1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integral
11// constant values and operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_APINT_H
16#define LLVM_APINT_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/Support/Compiler.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22#include <climits>
23#include <cstring>
24#include <string>
25
26namespace llvm {
27  class Deserializer;
28  class FoldingSetNodeID;
29  class Serializer;
30  class StringRef;
31  class hash_code;
32  class raw_ostream;
33
34  template<typename T>
35  class SmallVectorImpl;
36
37  // An unsigned host type used as a single part of a multi-part
38  // bignum.
39  typedef uint64_t integerPart;
40
41  const unsigned int host_char_bit = 8;
42  const unsigned int integerPartWidth = host_char_bit *
43    static_cast<unsigned int>(sizeof(integerPart));
44
45//===----------------------------------------------------------------------===//
46//                              APInt Class
47//===----------------------------------------------------------------------===//
48
49/// APInt - This class represents arbitrary precision constant integral values.
50/// It is a functional replacement for common case unsigned integer type like
51/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
52/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
53/// than 64-bits of precision. APInt provides a variety of arithmetic operators
54/// and methods to manipulate integer values of any bit-width. It supports both
55/// the typical integer arithmetic and comparison operations as well as bitwise
56/// manipulation.
57///
58/// The class has several invariants worth noting:
59///   * All bit, byte, and word positions are zero-based.
60///   * Once the bit width is set, it doesn't change except by the Truncate,
61///     SignExtend, or ZeroExtend operations.
62///   * All binary operators must be on APInt instances of the same bit width.
63///     Attempting to use these operators on instances with different bit
64///     widths will yield an assertion.
65///   * The value is stored canonically as an unsigned value. For operations
66///     where it makes a difference, there are both signed and unsigned variants
67///     of the operation. For example, sdiv and udiv. However, because the bit
68///     widths must be the same, operations such as Mul and Add produce the same
69///     results regardless of whether the values are interpreted as signed or
70///     not.
71///   * In general, the class tries to follow the style of computation that LLVM
72///     uses in its IR. This simplifies its use for LLVM.
73///
74/// @brief Class for arbitrary precision integers.
75class APInt {
76  unsigned BitWidth;      ///< The number of bits in this APInt.
77
78  /// This union is used to store the integer value. When the
79  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
80  union {
81    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
82    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
83  };
84
85  /// This enum is used to hold the constants we needed for APInt.
86  enum {
87    /// Bits in a word
88    APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
89                          CHAR_BIT,
90    /// Byte size of a word
91    APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
92  };
93
94  /// This constructor is used only internally for speed of construction of
95  /// temporaries. It is unsafe for general use so it is not public.
96  /// @brief Fast internal constructor
97  APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
98
99  /// @returns true if the number of bits <= 64, false otherwise.
100  /// @brief Determine if this APInt just has one word to store value.
101  bool isSingleWord() const {
102    return BitWidth <= APINT_BITS_PER_WORD;
103  }
104
105  /// @returns the word position for the specified bit position.
106  /// @brief Determine which word a bit is in.
107  static unsigned whichWord(unsigned bitPosition) {
108    return bitPosition / APINT_BITS_PER_WORD;
109  }
110
111  /// @returns the bit position in a word for the specified bit position
112  /// in the APInt.
113  /// @brief Determine which bit in a word a bit is in.
114  static unsigned whichBit(unsigned bitPosition) {
115    return bitPosition % APINT_BITS_PER_WORD;
116  }
117
118  /// This method generates and returns a uint64_t (word) mask for a single
119  /// bit at a specific bit position. This is used to mask the bit in the
120  /// corresponding word.
121  /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
122  /// @brief Get a single bit mask.
123  static uint64_t maskBit(unsigned bitPosition) {
124    return 1ULL << whichBit(bitPosition);
125  }
126
127  /// This method is used internally to clear the to "N" bits in the high order
128  /// word that are not used by the APInt. This is needed after the most
129  /// significant word is assigned a value to ensure that those bits are
130  /// zero'd out.
131  /// @brief Clear unused high order bits
132  APInt& clearUnusedBits() {
133    // Compute how many bits are used in the final word
134    unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
135    if (wordBits == 0)
136      // If all bits are used, we want to leave the value alone. This also
137      // avoids the undefined behavior of >> when the shift is the same size as
138      // the word size (64).
139      return *this;
140
141    // Mask out the high bits.
142    uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
143    if (isSingleWord())
144      VAL &= mask;
145    else
146      pVal[getNumWords() - 1] &= mask;
147    return *this;
148  }
149
150  /// @returns the corresponding word for the specified bit position.
151  /// @brief Get the word corresponding to a bit position
152  uint64_t getWord(unsigned bitPosition) const {
153    return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
154  }
155
156  /// Converts a string into a number.  The string must be non-empty
157  /// and well-formed as a number of the given base. The bit-width
158  /// must be sufficient to hold the result.
159  ///
160  /// This is used by the constructors that take string arguments.
161  ///
162  /// StringRef::getAsInteger is superficially similar but (1) does
163  /// not assume that the string is well-formed and (2) grows the
164  /// result to hold the input.
165  ///
166  /// @param radix 2, 8, 10, 16, or 36
167  /// @brief Convert a char array into an APInt
168  void fromString(unsigned numBits, StringRef str, uint8_t radix);
169
170  /// This is used by the toString method to divide by the radix. It simply
171  /// provides a more convenient form of divide for internal use since KnuthDiv
172  /// has specific constraints on its inputs. If those constraints are not met
173  /// then it provides a simpler form of divide.
174  /// @brief An internal division function for dividing APInts.
175  static void divide(const APInt LHS, unsigned lhsWords,
176                     const APInt &RHS, unsigned rhsWords,
177                     APInt *Quotient, APInt *Remainder);
178
179  /// out-of-line slow case for inline constructor
180  void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
181
182  /// shared code between two array constructors
183  void initFromArray(ArrayRef<uint64_t> array);
184
185  /// out-of-line slow case for inline copy constructor
186  void initSlowCase(const APInt& that);
187
188  /// out-of-line slow case for shl
189  APInt shlSlowCase(unsigned shiftAmt) const;
190
191  /// out-of-line slow case for operator&
192  APInt AndSlowCase(const APInt& RHS) const;
193
194  /// out-of-line slow case for operator|
195  APInt OrSlowCase(const APInt& RHS) const;
196
197  /// out-of-line slow case for operator^
198  APInt XorSlowCase(const APInt& RHS) const;
199
200  /// out-of-line slow case for operator=
201  APInt& AssignSlowCase(const APInt& RHS);
202
203  /// out-of-line slow case for operator==
204  bool EqualSlowCase(const APInt& RHS) const;
205
206  /// out-of-line slow case for operator==
207  bool EqualSlowCase(uint64_t Val) const;
208
209  /// out-of-line slow case for countLeadingZeros
210  unsigned countLeadingZerosSlowCase() const;
211
212  /// out-of-line slow case for countTrailingOnes
213  unsigned countTrailingOnesSlowCase() const;
214
215  /// out-of-line slow case for countPopulation
216  unsigned countPopulationSlowCase() const;
217
218public:
219  /// @name Constructors
220  /// @{
221  /// If isSigned is true then val is treated as if it were a signed value
222  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
223  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
224  /// the range of val are zero filled).
225  /// @param numBits the bit width of the constructed APInt
226  /// @param val the initial value of the APInt
227  /// @param isSigned how to treat signedness of val
228  /// @brief Create a new APInt of numBits width, initialized as val.
229  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
230    : BitWidth(numBits), VAL(0) {
231    assert(BitWidth && "bitwidth too small");
232    if (isSingleWord())
233      VAL = val;
234    else
235      initSlowCase(numBits, val, isSigned);
236    clearUnusedBits();
237  }
238
239  /// Note that bigVal.size() can be smaller or larger than the corresponding
240  /// bit width but any extraneous bits will be dropped.
241  /// @param numBits the bit width of the constructed APInt
242  /// @param bigVal a sequence of words to form the initial value of the APInt
243  /// @brief Construct an APInt of numBits width, initialized as bigVal[].
244  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
245  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
246  /// deprecated because this constructor is prone to ambiguity with the
247  /// APInt(unsigned, uint64_t, bool) constructor.
248  ///
249  /// If this overload is ever deleted, care should be taken to prevent calls
250  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
251  /// constructor.
252  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
253
254  /// This constructor interprets the string \p str in the given radix. The
255  /// interpretation stops when the first character that is not suitable for the
256  /// radix is encountered, or the end of the string. Acceptable radix values
257  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
258  /// string to require more bits than numBits.
259  ///
260  /// @param numBits the bit width of the constructed APInt
261  /// @param str the string to be interpreted
262  /// @param radix the radix to use for the conversion
263  /// @brief Construct an APInt from a string representation.
264  APInt(unsigned numBits, StringRef str, uint8_t radix);
265
266  /// Simply makes *this a copy of that.
267  /// @brief Copy Constructor.
268  APInt(const APInt& that)
269    : BitWidth(that.BitWidth), VAL(0) {
270    assert(BitWidth && "bitwidth too small");
271    if (isSingleWord())
272      VAL = that.VAL;
273    else
274      initSlowCase(that);
275  }
276
277#if LLVM_USE_RVALUE_REFERENCES
278  /// @brief Move Constructor.
279  APInt(APInt&& that) : BitWidth(that.BitWidth), VAL(that.VAL) {
280    that.BitWidth = 0;
281  }
282#endif
283
284  /// @brief Destructor.
285  ~APInt() {
286    if (!isSingleWord())
287      delete [] pVal;
288  }
289
290  /// Default constructor that creates an uninitialized APInt.  This is useful
291  ///  for object deserialization (pair this with the static method Read).
292  explicit APInt() : BitWidth(1) {}
293
294  /// Profile - Used to insert APInt objects, or objects that contain APInt
295  ///  objects, into FoldingSets.
296  void Profile(FoldingSetNodeID& id) const;
297
298  /// @}
299  /// @name Value Tests
300  /// @{
301  /// This tests the high bit of this APInt to determine if it is set.
302  /// @returns true if this APInt is negative, false otherwise
303  /// @brief Determine sign of this APInt.
304  bool isNegative() const {
305    return (*this)[BitWidth - 1];
306  }
307
308  /// This tests the high bit of the APInt to determine if it is unset.
309  /// @brief Determine if this APInt Value is non-negative (>= 0)
310  bool isNonNegative() const {
311    return !isNegative();
312  }
313
314  /// This tests if the value of this APInt is positive (> 0). Note
315  /// that 0 is not a positive value.
316  /// @returns true if this APInt is positive.
317  /// @brief Determine if this APInt Value is positive.
318  bool isStrictlyPositive() const {
319    return isNonNegative() && !!*this;
320  }
321
322  /// This checks to see if the value has all bits of the APInt are set or not.
323  /// @brief Determine if all bits are set
324  bool isAllOnesValue() const {
325    return countPopulation() == BitWidth;
326  }
327
328  /// This checks to see if the value of this APInt is the maximum unsigned
329  /// value for the APInt's bit width.
330  /// @brief Determine if this is the largest unsigned value.
331  bool isMaxValue() const {
332    return countPopulation() == BitWidth;
333  }
334
335  /// This checks to see if the value of this APInt is the maximum signed
336  /// value for the APInt's bit width.
337  /// @brief Determine if this is the largest signed value.
338  bool isMaxSignedValue() const {
339    return BitWidth == 1 ? VAL == 0 :
340                          !isNegative() && countPopulation() == BitWidth - 1;
341  }
342
343  /// This checks to see if the value of this APInt is the minimum unsigned
344  /// value for the APInt's bit width.
345  /// @brief Determine if this is the smallest unsigned value.
346  bool isMinValue() const {
347    return !*this;
348  }
349
350  /// This checks to see if the value of this APInt is the minimum signed
351  /// value for the APInt's bit width.
352  /// @brief Determine if this is the smallest signed value.
353  bool isMinSignedValue() const {
354    return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
355  }
356
357  /// @brief Check if this APInt has an N-bits unsigned integer value.
358  bool isIntN(unsigned N) const {
359    assert(N && "N == 0 ???");
360    return getActiveBits() <= N;
361  }
362
363  /// @brief Check if this APInt has an N-bits signed integer value.
364  bool isSignedIntN(unsigned N) const {
365    assert(N && "N == 0 ???");
366    return getMinSignedBits() <= N;
367  }
368
369  /// @returns true if the argument APInt value is a power of two > 0.
370  bool isPowerOf2() const {
371    if (isSingleWord())
372      return isPowerOf2_64(VAL);
373    return countPopulationSlowCase() == 1;
374  }
375
376  /// isSignBit - Return true if this is the value returned by getSignBit.
377  bool isSignBit() const { return isMinSignedValue(); }
378
379  /// This converts the APInt to a boolean value as a test against zero.
380  /// @brief Boolean conversion function.
381  bool getBoolValue() const {
382    return !!*this;
383  }
384
385  /// getLimitedValue - If this value is smaller than the specified limit,
386  /// return it, otherwise return the limit value.  This causes the value
387  /// to saturate to the limit.
388  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
389    return (getActiveBits() > 64 || getZExtValue() > Limit) ?
390      Limit :  getZExtValue();
391  }
392
393  /// @}
394  /// @name Value Generators
395  /// @{
396  /// @brief Gets maximum unsigned value of APInt for specific bit width.
397  static APInt getMaxValue(unsigned numBits) {
398    return getAllOnesValue(numBits);
399  }
400
401  /// @brief Gets maximum signed value of APInt for a specific bit width.
402  static APInt getSignedMaxValue(unsigned numBits) {
403    APInt API = getAllOnesValue(numBits);
404    API.clearBit(numBits - 1);
405    return API;
406  }
407
408  /// @brief Gets minimum unsigned value of APInt for a specific bit width.
409  static APInt getMinValue(unsigned numBits) {
410    return APInt(numBits, 0);
411  }
412
413  /// @brief Gets minimum signed value of APInt for a specific bit width.
414  static APInt getSignedMinValue(unsigned numBits) {
415    APInt API(numBits, 0);
416    API.setBit(numBits - 1);
417    return API;
418  }
419
420  /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
421  /// it helps code readability when we want to get a SignBit.
422  /// @brief Get the SignBit for a specific bit width.
423  static APInt getSignBit(unsigned BitWidth) {
424    return getSignedMinValue(BitWidth);
425  }
426
427  /// @returns the all-ones value for an APInt of the specified bit-width.
428  /// @brief Get the all-ones value.
429  static APInt getAllOnesValue(unsigned numBits) {
430    return APInt(numBits, -1ULL, true);
431  }
432
433  /// @returns the '0' value for an APInt of the specified bit-width.
434  /// @brief Get the '0' value.
435  static APInt getNullValue(unsigned numBits) {
436    return APInt(numBits, 0);
437  }
438
439  /// Get an APInt with the same BitWidth as this APInt, just zero mask
440  /// the low bits and right shift to the least significant bit.
441  /// @returns the high "numBits" bits of this APInt.
442  APInt getHiBits(unsigned numBits) const;
443
444  /// Get an APInt with the same BitWidth as this APInt, just zero mask
445  /// the high bits.
446  /// @returns the low "numBits" bits of this APInt.
447  APInt getLoBits(unsigned numBits) const;
448
449  /// getOneBitSet - Return an APInt with exactly one bit set in the result.
450  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
451    APInt Res(numBits, 0);
452    Res.setBit(BitNo);
453    return Res;
454  }
455
456  /// Constructs an APInt value that has a contiguous range of bits set. The
457  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
458  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
459  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
460  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
461  /// @param numBits the intended bit width of the result
462  /// @param loBit the index of the lowest bit set.
463  /// @param hiBit the index of the highest bit set.
464  /// @returns An APInt value with the requested bits set.
465  /// @brief Get a value with a block of bits set.
466  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
467    assert(hiBit <= numBits && "hiBit out of range");
468    assert(loBit < numBits && "loBit out of range");
469    if (hiBit < loBit)
470      return getLowBitsSet(numBits, hiBit) |
471             getHighBitsSet(numBits, numBits-loBit);
472    return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
473  }
474
475  /// Constructs an APInt value that has the top hiBitsSet bits set.
476  /// @param numBits the bitwidth of the result
477  /// @param hiBitsSet the number of high-order bits set in the result.
478  /// @brief Get a value with high bits set
479  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
480    assert(hiBitsSet <= numBits && "Too many bits to set!");
481    // Handle a degenerate case, to avoid shifting by word size
482    if (hiBitsSet == 0)
483      return APInt(numBits, 0);
484    unsigned shiftAmt = numBits - hiBitsSet;
485    // For small values, return quickly
486    if (numBits <= APINT_BITS_PER_WORD)
487      return APInt(numBits, ~0ULL << shiftAmt);
488    return getAllOnesValue(numBits).shl(shiftAmt);
489  }
490
491  /// Constructs an APInt value that has the bottom loBitsSet bits set.
492  /// @param numBits the bitwidth of the result
493  /// @param loBitsSet the number of low-order bits set in the result.
494  /// @brief Get a value with low bits set
495  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
496    assert(loBitsSet <= numBits && "Too many bits to set!");
497    // Handle a degenerate case, to avoid shifting by word size
498    if (loBitsSet == 0)
499      return APInt(numBits, 0);
500    if (loBitsSet == APINT_BITS_PER_WORD)
501      return APInt(numBits, -1ULL);
502    // For small values, return quickly.
503    if (loBitsSet <= APINT_BITS_PER_WORD)
504      return APInt(numBits, -1ULL >> (APINT_BITS_PER_WORD - loBitsSet));
505    return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
506  }
507
508  /// \brief Determine if two APInts have the same value, after zero-extending
509  /// one of them (if needed!) to ensure that the bit-widths match.
510  static bool isSameValue(const APInt &I1, const APInt &I2) {
511    if (I1.getBitWidth() == I2.getBitWidth())
512      return I1 == I2;
513
514    if (I1.getBitWidth() > I2.getBitWidth())
515      return I1 == I2.zext(I1.getBitWidth());
516
517    return I1.zext(I2.getBitWidth()) == I2;
518  }
519
520  /// \brief Overload to compute a hash_code for an APInt value.
521  friend hash_code hash_value(const APInt &Arg);
522
523  /// This function returns a pointer to the internal storage of the APInt.
524  /// This is useful for writing out the APInt in binary form without any
525  /// conversions.
526  const uint64_t* getRawData() const {
527    if (isSingleWord())
528      return &VAL;
529    return &pVal[0];
530  }
531
532  /// @}
533  /// @name Unary Operators
534  /// @{
535  /// @returns a new APInt value representing *this incremented by one
536  /// @brief Postfix increment operator.
537  const APInt operator++(int) {
538    APInt API(*this);
539    ++(*this);
540    return API;
541  }
542
543  /// @returns *this incremented by one
544  /// @brief Prefix increment operator.
545  APInt& operator++();
546
547  /// @returns a new APInt representing *this decremented by one.
548  /// @brief Postfix decrement operator.
549  const APInt operator--(int) {
550    APInt API(*this);
551    --(*this);
552    return API;
553  }
554
555  /// @returns *this decremented by one.
556  /// @brief Prefix decrement operator.
557  APInt& operator--();
558
559  /// Performs a bitwise complement operation on this APInt.
560  /// @returns an APInt that is the bitwise complement of *this
561  /// @brief Unary bitwise complement operator.
562  APInt operator~() const {
563    APInt Result(*this);
564    Result.flipAllBits();
565    return Result;
566  }
567
568  /// Negates *this using two's complement logic.
569  /// @returns An APInt value representing the negation of *this.
570  /// @brief Unary negation operator
571  APInt operator-() const {
572    return APInt(BitWidth, 0) - (*this);
573  }
574
575  /// Performs logical negation operation on this APInt.
576  /// @returns true if *this is zero, false otherwise.
577  /// @brief Logical negation operator.
578  bool operator!() const {
579    if (isSingleWord())
580      return !VAL;
581
582    for (unsigned i = 0; i != getNumWords(); ++i)
583      if (pVal[i])
584        return false;
585    return true;
586  }
587
588  /// @}
589  /// @name Assignment Operators
590  /// @{
591  /// @returns *this after assignment of RHS.
592  /// @brief Copy assignment operator.
593  APInt& operator=(const APInt& RHS) {
594    // If the bitwidths are the same, we can avoid mucking with memory
595    if (isSingleWord() && RHS.isSingleWord()) {
596      VAL = RHS.VAL;
597      BitWidth = RHS.BitWidth;
598      return clearUnusedBits();
599    }
600
601    return AssignSlowCase(RHS);
602  }
603
604#if LLVM_USE_RVALUE_REFERENCES
605  /// @brief Move assignment operator.
606  APInt& operator=(APInt&& that) {
607    if (!isSingleWord())
608      delete [] pVal;
609
610    BitWidth = that.BitWidth;
611    VAL = that.VAL;
612
613    that.BitWidth = 0;
614
615    return *this;
616  }
617#endif
618
619  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
620  /// the bit width, the excess bits are truncated. If the bit width is larger
621  /// than 64, the value is zero filled in the unspecified high order bits.
622  /// @returns *this after assignment of RHS value.
623  /// @brief Assignment operator.
624  APInt& operator=(uint64_t RHS);
625
626  /// Performs a bitwise AND operation on this APInt and RHS. The result is
627  /// assigned to *this.
628  /// @returns *this after ANDing with RHS.
629  /// @brief Bitwise AND assignment operator.
630  APInt& operator&=(const APInt& RHS);
631
632  /// Performs a bitwise OR operation on this APInt and RHS. The result is
633  /// assigned *this;
634  /// @returns *this after ORing with RHS.
635  /// @brief Bitwise OR assignment operator.
636  APInt& operator|=(const APInt& RHS);
637
638  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
639  /// logically zero-extended or truncated to match the bit-width of
640  /// the LHS.
641  ///
642  /// @brief Bitwise OR assignment operator.
643  APInt& operator|=(uint64_t RHS) {
644    if (isSingleWord()) {
645      VAL |= RHS;
646      clearUnusedBits();
647    } else {
648      pVal[0] |= RHS;
649    }
650    return *this;
651  }
652
653  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
654  /// assigned to *this.
655  /// @returns *this after XORing with RHS.
656  /// @brief Bitwise XOR assignment operator.
657  APInt& operator^=(const APInt& RHS);
658
659  /// Multiplies this APInt by RHS and assigns the result to *this.
660  /// @returns *this
661  /// @brief Multiplication assignment operator.
662  APInt& operator*=(const APInt& RHS);
663
664  /// Adds RHS to *this and assigns the result to *this.
665  /// @returns *this
666  /// @brief Addition assignment operator.
667  APInt& operator+=(const APInt& RHS);
668
669  /// Subtracts RHS from *this and assigns the result to *this.
670  /// @returns *this
671  /// @brief Subtraction assignment operator.
672  APInt& operator-=(const APInt& RHS);
673
674  /// Shifts *this left by shiftAmt and assigns the result to *this.
675  /// @returns *this after shifting left by shiftAmt
676  /// @brief Left-shift assignment function.
677  APInt& operator<<=(unsigned shiftAmt) {
678    *this = shl(shiftAmt);
679    return *this;
680  }
681
682  /// @}
683  /// @name Binary Operators
684  /// @{
685  /// Performs a bitwise AND operation on *this and RHS.
686  /// @returns An APInt value representing the bitwise AND of *this and RHS.
687  /// @brief Bitwise AND operator.
688  APInt operator&(const APInt& RHS) const {
689    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
690    if (isSingleWord())
691      return APInt(getBitWidth(), VAL & RHS.VAL);
692    return AndSlowCase(RHS);
693  }
694  APInt And(const APInt& RHS) const {
695    return this->operator&(RHS);
696  }
697
698  /// Performs a bitwise OR operation on *this and RHS.
699  /// @returns An APInt value representing the bitwise OR of *this and RHS.
700  /// @brief Bitwise OR operator.
701  APInt operator|(const APInt& RHS) const {
702    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
703    if (isSingleWord())
704      return APInt(getBitWidth(), VAL | RHS.VAL);
705    return OrSlowCase(RHS);
706  }
707  APInt Or(const APInt& RHS) const {
708    return this->operator|(RHS);
709  }
710
711  /// Performs a bitwise XOR operation on *this and RHS.
712  /// @returns An APInt value representing the bitwise XOR of *this and RHS.
713  /// @brief Bitwise XOR operator.
714  APInt operator^(const APInt& RHS) const {
715    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
716    if (isSingleWord())
717      return APInt(BitWidth, VAL ^ RHS.VAL);
718    return XorSlowCase(RHS);
719  }
720  APInt Xor(const APInt& RHS) const {
721    return this->operator^(RHS);
722  }
723
724  /// Multiplies this APInt by RHS and returns the result.
725  /// @brief Multiplication operator.
726  APInt operator*(const APInt& RHS) const;
727
728  /// Adds RHS to this APInt and returns the result.
729  /// @brief Addition operator.
730  APInt operator+(const APInt& RHS) const;
731  APInt operator+(uint64_t RHS) const {
732    return (*this) + APInt(BitWidth, RHS);
733  }
734
735  /// Subtracts RHS from this APInt and returns the result.
736  /// @brief Subtraction operator.
737  APInt operator-(const APInt& RHS) const;
738  APInt operator-(uint64_t RHS) const {
739    return (*this) - APInt(BitWidth, RHS);
740  }
741
742  APInt operator<<(unsigned Bits) const {
743    return shl(Bits);
744  }
745
746  APInt operator<<(const APInt &Bits) const {
747    return shl(Bits);
748  }
749
750  /// Arithmetic right-shift this APInt by shiftAmt.
751  /// @brief Arithmetic right-shift function.
752  APInt ashr(unsigned shiftAmt) const;
753
754  /// Logical right-shift this APInt by shiftAmt.
755  /// @brief Logical right-shift function.
756  APInt lshr(unsigned shiftAmt) const;
757
758  /// Left-shift this APInt by shiftAmt.
759  /// @brief Left-shift function.
760  APInt shl(unsigned shiftAmt) const {
761    assert(shiftAmt <= BitWidth && "Invalid shift amount");
762    if (isSingleWord()) {
763      if (shiftAmt == BitWidth)
764        return APInt(BitWidth, 0); // avoid undefined shift results
765      return APInt(BitWidth, VAL << shiftAmt);
766    }
767    return shlSlowCase(shiftAmt);
768  }
769
770  /// @brief Rotate left by rotateAmt.
771  APInt rotl(unsigned rotateAmt) const;
772
773  /// @brief Rotate right by rotateAmt.
774  APInt rotr(unsigned rotateAmt) const;
775
776  /// Arithmetic right-shift this APInt by shiftAmt.
777  /// @brief Arithmetic right-shift function.
778  APInt ashr(const APInt &shiftAmt) const;
779
780  /// Logical right-shift this APInt by shiftAmt.
781  /// @brief Logical right-shift function.
782  APInt lshr(const APInt &shiftAmt) const;
783
784  /// Left-shift this APInt by shiftAmt.
785  /// @brief Left-shift function.
786  APInt shl(const APInt &shiftAmt) const;
787
788  /// @brief Rotate left by rotateAmt.
789  APInt rotl(const APInt &rotateAmt) const;
790
791  /// @brief Rotate right by rotateAmt.
792  APInt rotr(const APInt &rotateAmt) const;
793
794  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
795  /// RHS are treated as unsigned quantities for purposes of this division.
796  /// @returns a new APInt value containing the division result
797  /// @brief Unsigned division operation.
798  APInt udiv(const APInt &RHS) const;
799
800  /// Signed divide this APInt by APInt RHS.
801  /// @brief Signed division function for APInt.
802  APInt sdiv(const APInt &RHS) const {
803    if (isNegative())
804      if (RHS.isNegative())
805        return (-(*this)).udiv(-RHS);
806      else
807        return -((-(*this)).udiv(RHS));
808    else if (RHS.isNegative())
809      return -(this->udiv(-RHS));
810    return this->udiv(RHS);
811  }
812
813  /// Perform an unsigned remainder operation on this APInt with RHS being the
814  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
815  /// of this operation. Note that this is a true remainder operation and not
816  /// a modulo operation because the sign follows the sign of the dividend
817  /// which is *this.
818  /// @returns a new APInt value containing the remainder result
819  /// @brief Unsigned remainder operation.
820  APInt urem(const APInt &RHS) const;
821
822  /// Signed remainder operation on APInt.
823  /// @brief Function for signed remainder operation.
824  APInt srem(const APInt &RHS) const {
825    if (isNegative())
826      if (RHS.isNegative())
827        return -((-(*this)).urem(-RHS));
828      else
829        return -((-(*this)).urem(RHS));
830    else if (RHS.isNegative())
831      return this->urem(-RHS);
832    return this->urem(RHS);
833  }
834
835  /// Sometimes it is convenient to divide two APInt values and obtain both the
836  /// quotient and remainder. This function does both operations in the same
837  /// computation making it a little more efficient. The pair of input arguments
838  /// may overlap with the pair of output arguments. It is safe to call
839  /// udivrem(X, Y, X, Y), for example.
840  /// @brief Dual division/remainder interface.
841  static void udivrem(const APInt &LHS, const APInt &RHS,
842                      APInt &Quotient, APInt &Remainder);
843
844  static void sdivrem(const APInt &LHS, const APInt &RHS,
845                      APInt &Quotient, APInt &Remainder) {
846    if (LHS.isNegative()) {
847      if (RHS.isNegative())
848        APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
849      else {
850        APInt::udivrem(-LHS, RHS, Quotient, Remainder);
851        Quotient = -Quotient;
852      }
853      Remainder = -Remainder;
854    } else if (RHS.isNegative()) {
855      APInt::udivrem(LHS, -RHS, Quotient, Remainder);
856      Quotient = -Quotient;
857    } else {
858      APInt::udivrem(LHS, RHS, Quotient, Remainder);
859    }
860  }
861
862
863  // Operations that return overflow indicators.
864  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
865  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
866  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
867  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
868  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
869  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
870  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
871  APInt sshl_ov(unsigned Amt, bool &Overflow) const;
872
873  /// @returns the bit value at bitPosition
874  /// @brief Array-indexing support.
875  bool operator[](unsigned bitPosition) const {
876    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
877    return (maskBit(bitPosition) &
878            (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
879  }
880
881  /// @}
882  /// @name Comparison Operators
883  /// @{
884  /// Compares this APInt with RHS for the validity of the equality
885  /// relationship.
886  /// @brief Equality operator.
887  bool operator==(const APInt& RHS) const {
888    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
889    if (isSingleWord())
890      return VAL == RHS.VAL;
891    return EqualSlowCase(RHS);
892  }
893
894  /// Compares this APInt with a uint64_t for the validity of the equality
895  /// relationship.
896  /// @returns true if *this == Val
897  /// @brief Equality operator.
898  bool operator==(uint64_t Val) const {
899    if (isSingleWord())
900      return VAL == Val;
901    return EqualSlowCase(Val);
902  }
903
904  /// Compares this APInt with RHS for the validity of the equality
905  /// relationship.
906  /// @returns true if *this == Val
907  /// @brief Equality comparison.
908  bool eq(const APInt &RHS) const {
909    return (*this) == RHS;
910  }
911
912  /// Compares this APInt with RHS for the validity of the inequality
913  /// relationship.
914  /// @returns true if *this != Val
915  /// @brief Inequality operator.
916  bool operator!=(const APInt& RHS) const {
917    return !((*this) == RHS);
918  }
919
920  /// Compares this APInt with a uint64_t for the validity of the inequality
921  /// relationship.
922  /// @returns true if *this != Val
923  /// @brief Inequality operator.
924  bool operator!=(uint64_t Val) const {
925    return !((*this) == Val);
926  }
927
928  /// Compares this APInt with RHS for the validity of the inequality
929  /// relationship.
930  /// @returns true if *this != Val
931  /// @brief Inequality comparison
932  bool ne(const APInt &RHS) const {
933    return !((*this) == RHS);
934  }
935
936  /// Regards both *this and RHS as unsigned quantities and compares them for
937  /// the validity of the less-than relationship.
938  /// @returns true if *this < RHS when both are considered unsigned.
939  /// @brief Unsigned less than comparison
940  bool ult(const APInt &RHS) const;
941
942  /// Regards both *this as an unsigned quantity and compares it with RHS for
943  /// the validity of the less-than relationship.
944  /// @returns true if *this < RHS when considered unsigned.
945  /// @brief Unsigned less than comparison
946  bool ult(uint64_t RHS) const {
947    return ult(APInt(getBitWidth(), RHS));
948  }
949
950  /// Regards both *this and RHS as signed quantities and compares them for
951  /// validity of the less-than relationship.
952  /// @returns true if *this < RHS when both are considered signed.
953  /// @brief Signed less than comparison
954  bool slt(const APInt& RHS) const;
955
956  /// Regards both *this as a signed quantity and compares it with RHS for
957  /// the validity of the less-than relationship.
958  /// @returns true if *this < RHS when considered signed.
959  /// @brief Signed less than comparison
960  bool slt(uint64_t RHS) const {
961    return slt(APInt(getBitWidth(), RHS));
962  }
963
964  /// Regards both *this and RHS as unsigned quantities and compares them for
965  /// validity of the less-or-equal relationship.
966  /// @returns true if *this <= RHS when both are considered unsigned.
967  /// @brief Unsigned less or equal comparison
968  bool ule(const APInt& RHS) const {
969    return ult(RHS) || eq(RHS);
970  }
971
972  /// Regards both *this as an unsigned quantity and compares it with RHS for
973  /// the validity of the less-or-equal relationship.
974  /// @returns true if *this <= RHS when considered unsigned.
975  /// @brief Unsigned less or equal comparison
976  bool ule(uint64_t RHS) const {
977    return ule(APInt(getBitWidth(), RHS));
978  }
979
980  /// Regards both *this and RHS as signed quantities and compares them for
981  /// validity of the less-or-equal relationship.
982  /// @returns true if *this <= RHS when both are considered signed.
983  /// @brief Signed less or equal comparison
984  bool sle(const APInt& RHS) const {
985    return slt(RHS) || eq(RHS);
986  }
987
988  /// Regards both *this as a signed quantity and compares it with RHS for
989  /// the validity of the less-or-equal relationship.
990  /// @returns true if *this <= RHS when considered signed.
991  /// @brief Signed less or equal comparison
992  bool sle(uint64_t RHS) const {
993    return sle(APInt(getBitWidth(), RHS));
994  }
995
996  /// Regards both *this and RHS as unsigned quantities and compares them for
997  /// the validity of the greater-than relationship.
998  /// @returns true if *this > RHS when both are considered unsigned.
999  /// @brief Unsigned greather than comparison
1000  bool ugt(const APInt& RHS) const {
1001    return !ult(RHS) && !eq(RHS);
1002  }
1003
1004  /// Regards both *this as an unsigned quantity and compares it with RHS for
1005  /// the validity of the greater-than relationship.
1006  /// @returns true if *this > RHS when considered unsigned.
1007  /// @brief Unsigned greater than comparison
1008  bool ugt(uint64_t RHS) const {
1009    return ugt(APInt(getBitWidth(), RHS));
1010  }
1011
1012  /// Regards both *this and RHS as signed quantities and compares them for
1013  /// the validity of the greater-than relationship.
1014  /// @returns true if *this > RHS when both are considered signed.
1015  /// @brief Signed greather than comparison
1016  bool sgt(const APInt& RHS) const {
1017    return !slt(RHS) && !eq(RHS);
1018  }
1019
1020  /// Regards both *this as a signed quantity and compares it with RHS for
1021  /// the validity of the greater-than relationship.
1022  /// @returns true if *this > RHS when considered signed.
1023  /// @brief Signed greater than comparison
1024  bool sgt(uint64_t RHS) const {
1025    return sgt(APInt(getBitWidth(), RHS));
1026  }
1027
1028  /// Regards both *this and RHS as unsigned quantities and compares them for
1029  /// validity of the greater-or-equal relationship.
1030  /// @returns true if *this >= RHS when both are considered unsigned.
1031  /// @brief Unsigned greater or equal comparison
1032  bool uge(const APInt& RHS) const {
1033    return !ult(RHS);
1034  }
1035
1036  /// Regards both *this as an unsigned quantity and compares it with RHS for
1037  /// the validity of the greater-or-equal relationship.
1038  /// @returns true if *this >= RHS when considered unsigned.
1039  /// @brief Unsigned greater or equal comparison
1040  bool uge(uint64_t RHS) const {
1041    return uge(APInt(getBitWidth(), RHS));
1042  }
1043
1044  /// Regards both *this and RHS as signed quantities and compares them for
1045  /// validity of the greater-or-equal relationship.
1046  /// @returns true if *this >= RHS when both are considered signed.
1047  /// @brief Signed greather or equal comparison
1048  bool sge(const APInt& RHS) const {
1049    return !slt(RHS);
1050  }
1051
1052  /// Regards both *this as a signed quantity and compares it with RHS for
1053  /// the validity of the greater-or-equal relationship.
1054  /// @returns true if *this >= RHS when considered signed.
1055  /// @brief Signed greater or equal comparison
1056  bool sge(uint64_t RHS) const {
1057    return sge(APInt(getBitWidth(), RHS));
1058  }
1059
1060
1061
1062
1063  /// This operation tests if there are any pairs of corresponding bits
1064  /// between this APInt and RHS that are both set.
1065  bool intersects(const APInt &RHS) const {
1066    return (*this & RHS) != 0;
1067  }
1068
1069  /// @}
1070  /// @name Resizing Operators
1071  /// @{
1072  /// Truncate the APInt to a specified width. It is an error to specify a width
1073  /// that is greater than or equal to the current width.
1074  /// @brief Truncate to new width.
1075  APInt trunc(unsigned width) const;
1076
1077  /// This operation sign extends the APInt to a new width. If the high order
1078  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1079  /// It is an error to specify a width that is less than or equal to the
1080  /// current width.
1081  /// @brief Sign extend to a new width.
1082  APInt sext(unsigned width) const;
1083
1084  /// This operation zero extends the APInt to a new width. The high order bits
1085  /// are filled with 0 bits.  It is an error to specify a width that is less
1086  /// than or equal to the current width.
1087  /// @brief Zero extend to a new width.
1088  APInt zext(unsigned width) const;
1089
1090  /// Make this APInt have the bit width given by \p width. The value is sign
1091  /// extended, truncated, or left alone to make it that width.
1092  /// @brief Sign extend or truncate to width
1093  APInt sextOrTrunc(unsigned width) const;
1094
1095  /// Make this APInt have the bit width given by \p width. The value is zero
1096  /// extended, truncated, or left alone to make it that width.
1097  /// @brief Zero extend or truncate to width
1098  APInt zextOrTrunc(unsigned width) const;
1099
1100  /// Make this APInt have the bit width given by \p width. The value is sign
1101  /// extended, or left alone to make it that width.
1102  /// @brief Sign extend or truncate to width
1103  APInt sextOrSelf(unsigned width) const;
1104
1105  /// Make this APInt have the bit width given by \p width. The value is zero
1106  /// extended, or left alone to make it that width.
1107  /// @brief Zero extend or truncate to width
1108  APInt zextOrSelf(unsigned width) const;
1109
1110  /// @}
1111  /// @name Bit Manipulation Operators
1112  /// @{
1113  /// @brief Set every bit to 1.
1114  void setAllBits() {
1115    if (isSingleWord())
1116      VAL = -1ULL;
1117    else {
1118      // Set all the bits in all the words.
1119      for (unsigned i = 0; i < getNumWords(); ++i)
1120        pVal[i] = -1ULL;
1121    }
1122    // Clear the unused ones
1123    clearUnusedBits();
1124  }
1125
1126  /// Set the given bit to 1 whose position is given as "bitPosition".
1127  /// @brief Set a given bit to 1.
1128  void setBit(unsigned bitPosition);
1129
1130  /// @brief Set every bit to 0.
1131  void clearAllBits() {
1132    if (isSingleWord())
1133      VAL = 0;
1134    else
1135      memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1136  }
1137
1138  /// Set the given bit to 0 whose position is given as "bitPosition".
1139  /// @brief Set a given bit to 0.
1140  void clearBit(unsigned bitPosition);
1141
1142  /// @brief Toggle every bit to its opposite value.
1143  void flipAllBits() {
1144    if (isSingleWord())
1145      VAL ^= -1ULL;
1146    else {
1147      for (unsigned i = 0; i < getNumWords(); ++i)
1148        pVal[i] ^= -1ULL;
1149    }
1150    clearUnusedBits();
1151  }
1152
1153  /// Toggle a given bit to its opposite value whose position is given
1154  /// as "bitPosition".
1155  /// @brief Toggles a given bit to its opposite value.
1156  void flipBit(unsigned bitPosition);
1157
1158  /// @}
1159  /// @name Value Characterization Functions
1160  /// @{
1161
1162  /// @returns the total number of bits.
1163  unsigned getBitWidth() const {
1164    return BitWidth;
1165  }
1166
1167  /// Here one word's bitwidth equals to that of uint64_t.
1168  /// @returns the number of words to hold the integer value of this APInt.
1169  /// @brief Get the number of words.
1170  unsigned getNumWords() const {
1171    return getNumWords(BitWidth);
1172  }
1173
1174  /// Here one word's bitwidth equals to that of uint64_t.
1175  /// @returns the number of words to hold the integer value with a
1176  /// given bit width.
1177  /// @brief Get the number of words.
1178  static unsigned getNumWords(unsigned BitWidth) {
1179    return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1180  }
1181
1182  /// This function returns the number of active bits which is defined as the
1183  /// bit width minus the number of leading zeros. This is used in several
1184  /// computations to see how "wide" the value is.
1185  /// @brief Compute the number of active bits in the value
1186  unsigned getActiveBits() const {
1187    return BitWidth - countLeadingZeros();
1188  }
1189
1190  /// This function returns the number of active words in the value of this
1191  /// APInt. This is used in conjunction with getActiveData to extract the raw
1192  /// value of the APInt.
1193  unsigned getActiveWords() const {
1194    return whichWord(getActiveBits()-1) + 1;
1195  }
1196
1197  /// Computes the minimum bit width for this APInt while considering it to be
1198  /// a signed (and probably negative) value. If the value is not negative,
1199  /// this function returns the same value as getActiveBits()+1. Otherwise, it
1200  /// returns the smallest bit width that will retain the negative value. For
1201  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1202  /// for -1, this function will always return 1.
1203  /// @brief Get the minimum bit size for this signed APInt
1204  unsigned getMinSignedBits() const {
1205    if (isNegative())
1206      return BitWidth - countLeadingOnes() + 1;
1207    return getActiveBits()+1;
1208  }
1209
1210  /// This method attempts to return the value of this APInt as a zero extended
1211  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1212  /// uint64_t. Otherwise an assertion will result.
1213  /// @brief Get zero extended value
1214  uint64_t getZExtValue() const {
1215    if (isSingleWord())
1216      return VAL;
1217    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1218    return pVal[0];
1219  }
1220
1221  /// This method attempts to return the value of this APInt as a sign extended
1222  /// int64_t. The bit width must be <= 64 or the value must fit within an
1223  /// int64_t. Otherwise an assertion will result.
1224  /// @brief Get sign extended value
1225  int64_t getSExtValue() const {
1226    if (isSingleWord())
1227      return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1228                     (APINT_BITS_PER_WORD - BitWidth);
1229    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1230    return int64_t(pVal[0]);
1231  }
1232
1233  /// This method determines how many bits are required to hold the APInt
1234  /// equivalent of the string given by \p str.
1235  /// @brief Get bits required for string value.
1236  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1237
1238  /// countLeadingZeros - This function is an APInt version of the
1239  /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
1240  /// of zeros from the most significant bit to the first one bit.
1241  /// @returns BitWidth if the value is zero, otherwise
1242  /// returns the number of zeros from the most significant bit to the first
1243  /// one bits.
1244  unsigned countLeadingZeros() const {
1245    if (isSingleWord()) {
1246      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1247      return CountLeadingZeros_64(VAL) - unusedBits;
1248    }
1249    return countLeadingZerosSlowCase();
1250  }
1251
1252  /// countLeadingOnes - This function is an APInt version of the
1253  /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
1254  /// of ones from the most significant bit to the first zero bit.
1255  /// @returns 0 if the high order bit is not set, otherwise
1256  /// returns the number of 1 bits from the most significant to the least
1257  /// @brief Count the number of leading one bits.
1258  unsigned countLeadingOnes() const;
1259
1260  /// Computes the number of leading bits of this APInt that are equal to its
1261  /// sign bit.
1262  unsigned getNumSignBits() const {
1263    return isNegative() ? countLeadingOnes() : countLeadingZeros();
1264  }
1265
1266  /// countTrailingZeros - This function is an APInt version of the
1267  /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
1268  /// the number of zeros from the least significant bit to the first set bit.
1269  /// @returns BitWidth if the value is zero, otherwise
1270  /// returns the number of zeros from the least significant bit to the first
1271  /// one bit.
1272  /// @brief Count the number of trailing zero bits.
1273  unsigned countTrailingZeros() const;
1274
1275  /// countTrailingOnes - This function is an APInt version of the
1276  /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
1277  /// the number of ones from the least significant bit to the first zero bit.
1278  /// @returns BitWidth if the value is all ones, otherwise
1279  /// returns the number of ones from the least significant bit to the first
1280  /// zero bit.
1281  /// @brief Count the number of trailing one bits.
1282  unsigned countTrailingOnes() const {
1283    if (isSingleWord())
1284      return CountTrailingOnes_64(VAL);
1285    return countTrailingOnesSlowCase();
1286  }
1287
1288  /// countPopulation - This function is an APInt version of the
1289  /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
1290  /// of 1 bits in the APInt value.
1291  /// @returns 0 if the value is zero, otherwise returns the number of set
1292  /// bits.
1293  /// @brief Count the number of bits set.
1294  unsigned countPopulation() const {
1295    if (isSingleWord())
1296      return CountPopulation_64(VAL);
1297    return countPopulationSlowCase();
1298  }
1299
1300  /// @}
1301  /// @name Conversion Functions
1302  /// @{
1303  void print(raw_ostream &OS, bool isSigned) const;
1304
1305  /// toString - Converts an APInt to a string and append it to Str.  Str is
1306  /// commonly a SmallString.
1307  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1308                bool formatAsCLiteral = false) const;
1309
1310  /// Considers the APInt to be unsigned and converts it into a string in the
1311  /// radix given. The radix can be 2, 8, 10 16, or 36.
1312  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1313    toString(Str, Radix, false, false);
1314  }
1315
1316  /// Considers the APInt to be signed and converts it into a string in the
1317  /// radix given. The radix can be 2, 8, 10, 16, or 36.
1318  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1319    toString(Str, Radix, true, false);
1320  }
1321
1322  /// toString - This returns the APInt as a std::string.  Note that this is an
1323  /// inefficient method.  It is better to pass in a SmallVector/SmallString
1324  /// to the methods above to avoid thrashing the heap for the string.
1325  std::string toString(unsigned Radix, bool Signed) const;
1326
1327
1328  /// @returns a byte-swapped representation of this APInt Value.
1329  APInt byteSwap() const;
1330
1331  /// @brief Converts this APInt to a double value.
1332  double roundToDouble(bool isSigned) const;
1333
1334  /// @brief Converts this unsigned APInt to a double value.
1335  double roundToDouble() const {
1336    return roundToDouble(false);
1337  }
1338
1339  /// @brief Converts this signed APInt to a double value.
1340  double signedRoundToDouble() const {
1341    return roundToDouble(true);
1342  }
1343
1344  /// The conversion does not do a translation from integer to double, it just
1345  /// re-interprets the bits as a double. Note that it is valid to do this on
1346  /// any bit width. Exactly 64 bits will be translated.
1347  /// @brief Converts APInt bits to a double
1348  double bitsToDouble() const {
1349    union {
1350      uint64_t I;
1351      double D;
1352    } T;
1353    T.I = (isSingleWord() ? VAL : pVal[0]);
1354    return T.D;
1355  }
1356
1357  /// The conversion does not do a translation from integer to float, it just
1358  /// re-interprets the bits as a float. Note that it is valid to do this on
1359  /// any bit width. Exactly 32 bits will be translated.
1360  /// @brief Converts APInt bits to a double
1361  float bitsToFloat() const {
1362    union {
1363      unsigned I;
1364      float F;
1365    } T;
1366    T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1367    return T.F;
1368  }
1369
1370  /// The conversion does not do a translation from double to integer, it just
1371  /// re-interprets the bits of the double.
1372  /// @brief Converts a double to APInt bits.
1373  static APInt doubleToBits(double V) {
1374    union {
1375      uint64_t I;
1376      double D;
1377    } T;
1378    T.D = V;
1379    return APInt(sizeof T * CHAR_BIT, T.I);
1380  }
1381
1382  /// The conversion does not do a translation from float to integer, it just
1383  /// re-interprets the bits of the float.
1384  /// @brief Converts a float to APInt bits.
1385  static APInt floatToBits(float V) {
1386    union {
1387      unsigned I;
1388      float F;
1389    } T;
1390    T.F = V;
1391    return APInt(sizeof T * CHAR_BIT, T.I);
1392  }
1393
1394  /// @}
1395  /// @name Mathematics Operations
1396  /// @{
1397
1398  /// @returns the floor log base 2 of this APInt.
1399  unsigned logBase2() const {
1400    return BitWidth - 1 - countLeadingZeros();
1401  }
1402
1403  /// @returns the ceil log base 2 of this APInt.
1404  unsigned ceilLogBase2() const {
1405    return BitWidth - (*this - 1).countLeadingZeros();
1406  }
1407
1408  /// @returns the log base 2 of this APInt if its an exact power of two, -1
1409  /// otherwise
1410  int32_t exactLogBase2() const {
1411    if (!isPowerOf2())
1412      return -1;
1413    return logBase2();
1414  }
1415
1416  /// @brief Compute the square root
1417  APInt sqrt() const;
1418
1419  /// If *this is < 0 then return -(*this), otherwise *this;
1420  /// @brief Get the absolute value;
1421  APInt abs() const {
1422    if (isNegative())
1423      return -(*this);
1424    return *this;
1425  }
1426
1427  /// @returns the multiplicative inverse for a given modulo.
1428  APInt multiplicativeInverse(const APInt& modulo) const;
1429
1430  /// @}
1431  /// @name Support for division by constant
1432  /// @{
1433
1434  /// Calculate the magic number for signed division by a constant.
1435  struct ms;
1436  ms magic() const;
1437
1438  /// Calculate the magic number for unsigned division by a constant.
1439  struct mu;
1440  mu magicu(unsigned LeadingZeros = 0) const;
1441
1442  /// @}
1443  /// @name Building-block Operations for APInt and APFloat
1444  /// @{
1445
1446  // These building block operations operate on a representation of
1447  // arbitrary precision, two's-complement, bignum integer values.
1448  // They should be sufficient to implement APInt and APFloat bignum
1449  // requirements.  Inputs are generally a pointer to the base of an
1450  // array of integer parts, representing an unsigned bignum, and a
1451  // count of how many parts there are.
1452
1453  /// Sets the least significant part of a bignum to the input value,
1454  /// and zeroes out higher parts.  */
1455  static void tcSet(integerPart *, integerPart, unsigned int);
1456
1457  /// Assign one bignum to another.
1458  static void tcAssign(integerPart *, const integerPart *, unsigned int);
1459
1460  /// Returns true if a bignum is zero, false otherwise.
1461  static bool tcIsZero(const integerPart *, unsigned int);
1462
1463  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1464  static int tcExtractBit(const integerPart *, unsigned int bit);
1465
1466  /// Copy the bit vector of width srcBITS from SRC, starting at bit
1467  /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
1468  /// becomes the least significant bit of DST.  All high bits above
1469  /// srcBITS in DST are zero-filled.
1470  static void tcExtract(integerPart *, unsigned int dstCount,
1471                        const integerPart *,
1472                        unsigned int srcBits, unsigned int srcLSB);
1473
1474  /// Set the given bit of a bignum.  Zero-based.
1475  static void tcSetBit(integerPart *, unsigned int bit);
1476
1477  /// Clear the given bit of a bignum.  Zero-based.
1478  static void tcClearBit(integerPart *, unsigned int bit);
1479
1480  /// Returns the bit number of the least or most significant set bit
1481  /// of a number.  If the input number has no bits set -1U is
1482  /// returned.
1483  static unsigned int tcLSB(const integerPart *, unsigned int);
1484  static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1485
1486  /// Negate a bignum in-place.
1487  static void tcNegate(integerPart *, unsigned int);
1488
1489  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the
1490  /// carry flag.
1491  static integerPart tcAdd(integerPart *, const integerPart *,
1492                           integerPart carry, unsigned);
1493
1494  /// DST -= RHS + CARRY where CARRY is zero or one.  Returns the
1495  /// carry flag.
1496  static integerPart tcSubtract(integerPart *, const integerPart *,
1497                                integerPart carry, unsigned);
1498
1499  ///  DST += SRC * MULTIPLIER + PART   if add is true
1500  ///  DST  = SRC * MULTIPLIER + PART   if add is false
1501  ///
1502  ///  Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
1503  ///  they must start at the same point, i.e. DST == SRC.
1504  ///
1505  ///  If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
1506  ///  returned.  Otherwise DST is filled with the least significant
1507  ///  DSTPARTS parts of the result, and if all of the omitted higher
1508  ///  parts were zero return zero, otherwise overflow occurred and
1509  ///  return one.
1510  static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1511                            integerPart multiplier, integerPart carry,
1512                            unsigned int srcParts, unsigned int dstParts,
1513                            bool add);
1514
1515  /// DST = LHS * RHS, where DST has the same width as the operands
1516  /// and is filled with the least significant parts of the result.
1517  /// Returns one if overflow occurred, otherwise zero.  DST must be
1518  /// disjoint from both operands.
1519  static int tcMultiply(integerPart *, const integerPart *,
1520                        const integerPart *, unsigned);
1521
1522  /// DST = LHS * RHS, where DST has width the sum of the widths of
1523  /// the operands.  No overflow occurs.  DST must be disjoint from
1524  /// both operands. Returns the number of parts required to hold the
1525  /// result.
1526  static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1527                                     const integerPart *, unsigned, unsigned);
1528
1529  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1530  /// Otherwise set LHS to LHS / RHS with the fractional part
1531  /// discarded, set REMAINDER to the remainder, return zero.  i.e.
1532  ///
1533  ///  OLD_LHS = RHS * LHS + REMAINDER
1534  ///
1535  ///  SCRATCH is a bignum of the same size as the operands and result
1536  ///  for use by the routine; its contents need not be initialized
1537  ///  and are destroyed.  LHS, REMAINDER and SCRATCH must be
1538  ///  distinct.
1539  static int tcDivide(integerPart *lhs, const integerPart *rhs,
1540                      integerPart *remainder, integerPart *scratch,
1541                      unsigned int parts);
1542
1543  /// Shift a bignum left COUNT bits.  Shifted in bits are zero.
1544  /// There are no restrictions on COUNT.
1545  static void tcShiftLeft(integerPart *, unsigned int parts,
1546                          unsigned int count);
1547
1548  /// Shift a bignum right COUNT bits.  Shifted in bits are zero.
1549  /// There are no restrictions on COUNT.
1550  static void tcShiftRight(integerPart *, unsigned int parts,
1551                           unsigned int count);
1552
1553  /// The obvious AND, OR and XOR and complement operations.
1554  static void tcAnd(integerPart *, const integerPart *, unsigned int);
1555  static void tcOr(integerPart *, const integerPart *, unsigned int);
1556  static void tcXor(integerPart *, const integerPart *, unsigned int);
1557  static void tcComplement(integerPart *, unsigned int);
1558
1559  /// Comparison (unsigned) of two bignums.
1560  static int tcCompare(const integerPart *, const integerPart *,
1561                       unsigned int);
1562
1563  /// Increment a bignum in-place.  Return the carry flag.
1564  static integerPart tcIncrement(integerPart *, unsigned int);
1565
1566  /// Set the least significant BITS and clear the rest.
1567  static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1568                                        unsigned int bits);
1569
1570  /// @brief debug method
1571  void dump() const;
1572
1573  /// @}
1574};
1575
1576/// Magic data for optimising signed division by a constant.
1577struct APInt::ms {
1578  APInt m;  ///< magic number
1579  unsigned s;  ///< shift amount
1580};
1581
1582/// Magic data for optimising unsigned division by a constant.
1583struct APInt::mu {
1584  APInt m;     ///< magic number
1585  bool a;      ///< add indicator
1586  unsigned s;  ///< shift amount
1587};
1588
1589inline bool operator==(uint64_t V1, const APInt& V2) {
1590  return V2 == V1;
1591}
1592
1593inline bool operator!=(uint64_t V1, const APInt& V2) {
1594  return V2 != V1;
1595}
1596
1597inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1598  I.print(OS, true);
1599  return OS;
1600}
1601
1602namespace APIntOps {
1603
1604/// @brief Determine the smaller of two APInts considered to be signed.
1605inline APInt smin(const APInt &A, const APInt &B) {
1606  return A.slt(B) ? A : B;
1607}
1608
1609/// @brief Determine the larger of two APInts considered to be signed.
1610inline APInt smax(const APInt &A, const APInt &B) {
1611  return A.sgt(B) ? A : B;
1612}
1613
1614/// @brief Determine the smaller of two APInts considered to be signed.
1615inline APInt umin(const APInt &A, const APInt &B) {
1616  return A.ult(B) ? A : B;
1617}
1618
1619/// @brief Determine the larger of two APInts considered to be unsigned.
1620inline APInt umax(const APInt &A, const APInt &B) {
1621  return A.ugt(B) ? A : B;
1622}
1623
1624/// @brief Check if the specified APInt has a N-bits unsigned integer value.
1625inline bool isIntN(unsigned N, const APInt& APIVal) {
1626  return APIVal.isIntN(N);
1627}
1628
1629/// @brief Check if the specified APInt has a N-bits signed integer value.
1630inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
1631  return APIVal.isSignedIntN(N);
1632}
1633
1634/// @returns true if the argument APInt value is a sequence of ones
1635/// starting at the least significant bit with the remainder zero.
1636inline bool isMask(unsigned numBits, const APInt& APIVal) {
1637  return numBits <= APIVal.getBitWidth() &&
1638    APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1639}
1640
1641/// @returns true if the argument APInt value contains a sequence of ones
1642/// with the remainder zero.
1643inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
1644  return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
1645}
1646
1647/// @returns a byte-swapped representation of the specified APInt Value.
1648inline APInt byteSwap(const APInt& APIVal) {
1649  return APIVal.byteSwap();
1650}
1651
1652/// @returns the floor log base 2 of the specified APInt value.
1653inline unsigned logBase2(const APInt& APIVal) {
1654  return APIVal.logBase2();
1655}
1656
1657/// GreatestCommonDivisor - This function returns the greatest common
1658/// divisor of the two APInt values using Euclid's algorithm.
1659/// @returns the greatest common divisor of Val1 and Val2
1660/// @brief Compute GCD of two APInt values.
1661APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
1662
1663/// Treats the APInt as an unsigned value for conversion purposes.
1664/// @brief Converts the given APInt to a double value.
1665inline double RoundAPIntToDouble(const APInt& APIVal) {
1666  return APIVal.roundToDouble();
1667}
1668
1669/// Treats the APInt as a signed value for conversion purposes.
1670/// @brief Converts the given APInt to a double value.
1671inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
1672  return APIVal.signedRoundToDouble();
1673}
1674
1675/// @brief Converts the given APInt to a float vlalue.
1676inline float RoundAPIntToFloat(const APInt& APIVal) {
1677  return float(RoundAPIntToDouble(APIVal));
1678}
1679
1680/// Treast the APInt as a signed value for conversion purposes.
1681/// @brief Converts the given APInt to a float value.
1682inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
1683  return float(APIVal.signedRoundToDouble());
1684}
1685
1686/// RoundDoubleToAPInt - This function convert a double value to an APInt value.
1687/// @brief Converts the given double value into a APInt.
1688APInt RoundDoubleToAPInt(double Double, unsigned width);
1689
1690/// RoundFloatToAPInt - Converts a float value into an APInt value.
1691/// @brief Converts a float value into a APInt.
1692inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1693  return RoundDoubleToAPInt(double(Float), width);
1694}
1695
1696/// Arithmetic right-shift the APInt by shiftAmt.
1697/// @brief Arithmetic right-shift function.
1698inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
1699  return LHS.ashr(shiftAmt);
1700}
1701
1702/// Logical right-shift the APInt by shiftAmt.
1703/// @brief Logical right-shift function.
1704inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
1705  return LHS.lshr(shiftAmt);
1706}
1707
1708/// Left-shift the APInt by shiftAmt.
1709/// @brief Left-shift function.
1710inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
1711  return LHS.shl(shiftAmt);
1712}
1713
1714/// Signed divide APInt LHS by APInt RHS.
1715/// @brief Signed division function for APInt.
1716inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
1717  return LHS.sdiv(RHS);
1718}
1719
1720/// Unsigned divide APInt LHS by APInt RHS.
1721/// @brief Unsigned division function for APInt.
1722inline APInt udiv(const APInt& LHS, const APInt& RHS) {
1723  return LHS.udiv(RHS);
1724}
1725
1726/// Signed remainder operation on APInt.
1727/// @brief Function for signed remainder operation.
1728inline APInt srem(const APInt& LHS, const APInt& RHS) {
1729  return LHS.srem(RHS);
1730}
1731
1732/// Unsigned remainder operation on APInt.
1733/// @brief Function for unsigned remainder operation.
1734inline APInt urem(const APInt& LHS, const APInt& RHS) {
1735  return LHS.urem(RHS);
1736}
1737
1738/// Performs multiplication on APInt values.
1739/// @brief Function for multiplication operation.
1740inline APInt mul(const APInt& LHS, const APInt& RHS) {
1741  return LHS * RHS;
1742}
1743
1744/// Performs addition on APInt values.
1745/// @brief Function for addition operation.
1746inline APInt add(const APInt& LHS, const APInt& RHS) {
1747  return LHS + RHS;
1748}
1749
1750/// Performs subtraction on APInt values.
1751/// @brief Function for subtraction operation.
1752inline APInt sub(const APInt& LHS, const APInt& RHS) {
1753  return LHS - RHS;
1754}
1755
1756/// Performs bitwise AND operation on APInt LHS and
1757/// APInt RHS.
1758/// @brief Bitwise AND function for APInt.
1759inline APInt And(const APInt& LHS, const APInt& RHS) {
1760  return LHS & RHS;
1761}
1762
1763/// Performs bitwise OR operation on APInt LHS and APInt RHS.
1764/// @brief Bitwise OR function for APInt.
1765inline APInt Or(const APInt& LHS, const APInt& RHS) {
1766  return LHS | RHS;
1767}
1768
1769/// Performs bitwise XOR operation on APInt.
1770/// @brief Bitwise XOR function for APInt.
1771inline APInt Xor(const APInt& LHS, const APInt& RHS) {
1772  return LHS ^ RHS;
1773}
1774
1775/// Performs a bitwise complement operation on APInt.
1776/// @brief Bitwise complement function.
1777inline APInt Not(const APInt& APIVal) {
1778  return ~APIVal;
1779}
1780
1781} // End of APIntOps namespace
1782
1783} // End of llvm namespace
1784
1785#endif
1786