
467    Value *S,                ///< The pointer value to be casted (operand 0)
468    Type *Ty,          ///< The type to which operand is casted
469    const Twine &Name, ///< The name for the instruction
470    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
471  );
472
473  /// @brief Create a BitCast or a PtrToInt cast instruction
474  static CastInst *CreatePointerCast(
475    Value *S,                ///< The pointer value to be casted (operand 0)
476    Type *Ty,          ///< The type to which cast should be made
477    const Twine &Name = "", ///< Name for the instruction
478    Instruction *InsertBefore = 0 ///< Place to insert the instruction
479  );
480
481  /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
482  static CastInst *CreateIntegerCast(
483    Value *S,                ///< The pointer value to be casted (operand 0)
484    Type *Ty,          ///< The type to which cast should be made
485    bool isSigned,           ///< Whether to regard S as signed or not
486    const Twine &Name = "", ///< Name for the instruction
487    Instruction *InsertBefore = 0 ///< Place to insert the instruction
488  );
489
490  /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
491  static CastInst *CreateIntegerCast(
492    Value *S,                ///< The integer value to be casted (operand 0)
493    Type *Ty,          ///< The integer type to which operand is casted
494    bool isSigned,           ///< Whether to regard S as signed or not
495    const Twine &Name, ///< The name for the instruction
496    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
497  );
498
499  /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
500  static CastInst *CreateFPCast(
501    Value *S,                ///< The floating point value to be casted
502    Type *Ty,          ///< The floating point type to cast to
503    const Twine &Name = "", ///< Name for the instruction
504    Instruction *InsertBefore = 0 ///< Place to insert the instruction
505  );
506
507  /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
508  static CastInst *CreateFPCast(
509    Value *S,                ///< The floating point value to be casted
510    Type *Ty,          ///< The floating point type to cast to
511    const Twine &Name, ///< The name for the instruction
512    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
513  );
514
515  /// @brief Create a Trunc or BitCast cast instruction
516  static CastInst *CreateTruncOrBitCast(
517    Value *S,                ///< The value to be casted (operand 0)
518    Type *Ty,          ///< The type to which cast should be made
519    const Twine &Name = "", ///< Name for the instruction
520    Instruction *InsertBefore = 0 ///< Place to insert the instruction
521  );
522
523  /// @brief Create a Trunc or BitCast cast instruction
524  static CastInst *CreateTruncOrBitCast(
525    Value *S,                ///< The value to be casted (operand 0)
526    Type *Ty,          ///< The type to which operand is casted
527    const Twine &Name, ///< The name for the instruction
528    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
529  );
530
531  /// @brief Check whether it is valid to call getCastOpcode for these types.
532  static bool isCastable(
533    Type *SrcTy, ///< The Type from which the value should be cast.
534    Type *DestTy ///< The Type to which the value should be cast.
535  );
536
537  /// Returns the opcode necessary to cast Val into Ty using usual casting
538  /// rules.
539  /// @brief Infer the opcode for cast operand and type
540  static Instruction::CastOps getCastOpcode(
541    const Value *Val, ///< The value to cast
542    bool SrcIsSigned, ///< Whether to treat the source as signed
543    Type *Ty,   ///< The Type to which the value should be casted
544    bool DstIsSigned  ///< Whether to treate the dest. as signed
545  );
546
547  /// There are several places where we need to know if a cast instruction
548  /// only deals with integer source and destination types. To simplify that
549  /// logic, this method is provided.
550  /// @returns true iff the cast has only integral typed operand and dest type.
551  /// @brief Determine if this is an integer-only cast.
552  bool isIntegerCast() const;
553
554  /// A lossless cast is one that does not alter the basic value. It implies
555  /// a no-op cast but is more stringent, preventing things like int->float,
556  /// long->double, or int->ptr.
557  /// @returns true iff the cast is lossless.
558  /// @brief Determine if this is a lossless cast.
559  bool isLosslessCast() const;
560
561  /// A no-op cast is one that can be effected without changing any bits.
562  /// It implies that the source and destination types are the same size. The
563  /// IntPtrTy argument is used to make accurate determinations for casts
564  /// involving Integer and Pointer types. They are no-op casts if the integer
565  /// is the same size as the pointer. However, pointer size varies with
566  /// platform. Generally, the result of TargetData::getIntPtrType() should be
567  /// passed in. If that's not available, use Type::Int64Ty, which will make
568  /// the isNoopCast call conservative.
569  /// @brief Determine if the described cast is a no-op cast.
570  static bool isNoopCast(
571    Instruction::CastOps Opcode,  ///< Opcode of cast
572    Type *SrcTy,   ///< SrcTy of cast
573    Type *DstTy,   ///< DstTy of cast
574    Type *IntPtrTy ///< Integer type corresponding to Ptr types, or null
575  );
576
577  /// @brief Determine if this cast is a no-op cast.
578  bool isNoopCast(
579    Type *IntPtrTy ///< Integer type corresponding to pointer
580  ) const;
581
582  /// Determine how a pair of casts can be eliminated, if they can be at all.
583  /// This is a helper function for both CastInst and ConstantExpr.
584  /// @returns 0 if the CastInst pair can't be eliminated, otherwise
585  /// returns Instruction::CastOps value for a cast that can replace
586  /// the pair, casting SrcTy to DstTy.
587  /// @brief Determine if a cast pair is eliminable
588  static unsigned isEliminableCastPair(
589    Instruction::CastOps firstOpcode,  ///< Opcode of first cast
590    Instruction::CastOps secondOpcode, ///< Opcode of second cast
591    Type *SrcTy, ///< SrcTy of 1st cast
592    Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
593    Type *DstTy, ///< DstTy of 2nd cast
594    Type *IntPtrTy ///< Integer type corresponding to Ptr types, or null
595  );
596
597  /// @brief Return the opcode of this CastInst
598  Instruction::CastOps getOpcode() const {
599    return Instruction::CastOps(Instruction::getOpcode());
600  }
601
602  /// @brief Return the source type, as a convenience
603  Type* getSrcTy() const { return getOperand(0)->getType(); }
604  /// @brief Return the destination type, as a convenience
605  Type* getDestTy() const { return getType(); }
606
607  /// This method can be used to determine if a cast from S to DstTy using
608  /// Opcode op is valid or not.
609  /// @returns true iff the proposed cast is valid.
610  /// @brief Determine if a cast is valid without creating one.
611  static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy);
612
613  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
614  static inline bool classof(const CastInst *) { return true; }
615  static inline bool classof(const Instruction *I) {
616    return I->isCast();
617  }
618  static inline bool classof(const Value *V) {
619    return isa<Instruction>(V) && classof(cast<Instruction>(V));
620  }
621};
622
623//===----------------------------------------------------------------------===//
624//                               CmpInst Class
625//===----------------------------------------------------------------------===//
626
627/// This class is the base class for the comparison instructions.
628/// @brief Abstract base class of comparison instructions.
629class CmpInst : public Instruction {
630  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
631  CmpInst() LLVM_DELETED_FUNCTION;
632protected:
633  CmpInst(Type *ty, Instruction::OtherOps op, unsigned short pred,
634          Value *LHS, Value *RHS, const Twine &Name = "",
635          Instruction *InsertBefore = 0);
636
637  CmpInst(Type *ty, Instruction::OtherOps op, unsigned short pred,
638          Value *LHS, Value *RHS, const Twine &Name,
639          BasicBlock *InsertAtEnd);
640
641  virtual void anchor() LLVM_OVERRIDE; // Out of line virtual method.
642public:
643  /// This enumeration lists the possible predicates for CmpInst subclasses.
644  /// Values in the range 0-31 are reserved for FCmpInst, while values in the
645  /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
646  /// predicate values are not overlapping between the classes.
647  enum Predicate {
648    // Opcode              U L G E    Intuitive operation
649    FCMP_FALSE =  0,  ///< 0 0 0 0    Always false (always folded)
650    FCMP_OEQ   =  1,  ///< 0 0 0 1    True if ordered and equal
651    FCMP_OGT   =  2,  ///< 0 0 1 0    True if ordered and greater than
652    FCMP_OGE   =  3,  ///< 0 0 1 1    True if ordered and greater than or equal
653    FCMP_OLT   =  4,  ///< 0 1 0 0    True if ordered and less than
654    FCMP_OLE   =  5,  ///< 0 1 0 1    True if ordered and less than or equal
655    FCMP_ONE   =  6,  ///< 0 1 1 0    True if ordered and operands are unequal
656    FCMP_ORD   =  7,  ///< 0 1 1 1    True if ordered (no nans)
657    FCMP_UNO   =  8,  ///< 1 0 0 0    True if unordered: isnan(X) | isnan(Y)
658    FCMP_UEQ   =  9,  ///< 1 0 0 1    True if unordered or equal
659    FCMP_UGT   = 10,  ///< 1 0 1 0    True if unordered or greater than
660    FCMP_UGE   = 11,  ///< 1 0 1 1    True if unordered, greater than, or equal
661    FCMP_ULT   = 12,  ///< 1 1 0 0    True if unordered or less than
662    FCMP_ULE   = 13,  ///< 1 1 0 1    True if unordered, less than, or equal
663    FCMP_UNE   = 14,  ///< 1 1 1 0    True if unordered or not equal
664    FCMP_TRUE  = 15,  ///< 1 1 1 1    Always true (always folded)
665    FIRST_FCMP_PREDICATE = FCMP_FALSE,
666    LAST_FCMP_PREDICATE = FCMP_TRUE,
667    BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
668    ICMP_EQ    = 32,  ///< equal
669    ICMP_NE    = 33,  ///< not equal
670    ICMP_UGT   = 34,  ///< unsigned greater than
671    ICMP_UGE   = 35,  ///< unsigned greater or equal
672    ICMP_ULT   = 36,  ///< unsigned less than
673    ICMP_ULE   = 37,  ///< unsigned less or equal
674    ICMP_SGT   = 38,  ///< signed greater than
675    ICMP_SGE   = 39,  ///< signed greater or equal
676    ICMP_SLT   = 40,  ///< signed less than
677    ICMP_SLE   = 41,  ///< signed less or equal
678    FIRST_ICMP_PREDICATE = ICMP_EQ,
679    LAST_ICMP_PREDICATE = ICMP_SLE,
680    BAD_ICMP_PREDICATE = ICMP_SLE + 1
681  };
682
683  // allocate space for exactly two operands
684  void *operator new(size_t s) {
685    return User::operator new(s, 2);
686  }
687  /// Construct a compare instruction, given the opcode, the predicate and
688  /// the two operands.  Optionally (if InstBefore is specified) insert the
689  /// instruction into a BasicBlock right before the specified instruction.
690  /// The specified Instruction is allowed to be a dereferenced end iterator.
691  /// @brief Create a CmpInst
692  static CmpInst *Create(OtherOps Op,
693                         unsigned short predicate, Value *S1,
694                         Value *S2, const Twine &Name = "",
695                         Instruction *InsertBefore = 0);
696
697  /// Construct a compare instruction, given the opcode, the predicate and the
698  /// two operands.  Also automatically insert this instruction to the end of
699  /// the BasicBlock specified.
700  /// @brief Create a CmpInst
701  static CmpInst *Create(OtherOps Op, unsigned short predicate, Value *S1,
702                         Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);
703
704  /// @brief Get the opcode casted to the right type
705  OtherOps getOpcode() const {
706    return static_cast<OtherOps>(Instruction::getOpcode());
707  }
708
709  /// @brief Return the predicate for this instruction.
710  Predicate getPredicate() const {
711    return Predicate(getSubclassDataFromInstruction());
712  }
713
714  /// @brief Set the predicate for this instruction to the specified value.
715  void setPredicate(Predicate P) { setInstructionSubclassData(P); }
716
717  static bool isFPPredicate(Predicate P) {
718    return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE;
719  }
720
721  static bool isIntPredicate(Predicate P) {
722    return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
723  }
724
725  bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
726  bool isIntPredicate() const { return isIntPredicate(getPredicate()); }
727
728
729  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
730  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
731  /// @returns the inverse predicate for the instruction's current predicate.
732  /// @brief Return the inverse of the instruction's predicate.
733  Predicate getInversePredicate() const {
734    return getInversePredicate(getPredicate());
735  }
736
737  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
738  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
739  /// @returns the inverse predicate for predicate provided in \p pred.
740  /// @brief Return the inverse of a given predicate
741  static Predicate getInversePredicate(Predicate pred);
742
743  /// For example, EQ->EQ, SLE->SGE, ULT->UGT,
744  ///              OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
745  /// @returns the predicate that would be the result of exchanging the two
746  /// operands of the CmpInst instruction without changing the result
747  /// produced.
748  /// @brief Return the predicate as if the operands were swapped
749  Predicate getSwappedPredicate() const {
750    return getSwappedPredicate(getPredicate());
751  }
752
753  /// This is a static version that you can use without an instruction
754  /// available.
755  /// @brief Return the predicate as if the operands were swapped.
756  static Predicate getSwappedPredicate(Predicate pred);
757
758  /// @brief Provide more efficient getOperand methods.
759  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
760
761  /// This is just a convenience that dispatches to the subclasses.
762  /// @brief Swap the operands and adjust predicate accordingly to retain
763  /// the same comparison.
764  void swapOperands();
765
766  /// This is just a convenience that dispatches to the subclasses.
767  /// @brief Determine if this CmpInst is commutative.
768  bool isCommutative() const;
769
770  /// This is just a convenience that dispatches to the subclasses.
771  /// @brief Determine if this is an equals/not equals predicate.
772  bool isEquality() const;
773
774  /// @returns true if the comparison is signed, false otherwise.
775  /// @brief Determine if this instruction is using a signed comparison.
776  bool isSigned() const {
777    return isSigned(getPredicate());
778  }
779
780  /// @returns true if the comparison is unsigned, false otherwise.
781  /// @brief Determine if this instruction is using an unsigned comparison.
782  bool isUnsigned() const {
783    return isUnsigned(getPredicate());
784  }
785
786  /// This is just a convenience.
787  /// @brief Determine if this is true when both operands are the same.
788  bool isTrueWhenEqual() const {
789    return isTrueWhenEqual(getPredicate());
790  }
791
792  /// This is just a convenience.
793  /// @brief Determine if this is false when both operands are the same.
794  bool isFalseWhenEqual() const {
795    return isFalseWhenEqual(getPredicate());
796  }
797
798  /// @returns true if the predicate is unsigned, false otherwise.
799  /// @brief Determine if the predicate is an unsigned operation.
800  static bool isUnsigned(unsigned short predicate);
801
802  /// @returns true if the predicate is signed, false otherwise.
803  /// @brief Determine if the predicate is an signed operation.
804  static bool isSigned(unsigned short predicate);
805
806  /// @brief Determine if the predicate is an ordered operation.
807  static bool isOrdered(unsigned short predicate);
808
809  /// @brief Determine if the predicate is an unordered operation.
810  static bool isUnordered(unsigned short predicate);
811
812  /// Determine if the predicate is true when comparing a value with itself.
813  static bool isTrueWhenEqual(unsigned short predicate);
814
815  /// Determine if the predicate is false when comparing a value with itself.
816  static bool isFalseWhenEqual(unsigned short predicate);
817
818  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
819  static inline bool classof(const CmpInst *) { return true; }
820  static inline bool classof(const Instruction *I) {
821    return I->getOpcode() == Instruction::ICmp ||
822           I->getOpcode() == Instruction::FCmp;
823  }
824  static inline bool classof(const Value *V) {
825    return isa<Instruction>(V) && classof(cast<Instruction>(V));
826  }
827
828  /// @brief Create a result type for fcmp/icmp
829  static Type* makeCmpResultType(Type* opnd_type) {
830    if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {
831      return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
832                             vt->getNumElements());
833    }
834    return Type::getInt1Ty(opnd_type->getContext());
835  }
836private:
837  // Shadow Value::setValueSubclassData with a private forwarding method so that
838  // subclasses cannot accidentally use it.
839  void setValueSubclassData(unsigned short D) {
840    Value::setValueSubclassData(D);
841  }
842};
843
844
845// FIXME: these are redundant if CmpInst < BinaryOperator
846template <>
847struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> {
848};
849
850DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)
851
852} // End llvm namespace
853
854#endif
855