1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <title>LLVM's Analysis and Transform Passes</title>
6  <link rel="stylesheet" href="_static/llvm.css" type="text/css">
7  <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
8</head>
9<body>
10
11<!--
12
13If Passes.html is up to date, the following "one-liner" should print
14an empty diff.
15
16egrep -e '^<tr><td><a href="#.*">-.*</a></td><td>.*</td></tr>$' \
17      -e '^  <a name=".*">.*</a>$' < Passes.html >html; \
18perl >help <<'EOT' && diff -u help html; rm -f help html
19open HTML, "<Passes.html" or die "open: Passes.html: $!\n";
20while (<HTML>) {
21  m:^<tr><td><a href="#(.*)">-.*</a></td><td>.*</td></tr>$: or next;
22  $order{$1} = sprintf("%03d", 1 + int %order);
23}
24open HELP, "/Release/bin/opt -help|" or die "open: opt -help: $!\n";
25while (<HELP>) {
26  m:^    -([^ ]+) +- (.*)$: or next;
27  my $o = $order{$1};
28  $o = "000" unless defined $o;
29  push @x, "$o<tr><td><a href=\"#$1\">-$1</a></td><td>$2</td></tr>\n";
30  push @y, "$o  <a name=\"$1\">-$1: $2</a>\n";
31}
32@x = map { s/^\d\d\d//; $_ } sort @x;
33@y = map { s/^\d\d\d//; $_ } sort @y;
34print @x, @y;
35EOT
36
37This (real) one-liner can also be helpful when converting comments to HTML:
38
39perl -e '$/ = undef; for (split(/\n/, <>)) { s:^ *///? ?::; print "  <p>\n" if !$on && $_ =~ /\S/; print "  </p>\n" if $on && $_ =~ /^\s*$/; print "  $_\n"; $on = ($_ =~ /\S/); } print "  </p>\n" if $on'
40
41  -->
42
43<h1>LLVM's Analysis and Transform Passes</h1>
44
45<ol>
46  <li><a href="#intro">Introduction</a></li>
47  <li><a href="#analyses">Analysis Passes</a>
48  <li><a href="#transforms">Transform Passes</a></li>
49  <li><a href="#utilities">Utility Passes</a></li>
50</ol>
51
52<div class="doc_author">
53  <p>Written by <a href="mailto:rspencer@x10sys.com">Reid Spencer</a>
54            and Gordon Henriksen</p>
55</div>
56
57<!-- ======================================================================= -->
58<h2><a name="intro">Introduction</a></h2>
59<div>
60  <p>This document serves as a high level summary of the optimization features 
61  that LLVM provides. Optimizations are implemented as Passes that traverse some
62  portion of a program to either collect information or transform the program.
63  The table below divides the passes that LLVM provides into three categories.
64  Analysis passes compute information that other passes can use or for debugging
65  or program visualization purposes. Transform passes can use (or invalidate)
66  the analysis passes. Transform passes all mutate the program in some way. 
67  Utility passes provides some utility but don't otherwise fit categorization.
68  For example passes to extract functions to bitcode or write a module to
69  bitcode are neither analysis nor transform passes.
70  <p>The table below provides a quick summary of each pass and links to the more
71  complete pass description later in the document.</p>
72
73<table>
74<tr><th colspan="2"><b>ANALYSIS PASSES</b></th></tr>
75<tr><th>Option</th><th>Name</th></tr>
76<tr><td><a href="#aa-eval">-aa-eval</a></td><td>Exhaustive Alias Analysis Precision Evaluator</td></tr>
77<tr><td><a href="#basicaa">-basicaa</a></td><td>Basic Alias Analysis (stateless AA impl)</td></tr>
78<tr><td><a href="#basiccg">-basiccg</a></td><td>Basic CallGraph Construction</td></tr>
79<tr><td><a href="#count-aa">-count-aa</a></td><td>Count Alias Analysis Query Responses</td></tr>
80<tr><td><a href="#debug-aa">-debug-aa</a></td><td>AA use debugger</td></tr>
81<tr><td><a href="#domfrontier">-domfrontier</a></td><td>Dominance Frontier Construction</td></tr>
82<tr><td><a href="#domtree">-domtree</a></td><td>Dominator Tree Construction</td></tr>
83<tr><td><a href="#dot-callgraph">-dot-callgraph</a></td><td>Print Call Graph to 'dot' file</td></tr>
84<tr><td><a href="#dot-cfg">-dot-cfg</a></td><td>Print CFG of function to 'dot' file</td></tr>
85<tr><td><a href="#dot-cfg-only">-dot-cfg-only</a></td><td>Print CFG of function to 'dot' file (with no function bodies)</td></tr>
86<tr><td><a href="#dot-dom">-dot-dom</a></td><td>Print dominance tree of function to 'dot' file</td></tr>
87<tr><td><a href="#dot-dom-only">-dot-dom-only</a></td><td>Print dominance tree of function to 'dot' file (with no function bodies)</td></tr>
88<tr><td><a href="#dot-postdom">-dot-postdom</a></td><td>Print postdominance tree of function to 'dot' file</td></tr>
89<tr><td><a href="#dot-postdom-only">-dot-postdom-only</a></td><td>Print postdominance tree of function to 'dot' file (with no function bodies)</td></tr>
90<tr><td><a href="#globalsmodref-aa">-globalsmodref-aa</a></td><td>Simple mod/ref analysis for globals</td></tr>
91<tr><td><a href="#instcount">-instcount</a></td><td>Counts the various types of Instructions</td></tr>
92<tr><td><a href="#intervals">-intervals</a></td><td>Interval Partition Construction</td></tr>
93<tr><td><a href="#iv-users">-iv-users</a></td><td>Induction Variable Users</td></tr>
94<tr><td><a href="#lazy-value-info">-lazy-value-info</a></td><td>Lazy Value Information Analysis</td></tr>
95<tr><td><a href="#lda">-lda</a></td><td>Loop Dependence Analysis</td></tr>
96<tr><td><a href="#libcall-aa">-libcall-aa</a></td><td>LibCall Alias Analysis</td></tr>
97<tr><td><a href="#lint">-lint</a></td><td>Statically lint-checks LLVM IR</td></tr>
98<tr><td><a href="#loops">-loops</a></td><td>Natural Loop Information</td></tr>
99<tr><td><a href="#memdep">-memdep</a></td><td>Memory Dependence Analysis</td></tr>
100<tr><td><a href="#module-debuginfo">-module-debuginfo</a></td><td>Decodes module-level debug info</td></tr>
101<tr><td><a href="#no-aa">-no-aa</a></td><td>No Alias Analysis (always returns 'may' alias)</td></tr>
102<tr><td><a href="#no-profile">-no-profile</a></td><td>No Profile Information</td></tr>
103<tr><td><a href="#postdomtree">-postdomtree</a></td><td>Post-Dominator Tree Construction</td></tr>
104<tr><td><a href="#print-alias-sets">-print-alias-sets</a></td><td>Alias Set Printer</td></tr>
105<tr><td><a href="#print-callgraph">-print-callgraph</a></td><td>Print a call graph</td></tr>
106<tr><td><a href="#print-callgraph-sccs">-print-callgraph-sccs</a></td><td>Print SCCs of the Call Graph</td></tr>
107<tr><td><a href="#print-cfg-sccs">-print-cfg-sccs</a></td><td>Print SCCs of each function CFG</td></tr>
108<tr><td><a href="#print-dbginfo">-print-dbginfo</a></td><td>Print debug info in human readable form</td></tr>
109<tr><td><a href="#print-dom-info">-print-dom-info</a></td><td>Dominator Info Printer</td></tr>
110<tr><td><a href="#print-externalfnconstants">-print-externalfnconstants</a></td><td>Print external fn callsites passed constants</td></tr>
111<tr><td><a href="#print-function">-print-function</a></td><td>Print function to stderr</td></tr>
112<tr><td><a href="#print-module">-print-module</a></td><td>Print module to stderr</td></tr>
113<tr><td><a href="#print-used-types">-print-used-types</a></td><td>Find Used Types</td></tr>
114<tr><td><a href="#profile-estimator">-profile-estimator</a></td><td>Estimate profiling information</td></tr>
115<tr><td><a href="#profile-loader">-profile-loader</a></td><td>Load profile information from llvmprof.out</td></tr>
116<tr><td><a href="#profile-verifier">-profile-verifier</a></td><td>Verify profiling information</td></tr>
117<tr><td><a href="#regions">-regions</a></td><td>Detect single entry single exit regions</td></tr>
118<tr><td><a href="#scalar-evolution">-scalar-evolution</a></td><td>Scalar Evolution Analysis</td></tr>
119<tr><td><a href="#scev-aa">-scev-aa</a></td><td>ScalarEvolution-based Alias Analysis</td></tr>
120<tr><td><a href="#targetdata">-targetdata</a></td><td>Target Data Layout</td></tr>
121
122
123<tr><th colspan="2"><b>TRANSFORM PASSES</b></th></tr>
124<tr><th>Option</th><th>Name</th></tr>
125<tr><td><a href="#adce">-adce</a></td><td>Aggressive Dead Code Elimination</td></tr>
126<tr><td><a href="#always-inline">-always-inline</a></td><td>Inliner for always_inline functions</td></tr>
127<tr><td><a href="#argpromotion">-argpromotion</a></td><td>Promote 'by reference' arguments to scalars</td></tr>
128<tr><td><a href="#bb-vectorize">-bb-vectorize</a></td><td>Combine instructions to form vector instructions within basic blocks</td></tr>
129<tr><td><a href="#block-placement">-block-placement</a></td><td>Profile Guided Basic Block Placement</td></tr>
130<tr><td><a href="#break-crit-edges">-break-crit-edges</a></td><td>Break critical edges in CFG</td></tr>
131<tr><td><a href="#codegenprepare">-codegenprepare</a></td><td>Optimize for code generation</td></tr>
132<tr><td><a href="#constmerge">-constmerge</a></td><td>Merge Duplicate Global Constants</td></tr>
133<tr><td><a href="#constprop">-constprop</a></td><td>Simple constant propagation</td></tr>
134<tr><td><a href="#dce">-dce</a></td><td>Dead Code Elimination</td></tr>
135<tr><td><a href="#deadargelim">-deadargelim</a></td><td>Dead Argument Elimination</td></tr>
136<tr><td><a href="#deadtypeelim">-deadtypeelim</a></td><td>Dead Type Elimination</td></tr>
137<tr><td><a href="#die">-die</a></td><td>Dead Instruction Elimination</td></tr>
138<tr><td><a href="#dse">-dse</a></td><td>Dead Store Elimination</td></tr>
139<tr><td><a href="#functionattrs">-functionattrs</a></td><td>Deduce function attributes</td></tr>
140<tr><td><a href="#globaldce">-globaldce</a></td><td>Dead Global Elimination</td></tr>
141<tr><td><a href="#globalopt">-globalopt</a></td><td>Global Variable Optimizer</td></tr>
142<tr><td><a href="#gvn">-gvn</a></td><td>Global Value Numbering</td></tr>
143<tr><td><a href="#indvars">-indvars</a></td><td>Canonicalize Induction Variables</td></tr>
144<tr><td><a href="#inline">-inline</a></td><td>Function Integration/Inlining</td></tr>
145<tr><td><a href="#insert-edge-profiling">-insert-edge-profiling</a></td><td>Insert instrumentation for edge profiling</td></tr>
146<tr><td><a href="#insert-optimal-edge-profiling">-insert-optimal-edge-profiling</a></td><td>Insert optimal instrumentation for edge profiling</td></tr>
147<tr><td><a href="#instcombine">-instcombine</a></td><td>Combine redundant instructions</td></tr>
148<tr><td><a href="#internalize">-internalize</a></td><td>Internalize Global Symbols</td></tr>
149<tr><td><a href="#ipconstprop">-ipconstprop</a></td><td>Interprocedural constant propagation</td></tr>
150<tr><td><a href="#ipsccp">-ipsccp</a></td><td>Interprocedural Sparse Conditional Constant Propagation</td></tr>
151<tr><td><a href="#jump-threading">-jump-threading</a></td><td>Jump Threading</td></tr>
152<tr><td><a href="#lcssa">-lcssa</a></td><td>Loop-Closed SSA Form Pass</td></tr>
153<tr><td><a href="#licm">-licm</a></td><td>Loop Invariant Code Motion</td></tr>
154<tr><td><a href="#loop-deletion">-loop-deletion</a></td><td>Delete dead loops</td></tr>
155<tr><td><a href="#loop-extract">-loop-extract</a></td><td>Extract loops into new functions</td></tr>
156<tr><td><a href="#loop-extract-single">-loop-extract-single</a></td><td>Extract at most one loop into a new function</td></tr>
157<tr><td><a href="#loop-reduce">-loop-reduce</a></td><td>Loop Strength Reduction</td></tr>
158<tr><td><a href="#loop-rotate">-loop-rotate</a></td><td>Rotate Loops</td></tr>
159<tr><td><a href="#loop-simplify">-loop-simplify</a></td><td>Canonicalize natural loops</td></tr>
160<tr><td><a href="#loop-unroll">-loop-unroll</a></td><td>Unroll loops</td></tr>
161<tr><td><a href="#loop-unswitch">-loop-unswitch</a></td><td>Unswitch loops</td></tr>
162<tr><td><a href="#loweratomic">-loweratomic</a></td><td>Lower atomic intrinsics to non-atomic form</td></tr>
163<tr><td><a href="#lowerinvoke">-lowerinvoke</a></td><td>Lower invoke and unwind, for unwindless code generators</td></tr>
164<tr><td><a href="#lowerswitch">-lowerswitch</a></td><td>Lower SwitchInst's to branches</td></tr>
165<tr><td><a href="#mem2reg">-mem2reg</a></td><td>Promote Memory to Register</td></tr>
166<tr><td><a href="#memcpyopt">-memcpyopt</a></td><td>MemCpy Optimization</td></tr>
167<tr><td><a href="#mergefunc">-mergefunc</a></td><td>Merge Functions</td></tr>
168<tr><td><a href="#mergereturn">-mergereturn</a></td><td>Unify function exit nodes</td></tr>
169<tr><td><a href="#partial-inliner">-partial-inliner</a></td><td>Partial Inliner</td></tr>
170<tr><td><a href="#prune-eh">-prune-eh</a></td><td>Remove unused exception handling info</td></tr>
171<tr><td><a href="#reassociate">-reassociate</a></td><td>Reassociate expressions</td></tr>
172<tr><td><a href="#reg2mem">-reg2mem</a></td><td>Demote all values to stack slots</td></tr>
173<tr><td><a href="#scalarrepl">-scalarrepl</a></td><td>Scalar Replacement of Aggregates (DT)</td></tr>
174<tr><td><a href="#sccp">-sccp</a></td><td>Sparse Conditional Constant Propagation</td></tr>
175<tr><td><a href="#simplify-libcalls">-simplify-libcalls</a></td><td>Simplify well-known library calls</td></tr>
176<tr><td><a href="#simplifycfg">-simplifycfg</a></td><td>Simplify the CFG</td></tr>
177<tr><td><a href="#sink">-sink</a></td><td>Code sinking</td></tr>
178<tr><td><a href="#sretpromotion">-sretpromotion</a></td><td>Promote sret arguments to multiple ret values</td></tr>
179<tr><td><a href="#strip">-strip</a></td><td>Strip all symbols from a module</td></tr>
180<tr><td><a href="#strip-dead-debug-info">-strip-dead-debug-info</a></td><td>Strip debug info for unused symbols</td></tr>
181<tr><td><a href="#strip-dead-prototypes">-strip-dead-prototypes</a></td><td>Strip Unused Function Prototypes</td></tr>
182<tr><td><a href="#strip-debug-declare">-strip-debug-declare</a></td><td>Strip all llvm.dbg.declare intrinsics</td></tr>
183<tr><td><a href="#strip-nondebug">-strip-nondebug</a></td><td>Strip all symbols, except dbg symbols, from a module</td></tr>
184<tr><td><a href="#tailcallelim">-tailcallelim</a></td><td>Tail Call Elimination</td></tr>
185<tr><td><a href="#tailduplicate">-tailduplicate</a></td><td>Tail Duplication</td></tr>
186
187
188<tr><th colspan="2"><b>UTILITY PASSES</b></th></tr>
189<tr><th>Option</th><th>Name</th></tr>
190<tr><td><a href="#deadarghaX0r">-deadarghaX0r</a></td><td>Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</td></tr>
191<tr><td><a href="#extract-blocks">-extract-blocks</a></td><td>Extract Basic Blocks From Module (for bugpoint use)</td></tr>
192<tr><td><a href="#instnamer">-instnamer</a></td><td>Assign names to anonymous instructions</td></tr>
193<tr><td><a href="#preverify">-preverify</a></td><td>Preliminary module verification</td></tr>
194<tr><td><a href="#verify">-verify</a></td><td>Module Verifier</td></tr>
195<tr><td><a href="#view-cfg">-view-cfg</a></td><td>View CFG of function</td></tr>
196<tr><td><a href="#view-cfg-only">-view-cfg-only</a></td><td>View CFG of function (with no function bodies)</td></tr>
197<tr><td><a href="#view-dom">-view-dom</a></td><td>View dominance tree of function</td></tr>
198<tr><td><a href="#view-dom-only">-view-dom-only</a></td><td>View dominance tree of function (with no function bodies)</td></tr>
199<tr><td><a href="#view-postdom">-view-postdom</a></td><td>View postdominance tree of function</td></tr>
200<tr><td><a href="#view-postdom-only">-view-postdom-only</a></td><td>View postdominance tree of function (with no function bodies)</td></tr>
201</table>
202
203</div>
204
205<!-- ======================================================================= -->
206<h2><a name="analyses">Analysis Passes</a></h2>
207<div>
208  <p>This section describes the LLVM Analysis Passes.</p>
209
210<!-------------------------------------------------------------------------- -->
211<h3>
212  <a name="aa-eval">-aa-eval: Exhaustive Alias Analysis Precision Evaluator</a>
213</h3>
214<div>
215  <p>This is a simple N^2 alias analysis accuracy evaluator.
216  Basically, for each function in the program, it simply queries to see how the
217  alias analysis implementation answers alias queries between each pair of
218  pointers in the function.</p>
219
220  <p>This is inspired and adapted from code by: Naveen Neelakantam, Francesco
221  Spadini, and Wojciech Stryjewski.</p>
222</div>
223
224<!-------------------------------------------------------------------------- -->
225<h3>
226  <a name="basicaa">-basicaa: Basic Alias Analysis (stateless AA impl)</a>
227</h3>
228<div>
229  <p>A basic alias analysis pass that implements identities (two different
230  globals cannot alias, etc), but does no stateful analysis.</p>
231</div>
232
233<!-------------------------------------------------------------------------- -->
234<h3>
235  <a name="basiccg">-basiccg: Basic CallGraph Construction</a>
236</h3>
237<div>
238  <p>Yet to be written.</p>
239</div>
240
241<!-------------------------------------------------------------------------- -->
242<h3>
243  <a name="count-aa">-count-aa: Count Alias Analysis Query Responses</a>
244</h3>
245<div>
246  <p>
247  A pass which can be used to count how many alias queries
248  are being made and how the alias analysis implementation being used responds.
249  </p>
250</div>
251
252<!-------------------------------------------------------------------------- -->
253<h3>
254  <a name="debug-aa">-debug-aa: AA use debugger</a>
255</h3>
256<div>
257  <p>
258  This simple pass checks alias analysis users to ensure that if they
259  create a new value, they do not query AA without informing it of the value.
260  It acts as a shim over any other AA pass you want.
261  </p>
262  
263  <p>
264  Yes keeping track of every value in the program is expensive, but this is 
265  a debugging pass.
266  </p>
267</div>
268
269<!-------------------------------------------------------------------------- -->
270<h3>
271  <a name="domfrontier">-domfrontier: Dominance Frontier Construction</a>
272</h3>
273<div>
274  <p>
275  This pass is a simple dominator construction algorithm for finding forward
276  dominator frontiers.
277  </p>
278</div>
279
280<!-------------------------------------------------------------------------- -->
281<h3>
282  <a name="domtree">-domtree: Dominator Tree Construction</a>
283</h3>
284<div>
285  <p>
286  This pass is a simple dominator construction algorithm for finding forward
287  dominators.
288  </p>
289</div>
290
291<!-------------------------------------------------------------------------- -->
292<h3>
293  <a name="dot-callgraph">-dot-callgraph: Print Call Graph to 'dot' file</a>
294</h3>
295<div>
296  <p>
297  This pass, only available in <code>opt</code>, prints the call graph into a
298  <code>.dot</code> graph.  This graph can then be processed with the "dot" tool
299  to convert it to postscript or some other suitable format.
300  </p>
301</div>
302
303<!-------------------------------------------------------------------------- -->
304<h3>
305  <a name="dot-cfg">-dot-cfg: Print CFG of function to 'dot' file</a>
306</h3>
307<div>
308  <p>
309  This pass, only available in <code>opt</code>, prints the control flow graph
310  into a <code>.dot</code> graph.  This graph can then be processed with the
311  "dot" tool to convert it to postscript or some other suitable format.
312  </p>
313</div>
314
315<!-------------------------------------------------------------------------- -->
316<h3>
317  <a name="dot-cfg-only">-dot-cfg-only: Print CFG of function to 'dot' file (with no function bodies)</a>
318</h3>
319<div>
320  <p>
321  This pass, only available in <code>opt</code>, prints the control flow graph
322  into a <code>.dot</code> graph, omitting the function bodies.  This graph can
323  then be processed with the "dot" tool to convert it to postscript or some
324  other suitable format.
325  </p>
326</div>
327
328<!-------------------------------------------------------------------------- -->
329<h3>
330  <a name="dot-dom">-dot-dom: Print dominance tree of function to 'dot' file</a>
331</h3>
332<div>
333  <p>
334  This pass, only available in <code>opt</code>, prints the dominator tree
335  into a <code>.dot</code> graph.  This graph can then be processed with the
336  "dot" tool to convert it to postscript or some other suitable format.
337  </p>
338</div>
339
340<!-------------------------------------------------------------------------- -->
341<h3>
342  <a name="dot-dom-only">-dot-dom-only: Print dominance tree of function to 'dot' file (with no function bodies)</a>
343</h3>
344<div>
345  <p>
346  This pass, only available in <code>opt</code>, prints the dominator tree
347  into a <code>.dot</code> graph, omitting the function bodies.  This graph can
348  then be processed with the "dot" tool to convert it to postscript or some
349  other suitable format.
350  </p>
351</div>
352
353<!-------------------------------------------------------------------------- -->
354<h3>
355  <a name="dot-postdom">-dot-postdom: Print postdominance tree of function to 'dot' file</a>
356</h3>
357<div>
358  <p>
359  This pass, only available in <code>opt</code>, prints the post dominator tree
360  into a <code>.dot</code> graph.  This graph can then be processed with the
361  "dot" tool to convert it to postscript or some other suitable format.
362  </p>
363</div>
364
365<!-------------------------------------------------------------------------- -->
366<h3>
367  <a name="dot-postdom-only">-dot-postdom-only: Print postdominance tree of function to 'dot' file (with no function bodies)</a>
368</h3>
369<div>
370  <p>
371  This pass, only available in <code>opt</code>, prints the post dominator tree
372  into a <code>.dot</code> graph, omitting the function bodies.  This graph can
373  then be processed with the "dot" tool to convert it to postscript or some
374  other suitable format.
375  </p>
376</div>
377
378<!-------------------------------------------------------------------------- -->
379<h3>
380  <a name="globalsmodref-aa">-globalsmodref-aa: Simple mod/ref analysis for globals</a>
381</h3>
382<div>
383  <p>
384  This simple pass provides alias and mod/ref information for global values
385  that do not have their address taken, and keeps track of whether functions
386  read or write memory (are "pure").  For this simple (but very common) case,
387  we can provide pretty accurate and useful information.
388  </p>
389</div>
390
391<!-------------------------------------------------------------------------- -->
392<h3>
393  <a name="instcount">-instcount: Counts the various types of Instructions</a>
394</h3>
395<div>
396  <p>
397  This pass collects the count of all instructions and reports them
398  </p>
399</div>
400
401<!-------------------------------------------------------------------------- -->
402<h3>
403  <a name="intervals">-intervals: Interval Partition Construction</a>
404</h3>
405<div>
406  <p>
407  This analysis calculates and represents the interval partition of a function,
408  or a preexisting interval partition.
409  </p>
410  
411  <p>
412  In this way, the interval partition may be used to reduce a flow graph down
413  to its degenerate single node interval partition (unless it is irreducible).
414  </p>
415</div>
416
417<!-------------------------------------------------------------------------- -->
418<h3>
419  <a name="iv-users">-iv-users: Induction Variable Users</a>
420</h3>
421<div>
422  <p>Bookkeeping for "interesting" users of expressions computed from 
423  induction variables.</p>
424</div>
425
426<!-------------------------------------------------------------------------- -->
427<h3>
428  <a name="lazy-value-info">-lazy-value-info: Lazy Value Information Analysis</a>
429</h3>
430<div>
431  <p>Interface for lazy computation of value constraint information.</p>
432</div>
433
434<!-------------------------------------------------------------------------- -->
435<h3>
436  <a name="lda">-lda: Loop Dependence Analysis</a>
437</h3>
438<div>
439  <p>Loop dependence analysis framework, which is used to detect dependences in
440  memory accesses in loops.</p>
441</div>
442
443<!-------------------------------------------------------------------------- -->
444<h3>
445  <a name="libcall-aa">-libcall-aa: LibCall Alias Analysis</a>
446</h3>
447<div>
448  <p>LibCall Alias Analysis.</p>
449</div>
450
451<!-------------------------------------------------------------------------- -->
452<h3>
453  <a name="lint">-lint: Statically lint-checks LLVM IR</a>
454</h3>
455<div>
456  <p>This pass statically checks for common and easily-identified constructs
457  which produce undefined or likely unintended behavior in LLVM IR.</p>
458 
459  <p>It is not a guarantee of correctness, in two ways. First, it isn't
460  comprehensive. There are checks which could be done statically which are
461  not yet implemented. Some of these are indicated by TODO comments, but
462  those aren't comprehensive either. Second, many conditions cannot be
463  checked statically. This pass does no dynamic instrumentation, so it
464  can't check for all possible problems.</p>
465  
466  <p>Another limitation is that it assumes all code will be executed. A store
467  through a null pointer in a basic block which is never reached is harmless,
468  but this pass will warn about it anyway.</p>
469 
470  <p>Optimization passes may make conditions that this pass checks for more or
471  less obvious. If an optimization pass appears to be introducing a warning,
472  it may be that the optimization pass is merely exposing an existing
473  condition in the code.</p>
474  
475  <p>This code may be run before instcombine. In many cases, instcombine checks
476  for the same kinds of things and turns instructions with undefined behavior
477  into unreachable (or equivalent). Because of this, this pass makes some
478  effort to look through bitcasts and so on.
479  </p>
480</div>
481
482<!-------------------------------------------------------------------------- -->
483<h3>
484  <a name="loops">-loops: Natural Loop Information</a>
485</h3>
486<div>
487  <p>
488  This analysis is used to identify natural loops and determine the loop depth
489  of various nodes of the CFG.  Note that the loops identified may actually be
490  several natural loops that share the same header node... not just a single
491  natural loop.
492  </p>
493</div>
494
495<!-------------------------------------------------------------------------- -->
496<h3>
497  <a name="memdep">-memdep: Memory Dependence Analysis</a>
498</h3>
499<div>
500  <p>
501  An analysis that determines, for a given memory operation, what preceding 
502  memory operations it depends on.  It builds on alias analysis information, and 
503  tries to provide a lazy, caching interface to a common kind of alias 
504  information query.
505  </p>
506</div>
507
508<!-------------------------------------------------------------------------- -->
509<h3>
510  <a name="module-debuginfo">-module-debuginfo: Decodes module-level debug info</a>
511</h3>
512<div>
513  <p>This pass decodes the debug info metadata in a module and prints in a
514 (sufficiently-prepared-) human-readable form.
515
516 For example, run this pass from opt along with the -analyze option, and
517 it'll print to standard output.
518  </p>
519</div>
520
521<!-------------------------------------------------------------------------- -->
522<h3>
523  <a name="no-aa">-no-aa: No Alias Analysis (always returns 'may' alias)</a>
524</h3>
525<div>
526  <p>
527  This is the default implementation of the Alias Analysis interface. It always
528  returns "I don't know" for alias queries.  NoAA is unlike other alias analysis
529  implementations, in that it does not chain to a previous analysis. As such it
530  doesn't follow many of the rules that other alias analyses must.
531  </p>
532</div>
533
534<!-------------------------------------------------------------------------- -->
535<h3>
536  <a name="no-profile">-no-profile: No Profile Information</a>
537</h3>
538<div>
539  <p>
540  The default "no profile" implementation of the abstract
541  <code>ProfileInfo</code> interface.
542  </p>
543</div>
544
545<!-------------------------------------------------------------------------- -->
546<h3>
547  <a name="postdomfrontier">-postdomfrontier: Post-Dominance Frontier Construction</a>
548</h3>
549<div>
550  <p>
551  This pass is a simple post-dominator construction algorithm for finding
552  post-dominator frontiers.
553  </p>
554</div>
555
556<!-------------------------------------------------------------------------- -->
557<h3>
558  <a name="postdomtree">-postdomtree: Post-Dominator Tree Construction</a>
559</h3>
560<div>
561  <p>
562  This pass is a simple post-dominator construction algorithm for finding
563  post-dominators.
564  </p>
565</div>
566
567<!-------------------------------------------------------------------------- -->
568<h3>
569  <a name="print-alias-sets">-print-alias-sets: Alias Set Printer</a>
570</h3>
571<div>
572  <p>Yet to be written.</p>
573</div>
574
575<!-------------------------------------------------------------------------- -->
576<h3>
577  <a name="print-callgraph">-print-callgraph: Print a call graph</a>
578</h3>
579<div>
580  <p>
581  This pass, only available in <code>opt</code>, prints the call graph to
582  standard error in a human-readable form.
583  </p>
584</div>
585
586<!-------------------------------------------------------------------------- -->
587<h3>
588  <a name="print-callgraph-sccs">-print-callgraph-sccs: Print SCCs of the Call Graph</a>
589</h3>
590<div>
591  <p>
592  This pass, only available in <code>opt</code>, prints the SCCs of the call
593  graph to standard error in a human-readable form.
594  </p>
595</div>
596
597<!-------------------------------------------------------------------------- -->
598<h3>
599  <a name="print-cfg-sccs">-print-cfg-sccs: Print SCCs of each function CFG</a>
600</h3>
601<div>
602  <p>
603  This pass, only available in <code>opt</code>, prints the SCCs of each
604  function CFG to standard error in a human-readable form.
605  </p>
606</div>
607
608<!-------------------------------------------------------------------------- -->
609<h3>
610  <a name="print-dbginfo">-print-dbginfo: Print debug info in human readable form</a>
611</h3>
612<div>
613  <p>Pass that prints instructions, and associated debug info:</p>
614  <ul>
615  
616  <li>source/line/col information</li>
617  <li>original variable name</li>
618  <li>original type name</li>
619  </ul>
620</div>
621
622<!-------------------------------------------------------------------------- -->
623<h3>
624  <a name="print-dom-info">-print-dom-info: Dominator Info Printer</a>
625</h3>
626<div>
627  <p>Dominator Info Printer.</p>
628</div>
629
630<!-------------------------------------------------------------------------- -->
631<h3>
632  <a name="print-externalfnconstants">-print-externalfnconstants: Print external fn callsites passed constants</a>
633</h3>
634<div>
635  <p>
636  This pass, only available in <code>opt</code>, prints out call sites to
637  external functions that are called with constant arguments.  This can be
638  useful when looking for standard library functions we should constant fold
639  or handle in alias analyses.
640  </p>
641</div>
642
643<!-------------------------------------------------------------------------- -->
644<h3>
645  <a name="print-function">-print-function: Print function to stderr</a>
646</h3>
647<div>
648  <p>
649  The <code>PrintFunctionPass</code> class is designed to be pipelined with
650  other <code>FunctionPass</code>es, and prints out the functions of the module
651  as they are processed.
652  </p>
653</div>
654
655<!-------------------------------------------------------------------------- -->
656<h3>
657  <a name="print-module">-print-module: Print module to stderr</a>
658</h3>
659<div>
660  <p>
661  This pass simply prints out the entire module when it is executed.
662  </p>
663</div>
664
665<!-------------------------------------------------------------------------- -->
666<h3>
667  <a name="print-used-types">-print-used-types: Find Used Types</a>
668</h3>
669<div>
670  <p>
671  This pass is used to seek out all of the types in use by the program.  Note
672  that this analysis explicitly does not include types only used by the symbol
673  table.
674</div>
675
676<!-------------------------------------------------------------------------- -->
677<h3>
678  <a name="profile-estimator">-profile-estimator: Estimate profiling information</a>
679</h3>
680<div>
681  <p>Profiling information that estimates the profiling information 
682  in a very crude and unimaginative way.
683  </p>
684</div>
685
686<!-------------------------------------------------------------------------- -->
687<h3>
688  <a name="profile-loader">-profile-loader: Load profile information from llvmprof.out</a>
689</h3>
690<div>
691  <p>
692  A concrete implementation of profiling information that loads the information
693  from a profile dump file.
694  </p>
695</div>
696
697<!-------------------------------------------------------------------------- -->
698<h3>
699  <a name="profile-verifier">-profile-verifier: Verify profiling information</a>
700</h3>
701<div>
702  <p>Pass that checks profiling information for plausibility.</p>
703</div>
704<h3>
705  <a name="regions">-regions: Detect single entry single exit regions</a>
706</h3>
707<div>
708  <p>
709  The <code>RegionInfo</code> pass detects single entry single exit regions in a
710  function, where a region is defined as any subgraph that is connected to the
711  remaining graph at only two spots. Furthermore, an hierarchical region tree is
712  built.
713  </p>
714</div>
715
716<!-------------------------------------------------------------------------- -->
717<h3>
718  <a name="scalar-evolution">-scalar-evolution: Scalar Evolution Analysis</a>
719</h3>
720<div>
721  <p>
722  The <code>ScalarEvolution</code> analysis can be used to analyze and
723  catagorize scalar expressions in loops.  It specializes in recognizing general
724  induction variables, representing them with the abstract and opaque
725  <code>SCEV</code> class.  Given this analysis, trip counts of loops and other
726  important properties can be obtained.
727  </p>
728  
729  <p>
730  This analysis is primarily useful for induction variable substitution and
731  strength reduction.
732  </p>
733</div>
734
735<!-------------------------------------------------------------------------- -->
736<h3>
737  <a name="scev-aa">-scev-aa: ScalarEvolution-based Alias Analysis</a>
738</h3>
739<div>
740  <p>Simple alias analysis implemented in terms of ScalarEvolution queries.
741 
742  This differs from traditional loop dependence analysis in that it tests
743  for dependencies within a single iteration of a loop, rather than
744  dependencies between different iterations.
745 
746  ScalarEvolution has a more complete understanding of pointer arithmetic
747  than BasicAliasAnalysis' collection of ad-hoc analyses.
748  </p>
749</div>
750
751<!-------------------------------------------------------------------------- -->
752<h3>
753  <a name="targetdata">-targetdata: Target Data Layout</a>
754</h3>
755<div>
756  <p>Provides other passes access to information on how the size and alignment
757  required by the target ABI for various data types.</p>
758</div>
759
760</div>
761
762<!-- ======================================================================= -->
763<h2><a name="transforms">Transform Passes</a></h2>
764<div>
765  <p>This section describes the LLVM Transform Passes.</p>
766
767<!-------------------------------------------------------------------------- -->
768<h3>
769  <a name="adce">-adce: Aggressive Dead Code Elimination</a>
770</h3>
771<div>
772  <p>ADCE aggressively tries to eliminate code. This pass is similar to
773  <a href="#dce">DCE</a> but it assumes that values are dead until proven 
774  otherwise. This is similar to <a href="#sccp">SCCP</a>, except applied to 
775  the liveness of values.</p>
776</div>
777
778<!-------------------------------------------------------------------------- -->
779<h3>
780  <a name="always-inline">-always-inline: Inliner for always_inline functions</a>
781</h3>
782<div>
783  <p>A custom inliner that handles only functions that are marked as 
784  "always inline".</p>
785</div>
786
787<!-------------------------------------------------------------------------- -->
788<h3>
789  <a name="argpromotion">-argpromotion: Promote 'by reference' arguments to scalars</a>
790</h3>
791<div>
792  <p>
793  This pass promotes "by reference" arguments to be "by value" arguments.  In
794  practice, this means looking for internal functions that have pointer
795  arguments.  If it can prove, through the use of alias analysis, that an
796  argument is *only* loaded, then it can pass the value into the function
797  instead of the address of the value.  This can cause recursive simplification
798  of code and lead to the elimination of allocas (especially in C++ template
799  code like the STL).
800  </p>
801  
802  <p>
803  This pass also handles aggregate arguments that are passed into a function,
804  scalarizing them if the elements of the aggregate are only loaded.  Note that
805  it refuses to scalarize aggregates which would require passing in more than
806  three operands to the function, because passing thousands of operands for a
807  large array or structure is unprofitable!
808  </p>
809  
810  <p>
811  Note that this transformation could also be done for arguments that are only
812  stored to (returning the value instead), but does not currently.  This case
813  would be best handled when and if LLVM starts supporting multiple return
814  values from functions.
815  </p>
816</div>
817
818<!-------------------------------------------------------------------------- -->
819<h3>
820  <a name="bb-vectorize">-bb-vectorize: Basic-Block Vectorization</a>
821</h3>
822<div>
823  <p>This pass combines instructions inside basic blocks to form vector
824  instructions. It iterates over each basic block, attempting to pair
825  compatible instructions, repeating this process until no additional
826  pairs are selected for vectorization. When the outputs of some pair
827  of compatible instructions are used as inputs by some other pair of
828  compatible instructions, those pairs are part of a potential
829  vectorization chain. Instruction pairs are only fused into vector
830  instructions when they are part of a chain longer than some
831  threshold length. Moreover, the pass attempts to find the best
832  possible chain for each pair of compatible instructions. These
833  heuristics are intended to prevent vectorization in cases where
834  it would not yield a performance increase of the resulting code.
835  </p>
836</div>
837
838<!-------------------------------------------------------------------------- -->
839<h3>
840  <a name="block-placement">-block-placement: Profile Guided Basic Block Placement</a>
841</h3>
842<div>
843  <p>This pass is a very simple profile guided basic block placement algorithm.
844  The idea is to put frequently executed blocks together at the start of the
845  function and hopefully increase the number of fall-through conditional
846  branches.  If there is no profile information for a particular function, this
847  pass basically orders blocks in depth-first order.</p>
848</div>
849
850<!-------------------------------------------------------------------------- -->
851<h3>
852  <a name="break-crit-edges">-break-crit-edges: Break critical edges in CFG</a>
853</h3>
854<div>
855  <p>
856  Break all of the critical edges in the CFG by inserting a dummy basic block.
857  It may be "required" by passes that cannot deal with critical edges. This
858  transformation obviously invalidates the CFG, but can update forward dominator
859  (set, immediate dominators, tree, and frontier) information.
860  </p>
861</div>
862
863<!-------------------------------------------------------------------------- -->
864<h3>
865  <a name="codegenprepare">-codegenprepare: Optimize for code generation</a>
866</h3>
867<div>
868  This pass munges the code in the input function to better prepare it for
869  SelectionDAG-based code generation. This works around limitations in it's
870  basic-block-at-a-time approach. It should eventually be removed.
871</div>
872
873<!-------------------------------------------------------------------------- -->
874<h3>
875  <a name="constmerge">-constmerge: Merge Duplicate Global Constants</a>
876</h3>
877<div>
878  <p>
879  Merges duplicate global constants together into a single constant that is
880  shared.  This is useful because some passes (ie TraceValues) insert a lot of
881  string constants into the program, regardless of whether or not an existing
882  string is available.
883  </p>
884</div>
885
886<!-------------------------------------------------------------------------- -->
887<h3>
888  <a name="constprop">-constprop: Simple constant propagation</a>
889</h3>
890<div>
891  <p>This file implements constant propagation and merging. It looks for
892  instructions involving only constant operands and replaces them with a
893  constant value instead of an instruction. For example:</p>
894  <blockquote><pre>add i32 1, 2</pre></blockquote>
895  <p>becomes</p>
896  <blockquote><pre>i32 3</pre></blockquote>
897  <p>NOTE: this pass has a habit of making definitions be dead.  It is a good 
898  idea to to run a <a href="#die">DIE</a> (Dead Instruction Elimination) pass 
899  sometime after running this pass.</p>
900</div>
901
902<!-------------------------------------------------------------------------- -->
903<h3>
904  <a name="dce">-dce: Dead Code Elimination</a>
905</h3>
906<div>
907  <p>
908  Dead code elimination is similar to <a href="#die">dead instruction
909  elimination</a>, but it rechecks instructions that were used by removed
910  instructions to see if they are newly dead.
911  </p>
912</div>
913
914<!-------------------------------------------------------------------------- -->
915<h3>
916  <a name="deadargelim">-deadargelim: Dead Argument Elimination</a>
917</h3>
918<div>
919  <p>
920  This pass deletes dead arguments from internal functions.  Dead argument
921  elimination removes arguments which are directly dead, as well as arguments
922  only passed into function calls as dead arguments of other functions.  This
923  pass also deletes dead arguments in a similar way.
924  </p>
925  
926  <p>
927  This pass is often useful as a cleanup pass to run after aggressive
928  interprocedural passes, which add possibly-dead arguments.
929  </p>
930</div>
931
932<!-------------------------------------------------------------------------- -->
933<h3>
934  <a name="deadtypeelim">-deadtypeelim: Dead Type Elimination</a>
935</h3>
936<div>
937  <p>
938  This pass is used to cleanup the output of GCC.  It eliminate names for types
939  that are unused in the entire translation unit, using the <a
940  href="#findusedtypes">find used types</a> pass.
941  </p>
942</div>
943
944<!-------------------------------------------------------------------------- -->
945<h3>
946  <a name="die">-die: Dead Instruction Elimination</a>
947</h3>
948<div>
949  <p>
950  Dead instruction elimination performs a single pass over the function,
951  removing instructions that are obviously dead.
952  </p>
953</div>
954
955<!-------------------------------------------------------------------------- -->
956<h3>
957  <a name="dse">-dse: Dead Store Elimination</a>
958</h3>
959<div>
960  <p>
961  A trivial dead store elimination that only considers basic-block local
962  redundant stores.
963  </p>
964</div>
965
966<!-------------------------------------------------------------------------- -->
967<h3>
968  <a name="functionattrs">-functionattrs: Deduce function attributes</a>
969</h3>
970<div>
971  <p>A simple interprocedural pass which walks the call-graph, looking for 
972  functions which do not access or only read non-local memory, and marking them 
973  readnone/readonly.  In addition, it marks function arguments (of pointer type) 
974  'nocapture' if a call to the function does not create any copies of the pointer 
975  value that outlive the call. This more or less means that the pointer is only
976  dereferenced, and not returned from the function or stored in a global.
977  This pass is implemented as a bottom-up traversal of the call-graph.
978  </p>
979</div>
980
981<!-------------------------------------------------------------------------- -->
982<h3>
983  <a name="globaldce">-globaldce: Dead Global Elimination</a>
984</h3>
985<div>
986  <p>
987  This transform is designed to eliminate unreachable internal globals from the
988  program.  It uses an aggressive algorithm, searching out globals that are
989  known to be alive.  After it finds all of the globals which are needed, it
990  deletes whatever is left over.  This allows it to delete recursive chunks of
991  the program which are unreachable.
992  </p>
993</div>
994
995<!-------------------------------------------------------------------------- -->
996<h3>
997  <a name="globalopt">-globalopt: Global Variable Optimizer</a>
998</h3>
999<div>
1000  <p>
1001  This pass transforms simple global variables that never have their address
1002  taken.  If obviously true, it marks read/write globals as constant, deletes
1003  variables only stored to, etc.
1004  </p>
1005</div>
1006
1007<!-------------------------------------------------------------------------- -->
1008<h3>
1009  <a name="gvn">-gvn: Global Value Numbering</a>
1010</h3>
1011<div>
1012  <p>
1013  This pass performs global value numbering to eliminate fully and partially
1014  redundant instructions.  It also performs redundant load elimination.
1015  </p>
1016</div>
1017
1018<!-------------------------------------------------------------------------- -->
1019<h3>
1020  <a name="indvars">-indvars: Canonicalize Induction Variables</a>
1021</h3>
1022<div>
1023  <p>
1024  This transformation analyzes and transforms the induction variables (and
1025  computations derived from them) into simpler forms suitable for subsequent
1026  analysis and transformation.
1027  </p>
1028  
1029  <p>
1030  This transformation makes the following changes to each loop with an
1031  identifiable induction variable:
1032  </p>
1033  
1034  <ol>
1035    <li>All loops are transformed to have a <em>single</em> canonical
1036        induction variable which starts at zero and steps by one.</li>
1037    <li>The canonical induction variable is guaranteed to be the first PHI node
1038        in the loop header block.</li>
1039    <li>Any pointer arithmetic recurrences are raised to use array
1040        subscripts.</li>
1041  </ol>
1042  
1043  <p>
1044  If the trip count of a loop is computable, this pass also makes the following
1045  changes:
1046  </p>
1047  
1048  <ol>
1049    <li>The exit condition for the loop is canonicalized to compare the
1050        induction value against the exit value.  This turns loops like:
1051        <blockquote><pre>for (i = 7; i*i < 1000; ++i)</pre></blockquote>
1052        into
1053        <blockquote><pre>for (i = 0; i != 25; ++i)</pre></blockquote></li>
1054    <li>Any use outside of the loop of an expression derived from the indvar
1055        is changed to compute the derived value outside of the loop, eliminating
1056        the dependence on the exit value of the induction variable.  If the only
1057        purpose of the loop is to compute the exit value of some derived
1058        expression, this transformation will make the loop dead.</li>
1059  </ol>
1060  
1061  <p>
1062  This transformation should be followed by strength reduction after all of the
1063  desired loop transformations have been performed.  Additionally, on targets
1064  where it is profitable, the loop could be transformed to count down to zero
1065  (the "do loop" optimization).
1066  </p>
1067</div>
1068
1069<!-------------------------------------------------------------------------- -->
1070<h3>
1071  <a name="inline">-inline: Function Integration/Inlining</a>
1072</h3>
1073<div>
1074  <p>
1075  Bottom-up inlining of functions into callees.
1076  </p>
1077</div>
1078
1079<!-------------------------------------------------------------------------- -->
1080<h3>
1081  <a name="insert-edge-profiling">-insert-edge-profiling: Insert instrumentation for edge profiling</a>
1082</h3>
1083<div>
1084  <p>
1085  This pass instruments the specified program with counters for edge profiling.
1086  Edge profiling can give a reasonable approximation of the hot paths through a
1087  program, and is used for a wide variety of program transformations.
1088  </p>
1089  
1090  <p>
1091  Note that this implementation is very naïve.  It inserts a counter for
1092  <em>every</em> edge in the program, instead of using control flow information
1093  to prune the number of counters inserted.
1094  </p>
1095</div>
1096
1097<!-------------------------------------------------------------------------- -->
1098<h3>
1099  <a name="insert-optimal-edge-profiling">-insert-optimal-edge-profiling: Insert optimal instrumentation for edge profiling</a>
1100</h3>
1101<div>
1102  <p>This pass instruments the specified program with counters for edge profiling.
1103  Edge profiling can give a reasonable approximation of the hot paths through a
1104  program, and is used for a wide variety of program transformations.
1105  </p>
1106</div>
1107
1108<!-------------------------------------------------------------------------- -->
1109<h3>
1110  <a name="instcombine">-instcombine: Combine redundant instructions</a>
1111</h3>
1112<div>
1113  <p>
1114  Combine instructions to form fewer, simple
1115  instructions.  This pass does not modify the CFG This pass is where algebraic
1116  simplification happens.
1117  </p>
1118  
1119  <p>
1120  This pass combines things like:
1121  </p>
1122  
1123<blockquote><pre
1124>%Y = add i32 %X, 1
1125%Z = add i32 %Y, 1</pre></blockquote>
1126  
1127  <p>
1128  into:
1129  </p>
1130
1131<blockquote><pre
1132>%Z = add i32 %X, 2</pre></blockquote>
1133  
1134  <p>
1135  This is a simple worklist driven algorithm.
1136  </p>
1137  
1138  <p>
1139  This pass guarantees that the following canonicalizations are performed on
1140  the program:
1141  </p>
1142
1143  <ul>
1144    <li>If a binary operator has a constant operand, it is moved to the right-
1145        hand side.</li>
1146    <li>Bitwise operators with constant operands are always grouped so that
1147        shifts are performed first, then <code>or</code>s, then
1148        <code>and</code>s, then <code>xor</code>s.</li>
1149    <li>Compare instructions are converted from <code>&lt;</code>,
1150        <code>&gt;</code>, <code>≤</code>, or <code>≥</code> to
1151        <code>=</code> or <code>≠</code> if possible.</li>
1152    <li>All <code>cmp</code> instructions on boolean values are replaced with
1153        logical operations.</li>
1154    <li><code>add <var>X</var>, <var>X</var></code> is represented as
1155        <code>mul <var>X</var>, 2</code> ⇒ <code>shl <var>X</var>, 1</code></li>
1156    <li>Multiplies with a constant power-of-two argument are transformed into
1157        shifts.</li>
1158    <li>… etc.</li>
1159  </ul>
1160</div>
1161
1162<!-------------------------------------------------------------------------- -->
1163<h3>
1164  <a name="internalize">-internalize: Internalize Global Symbols</a>
1165</h3>
1166<div>
1167  <p>
1168  This pass loops over all of the functions in the input module, looking for a
1169  main function.  If a main function is found, all other functions and all
1170  global variables with initializers are marked as internal.
1171  </p>
1172</div>
1173
1174<!-------------------------------------------------------------------------- -->
1175<h3>
1176  <a name="ipconstprop">-ipconstprop: Interprocedural constant propagation</a>
1177</h3>
1178<div>
1179  <p>
1180  This pass implements an <em>extremely</em> simple interprocedural constant
1181  propagation pass.  It could certainly be improved in many different ways,
1182  like using a worklist.  This pass makes arguments dead, but does not remove
1183  them.  The existing dead argument elimination pass should be run after this
1184  to clean up the mess.
1185  </p>
1186</div>
1187
1188<!-------------------------------------------------------------------------- -->
1189<h3>
1190  <a name="ipsccp">-ipsccp: Interprocedural Sparse Conditional Constant Propagation</a>
1191</h3>
1192<div>
1193  <p>
1194  An interprocedural variant of <a href="#sccp">Sparse Conditional Constant 
1195  Propagation</a>.
1196  </p>
1197</div>
1198
1199<!-------------------------------------------------------------------------- -->
1200<h3>
1201  <a name="jump-threading">-jump-threading: Jump Threading</a>
1202</h3>
1203<div>
1204  <p>
1205  Jump threading tries to find distinct threads of control flow running through
1206  a basic block. This pass looks at blocks that have multiple predecessors and
1207  multiple successors.  If one or more of the predecessors of the block can be
1208  proven to always cause a jump to one of the successors, we forward the edge
1209  from the predecessor to the successor by duplicating the contents of this
1210  block.
1211  </p>
1212  <p>
1213  An example of when this can occur is code like this:
1214  </p>
1215
1216  <pre
1217>if () { ...
1218  X = 4;
1219}
1220if (X &lt; 3) {</pre>
1221
1222  <p>
1223  In this case, the unconditional branch at the end of the first if can be
1224  revectored to the false side of the second if.
1225  </p>
1226</div>
1227
1228<!-------------------------------------------------------------------------- -->
1229<h3>
1230  <a name="lcssa">-lcssa: Loop-Closed SSA Form Pass</a>
1231</h3>
1232<div>
1233  <p>
1234  This pass transforms loops by placing phi nodes at the end of the loops for
1235  all values that are live across the loop boundary.  For example, it turns
1236  the left into the right code:
1237  </p>
1238  
1239  <pre
1240>for (...)                for (...)
1241  if (c)                   if (c)
1242    X1 = ...                 X1 = ...
1243  else                     else
1244    X2 = ...                 X2 = ...
1245  X3 = phi(X1, X2)         X3 = phi(X1, X2)
1246... = X3 + 4              X4 = phi(X3)
1247                          ... = X4 + 4</pre>
1248  
1249  <p>
1250  This is still valid LLVM; the extra phi nodes are purely redundant, and will
1251  be trivially eliminated by <code>InstCombine</code>.  The major benefit of
1252  this transformation is that it makes many other loop optimizations, such as 
1253  LoopUnswitching, simpler.
1254  </p>
1255</div>
1256
1257<!-------------------------------------------------------------------------- -->
1258<h3>
1259  <a name="licm">-licm: Loop Invariant Code Motion</a>
1260</h3>
1261<div>
1262  <p>
1263  This pass performs loop invariant code motion, attempting to remove as much
1264  code from the body of a loop as possible.  It does this by either hoisting
1265  code into the preheader block, or by sinking code to the exit blocks if it is
1266  safe.  This pass also promotes must-aliased memory locations in the loop to
1267  live in registers, thus hoisting and sinking "invariant" loads and stores.
1268  </p>
1269  
1270  <p>
1271  This pass uses alias analysis for two purposes:
1272  </p>
1273  
1274  <ul>
1275    <li>Moving loop invariant loads and calls out of loops.  If we can determine
1276        that a load or call inside of a loop never aliases anything stored to,
1277        we can hoist it or sink it like any other instruction.</li>
1278    <li>Scalar Promotion of Memory - If there is a store instruction inside of
1279        the loop, we try to move the store to happen AFTER the loop instead of
1280        inside of the loop.  This can only happen if a few conditions are true:
1281        <ul>
1282          <li>The pointer stored through is loop invariant.</li>
1283          <li>There are no stores or loads in the loop which <em>may</em> alias
1284              the pointer.  There are no calls in the loop which mod/ref the
1285              pointer.</li>
1286        </ul>
1287        If these conditions are true, we can promote the loads and stores in the
1288        loop of the pointer to use a temporary alloca'd variable.  We then use
1289        the mem2reg functionality to construct the appropriate SSA form for the
1290        variable.</li>
1291  </ul>
1292</div>
1293
1294<!-------------------------------------------------------------------------- -->
1295<h3>
1296  <a name="loop-deletion">-loop-deletion: Delete dead loops</a>
1297</h3>
1298<div>
1299  <p>
1300  This file implements the Dead Loop Deletion Pass.  This pass is responsible
1301  for eliminating loops with non-infinite computable trip counts that have no
1302  side effects or volatile instructions, and do not contribute to the
1303  computation of the function's return value.
1304  </p>
1305</div>
1306
1307<!-------------------------------------------------------------------------- -->
1308<h3>
1309  <a name="loop-extract">-loop-extract: Extract loops into new functions</a>
1310</h3>
1311<div>
1312  <p>
1313  A pass wrapper around the <code>ExtractLoop()</code> scalar transformation to 
1314  extract each top-level loop into its own new function. If the loop is the
1315  <em>only</em> loop in a given function, it is not touched. This is a pass most
1316  useful for debugging via bugpoint.
1317  </p>
1318</div>
1319
1320<!-------------------------------------------------------------------------- -->
1321<h3>
1322  <a name="loop-extract-single">-loop-extract-single: Extract at most one loop into a new function</a>
1323</h3>
1324<div>
1325  <p>
1326  Similar to <a href="#loop-extract">Extract loops into new functions</a>,
1327  this pass extracts one natural loop from the program into a function if it
1328  can. This is used by bugpoint.
1329  </p>
1330</div>
1331
1332<!-------------------------------------------------------------------------- -->
1333<h3>
1334  <a name="loop-reduce">-loop-reduce: Loop Strength Reduction</a>
1335</h3>
1336<div>
1337  <p>
1338  This pass performs a strength reduction on array references inside loops that
1339  have as one or more of their components the loop induction variable.  This is
1340  accomplished by creating a new value to hold the initial value of the array
1341  access for the first iteration, and then creating a new GEP instruction in
1342  the loop to increment the value by the appropriate amount.
1343  </p>
1344</div>
1345
1346<!-------------------------------------------------------------------------- -->
1347<h3>
1348  <a name="loop-rotate">-loop-rotate: Rotate Loops</a>
1349</h3>
1350<div>
1351  <p>A simple loop rotation transformation.</p>
1352</div>
1353
1354<!-------------------------------------------------------------------------- -->
1355<h3>
1356  <a name="loop-simplify">-loop-simplify: Canonicalize natural loops</a>
1357</h3>
1358<div>
1359  <p>
1360  This pass performs several transformations to transform natural loops into a
1361  simpler form, which makes subsequent analyses and transformations simpler and
1362  more effective.
1363  </p>
1364  
1365  <p>
1366  Loop pre-header insertion guarantees that there is a single, non-critical
1367  entry edge from outside of the loop to the loop header.  This simplifies a
1368  number of analyses and transformations, such as LICM.
1369  </p>
1370  
1371  <p>
1372  Loop exit-block insertion guarantees that all exit blocks from the loop
1373  (blocks which are outside of the loop that have predecessors inside of the
1374  loop) only have predecessors from inside of the loop (and are thus dominated
1375  by the loop header).  This simplifies transformations such as store-sinking
1376  that are built into LICM.
1377  </p>
1378  
1379  <p>
1380  This pass also guarantees that loops will have exactly one backedge.
1381  </p>
1382  
1383  <p>
1384  Note that the simplifycfg pass will clean up blocks which are split out but
1385  end up being unnecessary, so usage of this pass should not pessimize
1386  generated code.
1387  </p>
1388  
1389  <p>
1390  This pass obviously modifies the CFG, but updates loop information and
1391  dominator information.
1392  </p>
1393</div>
1394
1395<!-------------------------------------------------------------------------- -->
1396<h3>
1397  <a name="loop-unroll">-loop-unroll: Unroll loops</a>
1398</h3>
1399<div>
1400  <p>
1401  This pass implements a simple loop unroller.  It works best when loops have
1402  been canonicalized by the <a href="#indvars"><tt>-indvars</tt></a> pass,
1403  allowing it to determine the trip counts of loops easily.
1404  </p>
1405</div>
1406
1407<!-------------------------------------------------------------------------- -->
1408<h3>
1409  <a name="loop-unswitch">-loop-unswitch: Unswitch loops</a>
1410</h3>
1411<div>
1412  <p>
1413  This pass transforms loops that contain branches on loop-invariant conditions
1414  to have multiple loops.  For example, it turns the left into the right code:
1415  </p>
1416  
1417  <pre
1418>for (...)                  if (lic)
1419  A                          for (...)
1420  if (lic)                     A; B; C
1421    B                      else
1422  C                          for (...)
1423                               A; C</pre>
1424  
1425  <p>
1426  This can increase the size of the code exponentially (doubling it every time
1427  a loop is unswitched) so we only unswitch if the resultant code will be
1428  smaller than a threshold.
1429  </p>
1430  
1431  <p>
1432  This pass expects LICM to be run before it to hoist invariant conditions out
1433  of the loop, to make the unswitching opportunity obvious.
1434  </p>
1435</div>
1436
1437<!-------------------------------------------------------------------------- -->
1438<h3>
1439  <a name="loweratomic">-loweratomic: Lower atomic intrinsics to non-atomic form</a>
1440</h3>
1441<div>
1442  <p>
1443  This pass lowers atomic intrinsics to non-atomic form for use in a known
1444  non-preemptible environment.
1445  </p>
1446
1447  <p>
1448  The pass does not verify that the environment is non-preemptible (in
1449  general this would require knowledge of the entire call graph of the
1450  program including any libraries which may not be available in bitcode form);
1451  it simply lowers every atomic intrinsic.
1452  </p>
1453</div>
1454
1455<!-------------------------------------------------------------------------- -->
1456<h3>
1457  <a name="lowerinvoke">-lowerinvoke: Lower invoke and unwind, for unwindless code generators</a>
1458</h3>
1459<div>
1460  <p>
1461  This transformation is designed for use by code generators which do not yet
1462  support stack unwinding.  This pass supports two models of exception handling
1463  lowering, the 'cheap' support and the 'expensive' support.
1464  </p>
1465  
1466  <p>
1467  'Cheap' exception handling support gives the program the ability to execute
1468  any program which does not "throw an exception", by turning 'invoke'
1469  instructions into calls and by turning 'unwind' instructions into calls to
1470  abort().  If the program does dynamically use the unwind instruction, the
1471  program will print a message then abort.
1472  </p>
1473  
1474  <p>
1475  'Expensive' exception handling support gives the full exception handling
1476  support to the program at the cost of making the 'invoke' instruction
1477  really expensive.  It basically inserts setjmp/longjmp calls to emulate the
1478  exception handling as necessary.
1479  </p>
1480  
1481  <p>
1482  Because the 'expensive' support slows down programs a lot, and EH is only
1483  used for a subset of the programs, it must be specifically enabled by the
1484  <tt>-enable-correct-eh-support</tt> option.
1485  </p>
1486  
1487  <p>
1488  Note that after this pass runs the CFG is not entirely accurate (exceptional
1489  control flow edges are not correct anymore) so only very simple things should
1490  be done after the lowerinvoke pass has run (like generation of native code).
1491  This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
1492  support the invoke instruction yet" lowering pass.
1493  </p>
1494</div>
1495
1496<!-------------------------------------------------------------------------- -->
1497<h3>
1498  <a name="lowerswitch">-lowerswitch: Lower SwitchInst's to branches</a>
1499</h3>
1500<div>
1501  <p>
1502  Rewrites <tt>switch</tt> instructions with a sequence of branches, which
1503  allows targets to get away with not implementing the switch instruction until
1504  it is convenient.
1505  </p>
1506</div>
1507
1508<!-------------------------------------------------------------------------- -->
1509<h3>
1510  <a name="mem2reg">-mem2reg: Promote Memory to Register</a>
1511</h3>
1512<div>
1513  <p>
1514  This file promotes memory references to be register references.  It promotes
1515  <tt>alloca</tt> instructions which only have <tt>load</tt>s and
1516  <tt>store</tt>s as uses.  An <tt>alloca</tt> is transformed by using dominator
1517  frontiers to place <tt>phi</tt> nodes, then traversing the function in
1518  depth-first order to rewrite <tt>load</tt>s and <tt>store</tt>s as
1519  appropriate. This is just the standard SSA construction algorithm to construct
1520  "pruned" SSA form.
1521  </p>
1522</div>
1523
1524<!-------------------------------------------------------------------------- -->
1525<h3>
1526  <a name="memcpyopt">-memcpyopt: MemCpy Optimization</a>
1527</h3>
1528<div>
1529  <p>
1530  This pass performs various transformations related to eliminating memcpy
1531  calls, or transforming sets of stores into memset's.
1532  </p>
1533</div>
1534
1535<!-------------------------------------------------------------------------- -->
1536<h3>
1537  <a name="mergefunc">-mergefunc: Merge Functions</a>
1538</h3>
1539<div>
1540  <p>This pass looks for equivalent functions that are mergable and folds them.
1541 
1542  A hash is computed from the function, based on its type and number of
1543  basic blocks.
1544 
1545  Once all hashes are computed, we perform an expensive equality comparison
1546  on each function pair. This takes n^2/2 comparisons per bucket, so it's
1547  important that the hash function be high quality. The equality comparison
1548  iterates through each instruction in each basic block.
1549 
1550  When a match is found the functions are folded. If both functions are
1551  overridable, we move the functionality into a new internal function and
1552  leave two overridable thunks to it.
1553  </p>
1554</div>
1555
1556<!-------------------------------------------------------------------------- -->
1557<h3>
1558  <a name="mergereturn">-mergereturn: Unify function exit nodes</a>
1559</h3>
1560<div>
1561  <p>
1562  Ensure that functions have at most one <tt>ret</tt> instruction in them.
1563  Additionally, it keeps track of which node is the new exit node of the CFG.
1564  </p>
1565</div>
1566
1567<!-------------------------------------------------------------------------- -->
1568<h3>
1569  <a name="partial-inliner">-partial-inliner: Partial Inliner</a>
1570</h3>
1571<div>
1572  <p>This pass performs partial inlining, typically by inlining an if 
1573  statement that surrounds the body of the function.
1574  </p>
1575</div>
1576
1577<!-------------------------------------------------------------------------- -->
1578<h3>
1579  <a name="prune-eh">-prune-eh: Remove unused exception handling info</a>
1580</h3>
1581<div>
1582  <p>
1583  This file implements a simple interprocedural pass which walks the call-graph,
1584  turning <tt>invoke</tt> instructions into <tt>call</tt> instructions if and
1585  only if the callee cannot throw an exception. It implements this as a
1586  bottom-up traversal of the call-graph.
1587  </p>
1588</div>
1589
1590<!-------------------------------------------------------------------------- -->
1591<h3>
1592  <a name="reassociate">-reassociate: Reassociate expressions</a>
1593</h3>
1594<div>
1595  <p>
1596  This pass reassociates commutative expressions in an order that is designed
1597  to promote better constant propagation, GCSE, LICM, PRE, etc.
1598  </p>
1599  
1600  <p>
1601  For example: 4 + (<var>x</var> + 5) ⇒ <var>x</var> + (4 + 5)
1602  </p>
1603  
1604  <p>
1605  In the implementation of this algorithm, constants are assigned rank = 0,
1606  function arguments are rank = 1, and other values are assigned ranks
1607  corresponding to the reverse post order traversal of current function
1608  (starting at 2), which effectively gives values in deep loops higher rank
1609  than values not in loops.
1610  </p>
1611</div>
1612
1613<!-------------------------------------------------------------------------- -->
1614<h3>
1615  <a name="reg2mem">-reg2mem: Demote all values to stack slots</a>
1616</h3>
1617<div>
1618  <p>
1619  This file demotes all registers to memory references.  It is intended to be
1620  the inverse of <a href="#mem2reg"><tt>-mem2reg</tt></a>.  By converting to
1621  <tt>load</tt> instructions, the only values live across basic blocks are
1622  <tt>alloca</tt> instructions and <tt>load</tt> instructions before
1623  <tt>phi</tt> nodes. It is intended that this should make CFG hacking much 
1624  easier. To make later hacking easier, the entry block is split into two, such
1625  that all introduced <tt>alloca</tt> instructions (and nothing else) are in the
1626  entry block.
1627  </p>
1628</div>
1629
1630<!-------------------------------------------------------------------------- -->
1631<h3>
1632  <a name="scalarrepl">-scalarrepl: Scalar Replacement of Aggregates (DT)</a>
1633</h3>
1634<div>
1635  <p>
1636  The well-known scalar replacement of aggregates transformation.  This
1637  transform breaks up <tt>alloca</tt> instructions of aggregate type (structure
1638  or array) into individual <tt>alloca</tt> instructions for each member if
1639  possible.  Then, if possible, it transforms the individual <tt>alloca</tt>
1640  instructions into nice clean scalar SSA form.
1641  </p>
1642  
1643  <p>
1644  This combines a simple scalar replacement of aggregates algorithm with the <a
1645  href="#mem2reg"><tt>mem2reg</tt></a> algorithm because often interact, 
1646  especially for C++ programs.  As such, iterating between <tt>scalarrepl</tt>, 
1647  then <a href="#mem2reg"><tt>mem2reg</tt></a> until we run out of things to 
1648  promote works well.
1649  </p>
1650</div>
1651
1652<!-------------------------------------------------------------------------- -->
1653<h3>
1654  <a name="sccp">-sccp: Sparse Conditional Constant Propagation</a>
1655</h3>
1656<div>
1657  <p>
1658  Sparse conditional constant propagation and merging, which can be summarized
1659  as:
1660  </p>
1661  
1662  <ol>
1663    <li>Assumes values are constant unless proven otherwise</li>
1664    <li>Assumes BasicBlocks are dead unless proven otherwise</li>
1665    <li>Proves values to be constant, and replaces them with constants</li>
1666    <li>Proves conditional branches to be unconditional</li>
1667  </ol>
1668  
1669  <p>
1670  Note that this pass has a habit of making definitions be dead.  It is a good
1671  idea to to run a DCE pass sometime after running this pass.
1672  </p>
1673</div>
1674
1675<!-------------------------------------------------------------------------- -->
1676<h3>
1677  <a name="simplify-libcalls">-simplify-libcalls: Simplify well-known library calls</a>
1678</h3>
1679<div>
1680  <p>
1681  Applies a variety of small optimizations for calls to specific well-known 
1682  function calls (e.g. runtime library functions). For example, a call
1683   <tt>exit(3)</tt> that occurs within the <tt>main()</tt> function can be 
1684   transformed into simply <tt>return 3</tt>.
1685  </p>
1686</div>
1687
1688<!-------------------------------------------------------------------------- -->
1689<h3>
1690  <a name="simplifycfg">-simplifycfg: Simplify the CFG</a>
1691</h3>
1692<div>
1693  <p>
1694  Performs dead code elimination and basic block merging. Specifically:
1695  </p>
1696  
1697  <ol>
1698    <li>Removes basic blocks with no predecessors.</li>
1699    <li>Merges a basic block into its predecessor if there is only one and the
1700        predecessor only has one successor.</li>
1701    <li>Eliminates PHI nodes for basic blocks with a single predecessor.</li>
1702    <li>Eliminates a basic block that only contains an unconditional
1703        branch.</li>
1704  </ol>
1705</div>
1706
1707<!-------------------------------------------------------------------------- -->
1708<h3>
1709  <a name="sink">-sink: Code sinking</a>
1710</h3>
1711<div>
1712  <p>This pass moves instructions into successor blocks, when possible, so that
1713 they aren't executed on paths where their results aren't needed.
1714  </p>
1715</div>
1716
1717<!-------------------------------------------------------------------------- -->
1718<h3>
1719  <a name="sretpromotion">-sretpromotion: Promote sret arguments to multiple ret values</a>
1720</h3>
1721<div>
1722  <p>
1723  This pass finds functions that return a struct (using a pointer to the struct
1724  as the first argument of the function, marked with the '<tt>sret</tt>' attribute) and
1725  replaces them with a new function that simply returns each of the elements of
1726  that struct (using multiple return values).
1727  </p>
1728
1729  <p>
1730  This pass works under a number of conditions:
1731  </p>
1732
1733  <ul>
1734  <li>The returned struct must not contain other structs</li>
1735  <li>The returned struct must only be used to load values from</li>
1736  <li>The placeholder struct passed in is the result of an <tt>alloca</tt></li>
1737  </ul>
1738</div>
1739
1740<!-------------------------------------------------------------------------- -->
1741<h3>
1742  <a name="strip">-strip: Strip all symbols from a module</a>
1743</h3>
1744<div>
1745  <p>
1746  performs code stripping. this transformation can delete:
1747  </p>
1748  
1749  <ol>
1750    <li>names for virtual registers</li>
1751    <li>symbols for internal globals and functions</li>
1752    <li>debug information</li>
1753  </ol>
1754  
1755  <p>
1756  note that this transformation makes code much less readable, so it should
1757  only be used in situations where the <tt>strip</tt> utility would be used,
1758  such as reducing code size or making it harder to reverse engineer code.
1759  </p>
1760</div>
1761
1762<!-------------------------------------------------------------------------- -->
1763<h3>
1764  <a name="strip-dead-debug-info">-strip-dead-debug-info: Strip debug info for unused symbols</a>
1765</h3>
1766<div>
1767  <p>
1768  performs code stripping. this transformation can delete:
1769  </p>
1770  
1771  <ol>
1772    <li>names for virtual registers</li>
1773    <li>symbols for internal globals and functions</li>
1774    <li>debug information</li>
1775  </ol>
1776  
1777  <p>
1778  note that this transformation makes code much less readable, so it should
1779  only be used in situations where the <tt>strip</tt> utility would be used,
1780  such as reducing code size or making it harder to reverse engineer code.
1781  </p>
1782</div>
1783
1784<!-------------------------------------------------------------------------- -->
1785<h3>
1786  <a name="strip-dead-prototypes">-strip-dead-prototypes: Strip Unused Function Prototypes</a>
1787</h3>
1788<div>
1789  <p>
1790  This pass loops over all of the functions in the input module, looking for
1791  dead declarations and removes them. Dead declarations are declarations of
1792  functions for which no implementation is available (i.e., declarations for
1793  unused library functions).
1794  </p>
1795</div>
1796
1797<!-------------------------------------------------------------------------- -->
1798<h3>
1799  <a name="strip-debug-declare">-strip-debug-declare: Strip all llvm.dbg.declare intrinsics</a>
1800</h3>
1801<div>
1802  <p>This pass implements code stripping. Specifically, it can delete:</p>
1803  <ul>
1804  <li>names for virtual registers</li>
1805  <li>symbols for internal globals and functions</li>
1806  <li>debug information</li>
1807  </ul>
1808  <p>
1809  Note that this transformation makes code much less readable, so it should
1810  only be used in situations where the 'strip' utility would be used, such as
1811  reducing code size or making it harder to reverse engineer code.
1812  </p>
1813</div>
1814
1815<!-------------------------------------------------------------------------- -->
1816<h3>
1817  <a name="strip-nondebug">-strip-nondebug: Strip all symbols, except dbg symbols, from a module</a>
1818</h3>
1819<div>
1820  <p>This pass implements code stripping. Specifically, it can delete:</p>
1821  <ul>
1822  <li>names for virtual registers</li>
1823  <li>symbols for internal globals and functions</li>
1824  <li>debug information</li>
1825  </ul>
1826  <p>
1827  Note that this transformation makes code much less readable, so it should
1828  only be used in situations where the 'strip' utility would be used, such as
1829  reducing code size or making it harder to reverse engineer code.
1830  </p>
1831</div>
1832
1833<!-------------------------------------------------------------------------- -->
1834<h3>
1835  <a name="tailcallelim">-tailcallelim: Tail Call Elimination</a>
1836</h3>
1837<div>
1838  <p>
1839  This file transforms calls of the current function (self recursion) followed
1840  by a return instruction with a branch to the entry of the function, creating
1841  a loop.  This pass also implements the following extensions to the basic
1842  algorithm:
1843  </p>
1844  
1845  <ul>
1846  <li>Trivial instructions between the call and return do not prevent the
1847      transformation from taking place, though currently the analysis cannot
1848      support moving any really useful instructions (only dead ones).
1849  <li>This pass transforms functions that are prevented from being tail
1850      recursive by an associative expression to use an accumulator variable,
1851      thus compiling the typical naive factorial or <tt>fib</tt> implementation
1852      into efficient code.
1853  <li>TRE is performed if the function returns void, if the return
1854      returns the result returned by the call, or if the function returns a
1855      run-time constant on all exits from the function.  It is possible, though
1856      unlikely, that the return returns something else (like constant 0), and
1857      can still be TRE'd.  It can be TRE'd if <em>all other</em> return 
1858      instructions in the function return the exact same value.
1859  <li>If it can prove that callees do not access theier caller stack frame,
1860      they are marked as eligible for tail call elimination (by the code
1861      generator).
1862  </ul>
1863</div>
1864
1865<!-------------------------------------------------------------------------- -->
1866<h3>
1867  <a name="tailduplicate">-tailduplicate: Tail Duplication</a>
1868</h3>
1869<div>
1870  <p>
1871  This pass performs a limited form of tail duplication, intended to simplify
1872  CFGs by removing some unconditional branches.  This pass is necessary to
1873  straighten out loops created by the C front-end, but also is capable of
1874  making other code nicer.  After this pass is run, the CFG simplify pass
1875  should be run to clean up the mess.
1876  </p>
1877</div>
1878
1879</div>
1880
1881<!-- ======================================================================= -->
1882<h2><a name="utilities">Utility Passes</a></h2>
1883<div>
1884  <p>This section describes the LLVM Utility Passes.</p>
1885
1886<!-------------------------------------------------------------------------- -->
1887<h3>
1888  <a name="deadarghaX0r">-deadarghaX0r: Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</a>
1889</h3>
1890<div>
1891  <p>
1892  Same as dead argument elimination, but deletes arguments to functions which
1893  are external.  This is only for use by <a
1894  href="Bugpoint.html">bugpoint</a>.</p>
1895</div>
1896
1897<!-------------------------------------------------------------------------- -->
1898<h3>
1899  <a name="extract-blocks">-extract-blocks: Extract Basic Blocks From Module (for bugpoint use)</a>
1900</h3>
1901<div>
1902  <p>
1903  This pass is used by bugpoint to extract all blocks from the module into their
1904  own functions.</p>
1905</div>
1906
1907<!-------------------------------------------------------------------------- -->
1908<h3>
1909  <a name="instnamer">-instnamer: Assign names to anonymous instructions</a>
1910</h3>
1911<div>
1912  <p>This is a little utility pass that gives instructions names, this is mostly
1913 useful when diffing the effect of an optimization because deleting an
1914 unnamed instruction can change all other instruction numbering, making the
1915 diff very noisy.  
1916  </p>
1917</div>
1918
1919<!-------------------------------------------------------------------------- -->
1920<h3>
1921  <a name="preverify">-preverify: Preliminary module verification</a>
1922</h3>
1923<div>
1924  <p>
1925  Ensures that the module is in the form required by the <a
1926  href="#verifier">Module Verifier</a> pass.
1927  </p>
1928  
1929  <p>
1930  Running the verifier runs this pass automatically, so there should be no need
1931  to use it directly.
1932  </p>
1933</div>
1934
1935<!-------------------------------------------------------------------------- -->
1936<h3>
1937  <a name="verify">-verify: Module Verifier</a>
1938</h3>
1939<div>
1940  <p>
1941  Verifies an LLVM IR code. This is useful to run after an optimization which is
1942  undergoing testing. Note that <tt>llvm-as</tt> verifies its input before
1943  emitting bitcode, and also that malformed bitcode is likely to make LLVM
1944  crash. All language front-ends are therefore encouraged to verify their output
1945  before performing optimizing transformations.
1946  </p>
1947
1948  <ul>
1949    <li>Both of a binary operator's parameters are of the same type.</li>
1950    <li>Verify that the indices of mem access instructions match other
1951        operands.</li>
1952    <li>Verify that arithmetic and other things are only performed on
1953        first-class types.  Verify that shifts and logicals only happen on
1954        integrals f.e.</li>
1955    <li>All of the constants in a switch statement are of the correct type.</li>
1956    <li>The code is in valid SSA form.</li>
1957    <li>It is illegal to put a label into any other type (like a structure) or 
1958        to return one.</li>
1959    <li>Only phi nodes can be self referential: <tt>%x = add i32 %x, %x</tt> is
1960        invalid.</li>
1961    <li>PHI nodes must have an entry for each predecessor, with no extras.</li>
1962    <li>PHI nodes must be the first thing in a basic block, all grouped
1963        together.</li>
1964    <li>PHI nodes must have at least one entry.</li>
1965    <li>All basic blocks should only end with terminator insts, not contain
1966        them.</li>
1967    <li>The entry node to a function must not have predecessors.</li>
1968    <li>All Instructions must be embedded into a basic block.</li>
1969    <li>Functions cannot take a void-typed parameter.</li>
1970    <li>Verify that a function's argument list agrees with its declared
1971        type.</li>
1972    <li>It is illegal to specify a name for a void value.</li>
1973    <li>It is illegal to have an internal global value with no initializer.</li>
1974    <li>It is illegal to have a ret instruction that returns a value that does
1975        not agree with the function return value type.</li>
1976    <li>Function call argument types match the function prototype.</li>
1977    <li>All other things that are tested by asserts spread about the code.</li>
1978  </ul>
1979  
1980  <p>
1981  Note that this does not provide full security verification (like Java), but
1982  instead just tries to ensure that code is well-formed.
1983  </p>
1984</div>
1985
1986<!-------------------------------------------------------------------------- -->
1987<h3>
1988  <a name="view-cfg">-view-cfg: View CFG of function</a>
1989</h3>
1990<div>
1991  <p>
1992  Displays the control flow graph using the GraphViz tool.
1993  </p>
1994</div>
1995
1996<!-------------------------------------------------------------------------- -->
1997<h3>
1998  <a name="view-cfg-only">-view-cfg-only: View CFG of function (with no function bodies)</a>
1999</h3>
2000<div>
2001  <p>
2002  Displays the control flow graph using the GraphViz tool, but omitting function
2003  bodies.
2004  </p>
2005</div>
2006
2007<!-------------------------------------------------------------------------- -->
2008<h3>
2009  <a name="view-dom">-view-dom: View dominance tree of function</a>
2010</h3>
2011<div>
2012  <p>
2013  Displays the dominator tree using the GraphViz tool.
2014  </p>
2015</div>
2016
2017<!-------------------------------------------------------------------------- -->
2018<h3>
2019  <a name="view-dom-only">-view-dom-only: View dominance tree of function (with no function bodies)</a>
2020</h3>
2021<div>
2022  <p>
2023  Displays the dominator tree using the GraphViz tool, but omitting function
2024  bodies.
2025  </p>
2026</div>
2027
2028<!-------------------------------------------------------------------------- -->
2029<h3>
2030  <a name="view-postdom">-view-postdom: View postdominance tree of function</a>
2031</h3>
2032<div>
2033  <p>
2034  Displays the post dominator tree using the GraphViz tool.
2035  </p>
2036</div>
2037
2038<!-------------------------------------------------------------------------- -->
2039<h3>
2040  <a name="view-postdom-only">-view-postdom-only: View postdominance tree of function (with no function bodies)</a>
2041</h3>
2042<div>
2043  <p>
2044  Displays the post dominator tree using the GraphViz tool, but omitting
2045  function bodies.
2046  </p>
2047</div>
2048
2049</div>
2050
2051<!-- *********************************************************************** -->
2052
2053<hr>
2054<address>
2055  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2056  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
2057  <a href="http://validator.w3.org/check/referer"><img
2058  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
2059
2060  <a href="mailto:rspencer@x10sys.com">Reid Spencer</a><br>
2061  <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
2062  Last modified: $Date$
2063</address>
2064
2065</body>
2066</html>
2067